1
|
Ke Y, Cao Z, Wang X, Liu D, Fu Y, Chen H, Cheng Y, Guo K, Li Y, Long X, Yang M, Zhao Q. K Ca3.1 Promotes the Migration of Macrophages From Epicardial Adipose Tissue to Induce Vulnerability to Atrial Fibrillation During Rapid Pacing. Can J Cardiol 2025; 41:195-209. [PMID: 39147322 DOI: 10.1016/j.cjca.2024.08.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND The relationship between local epicardial adipose tissue (EAT) macrophages and atrial fibrillation (AF) remains unclear. The purpose of this study was to investigate the role of KCa3.1 in the migration of macrophages from EAT to adjacent atrial tissue during rapid pacing. METHODS Part 1: Eighteen beagles were randomly divided into the sham group, pacing group, and pacing + clodronate liposome (CL) group. Part 2: Eighteen beagles were randomly divided into the sham group, pacing group, and pacing + TRAM-34 group. HL-1 cells and RAW264.7 cells were co-cultured to explore the specific migratory mechanism of macrophages. RESULTS Depleting EAT macrophages significantly reduced macrophage infiltration in the adjacent atrium and the induction of AF in canines with rapid atrial pacing. TRAM-34 significantly inhibited the migration of macrophages from EAT to the adjacent atrium and electrical remodelling in canines with rapid atrial pacing. Compared with those of the control HL-1 cells, the secretion of CCL2 and the number of migrating macrophages in pacing HL-1 cells was significantly increased, which could be reversed by TRAM-34. Further in vitro experiments showed that KCa3.1 regulated CCL2 secretion through the p65/STAT3 signalling pathway. CONCLUSIONS Inhibiting myocardial KCa3.1 reduced the migration of EAT macrophages to adjacent atrial muscles caused by rapid atrial pacing, thereby decreasing vulnerability to AF. The mechanism by which KCa3.1 regulates CCL2 may be related to the p65/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Yuanjia Ke
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xuewen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yanni Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Kexin Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yajia Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xiaojian Long
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Hedley KE, Gomez HM, Kecelioglu E, Carroll OR, Jobling P, Horvat JC, Tadros MA. Neonatal Chlamydia muridarum respiratory infection causes neuroinflammation within the brainstem during the early postnatal period. J Neuroinflammation 2024; 21:158. [PMID: 38879567 PMCID: PMC11179230 DOI: 10.1186/s12974-024-03150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Respiratory infections are one of the most common causes of illness and morbidity in neonates worldwide. In the acute phase infections are known to cause wide-spread peripheral inflammation. However, the inflammatory consequences to the critical neural control centres for respiration have not been explored. Utilising a well characterised model of neonatal respiratory infection, we investigated acute responses within the medulla oblongata which contains key respiratory regions. Neonatal mice were intranasally inoculated within 24 h of birth, with either Chlamydia muridarum or sham-infected, and tissue collected on postnatal day 15, the peak of peripheral inflammation. A key finding of this study is that, while the periphery appeared to show no sex-specific effects of a neonatal respiratory infection, sex had a significant impact on the inflammatory response of the medulla oblongata. There was a distinct sex-specific response in the medulla coincident with peak of peripheral inflammation, with females demonstrating an upregulation of anti-inflammatory cytokines and males showing very few changes. Microglia also demonstrated sex-specificity with the morphology of females and males differing based upon the nuclei. Astrocytes showed limited changes during the acute response to neonatal infection. These data highlight the strong sex-specific impact of a respiratory infection can have on the medulla in the acute inflammatory phase.
