1
|
Bourke SL, Suarez EG, Islam B, Stephenson J, Finn DP, McHugh PC. Clinical measures in chronic neuropathic pain are related to the Kennedy and endocannabinoid pathways. Eur J Clin Invest 2025; 55:e14351. [PMID: 39545479 PMCID: PMC11744925 DOI: 10.1111/eci.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Chronic neuropathic pain (CNP) is a debilitating condition, often refractory to currently available drugs. Understanding biochemical alterations in peripheral tissues such as blood will be useful for understanding underlying pathophysiological processes relating to CNP. METHODS We collected blood from two independent cohorts of CNP and pain-free controls (CNP n = 129/Controls n = 127) in the UK and Ireland to investigate the relationship between CNP-associated molecular/biochemical alterations and a range of clinical and pain metric parameters. Multiple statistical comparisons were conducted on the data, with selected variables included in one or more of the intended inferential analyses (six models). RESULTS Gene expression analysis showed that choline phosphotransferase (CHPT1) was increased (p < .001) in the CNP group compared to controls. The levels of phosphatidylcholine, a metabolite of CHPT1 in the Kennedy Pathway, were significantly (p = .008) decreased in the plasma of patients with CNP. Given the relationship between the Kennedy pathway and endocannabinoids, plasma endocannabinoids and related N-acylethanolamines were quantified in clinical samples by HPLC-Tandem Mass Spectrometry. Plasma levels of the endocannabinoid 2-arachidonoylglycerol were higher in CNP samples compared to controls, and in the statistical models applied, 2-arachidonoylglycerol significantly increased the odds of CNP (p < .001). The expression of genes related to the synthesis and catabolism of endocannabinoids also corroborated the increased plasma 2-arachidonoylglycerol levels in patients with CNP. CONCLUSIONS Endocannabinoid levels, expression of genes related to endocannabinoid metabolism, age, sex, depression and anxiety state together were strong predictors of CNP. The observed molecular changes indicate that lipid metabolism is altered in CNP and thus may represent a viable target for novel analgesics or biomarker development.
Collapse
Affiliation(s)
- Stephanie L. Bourke
- Pharmacology & Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain ResearchUniversity of GalwayGalwayIreland
| | - Eva Gonzalez Suarez
- Centre for Biomarker ResearchSchool of Applied SciencesHuddersfieldUK
- Department of PharmacySchool of Applied SciencesHuddersfieldUK
| | - Barira Islam
- Centre for Biomarker ResearchSchool of Applied SciencesHuddersfieldUK
- Department of PharmacySchool of Applied SciencesHuddersfieldUK
| | - John Stephenson
- Centre for Biomarker ResearchSchool of Applied SciencesHuddersfieldUK
- School of Human and Health SciencesUniversity of HuddersfieldHuddersfieldUK
| | - David P. Finn
- Pharmacology & Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain ResearchUniversity of GalwayGalwayIreland
| | - Patrick C. McHugh
- Centre for Biomarker ResearchSchool of Applied SciencesHuddersfieldUK
- Department of PharmacySchool of Applied SciencesHuddersfieldUK
| |
Collapse
|
2
|
Yang Y, Qiu Y, Hu J, Rosen-Zvi M, Guan Q, Cheng F. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. CELL REPORTS METHODS 2024; 4:100865. [PMID: 39341201 PMCID: PMC11573792 DOI: 10.1016/j.crmeth.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Artificial intelligence (AI) and deep learning technologies hold promise for identifying effective drugs for human diseases, including pain. Here, we present an interpretable deep-learning-based ligand image- and receptor's three-dimensional (3D)-structure-aware framework to predict compound-protein interactions (LISA-CPI). LISA-CPI integrates an unsupervised deep-learning-based molecular image representation (ImageMol) of ligands and an advanced AlphaFold2-based algorithm (Evoformer). We demonstrated that LISA-CPI achieved ∼20% improvement in the average mean absolute error (MAE) compared to state-of-the-art models on experimental CPIs connecting 104,969 ligands and 33 G-protein-coupled receptors (GPCRs). Using LISA-CPI, we prioritized potential repurposable drugs (e.g., methylergometrine) and identified candidate gut-microbiota-derived metabolites (e.g., citicoline) for potential treatment of pain via specifically targeting human GPCRs. In summary, we presented that the integration of molecular image and protein 3D structural representations using a deep learning framework offers a powerful computational drug discovery tool for treating pain and other complex diseases if broadly applied.
