1
|
Girma A. Biology of human respiratory syncytial virus: Current perspectives in immune response and mechanisms against the virus. Virus Res 2024; 350:199483. [PMID: 39396572 PMCID: PMC11513633 DOI: 10.1016/j.virusres.2024.199483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Human respiratory syncytial virus (hRSV) remains a leading cause of morbidity and mortality in infants, young children, and older adults. hRSV infection's limited treatment and vaccine options significantly increase bronchiolitis' morbidity rates. The severity and outcome of viral infection hinge on the innate immune response. Developing vaccines and identifying therapeutic interventions suitable for young children, older adults, and pregnant women relies on comprehending the molecular mechanisms of viral PAMP recognition, genetic factors of the inflammatory response, and antiviral defense. This review covers fundamental elements of hRSV biology, diagnosis, pathogenesis, and the immune response, highlighting prospective options for vaccine development.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Sciences, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia.
| |
Collapse
|
2
|
Xu YP, Zhou HY, Wang GC, Zhang Y, Yang T, Zhao Y, Li RT, Zhang RR, Guo Y, Wang X, Li XF, Qin CF, Tang R. Rational Design of a Replication-Competent and Inheritable Magnetic Viruses for Targeting Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002435. [PMID: 32954651 DOI: 10.1002/smll.202002435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Infection with live-attenuated vaccines always inevitably induces side effects that reduce their safety. This study suggests a concept of magnetic virus produced by genetically modifying viral surfaces with Fe3 O4 nanoparticles (NPs) to control their tropisms. An iron-affinity peptide is designed to be displayed on the viral surface protein (VP1) of human enterovirus type 71 (EV71), a typical nonenveloped picornavirus, as the model. The modified EV71 can self-bind with Fe3 O4 NPs under physiological conditions, resulting in novel EV71-Fe3 O4 hybrid materials. This rationally engineered EV71 with Fe3 O4 retains its original biological infectivity, but its tropism can be precisely controlled by magnetism. Both in vitro and in vivo experiments demonstrate that EV71-Fe3 O4 can infect only a desired area within the limit of the applied magnetic field, which effectively reduces its pathological damage. More importantly, this characteristic of EV71 can be inherited due to the gene-induced coassembly of viruses and NPs. This achievement provides a proof of concept in virus vaccine improvement by a combination of gene modification and material incorporation, leading to great potential for biomedical developments.
Collapse
Affiliation(s)
- Yan-Peng Xu
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Hang-Yu Zhou
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
- Suzhou Institute of System Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215000, China
| | - Guang-Chuan Wang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ying Zhang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Tianxu Yang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Yueqi Zhao
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Rui-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xiaoyu Wang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways Depart of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| |
Collapse
|
3
|
Scalable COVID-19 Detection Enabled by Lab-on-Chip Biosensors. Cell Mol Bioeng 2020; 13:313-329. [PMID: 32837587 PMCID: PMC7416807 DOI: 10.1007/s12195-020-00642-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction The emergence of a novel coronavirus, SARS-CoV-2, has highlighted the need for rapid, accurate, and point-of-care diagnostic testing. As of now, there is not enough testing capacity in the world to meet the stated testing targets, which are expected to skyrocket globally for broader testing during reopening Aim This review focuses on the development of lab-on-chip biosensing platforms for diagnosis of COVID-19 infection. Results We discuss advantages of utilizing lab-on-chip technologies in response to the current global pandemic, including their potential for low-cost, rapid sample-to-answer processing times, and ease of integration into a range of healthcare settings. We then highlight the development of magnetic, colorimetric, plasmonic, electrical, and lateral flow-based lab-on-chip technologies for the detection of SARS-CoV-2, in addition to other viruses. We focus on rapid, point-of-care technologies that can be deployed at scale, as such devices could be promising alternatives to the current gold standard of reverse transcription-polymerase chain reaction (RT-PCR) diagnostic testing. Conclusion This review is intended to provide an overview of the current state-of-the-field and serve as a resource for innovative development of new lab-on-chip assays for COVID-19 detection.