Collapse
Affiliation(s)
- Kateleen E Hedley
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Henry M Gomez
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Eda Kecelioglu
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Olivia R Carroll
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jay C Horvat
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
3
|
Lee JM, Kim J, Park SJ, Nam JH, Kim HJ, Kim WK. Regulation of T Lymphocyte Functions through Calcium Signaling Modulation by Nootkatone. Int J Mol Sci 2024; 25:5240. [PMID: 38791278 PMCID: PMC11121628 DOI: 10.3390/ijms25105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Recent advancements in understanding the intricate molecular mechanisms underlying immunological responses have underscored the critical involvement of ion channels in regulating calcium influx, particularly in inflammation. Nootkatone, a natural sesquiterpenoid found in Alpinia oxyphylla and various citrus species, has gained attention for its diverse pharmacological properties, including anti-inflammatory effects. This study aimed to elucidate the potential of nootkatone in modulating ion channels associated with calcium signaling, particularly CRAC, KV1.3, and KCa3.1 channels, which play pivotal roles in immune cell activation and proliferation. Using electrophysiological techniques, we demonstrated the inhibitory effects of nootkatone on CRAC, KV1.3, and KCa3.1 channels in HEK293T cells overexpressing respective channel proteins. Nootkatone exhibited dose-dependent inhibition of channel currents, with IC50 values determined for each channel. Nootkatone treatment did not significantly affect cell viability, indicating its potential safety for therapeutic applications. Furthermore, we observed that nootkatone treatment attenuated calcium influx through activated CRAC channels and showed anti-proliferative effects, suggesting its role in regulating inflammatory T cell activation. These findings highlight the potential of nootkatone as a natural compound for modulating calcium signaling pathways by targeting related key ion channels and it holds promise as a novel therapeutic agent for inflammatory disorders.
Collapse
Affiliation(s)
- Ji Min Lee
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Gyeongsangbuk-do, Republic of Korea; (J.M.L.); (S.J.P.); (J.H.N.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea;
| | - Jintae Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea;
| | - Su Jin Park
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Gyeongsangbuk-do, Republic of Korea; (J.M.L.); (S.J.P.); (J.H.N.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea;
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Gyeongsangbuk-do, Republic of Korea; (J.M.L.); (S.J.P.); (J.H.N.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea;
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Gyeongsangbuk-do, Republic of Korea; (J.M.L.); (S.J.P.); (J.H.N.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea;
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea;
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Chen H, Liu H, Liu D, Fu Y, Yao Y, Cao Z, Peng Z, Yang M, Zhao Q. M2 macrophage‑derived exosomes alleviate KCa3.1 channel expression in rapidly paced HL‑1 myocytes via the NF‑κB (p65)/STAT3 signaling pathway. Mol Med Rep 2024; 29:55. [PMID: 38334149 PMCID: PMC10877089 DOI: 10.3892/mmr.2024.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The present study was designed to explore the role of M2 macrophage‑derived exosomes (M2‑exos) on the KCa3.1 channel in a cellular atrial fibrillation (AF) model using rapidly paced HL‑1 myocytes. M2 macrophages and M2‑exos were isolated and identified. MicroRNA (miR)‑146a‑5p levels in M2 macrophages and M2‑exos were quantified using reverse transcription‑quantitative PCR (RT‑qPCR). HL‑1 myocytes were randomly divided into six groups: Control group, pacing group, pacing + coculture group (pacing HL‑1 cells cocultured with M2‑exos), pacing + mimic‑miR‑146a‑5p group, pacing + NC‑miR‑146a‑5p group and pacing + pyrrolidine dithiocarbamate (PDTC; a special blocker of the NF‑κB signaling pathway) group. Transmission electron microscopy, nanoparticle tracking analysis, western blotting, RT‑qPCR and immunohistochemistry were performed in the present study. A whole‑cell clamp was also applied to record the current density of KCa3.1 and action potential duration (APD) in each group. The results revealed that miR‑146a‑5p was highly expressed in both M2 macrophages and M2‑exos. Pacing HL‑1 cells led to a shorter APD, an increased KCa3.1 current density and higher protein levels of KCa3.1, phosphorylated (p‑)NF‑κB p65, p‑STAT3 and IL‑1β compared with the control group. M2‑exos, miR‑146a‑5p‑mimic and PDTC both reduced the protein expression of KCa3.1, p‑NF‑κB p65, p‑STAT3 and IL‑1β and the current density of KCa3.1, resulting in a longer APD in the pacing HL‑1 cells. In conclusion, M2‑exos and their cargo, which comprised miR‑146a‑5p, decreased KCa3.1 expression and IL‑1β secretion in pacing HL‑1 cells via the NF‑κB/STAT3 signaling pathway, limiting the shorter APD caused by rapid pacing.