Collapse
Affiliation(s)
- Yuxin Yang
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Computer Science, Kent State University, Kent, OH 44242, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yunguang Qiu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jianying Hu
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Michal Rosen-Zvi
- AI for Accelerated Healthcare and Life Sciences Discovery, IBM Research-Israel, Haifa 3498825, Israel
| | - Qiang Guan
- Department of Computer Science, Kent State University, Kent, OH 44242, USA.
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA.
| |
Collapse
|
3
|
Raissi-Dehkordi N, Raissi-Dehkordi N, Hajikarimloo B, Khakpai F, Zarrindast MR. Potentiation of Imipramine-Induced Anti-hyperalgesic and Anti-Nociceptive Effects by Citicoline in the Sciatic Nerve Ligated Mice. ARCHIVES OF IRANIAN MEDICINE 2024; 27:456-464. [PMID: 39306718 PMCID: PMC11416695 DOI: 10.34172/aim.28772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/12/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Peripheral neuropathic pain is a result of damage/illness of the peripheral nerves. The mechanisms caused by its pathophysiology are not completely understood. METHODS Imipramine is a tricyclic antidepressant that is sometimes used to treat neuropathic pain. Moreover, citicoline is considered a novel adjuvant for painful disorders such as neuropathic pain. So, a possible interaction between imipramine and citicoline on pain behavior was examined in nerve-ligated mice using tail-flick and hot plate tests. RESULTS The results indicated that induction of neuropathic pain by sciatic nerve ligation caused hyperalgesia in nerve-ligated mice. On the other hand, intraperitoneal (i.p.) administration of citicoline (50, 75, and 100 mg/kg), and imipramine (2.5 and 5 mg/kg) induced anti-hyperalgesic and anti-nociceptive effects in nerve-ligated mice. Furthermore, citicoline potentiated the anti-hyperalgesic and anti-nociceptive effects of imipramine when they were co-administrated in nerve-ligated mice. Interestingly, there was an additive effect between imipramine and citicoline upon induction of anti-hyperalgesic and anti-nociceptive effects in nerve-ligated mice. CONCLUSION Therefore, it can be concluded that citicoline (as an adjuvant substance) enhanced the efficacy of imipramine for the modulation of pain behavior in nerve-ligated mice.
Collapse
Affiliation(s)
| | | | - Bardia Hajikarimloo
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Moammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
4
|
Raissi-Dehkordi N, Hajikarimloo B, Raissi-Dehkordi N, Khakpai F, Zarrindast MR. The additive effect between bupropion and citicoline upon induction of anti-nociceptive effect in nerve-ligated mice. Neurol Res 2024:1-8. [PMID: 38958173 DOI: 10.1080/01616412.2024.2370203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES Bupropion is an atypical antidepressant that shows robust efficacy in the regulation of neuropathic pain. Citicoline is a dietary supplement which is used as a neuroprotective agent for central nervous system (CNS) disorders. The probable interaction between bupropion and citicoline on neuropathic pain was assessed in male mice. METHODS Neuropathic pain was induced by sciatic nerve ligation. Neuropathic pain was examined in nerve-ligated mice using tail-flick and hot-plate tests. RESULTS The results indicated that intraperitoneal (i.p.) administration of citicoline (50 and 100 mg/kg) induced an anti-nociceptive effect in nerve-ligated animals. Similarly, i.p. injection of bupropion (2.5 and 5 mg/kg) induced anti-nociceptive effects in nerve-ligated mice. Co-administration of different doses of bupropion (2.5 and 5 mg/kg) along with a low dose of citicoline (25 mg/kg) caused an anti-nociceptive effect by enhancement of tail-flick and hot plate latencies. Interestingly, there is an additive effect between bupropion and citicoline upon the induction of the anti-nociceptive effect. CONCLUSIONS Based on these results, it can be concluded that there is an interaction between bupropion and citicoline upon induction of an anti-nociceptive effect in nerve-ligated mice.