Collapse
|
4
|
Zhang N, Wang L, Deng X, Liang R, Su M, He C, Hu L, Su Y, Ren J, Yu F, Du L, Jiang S. Recent advances in the detection of respiratory virus infection in humans. J Med Virol 2020; 92:408-417. [PMID: 31944312 DOI: 10.1002/jmv.v92.410.1002/jmv.25674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/12/2020] [Indexed: 05/24/2023]
Abstract
Respiratory tract viral infection caused by viruses or bacteria is one of the most common diseases in human worldwide, while those caused by emerging viruses, such as the novel coronavirus, 2019-nCoV that caused the pneumonia outbreak in Wuhan, China most recently, have posed great threats to global public health. Identification of the causative viral pathogens of respiratory tract viral infections is important to select an appropriate treatment, save people's lives, stop the epidemics, and avoid unnecessary use of antibiotics. Conventional diagnostic tests, such as the assays for rapid detection of antiviral antibodies or viral antigens, are widely used in many clinical laboratories. With the development of modern technologies, new diagnostic strategies, including multiplex nucleic acid amplification and microarray-based assays, are emerging. This review summarizes currently available and novel emerging diagnostic methods for the detection of common respiratory viruses, such as influenza virus, human respiratory syncytial virus, coronavirus, human adenovirus, and human rhinovirus. Multiplex assays for simultaneous detection of multiple respiratory viruses are also described. It is anticipated that such data will assist researchers and clinicians to develop appropriate diagnostic strategies for timely and effective detection of respiratory virus infections.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Lili Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Ruiying Liang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Meng Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Chen He
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Lanfang Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Yudan Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Jing Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Fei Yu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. NANO-MICRO LETTERS 2020; 12:45. [PMID: 34138283 PMCID: PMC7770847 DOI: 10.1007/s40820-020-0383-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023]
Abstract
Nanotechnology is a key advanced technology enabling contribution, development, and sustainable impact on food, medicine, and agriculture sectors. Nanomaterials have potential to lead qualitative and quantitative production of healthier, safer, and high-quality functional foods which are perishable or semi-perishable in nature. Nanotechnologies are superior than conventional food processing technologies with increased shelf life of food products, preventing contamination, and production of enhanced food quality. This comprehensive review on nanotechnologies for functional food development describes the current trends and future perspectives of advanced nanomaterials in food sector considering processing, packaging, security, and storage. Applications of nanotechnologies enhance the food bioavailability, taste, texture, and consistency, achieved through modification of particle size, possible cluster formation, and surface charge of food nanomaterials. In addition, the nanodelivery-mediated nutraceuticals, synergistic action of nanomaterials in food protection, and the application of nanosensors in smart food packaging for monitoring the quality of the stored foods and the common methods employed for assessing the impact of nanomaterials in biological systems are also discussed.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Venkidasamy Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Dhivya Selvaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Arti Nile
- Department of Bioresources and Food Science, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau, Macau SAR, People's Republic of China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Zhang N, Wang L, Deng X, Liang R, Su M, He C, Hu L, Su Y, Ren J, Yu F, Du L, Jiang S. Recent advances in the detection of respiratory virus infection in humans. J Med Virol 2020; 92:408-417. [PMID: 31944312 PMCID: PMC7166954 DOI: 10.1002/jmv.25674] [Citation(s) in RCA: 315] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
Respiratory tract viral infection caused by viruses or bacteria is one of the most common diseases in human worldwide, while those caused by emerging viruses, such as the novel coronavirus, 2019‐nCoV that caused the pneumonia outbreak in Wuhan, China most recently, have posed great threats to global public health. Identification of the causative viral pathogens of respiratory tract viral infections is important to select an appropriate treatment, save people's lives, stop the epidemics, and avoid unnecessary use of antibiotics. Conventional diagnostic tests, such as the assays for rapid detection of antiviral antibodies or viral antigens, are widely used in many clinical laboratories. With the development of modern technologies, new diagnostic strategies, including multiplex nucleic acid amplification and microarray‐based assays, are emerging. This review summarizes currently available and novel emerging diagnostic methods for the detection of common respiratory viruses, such as influenza virus, human respiratory syncytial virus, coronavirus, human adenovirus, and human rhinovirus. Multiplex assays for simultaneous detection of multiple respiratory viruses are also described. It is anticipated that such data will assist researchers and clinicians to develop appropriate diagnostic strategies for timely and effective detection of respiratory virus infections. Respiratory tract viral infection including 2019‐nCoV poses great threats worldwide. Currently available and novel emerging diagnostic methods are summarized for several common respiratory viruses, including influenza virus, human respiratory syncytial virus, coronavirus, human adenovirus and human rhinovirus. Multiplex assays for simultaneous detection of multiple respiratory viruses are also described. This review is aimed to assist researchers and clinicians to develop timely and effective diagnostic strategies to detect respiratory virus infections.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Lili Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Ruiying Liang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Meng Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Chen He
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Lanfang Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Yudan Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Jing Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Fei Yu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York.,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Abstract
The current chapter summaries the world of Microbiology and boom of Nanotechnology and how both the exciting fields come together to help men kind with various new applications in water, food, medical biology and immunology. Furthermore synthesis of nano materials utilising the potential of microorganisms also opens a newer avenue for 'green' synthesis.
Collapse
Affiliation(s)
- Andrew S Ball
- School of Science, College of Science Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Sayali Patil
- Department of Environmental Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sarvesh Soni
- School of Science, College of Science Engineering and Health, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Li S, Jiang J, Yan Y, Wang P, Huang G, Kim NH, Lee JH, He D. Red, green, and blue fluorescent folate-receptor-targeting carbon dots for cervical cancer cellular and tissue imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1054-1063. [DOI: 10.1016/j.msec.2018.08.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/31/2017] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
|
9
|
Warkad SD, Nimse SB, Song KS, Kim T. HCV Detection, Discrimination, and Genotyping Technologies. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3423. [PMID: 30322029 PMCID: PMC6210034 DOI: 10.3390/s18103423] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
According to the World Health Organization (WHO), 71 million people were living with Hepatitis C virus (HCV) infection worldwide in 2015. Each year, about 399,000 HCV-infected people succumb to cirrhosis, hepatocellular carcinoma, and liver failure. Therefore, screening of HCV infection with simple, rapid, but highly sensitive and specific methods can help to curb the global burden on HCV healthcare. Apart from the determination of viral load/viral clearance, the identification of specific HCV genotype is also critical for successful treatment of hepatitis C. This critical review focuses on the technologies used for the detection, discrimination, and genotyping of HCV in clinical samples. This article also focuses on advantages and disadvantages of the reported methods used for HCV detection, quantification, and genotyping.
Collapse
Affiliation(s)
- Shrikant Dashrath Warkad
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Satish Balasaheb Nimse
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Keum-Soo Song
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Taisun Kim
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| |
Collapse
|
10
|
Recent Advances in Nanoparticle Concentration and Their Application in Viral Detection Using Integrated Sensors. SENSORS 2017; 17:s17102316. [PMID: 29019959 PMCID: PMC5677234 DOI: 10.3390/s17102316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022]
Abstract
Early disease diagnostics require rapid, sensitive, and selective detection methods for target analytes. Specifically, early viral detection in a point-of-care setting is critical in preventing epidemics and the spread of disease. However, conventional methods such as enzyme-linked immunosorbent assays or cell cultures are cumbersome and difficult for field use due to the requirements of extensive lab equipment and highly trained personnel, as well as limited sensitivity. Recent advances in nanoparticle concentration have given rise to many novel detection methodologies, which address the shortcomings in modern clinical assays. Here, we review the primary, well-characterized methods for nanoparticle concentration in the context of viral detection via diffusion, centrifugation and microfiltration, electric and magnetic fields, and nano-microfluidics. Details of the concentration mechanisms and examples of related applications provide valuable information to design portable, integrated sensors. This study reviews a wide range of concentration techniques and compares their advantages and disadvantages with respect to viral particle detection. We conclude by highlighting selected concentration methods and devices for next-generation biosensing systems.