Collapse
Affiliation(s)
- Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Huafen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhibin Peng
- Department of Cardiology, Yidu People's Hospital, Yidu, Hubei 443000, P.R. China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
5
|
Van NTH, Kim WK, Nam JH. Challenges in the Therapeutic Targeting of KCa Channels: From Basic Physiology to Clinical Applications. Int J Mol Sci 2024; 25:2965. [PMID: 38474212 PMCID: PMC10932353 DOI: 10.3390/ijms25052965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Calcium-activated potassium (KCa) channels are ubiquitously expressed throughout the body and are able to regulate membrane potential and intracellular calcium concentrations, thereby playing key roles in cellular physiology and signal transmission. Consequently, it is unsurprising that KCa channels have been implicated in various diseases, making them potential targets for pharmaceutical interventions. Over the past two decades, numerous studies have been conducted to develop KCa channel-targeting drugs, including those for disorders of the central and peripheral nervous, cardiovascular, and urinary systems and for cancer. In this review, we synthesize recent findings regarding the structure and activating mechanisms of KCa channels. We also discuss the role of KCa channel modulators in therapeutic medicine. Finally, we identify the major reasons behind the delay in bringing these modulators to the pharmaceutical market and propose new strategies to promote their application.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
6
|
Tao Y, Wang W, Jin Y, Wang M, Xu J, Wang Y, Gong F. The Therapeutic Effects of EFNB2-Fc in a Cell Model of Kawasaki Disease. Pharmaceuticals (Basel) 2023; 16:ph16040500. [PMID: 37111257 PMCID: PMC10142267 DOI: 10.3390/ph16040500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The EphrinB2/EphB4 signaling pathway involves the regulation of vascular morphogenesis and angiogenesis. However, little is known about EphrinB2/EphB4 in the pathogenesis of Kawasaki disease (KD) and coronary artery aneurysm formation. Hence, this study aimed to explore the role of EphrinB2/EphB4 and the potential therapeutic effect of EphrinB2-Fc in the coronary arterial endothelial injury of KD. The levels of EphB4 were compared between KD patients and healthy children. Human coronary artery endothelial cells (HCAECs) were stimulated with sera from acute KD patients to establish the KD cell model. The overexpression of EphB4 or treatment with EphrinB2-Fc was found to intervene in the cell model. The cell migration, angiogenesis, and proliferation ability were assessed, and the expression of inflammation-related factors was measured. Our study showed that EphB4 showed low expression in both KD patients and the cell model of KD. The EphB4 protein levels in the CECs of CAA+ KD patients were much lower than those in healthy children. EphrinB2-Fc treatment of KD sera-activated HCAECs suppressed cell proliferation, reduced the expression of inflammation-related factors (such as IL-6 and P-selectin), and elevated cell angiogenesis ability. The results reveal that EphrinB2-Fc has a protective function in endothelial cells and has promising clinical applications for protecting vascular endothelium in patients with KD.
Collapse
|
7
|
Man Q, Gao Z, Chen K. Functional Potassium Channels in Macrophages. J Membr Biol 2023; 256:175-187. [PMID: 36622407 DOI: 10.1007/s00232-022-00276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Macrophages are the predominant component of innate immunity, which is an important protective barrier of our body. Macrophages are present in all organs and tissues of the body, their main functions include immune surveillance, bacterial killing, tissue remodeling and repair, and clearance of cell debris. In addition, macrophages can present antigens to T cells and facilitate inflammatory response by releasing cytokines. Macrophages are of high concern due to their crucial roles in multiple physiological processes. In recent years, new advances are emerging after great efforts have been made to explore the mechanisms of macrophage activation. Ion channel is a class of multimeric transmembrane protein that allows specific ions to go through cell membrane. The flow of ions through ion channel between inside and outside of cell membrane is required for maintaining cell morphology and intracellular signal transduction. Expressions of various ion channels in macrophages have been detected. The roles of ion channels in macrophage activation are gradually caught attention. K+ channels are the most studied channels in immune system. However, very few of published papers reviewed the studies of K+ channels on macrophages. Here, we will review the four types of K+ channels that are expressed in macrophages: voltage-gated K+ channel, calcium-activated K+ channel, inwardly rectifying K+ channel and two-pore domain K+ channel.