Collapse
Affiliation(s)
| | - Bardia Hajikarimloo
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Department of Cognitive Science, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
5
|
Amanzade A, Khakpai F, Zarrindast MR. Synergistic antidepressant-like effect of citicoline and CB 1 agonist in male mice. Psychopharmacology (Berl) 2024; 241:753-766. [PMID: 38383902 DOI: 10.1007/s00213-023-06507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/14/2023] [Indexed: 02/23/2024]
Abstract
BACKGROUND The endocannabinoid system plays a key role in the control of many emotional-correlated reactions such as stress, depressed mood, and anxiety. Moreover, citicoline has neuroprotective properties and indicates beneficial effects in the treatment of depressive problems. Acute restraint stress (ARS) is an experimental model used for the induction of rodent models of depression. OBJECTIVE This research was designed to assess the effects of intracerebroventricular (i.c.v.) injection of cannabinoid CB1 receptor agents on citicoline-induced response to depression-like behaviors in the non-acute restraint stress (NARS) and ARS mice. METHODS For i.c.v. microinjection, a guide cannula was implanted in the left lateral ventricle of male mice. The ARS model was carried out by movement restraint for 4 h. Depression-related behaviors were assessed by forced swimming test (FST), tail suspension test (TST), and splash test. RESULTS The results exhibited that the ARS mice showed depressive-like responses. I.c.v. infusion of ACPA (1 μg/mouse) induced an antidepressant-like effect in the NARS and ARS mice by reduction of immobility time in the FST and TST as well as enhancement of grooming activity time in the splash test. On the other hand, i.c.v. microinjection of AM251 dose-dependently (0.5 and 1 μg/mouse) induced a depressant-like effect in the NARS mice. I.p. injection of citicoline (80 mg/kg) induced an antidepressant-like response in the NARS and ARS mice. Furthermore, ACPA (0.25 μg/mouse, i.c.v.) potentiated the antidepressant-like response induced by citicoline (20 mg/kg, i.p.) in the NARS and ARS mice. However, AM251 (0.25 μg/mouse, i.c.v.) reversed the antidepressant-like effect produced by the citicoline (80 mg/kg, i.p.) in the NARS and ARS mice. Interestingly, our results indicated a synergistic effect between citicoline and ACPA based on the induction of an antidepressant-like effect in the NARS and ARS mice. CONCLUSIONS These results suggested an interaction between citicoline and cannabinoid CB1 receptors on the modulation of depression-like behaviors in the NARS and ARS mice.
Collapse
Affiliation(s)
- Aysan Amanzade
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
| |
Collapse
|
6
|
Montigné E, Balayssac D. Exploring Cholinergic Compounds for Peripheral Neuropathic Pain Management: A Comprehensive Scoping Review of Rodent Model Studies. Pharmaceuticals (Basel) 2023; 16:1363. [PMID: 37895835 PMCID: PMC10609809 DOI: 10.3390/ph16101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain affects about 7-8% of the population, and its management still poses challenges with unmet needs. Over the past decades, researchers have explored the cholinergic system (muscarinic and nicotinic acetylcholine receptors: mAChR and nAChR) and compounds targeting these receptors as potential analgesics for neuropathic pain management. This scoping review aims to provide an overview of studies on peripheral neuropathic pain (PNP) in rodent models, exploring compounds targeting cholinergic neurotransmission. The inclusion criteria were original articles on PNP in rodent models that explored the use of compounds directly targeting cholinergic neurotransmission and reported results of nociceptive behavioral assays. The literature search was performed in the PubMed and Web of Science databases (1 January 2000-22 April 2023). The selection process yielded 82 publications, encompassing 62 compounds. The most studied compounds were agonists of α4β2 nAChR and α7 nAChR, and antagonists of α9/α10 nAChR, along with those increasing acetylcholine and targeting mAChRs. Studies mainly reported antinociceptive effects in traumatic PNP models, and to a lesser extent, chemotherapy-induced neuropathy or diabetic models. These preclinical studies underscore the considerable potential of cholinergic compounds in the management of PNP, warranting the initiation of clinical trials.