Collapse
|
11
|
Determination of the Composition of Liquid Polydispersions of Cylinder-like Microorganisms from the Laser Depolarization Degree. BIOMEDICAL ENGINEERING 2017. [DOI: 10.1007/s10527-017-9661-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Kalaiselvan S, Sankar S, Ramamurthy M, Ghosh AR, Nandagopal B, Sridharan G. Prediction of B Cell Epitopes Among Hantavirus Strains Causing Hemorragic Fever With Renal Syndrome. J Cell Biochem 2016; 118:1182-1188. [PMID: 27748540 DOI: 10.1002/jcb.25765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022]
Abstract
Hantavirus infections are now recognized to be a global problem. The hantaviruses include several genotypic variants of the virus with different distributions in varying geographical regions. The virus genotypes seem to segregate in association with certain manifestations specific for each syndrome. They primarily include HFRS, HCPS, febrile illness with or without mild involvement of renal diseases. In the course of our study on hantavirus etiology of febrile illnesses, we recovered a hantavirus strain identified by nPCR. This has been sequenced to be Hantaan-like virus (partial S segment). The current manuscript is focused on understanding the N protein coded by S segment in terms of variation of amino acid sequences of the virus genotypes associated with HFRS. The diagnosis of this infection is achieved by PCR testing of serum/plasma or demonstration of IgM/IgG in serum. The limitations of PCR are temporal often not positive after 7 days of onset of infection. IgM detection is possible around this period and up to 21 days. IgG detection is less definitive in acute infections. Here, we report characterization of the sequence diversity of HFRS strains, 3D structure of Hantaan N protein, and B-cell epitopes on this molecule. We predicted a 20 amino acid sequence length peptide by using BepiPred online server in IEDB analysis resource program. We suggest this peptide may be used for development of geographic region-specific immunoassays like EIAs for antibody detection, monoclonal antibody development, and immunoblots (line immunoassay). J. Cell. Biochem. 118: 1182-1188, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sagadevan Kalaiselvan
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, 632 055, Tamil Nadu, India
| | - Sathish Sankar
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, 632 055, Tamil Nadu, India
| | - Mageshbabu Ramamurthy
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, 632 055, Tamil Nadu, India
| | - Asit Ranjan Ghosh
- Centre for Infectious Diseases & Control, School of Biosciences and Technology, VIT University, Vellore, 632 014, Tamil Nadu, India
| | - Balaji Nandagopal
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, 632 055, Tamil Nadu, India
| | - Gopalan Sridharan
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, 632 055, Tamil Nadu, India
| |
Collapse
|
13
|
Sepunaru L, Plowman BJ, Sokolov SV, Young NP, Compton RG. Rapid electrochemical detection of single influenza viruses tagged with silver nanoparticles. Chem Sci 2016; 7:3892-3899. [PMID: 30155033 PMCID: PMC6013776 DOI: 10.1039/c6sc00412a] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/24/2016] [Indexed: 02/05/2023] Open
Abstract
Using a state of the art nano-electrochemical technique, we show that a single virus 'tagged' with silver nanoparticles can be rapidly detected in real time at the single virus level. A solution containing a low concentration of influenza virus is exposed to silver nanoparticles which are adsorbed onto the virus surface, as revealed by UV-Vis spectroscopy and transmission electron microscopy. With sufficient potential applied to a carbon electrode introduced into the solution, current spikes are observed which correspond to the oxidation of the nanoparticles decorating the virus. The frequency of the current spikes and their magnitude are linearly proportional to the virus concentration and to the surface coverage of the nanoparticles, respectively. Differences observed from single bacterium detection are discussed and a comparison with existing detection methods is made, with emphasis on the favourability of the proposed technique towards the realization of point of care test devices.
Collapse
Affiliation(s)
- Lior Sepunaru
- Department of Chemistry , Physical and Theoretical Chemistry Laboratory , Oxford University , Oxford OX1 3QZ , UK .
| | - Blake J Plowman
- Department of Chemistry , Physical and Theoretical Chemistry Laboratory , Oxford University , Oxford OX1 3QZ , UK .
| | - Stanislav V Sokolov
- Department of Chemistry , Physical and Theoretical Chemistry Laboratory , Oxford University , Oxford OX1 3QZ , UK .
| | - Neil P Young
- Department of Materials , Oxford University , Oxford OX1 3PH , UK
| | - Richard G Compton
- Department of Chemistry , Physical and Theoretical Chemistry Laboratory , Oxford University , Oxford OX1 3QZ , UK .