Collapse
Affiliation(s)
- Qiaoyan Man
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China
| | - Zhe Gao
- Ningbo Institute of Medical Sciences, 42 Yangshan Rd, Ningbo, China.
| | - Kuihao Chen
- Department of Pharmacology, Ningbo University School of Medicine, A506, Wang Changlai Building818 Fenghua Rd, Ningbo, China.
| |
Collapse
|
8
|
Wang Y, Li T. Advances in understanding Kawasaki disease-related immuno-inflammatory response and vascular endothelial dysfunction. Pediatr Investig 2022; 6:271-279. [PMID: 36582276 PMCID: PMC9789937 DOI: 10.1002/ped4.12341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 01/01/2023] Open
Abstract
Kawasaki disease (KD) is a systemic vasculitis of unknown etiology, which tends to involve coronary arteries and can lead to acquired heart disease in children. The immuno-inflammatory response and vascular endothelial dysfunction are important causes of coronary artery disease in patients with KD. Multisystem inflammatory syndrome in children (MIS-C) is a rare inflammatory disease in children identified in recent years, which is caused by severe acute respiratory syndrome coronavirus 2 infection; this disease overlaps with KD. This review examines research progress concerning the immuno-inflammatory response and vascular endothelial dysfunction associated with KD, as well as differences between KD and MIS-C.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Pediatrics, Affiliated Taihe Hospital of Hubei University of MedicineShiyanHubeiChina
| | - Tao Li
- Department of Pediatrics, Affiliated Taihe Hospital of Hubei University of MedicineShiyanHubeiChina
| |
Collapse
|
9
|
Lin Y, Zhao YJ, Zhang HL, Hao WJ, Zhu RD, Wang Y, Hu W, Zhou RP. Regulatory role of KCa3.1 in immune cell function and its emerging association with rheumatoid arthritis. Front Immunol 2022; 13:997621. [PMID: 36275686 PMCID: PMC9580404 DOI: 10.3389/fimmu.2022.997621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic inflammation. Immune dysfunction is an essential mechanism in the pathogenesis of RA and directly linked to synovial inflammation and cartilage/bone destruction. Intermediate conductance Ca2+-activated K+ channel (KCa3.1) is considered a significant regulator of proliferation, differentiation, and migration of immune cells by mediating Ca2+ signal transduction. Earlier studies have demonstrated abnormal activation of KCa3.1 in the peripheral blood and articular synovium of RA patients. Moreover, knockout of KCa3.1 reduced the severity of synovial inflammation and cartilage damage to a significant extent in a mouse collagen antibody-induced arthritis (CAIA) model. Accumulating evidence implicates KCa3.1 as a potential therapeutic target for RA. Here, we provide an overview of the KCa3.1 channel and its pharmacological properties, discuss the significance of KCa3.1 in immune cells and feasibility as a drug target for modulating the immune balance, and highlight its emerging role in pathological progression of RA.