Collapse
Affiliation(s)
- Edouard Montigné
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - David Balayssac
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, Direction de la Recherche Clinique et de l’Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Elhessy HM, Habotta OA, Eldesoqui M, Elsaed WM, Soliman MFM, Sewilam HM, Elhassan YH, Lashine NH. Comparative neuroprotective effects of Cerebrolysin, dexamethasone, and ascorbic acid on sciatic nerve injury model: Behavioral and histopathological study. Front Neuroanat 2023; 17:1090738. [PMID: 36816518 PMCID: PMC9928760 DOI: 10.3389/fnana.2023.1090738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Background The majority of the suggested experimental modalities for peripheral nerve injury (PNI) result in varying degrees of recovery in animal models; however, there are not many reliable clinical pharmacological treatment models available. To alleviate PNI complications, research on approaches to accelerate peripheral nerve regeneration is encouraged. Cerebrolysin, dexamethasone, and ascorbic acid (vitamin C) drug models were selected in our study because of their reported curative effects of different mechanisms of action. Methodology A total of 40 adult male albino rats were used in this study. Sciatic nerve crush injury was induced in 32 rats, which were divided equally into four groups (model, Cerebrolysin, dexamethasone, and vitamin C groups) and compared to the sham group (n = 8). The sciatic nerve sensory and motor function regeneration after crushing together with gastrocnemius muscle histopathological changes were evaluated by the sciatic function index, the hot plate test, gastrocnemius muscle mass ratio, and immune expression of S100 and apoptosis cascade (BAX, BCL2, and BAX/BCL2 ratio). Results Significant improvement of the behavioral status and histopathological assessment scores occurred after the use of Cerebrolysin (as a neurotrophic factor), dexamethasone (as an anti-inflammatory), and vitamin C (as an antioxidant). Despite these seemingly concomitant, robust behavioral and pathological changes, vitamin C appeared to have the best results among the three main outcome measures. There was a positive correlation between motor and sensory improvement and also between behavioral and histopathological changes, boosting the effectiveness, and implication of the sciatic function index as a mirror for changes occurring on the tissue level. Conclusion Vitamin C is a promising therapeutic in the treatment of PNI. The sciatic function index (SFI) test is a reliable accurate method for assessing sciatic nerve integrity after both partial disruption and regrowth.
Collapse
Affiliation(s)
- Heba M. Elhessy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,*Correspondence: Heba M. Elhessy,
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mamdouh Eldesoqui
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Wael M. Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona F. M. Soliman
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Haitham M. Sewilam
- Department of Histology and Cell Biology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Y. H. Elhassan
- Department of Anatomy, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Nermeen H. Lashine
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Bajaj S, Gupta S. Nutraceuticals: A Promising Approach Towards Diabetic Neuropathy. Endocr Metab Immune Disord Drug Targets 2023; 23:581-595. [PMID: 36263482 DOI: 10.2174/1871530323666221018090024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Various nutraceuticals from different sources have various beneficial actions and have been reported for many years. The important findings from the research conducted using various nutraceuticals exhibiting significant physiological and pharmacological activities have been summarized. METHODS An extensive investigation of literature was done using several worldwide electronic scientific databases like PUBMED, SCOPUS, Science Direct, Google Scholar, etc. The entire manuscript is available in the English language that is used for our various compounds of interest. These databases were thoroughly reviewed and summarized. RESULTS Nutraceuticals obtained from various sources play a vital role in the management of peripheral neuropathy associated with diabetes. Treatment with nutraceuticals has been beneficial as an alternative in preventing the progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DPN. CONCLUSION Nutraceuticals obtained from different sources like a plant, an animal, and marine have been properly utilized for the safety of health. In our opinion, this review could be of great interest to clinicians, as it offers a complementary perspective on the management of DPN. Trials with a well-defined patient and symptom selection have shown robust pharmacological design as pivotal points to let these promising compounds become better accepted by the medical community.
Collapse
Affiliation(s)
- Sakshi Bajaj
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana-133207, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana-133207, India
| |
Collapse
|
9
|
Abstract
This review is based on the previous one published in 2016 (Secades JJ. Citicoline: pharmacological and clinical review, 2016 update. Rev Neurol 2016; 63 (Supl 3): S1-S73), incorporating 176 new references, having all the information available in the same document to facilitate the access to the information in one document. This review is focused on the main indications of the drug, as acute stroke and its sequelae, including the cognitive impairment, and traumatic brain injury and its sequelae. There are retrieved the most important experimental and clinical data in both indications.