| |
Collapse
|
14
|
Depolarization of Light Scattered in Water Dispersions of Nanoparticles of Different Shapes. BIOMEDICAL ENGINEERING 2016. [DOI: 10.1007/s10527-016-9574-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Valdez J, Bawage S, Gomez I, Singh SR. Facile and rapid detection of respiratory syncytial virus using metallic nanoparticles. J Nanobiotechnology 2016; 14:13. [PMID: 26921130 PMCID: PMC4769566 DOI: 10.1186/s12951-016-0167-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/17/2016] [Indexed: 01/20/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) causes severe respiratory infection in infants, children and elderly. Currently, there is no effective vaccine or RSV specific drug for the treatment. However, an antiviral drug ribavirin and palivizumab is prescribed along with symptomatic treatment. RSV detection is important to ensure appropriate treatment of children. Most commonly used detection methods for RSV are DFA, ELISA and Real-time PCR which are expensive and time consuming. Newer approach of plasmonic detection techniques like localized surface plasmon resonance (LSPR) spectroscopy using metallic nanomaterials has gained interest recently. The LSPR spectroscopy is simple and easy than the current biophysical detection techniques like surface-enhanced Raman scattering (SERS) and mass-spectroscopy. Results In this study, we utilized LSPR shifting as an RSV detection method by using an anti-RSV polyclonal antibody conjugated to metallic nanoparticles (Cu, Ag and Au). Nanoparticles were synthesized using alginate as a reducing and stabilizing agent. RSV dose and time dependent LSPR shifting was measured for all three metallic nanoparticles (non-functionalized and functionalized). Specificity of the functionalized nanoparticles for RSV was evaluated in the presence Pseudomonas aeruginosa and adenovirus. We found that functionalized copper nanoparticles were efficient in RSV detection. Functionalized copper and silver nanoparticles were specific for RSV, when tested in the presence of adenovirus and P. aeruginosa, respectively. Limit of detection and limit of quantification values reveal that functionalized copper nanoparticles are superior in comparison with silver and gold nanoparticles. Conclusions The study demonstrates successful application of LSPR for RSV detection, and it provides an easy and inexpensive alternative method for the potential development of LSPR-based detection devices. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0167-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jesus Valdez
- Laboratorio de Materiales I, Facultad de Ciencias Químicas, Centro de Laboratorios Especializados, Universidad Autónoma de Nuevo León, Av. Pedro de Alba, 66451, Monterrey, Nuevo León, Mexico.
| | - Swapnil Bawage
- Center for NanoBiotechnology Research, Alabama State University, 1627, Harris way, Montgomery, AL, 36104, USA.
| | - Idalia Gomez
- Laboratorio de Materiales I, Facultad de Ciencias Químicas, Centro de Laboratorios Especializados, Universidad Autónoma de Nuevo León, Av. Pedro de Alba, 66451, Monterrey, Nuevo León, Mexico.
| | - Shree Ram Singh
- Center for NanoBiotechnology Research, Alabama State University, 1627, Harris way, Montgomery, AL, 36104, USA.
| |
Collapse
|
16
|
Fan J, Sun Y, Wang S, Li Y, Zeng X, Cao Z, Yang P, Song P, Wang Z, Xian Z, Gao H, Chen Q, Cui D, Ju D. Inhibition of autophagy overcomes the nanotoxicity elicited by cadmium-based quantum dots. Biomaterials 2016; 78:102-14. [DOI: 10.1016/j.biomaterials.2015.11.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/29/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
|
17
|
Cell permeable peptide conjugated nanoerythrosomes of fasudil prolong pulmonary arterial vasodilation in PAH rats. Eur J Pharm Biopharm 2015; 88:1046-55. [PMID: 25460151 DOI: 10.1016/j.ejpb.2014.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 11/23/2022]
Abstract
In this study, we tested the hypothesis that a cell permeable peptide, CARSKNKDC (CAR), conjugated nanoerythrosomes (NERs) containing fasudil, a rho-kinase (ROCK) inhibitor, produces prolonged pulmonary preferential vasodilation. CAR conjugated NERs containing fasudil were prepared by hypotonic lysis and extrusion method, and optimized for various physicochemical properties in-vitro. The formulations were then used to study the hemodynamic efficacy in a monocrotaline-induced rodent model of pulmonary arterial hypertension (PAH). CAR-NERs-Fasudil was spherical in shape with an average vesicle size and entrapment efficiency of 161.3 ± 1.37 nm and 48.81 ± 1.96%, respectively. Formulations were stable for ~3 weeks when stored at 4 °C and the drug was released in a controlled fashion for >48 h. The uptake of CAR-NERs-Fasudil by TGF-b activated pulmonary arterial smooth muscle cell was ~1.5-fold greater than the uptake of NERs-Fasudil. CAR-NERs-Fasudil inhibited ROCK activity and 5-hydroxytryptamine induced cell proliferation. In terms of reduction of pulmonary arterial pressure, intratracheal administration of CAR-NERs-Fasudil was ~2-fold more specific to the lungs compared with plain fasudil. Overall,CAR peptide grafted nanoerythrosomes offers a new platform for improving the therapeutic efficacy ofa rho-kinase inhibitor, fasudil, without affecting peripheral vasodilation.
Collapse
|
18
|
Yi Z, Lu W, Liu H, Zeng S. High quality polyacrylic acid modified multifunction luminescent nanorods for tri-modality bioimaging, in vivo long-lasting tracking and biodistribution. NANOSCALE 2015; 7:542-550. [PMID: 25412698 DOI: 10.1039/c4nr05161k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polyacrylic acid (PAA) modified NaYF4:Gd/Yb/Er upconversion nanorods (denoted as PAA-UCNRs) are demonstrated for tri-modal upconversion (UC) optical, computed X-ray tomography (CT), and magnetic resonance imaging (MRI). The hydrophilic PAA-UCNRs were obtained from hydrophobic oleic acid (OA) capped UCNRs (denoted as OA-UCNRs) using a ligand exchange method. The as-prepared UCNRs with a hexagonal phase structure present high monodispersity. These PAA-UCNRs are successfully used as ideal probes for in vivo UC luminescence bioimaging and synergistic X-ray and UC bioimaging. Moreover, X-ray CT imaging reveals that PAA-UCNRs can act as contrast agents for improved detection of the liver and spleen. In addition, a significant signal enhancement in the liver is observed in in vivo MRI, indicating that PAA-UCNRs are ideal T1-weighted MRI agents. More importantly, in vivo long-term tracking based on these PAA-UCNRs in the live mice and the corresponding ex vivo bioimaging of isolated organs also verify the translocation of PAA-UCNRs from the liver to the spleen, and the observed intense UC signals from the feces reveal the biliary excretion mechanism of these UCNRs. These findings contribute to understanding of the translocation and potential route for excretion of PAA-UCNRs, which can provide an important guide for the diagnosis and detection of diseases based on these UCNRs.