Collapse
Affiliation(s)
- Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hai-Lin Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Juan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ren-Di Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- *Correspondence: Wei Hu, ; Ren-Peng Zhou,
| |
Collapse
|
10
|
Selezneva A, Gibb AJ, Willis D. The contribution of ion channels to shaping macrophage behaviour. Front Pharmacol 2022; 13:970234. [PMID: 36160429 PMCID: PMC9490177 DOI: 10.3389/fphar.2022.970234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The expanding roles of macrophages in physiological and pathophysiological mechanisms now include normal tissue homeostasis, tissue repair and regeneration, including neuronal tissue; initiation, progression, and resolution of the inflammatory response and a diverse array of anti-microbial activities. Two hallmarks of macrophage activity which appear to be fundamental to their diverse cellular functionalities are cellular plasticity and phenotypic heterogeneity. Macrophage plasticity allows these cells to take on a broad spectrum of differing cellular phenotypes in response to local and possibly previous encountered environmental signals. Cellular plasticity also contributes to tissue- and stimulus-dependent macrophage heterogeneity, which manifests itself as different macrophage phenotypes being found at different tissue locations and/or after different cell stimuli. Together, plasticity and heterogeneity align macrophage phenotypes to their required local cellular functions and prevent inappropriate activation of the cell, which could lead to pathology. To execute the appropriate function, which must be regulated at the qualitative, quantitative, spatial and temporal levels, macrophages constantly monitor intracellular and extracellular parameters to initiate and control the appropriate cell signaling cascades. The sensors and signaling mechanisms which control macrophages are the focus of a considerable amount of research. Ion channels regulate the flow of ions between cellular membranes and are critical to cell signaling mechanisms in a variety of cellular functions. It is therefore surprising that the role of ion channels in the macrophage biology has been relatively overlooked. In this review we provide a summary of ion channel research in macrophages. We begin by giving a narrative-based explanation of the membrane potential and its importance in cell biology. We then report on research implicating different ion channel families in macrophage functions. Finally, we highlight some areas of ion channel research in macrophages which need to be addressed, future possible developments in this field and therapeutic potential.
Collapse
|
11
|
Qiu Y, Zhang Y, Li Y, Hua Y, Zhang Y. Molecular mechanisms of endothelial dysfunction in Kawasaki-disease-associated vasculitis. Front Cardiovasc Med 2022; 9:981010. [PMID: 36003919 PMCID: PMC9393387 DOI: 10.3389/fcvm.2022.981010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/14/2023] Open
Abstract
Kawasaki disease (KD) is an acute, inflammation mediated vasculitis, mainly affecting in children under five, which is consider as the most common coronary artery disease in children. The injuries of coronary arteries would result in dilation or thrombus formation, bringing great threaten to patients. Endothelium, located in the inner surface of coronary artery, serves as the interface between the circulating inflammatory cells and vascular media or adventitia, which is the first target of inflammatory attacks during early stage of KD. A series of studies have determined vascular endothelial cells damages and dysfunction in KD patients. However, current therapeutic strategy is still challenging. So that it is critical to underline the mechanisms of endothelium injuries. In this review, the role of endothelial cells in the pathogenesis of KD and the therapeutic methods for endothelial cells were systematically described.
Collapse
|
12
|
KCa3.1 in diabetic kidney disease. Curr Opin Nephrol Hypertens 2022; 31:129-134. [PMID: 34710887 DOI: 10.1097/mnh.0000000000000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Diabetic kidney disease (DKD) is a significant health concern. Innovative strategies to prevent or limit the progression of DKD are urgently needed due to the limitation of existing treatments. KCa3.1, a potassium channel, is involved in a range of biological processes from cell survival to cell death. This review summarizes the current knowledge on the pathophysiological functions of the KCa3.1 channel, specifically its involvement in maintaining mitochondrial function. More specifically, the therapeutic potential of targeting KCa3.1 in DKD is systematically discussed in the review. RECENT FINDINGS Mitochondrial dysfunction contributes to the development and progression of DKD. Accumulating evidence indicates that KCa3.1 dysregulation plays a crucial role in mitochondrial dysfunction, in addition to driving cellular activation, proliferation and inflammation. Recent studies demonstrate that KCa3.1 deficiency improves diabetes-induced mitochondrial dysfunction in DKD, which is attributed to modulation of mitochondrial quality control through mitigating the altered mitochondrial dynamics and restoring abnormal BNIP3-mediated mitophagy. SUMMARY Based on its role in fibrosis, inflammation and mitochondrial dysfunction, pharmacological inhibition of KCa3.1 may offer a promising alternative for the treatment of DKD. Due to its safety profile in humans, the repurposing of senicapoc has the potential to expedite an urgently needed new drug in DKD.
Collapse
|