Collapse
Affiliation(s)
- Julio J. Secades
- Departamento Médico. Grupo Ferrer, S.A. Barcelona, EspañaDepartamento MédicoDepartamento MédicoBarcelonaEspaña
| | - Pietro Gareri
- Center for Cognitive Disorders and Dementia - Catanzaro Lido. ASP Catanzaro. Catanzaro, ItaliaCenter for Cognitive Disorders and Dementia - Catanzaro LidoCenter for Cognitive Disorders and Dementia - Catanzaro LidoCatanzaroItalia
| |
Collapse
|
10
|
Abushukur Y, Knackstedt R. The Impact of Supplements on Recovery After Peripheral Nerve Injury: A Review of the Literature. Cureus 2022; 14:e25135. [PMID: 35733475 PMCID: PMC9205410 DOI: 10.7759/cureus.25135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Peripheral nerve injury (PNI) can result from trauma, surgical resection, iatrogenic injury, and/or local anesthetic toxicity. Damage to peripheral nerves may result in debilitating weakness, numbness, paresthesia, pain, and/or autonomic instability. As PNI is associated with inflammation and nerve degeneration, means to mitigate this response could result in improved outcomes. Numerous nutrients have been investigated to prevent the negative sequelae of PNI. Alpha-lipoic acid, cytidine diphosphate-choline (CDP Choline), curcumin, melatonin, vitamin B12, and vitamin E have demonstrated notable success in improving recovery following PNI within animal models. While animal studies show ample evidence that various supplements may improve recovery after PNI, similar evidence in human patients is limited. The goal of this review is to analyze supplements that have been used successfully in animal models of PNI to serve as a reference for future studies on human patients. By analyzing supplements that have shown efficacy in animal studies, healthcare providers will have a resource from which to guide decision-making regarding future human studies investigating the role that supplements could play in PNI recovery. Ultimately, establishing a comprehensive understanding of these supplements in human patients following PNI may significantly improve post-surgical outcomes, quality of life, and peripheral nerve regeneration.
Collapse
|
11
|
Khakpai F, Ramezanikhah M, Valizadegan F, Zarrindast MR. Synergistic effect between imipramine and citicoline upon induction of analgesic and antidepressant effects in mice. Neurosci Lett 2021; 760:136095. [PMID: 34216716 DOI: 10.1016/j.neulet.2021.136095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Imipramine is a tricyclic antidepressant (TCA) drug that is sometimes used to treat neuropathic pain. Citicoline is a dietary supplement that has been used as a neuroprotective agent for neurological disorders. Probable interaction between imipramine and citicoline on pain and depression behaviors was examined in mice using a tail-flick test, open field test (OFT), forced swimming test (FST), and tail suspension test (TST). The results indicated that the intraperitoneal (i.p.) administration of citicoline (50 mg/kg) induced analgesic and antidepressant-like behaviors in mice. Similarly, i.p. injection of imipramine (5 mg/kg) induced dose-dependent anti-nociceptive and anti-depressive effects. Co-administration of different doses of imipramine (1.25, 2.5, and 5 mg/kg) along with an ineffective dose of citicoline (6.25 mg/kg) increased tail-flick latency and decreased immobility time in the FST, suggesting an analgesic and antidepressant-like behaviors. Interestingly, there is a synergistic effect between imipramine and citicoline upon the induction of analgesic and antidepressant effects. All doses of the drugs had no significant effect on the locomotor activity. Based on these results, it can be concluded that the administration of citicoline (as an adjuvant drug) in combination with imipramine increased the efficacy of TCA drugs for modulation of pain and depression behaviors.
Collapse
Affiliation(s)
- Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Ramezanikhah
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Farhad Valizadegan
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Abstract
Headache is a common symptom of acute and chronic cerebrovascular diseases. Headache can be symptomatic in patients with various forms of vascular pathology of the brain but primary headaches are much more common. Secondary headaches in acute cerebrovascular accidents may be the first symptom, and in some cases, a risk factor or complication of stroke. In chronic cerebrovascular diseases, headache may be the predominant symptom in the early stages and resolve in the later stages of the disease. At the same time, the severity, nature and course of headache cannot be considered as reliable signs of cerebrovascular disease. Meanwhile, the verification of the headache form is important from the point of view of determining the priorities of diagnosis and therapy.