Collapse
Affiliation(s)
- Zhigao Yi
- College of Physics and Information Science and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of the Ministry of Education, Hunan Normal University, Changsha 410081, Hunan, China.
| | | | | | | |
Collapse
|
19
|
Al-Ali A, Singh N, Manshian B, Wilkinson T, Wills J, Jenkins GJS, Doak SH. Quantum dot induced cellular perturbations involving varying toxicity pathways. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00175c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quantum dots (QD) with varying surface chemistry can have an impact on cellular uptake and a range of indicators for cell perturbation.
Collapse
Affiliation(s)
- Abdullah Al-Ali
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - Neenu Singh
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - Bella Manshian
- Biomedical NMR unit-MoSAIC
- Department of Medicine
- KU Leuven
- B-3000 Leuven
- Belgium
| | - Tom Wilkinson
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | - John Wills
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| | | | - Shareen H. Doak
- Institute of Life Science
- College of Medicine
- Swansea University
- Swansea
- UK
| |
Collapse
|
20
|
Mashinchian O, Johari-Ahar M, Ghaemi B, Rashidi M, Barar J, Omidi Y. Impacts of quantum dots in molecular detection and bioimaging of cancer. ACTA ACUST UNITED AC 2014; 4:149-66. [PMID: 25337468 PMCID: PMC4204040 DOI: 10.15171/bi.2014.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/02/2014] [Accepted: 09/21/2014] [Indexed: 12/20/2022]
Abstract
Introduction: A number of assays have so far been exploited for detection of cancer biomarkers in various malignancies. However, the expression of cancer biomarker(s) appears to be extremely low, therefore accurate detection demands sensitive optical imaging probes. While optical detection using conventional fluorophores often fail due to photobleaching problems, quantum dots (QDs) offer stable optical imaging in vitro and in vivo.
Methods: In this review, we briefly overview the impacts of QDs in biology and its applications in bioimaging of malignancies. We will also delineate the existing obstacles for early detection of cancer and the intensifying use of QDs in advancement of diagnostic devices.
Results: Of the QDs, unlike the II-VI type QDs (e.g., cadmium (Cd), selenium (Se) or tellurium (Te)) that possess inherent cytotoxicity, the I-III-VI 2 type QDs (e.g., AgInS2, CuInS2, ZnS-AgInS2) appear to be less toxic bioimaging agents with better control of band-gap energies. As highly-sensitive bioimaging probes, advanced hybrid QDs (e.g., QD-QD, fluorochrome-QD conjugates used for sensing through fluorescence resonance energy transfer (FRET), quenching, and barcoding techniques) have also been harnessed for the detection of biomarkers and the monitoring of delivery of drugs/genes to the target sites. Antibody-QD (Ab-QD) and aptamer- QD (Ap-QD) bioconjugates, once target the relevant biomarker, can provide highly stable photoluminescence (PL) at the target sites. In addition to their potential as nanobiosensors, the bioconjugates of QDs with homing devices have successfully been used for the development of smart nanosystems (NSs) providing targeted bioimaging and photodynamic therapy (PDT).
Conclusion: Having possessed great deal of photonic characteristics, QDs can be used for development of seamless multifunctional nanomedicines, theranostics and nanobiosensors.
Collapse
Affiliation(s)
- Omid Mashinchian
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Johari-Ahar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Ghaemi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rashidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Photonics, School of Engineering-Emerging Technology, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Ong C, Yung LYL, Cai Y, Bay BH, Baeg GH. Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 2014; 9:396-403. [DOI: 10.3109/17435390.2014.940405] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Cynthia Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, and
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,
| | - Gyeong-Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,
| |
Collapse
|
22
|
Zeng S, Wang H, Lu W, Yi Z, Rao L, Liu H, Hao J. Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization. Biomaterials 2014; 35:2934-41. [DOI: 10.1016/j.biomaterials.2013.11.082] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/27/2013] [Indexed: 12/11/2022]
|
23
|
Syed MA. Advances in nanodiagnostic techniques for microbial agents. Biosens Bioelectron 2014; 51:391-400. [DOI: 10.1016/j.bios.2013.08.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/12/2013] [Accepted: 08/07/2013] [Indexed: 12/19/2022]
|
24
|
Recent advances in diagnosis, prevention, and treatment of human respiratory syncytial virus. Adv Virol 2013; 2013:595768. [PMID: 24382964 PMCID: PMC3872095 DOI: 10.1155/2013/595768] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/30/2013] [Indexed: 12/25/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a common cause of respiratory infection in infants and the elderly, leading to significant morbidity and mortality. The interdisciplinary fields, especially biotechnology and nanotechnology, have facilitated the development of modern detection systems for RSV. Many anti-RSV compounds like fusion inhibitors and RNAi molecules have been successful in laboratory and clinical trials. But, currently, there are no effective drugs for RSV infection even after decades of research. Effective diagnosis can result in effective treatment, but the progress in both of these facets must be concurrent. The development in prevention and treatment measures for RSV is at appreciable pace, but the implementation into clinical practice still seems a challenge. This review attempts to present the promising diverse research approaches and advancements in the area of diagnosis, prevention, and treatment that contribute to RSV management.
Collapse
|
25
|
Leuba KD, Durmus NG, Taylor EN, Webster TJ. Short communication: Carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation. Int J Nanomedicine 2013; 8:731-6. [PMID: 23450111 PMCID: PMC3581356 DOI: 10.2147/ijn.s38256] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Biofilms formed by antibiotic resistant Staphylococcus aureus (S. aureus) continue to be a problem for medical devices. Antibiotic resistant bacteria (such as S. aureus) often complicate the treatment and healing of the patient, yet, medical devices are needed to heal such patients. Therefore, methods to treat these Biofilms once formed on medical devices are badly needed. Due to their small size and magnetic properties, superparamagnetic iron oxide nanoparticles (SPION) may be one possible material to penetrate Biofilms and kill or slow the growth of bacteria. In this study, SPION were functionalized with amine, carboxylate, and isocyanate functional groups to further improve their efficacy to disrupt the growth of S. aureus Biofilms. Without the use of antibiotics, results showed that SPION functionalized with carboxylate groups (followed by isocyanate then amine functional groups then unfunctionalized SPION) significantly disrupted Biofilms and retarded the growth of S. aureus compared to untreated Biofilms (by over 35% after 24 hours).
Collapse
Affiliation(s)
- Kohana D Leuba
- The Nanomedicine Laboratory, School of Engineering, Brown University, Providence, RI, USA
| | | | | | | |
Collapse
|
26
|
Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, kouhi M, Akbarzadeh A, Davaran S. Quantum dots: synthesis, bioapplications, and toxicity. NANOSCALE RESEARCH LETTERS 2012; 7:480. [PMID: 22929008 PMCID: PMC3463453 DOI: 10.1186/1556-276x-7-480] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/26/2012] [Indexed: 05/19/2023]
Abstract
This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences and are widely anticipated to eventually find application in a number of commercial consumer and clinical products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical properties such as optical and electron transport characteristics are quite different from those of the bulk materials.
Collapse
Affiliation(s)
- Alireza Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Haleh Mikaeili
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Samad Mussa Farkhani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Nosratalah Zarghami
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Mohammad kouhi
- Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| |
Collapse
|
27
|
Nagy A, Steinbrück A, Gao J, Doggett N, Hollingsworth JA, Iyer R. Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells. ACS NANO 2012; 6:4748-62. [PMID: 22587339 DOI: 10.1021/nn204886b] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The growing potential of quantum dots (QDs) in applications as diverse as biomedicine and energy has provoked much dialogue about their conceivable impact on human health and the environment at large. Consequently, there has been an urgent need to understand their interaction with biological systems. Parameters such as size, composition, surface charge, and functionalization can be modified in ways to either enhance biocompatibility or reduce their deleterious effects. In the current study, we simultaneously compared the impact of size, charge, and functionalization alone or in combination on biological responses using primary normal human bronchial epithelial cells. Using a suite of cellular end points and gene expression analysis, we determined the biological impact of each of these properties. Our results suggest that positively charged QDs are significantly more cytotoxic compared to negative QDs. Furthermore, while QDs functionalized with long ligands were found to be more cytotoxic than those functionalized with short ligands, negative QDs functionalized with long ligands also demonstrated size-dependent cytotoxicity. We conclude that QD-elicited cytotoxicity is not a function of a single property but a combination of factors. The mechanism of toxicity was found to be independent of reactive oxygen species formation, as cellular viability could not be rescued in the presence of the antioxidant n-acetyl cysteine. Further exploring these responses at the molecular level, we found that the relatively benign negative QDs increased gene expression of proinflammatory cytokines and those associated with DNA damage, while the highly toxic positive QDs induced changes in genes associated with mitochondrial function. In an attempt to tentatively "rank" the contribution of each property in the observed QD-induced responses, we concluded that QD charge and ligand length, and to a lesser extent, size, are key factors that should be considered when engineering nanomaterials with minimal bioimpact (charge > functionalization > size).
Collapse
Affiliation(s)
- Amber Nagy
- Biosecurity and Public Health, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | |
Collapse
|
28
|
Shinde SB, Fernandes CB, Patravale VB. Recent trends in in-vitro nanodiagnostics for detection of pathogens. J Control Release 2012; 159:164-80. [DOI: 10.1016/j.jconrel.2011.11.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/23/2011] [Indexed: 11/17/2022]
|
29
|
Durmus NG, Taylor EN, Inci F, Kummer KM, Tarquinio KM, Webster TJ. Fructose-enhanced reduction of bacterial growth on nanorough surfaces. Int J Nanomedicine 2012; 7:537-45. [PMID: 22334783 PMCID: PMC3273985 DOI: 10.2147/ijn.s27957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Patients on mechanical ventilators for extended periods of time often face the risk of developing ventilator-associated pneumonia. During the ventilation process, patients incapable of breathing are intubated with polyvinyl chloride (PVC) endotracheal tubes (ETTs). PVC ETTs provide surfaces where bacteria can attach and proliferate from the contaminated oropharyngeal space to the sterile bronchoalveolar area. To overcome this problem, ETTs can be coated with antimicrobial agents. However, such coatings may easily delaminate during use. Recently, it has been shown that changes in material topography at the nanometer level can provide antibacterial properties. In addition, some metabolites, such as fructose, have been found to increase the efficiency of antibiotics used to treat Staphylococcus aureus (S. aureus) infections. In this study, we combined the antibacterial effect of nanorough ETT topographies with sugar metabolites to decrease bacterial growth and biofilm formation on ETTs. We present for the first time that the presence of fructose on the nanorough surfaces decreases the number of planktonic S. aureus bacteria in the solution and biofilm formation on the surface after 24 hours. We thus envision that this method has the potential to impact the future of surface engineering of biomaterials leading to more successful clinical outcomes in terms of longer ETT lifetimes, minimized infections, and decreased antibiotic usage; all of which can decrease the presence of antibiotic resistant bacteria in the clinical setting.