Collapse
Affiliation(s)
- G R Tabeeva
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
13
|
Jasielski P, Piędel F, Piwek M, Rocka A, Petit V, Rejdak K. Application of Citicoline in Neurological Disorders: A Systematic Review. Nutrients 2020; 12:E3113. [PMID: 33053828 PMCID: PMC7601330 DOI: 10.3390/nu12103113] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
Citicoline is a chemical compound involved in the synthesis of cell membranes. It also has other, not yet explained functions. Research on the use of citicoline is conducted in neurology, ophthalmology, and psychiatry. Citicoline is widely available as a dietary supplement. It is often used to enhance cognitive functions. In our article, accessible databases were searched for articles regarding citicoline use in neurological diseases. This article has a systemic review form. After rejecting non-eligible reports, 47 remaining articles were reviewed. The review found that citicoline has been proven to be a useful compound in preventing dementia progression. It also enhances cognitive functions among healthy individuals and improves prognosis after stroke. In an animal model of nerve damage and neuropathy, citicoline stimulated regeneration and lessened pain. Among patients who underwent brain trauma, citicoline has an unclear clinical effect. Citicoline has a wide range of effects and could be an essential substance in the treatment of many neurological diseases. Its positive impact on learning and cognitive functions among the healthy population is also worth noting.
Collapse
Affiliation(s)
- Patryk Jasielski
- Department of Neurology, Medical University of Lublin, 20-059 Lublin, Poland; (F.P.); (M.P.); (A.R.); (V.P.); (K.R.)
| | | | | | | | | | | |
Collapse
|
14
|
Bolandghamat S, Behnam-Rassouli M. Recent Findings on the Effects of Pharmacological Agents on the Nerve Regeneration after Peripheral Nerve Injury. Curr Neuropharmacol 2020; 18:1154-1163. [PMID: 32379588 PMCID: PMC7709152 DOI: 10.2174/1570159x18666200507084024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are accompanied with neuropathic pain and functional disability. Despite improvements in surgical repair techniques in recent years, the functional recovery is yet unsatisfied. Indeed a successful nerve repair depends not only on the surgical strategy but also on the cellular and molecular mechanisms involved in traumatic nerve injury. In contrast to all strategies suggested for nerve repair, pharmacotherapy is a cheap, accessible and non-invasive treatment that can be used immediately after nerve injury. This study aimed to review the effects of some pharmacological agents on the nerve regeneration after traumatic PNI evaluated by functional, histological and electrophysiological assessments. In addition, some cellular and molecular mechanisms responsible for their therapeutic actions, restricted to neural tissue, are suggested. These findings can not only help to find better strategies for peripheral nerve repair, but also to identify the neuropathic effects of various medications and their mechanisms of action.
Collapse
Affiliation(s)
- Samira Bolandghamat
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | | |
Collapse
|
15
|
Sun X, Wang W, Dong Y, Wang Y, Zhang M, Wang Z, Yu X, Huang J, Cai H. Relationship between calcium circulation-related factors and muscle strength in rat sciatic nerve injury model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:654-662. [PMID: 32742604 PMCID: PMC7375001 DOI: 10.22038/ijbms.2020.40915.9695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The purpose of this study is to investigate the indication function of the calcium circulation-related factors on the damage to muscle strength and contraction function after nerve injury. The target factors include ryanodine receptor (RyR), inositol-1,4,5-triphosphate receptor (IP3R), phospholamban (PLN), cryptocalcitonin (CASQ), ATPase and troponin C (TNNC). MATERIALS AND METHODS Sprague-Dawley (SD) rats were randomly divided into sham-operated group (SO), sciatic nerve injury group (SNI) and sciatic nerve disconnection group (SNT). Sciatic nerve function index and stretching test were used to examine the changes to muscle strength; bilateral gastrocnemius muscles were extracted after execution for gastrocnemius wet weight ratio test. HE staining slides and average cross-sectional area of muscle fibers were acquired to analyze the muscle atrophy. The transcription level of the factors was also measured. RESULTS Sciatic nerve damage in SNI group was significantly higher than that in SO group in the 6 weeks, but there was no significant difference between SNT and SO groups fallowing sciatic nerve damage. Sciatic nerve function in SNT group was worse than that in SNI group. The average cross-sectional area of gastrocnemius muscle fibers in SNI and SNT groups was significantly reduced compared to that in SO group. The transcriptional levels of RyR, PLN, CASQ, ATPase and TNNC in SNI and SNT groups were significantly different from those in SO group. CONCLUSION Calcium circulation-related factors could be used as potential indicators for assessment of damages to muscle strength.