Collapse
|
30
|
Nagy A, Zane A, Cole SL, Severance M, Dutta PK, Waldman WJ. Contrast of the biological activity of negatively and positively charged microwave synthesized CdSe/ZnS quantum dots. Chem Res Toxicol 2011; 24:2176-88. [PMID: 22092015 DOI: 10.1021/tx2003195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals that have found use in bioimaging, cell tracking, and drug delivery. This article compares the cytotoxicity and cellular interactions of positively and negatively charged CdSe/CdS/ZnS QDs prepared by a microwave method using a murine alveolar macrophage-like cell culture model. Keeping the core semiconductor the same, QD charge was varied by altering the surface capping molecule; negatively charged QDs were formed with mercaptopropionic acid (MPA-QDs) and positively charged QDs with thiocholine (THIO-QDs). The size and charge of these two QDs were investigated in three types of media (RPMI, RPMI + FBS, and X-VIVO serum-free media) relevant for the biological studies. MPA-QDs were found to have negative zeta potential in RPMI, RPMI + FBS, and serum-free media and had sizes ranging from 8 to 54 nm. THIO-QDs suspended in RPMI alone were <62 nm in size, while large aggregates (greater than 1000 nm) formed when these QDs were suspended in RPMI + FBS and serum-free media. THIO-QDs retained positive zeta potential in RPMI and were found to have a negative zeta potential in RPMI + FBS and nearly neutral zeta potential in serum-free media. In a cell culture model, both MPA-QDs and THIO-QDs caused comparable levels of apoptosis and necrosis. Both QDs induced significant tumor necrosis factor-alpha (TNF-α) secretion only at high concentrations (>250 nM). Both types of QDs were internalized via clathrin-dependent endocytosis. Using real-time, live cell imaging, we found that MPA-QDs interact with the cell surface within minutes and progress through the endocytic pathway to the lysosomes upon internalization. With the THIO-QDs, the internalization process was slower, but the pathways could not be mapped because of spectroscopic interference caused by QD aggregates. Finally, MPA-QDs were found to associate with cell surface scavenger receptors, while the THIO-QDs did not. This study indicates that the surface charge and aggregation characteristics of QDs change drastically in biological culture conditions and, in turn, influence nanoparticle and cellular interactions.
Collapse
Affiliation(s)
- Amber Nagy
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | |
Collapse
|
31
|
Yu-Hong W, Rui C, Ding L. A quantum dots and superparamagnetic nanoparticle-based method for the detection of HPV DNA. NANOSCALE RESEARCH LETTERS 2011; 6:461. [PMID: 21774818 PMCID: PMC3211882 DOI: 10.1186/1556-276x-6-461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/20/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND The recent advance in nanomaterial research field prompts the development of diagnostics of infectious diseases greatly. Many nanomaterials have been developed and applied to molecular diagnostics in labs. At present, the diagnostic test of human papillomavirus (HPV) relies exclusively on molecular test. Hereon, we report a rapid and facile quantum dots (QDs) and superparamagnetic nanoparticle-based hybridization assay for the detection of (HPV) 16 infections which combines the merits of superparamagnetic nanoparticles and QDs and wholly differs from a conventional hybridization assay at that the reaction occurs at homogeneous solution, and total time for detection is no more than 1 h. METHODS The probes were labeled with superparamagnetic nanoparticles and QDs. Sixty cervical swab samples were used to perform a hybridization assay with these probes, and the results were compared with type-specific polymerase chain reaction (PCR) method. RESULTS The statistic analysis suggests that there is no significant difference between these two methods. Furthermore, this method is much quicker and easier than the type-specific PCR method. CONCLUSION This study has successfully validated the clinical performance of our hybridization assay. The advantages in the time of detection and ease of process endow this method with great potential in clinical usage, especially mass epidemiological screening.