Collapse
Affiliation(s)
- Xiaoming Sun
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Wei Wang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Yangyi Dong
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Yue Wang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Meixiang Zhang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Zhao Wang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Xiaowei Yu
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Jiao Huang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Hongxing Cai
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China,Corresponding author: Hongxing Cai. Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China. Tel: 0516-85748442
| |
Collapse
|
16
|
Jiang J, Hu Y, Zhang B, Shi Y, Zhang J, Wu X, Yao P. MicroRNA-9 regulates mammalian axon regeneration in peripheral nerve injury. Mol Pain 2018; 13:1744806917711612. [PMID: 28480796 PMCID: PMC5464514 DOI: 10.1177/1744806917711612] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Effective axon regeneration is achieved mainly by precise regulation of gene expression after peripheral nerve injury. MicroRNAs play an important role in controlling axon regeneration owe to its key epigenetic function in regulating gene expression. Here, we reveal that microRNA-9 (miR-9) may be a new suppressor of axon regeneration and FoxP1 is the functional target of miR-9. High level of endogenous miR-9 in sensory neurons inhibited axon regeneration in vitro and in vivo. In addition, the regulatory effect of miR-9 was mediated by changes in FoxP1 levels. Full rescuing effect of axon regeneration was achieved by FoxP1 up-regulation. Most importantly, we showed that miR-9-FoxP1 might be a new signaling pathway to regulate mammalian axon regrowth. Moreover, we provided the first evidence that maintaining a higher level of FoxP1 in sensory neurons by the microRNA is necessary for efficient axon regeneration.
Collapse
Affiliation(s)
- Jingjing Jiang
- 1Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang,China
| | - Yiwen Hu
- Department of OrthopedicSurgery,The First Affiliated Hospital of China Medical University, Shenyang,China
| | - Boyin Zhang
- 3Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yao Shi
- 4Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | |
Collapse
|
17
|
Nishimoto H, Inui A, Ueha T, Inoue M, Akahane S, Harada R, Mifune Y, Kokubu T, Nishida K, Kuroda R, Sakai Y. Transcutaneous carbon dioxide application with hydrogel prevents muscle atrophy in a rat sciatic nerve crush model. J Orthop Res 2018; 36:1653-1658. [PMID: 29193246 DOI: 10.1002/jor.23817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 11/23/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED The acceleration of nerve regeneration remains a clinical challenge. We previously demonstrated that transcutaneous CO2 application using a novel hydrogel increases the oxygen concentration in local tissue via an "artificial Bohr effect" with the potential to prevent muscle atrophy. In this study, we investigated the effect of transcutaneous CO2 administration on limb function after peripheral nerve injury in a rat sciatic nerve injury model. In total, 73 Sprague-Dawley rats were divided into a sham group, a control group (crush injury to sciatic nerve and no treatment) or a CO2 group (crush injury with transcutaneous CO2 application). CO2 was administered percutaneously for 20 min five times per week. Scores for the sciatic function index and pinprick test were significantly higher in the CO2 group than control group. The muscle wet weight ratios of the tibialis anterior and soleus muscles were higher in the CO2 group than control group. Electrophysiological examination showed that the CO2 group had higher compound motor action potential amplitudes and shorter distal motor latency than the control group. Histological examination of the soleus muscle sections at postoperative week 2 showed shorter fiber diameter in the control group than in the CO2 group. The mRNA expression of Atrogin-1 and MuRF-1 was lower, mRNA expression of VEGF and myogenin and MyoD was higher in CO2 group at postoperative week 2 compared to the control group. CLINICAL SIGNIFICANCE Transcutaneous CO2 application has the therapeutic potential to accelerate the recovery of muscle atrophy in peripheral nerve injury. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1653-1658, 2018.
Collapse
Affiliation(s)
- Hanako Nishimoto
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Atsuyuki Inui
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takeshi Ueha
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.,NeoChemir Inc., Kobe, Japan
| | - Miho Inoue
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shiho Akahane
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Risa Harada
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yutaka Mifune
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takeshi Kokubu
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ryosuke Kuroda
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|