Collapse
Affiliation(s)
- Wang Yu-Hong
- Emergency Department, General Hospital of Beijing Military Area of PLA, Beijing 100700, China
| | - Chen Rui
- The Department of Blood Transfusion, Xijing Hospital, The Fourth Military Medical University, Xian 710032, China
| | - Li Ding
- Center of Biological Diagnosis and Therapy, No. 261 Hospital of PLA, Beijing 100094, China
| |
Collapse
|
32
|
An advanced dual labeled gold nanoparticles probe to detect Cryptosporidium parvum using rapid immuno-dot blot assay. Biosens Bioelectron 2011; 26:4624-7. [DOI: 10.1016/j.bios.2011.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/22/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022]
|
33
|
Zhang X, Liu Z, Ma L, Hossu M, Chen W. Interaction of porphyrins with CdTe quantum dots. NANOTECHNOLOGY 2011; 22:195501. [PMID: 21430318 DOI: 10.1088/0957-4484/22/19/195501] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | |
Collapse
|
34
|
Halfpenny KC, Wright DW. Nanoparticle detection of respiratory infection. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:277-90. [PMID: 20201109 PMCID: PMC7169802 DOI: 10.1002/wnan.83] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Respiratory viruses are a constant concern for all demographics. Examples include established viruses such as respiratory syncytial virus (RSV), the leading cause of respiratory infection in infants and young children, and emerging viruses such as severe acute respiratory syndrome (SARS), which reached near pandemic levels in 2003, or H1N1 (swine) influenza. Despite this prevalence, traditional methods of virus detection are typically labor intensive and require several days to successfully confirm infection. Recently, however, nanoparticle‐based detection strategies have been employed in an effort to develop detection assays that are both sensitive and expedient. Each of these platforms capitalizes on the unique properties of nanoparticles for the detection of respiratory viruses. In this article, several nanoparticle‐based scaffolds are discussed.Gold nanoparticles (AuNPs) have been functionalized with virus specific antibodies or oligonucleotides. In each of these constructs, AuNPs act as both an easily conjugated scaffolding system for biological molecules and a powerful fluorescence quencher. AuNPs have also been immobilized and used as electrochemical transducers. They efficiently serve as a conducting interface of electrocatalyic activity making them a powerful tool in this application. Quantum dots (QDs) posses unique fluorescence properties that have also been explored for their application to virus detection when combined with direct antibody conjugation or streptavidin‐biotin binding systems. QDs have an advantage over many traditional fluorophores because their fluorescence properties can be finely tuned and they are resistant to photobleaching. The development of these nanoparticle‐based detection strategies holds the potential to be a powerful method to quickly and easily confirm respiratory virus infection. WIREs Nanomed Nanobiotechnol 2010 2 277–290 This article is categorized under:
Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease
Collapse
|
35
|
Tallury P, Malhotra A, Byrne LM, Santra S. Nanobioimaging and sensing of infectious diseases. Adv Drug Deliv Rev 2010; 62:424-37. [PMID: 19931579 PMCID: PMC7103339 DOI: 10.1016/j.addr.2009.11.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/14/2009] [Indexed: 11/28/2022]
Abstract
New methods to identify trace amount of infectious pathogens rapidly, accurately and with high sensitivity are in constant demand to prevent epidemics and loss of lives. Early detection of these pathogens to prevent, treat and contain the spread of infections is crucial. Therefore, there is a need and urgency for sensitive, specific, accurate, easy-to-use diagnostic tests. Versatile biofunctionalized engineered nanomaterials are proving to be promising in meeting these needs in diagnosing the pathogens in food, blood and clinical samples. The unique optical and magnetic properties of the nanoscale materials have been put to use for the diagnostics. In this review, we focus on the developments of the fluorescent nanoparticles, metallic nanostructures and superparamagnetic nanoparticles for bioimaging and detection of infectious microorganisms. The various nanodiagnostic assays developed to image, detect and capture infectious virus and bacteria in solutions, food or biological samples in vitro and in vivo are presented and their relevance to developing countries is discussed.
Collapse
Key Words
- who, world health organization
- elisa, enzyme linked immuno sorbent assay
- pcr, polymerase chain reaction
- nps, nanoparticles
- qdots, quantum dots
- rsv, respiratory syncytial virus
- fitc, fluorescein isothiocyanate
- zn-dpa, zn (ii)-dipicolylamine
- hbv, hepatitis b virus
- hcv, hepatitis c virus
- qdot-b, qdot-barcodes
- hiv, human immunodeficiency virus
- fsnps, fluorescent silica nanoparticles
- fret, förster resonance energy transfer
- fam-se, (5-carboxy-fluorescein succinimidyl ester)
- rox-se, (6-carboxy-x-rhodamine, succinimidyl ester)
- r6g-se, (5-carboxyrhodamine 6g, succinimidyl ester)
- tmr-se, (carboxytetramethylrhodamine, succinimidyl ester)
- osbpy, tris (2, 2′bipyridyl) osmium bis (hexafluorophosphate)
- rubpy, tris(bipyridine) ruthenium (ii) dichloride
- fnp-iifm, fluorescent nanoparticle-based indirect immunofluorescence microscopy
- eu iii, europium
- cadpa, calcium dipicolinate
- lod, limit of detection
- sec1, staphylococcal enterotoxin c1
- ct, cholera toxin
- pa, anthrax protective agent
- ccmv, cow pea chlorotic mottle virus
- mri, magnetic resonance imaging
- spa, protein a
- gd-dota, gadolinium-1,4,7,10-tetraazacyclododecane tetraacetic acid
- icp-ms, inductively coupled plasma mass spectrometry
- spr, surface plasmon resonance
- au np, gold nanoparticle
- hsv-2, herpes simplex virus type 2
- hsv-1, herpes simplex virus type 1
- rls, resonance light scattering
- ss, single stranded
- hrs, hyper-rayleigh scattering
- ds, double stranded
- tem, transmission electron microscopy
- h. pyroli, helicobacter pyroli
- sers, surface enhanced raman scattering
- smcc, succinimidyl-4-(n-maleimidomethyl)cyclohexane-1-carboxylate
- bg, bacillus globigii
- ova, ovalbumin
- cfu, colony forming unit
- atp, adenosine triphosphate
- ir, infra red
- squid, superconducting quantum interference device
- mnp, magnetic nanoparticles
- maldi-ms, matrix-assisted laser desorption/ionization mass spectrometry
- poa, adopted pigeon ovalbumin
- mgnp, magnetic glycol nanoparticles
- spio, superparamagnetic iron oxide
- mrs, magnetic relaxation sensors
- nmr, nuclear magnetic resonance
- fluorescent nanoparticles
- multiplexing
- viral imaging
- bacterial detection
- surface plasmon resonance
- colorimetric assay
- magnetic nanosensors
- immunomagnetic separation
Collapse
Affiliation(s)
- Padmavathy Tallury
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Astha Malhotra
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Logan M Byrne
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
- Biomolecular Science Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| |
Collapse
|
36
|
El-Sadik AO, El-Ansary A, Sabry SM. Nanoparticle-labeled stem cells: a novel therapeutic vehicle. Clin Pharmacol 2010; 2:9-16. [PMID: 22291483 PMCID: PMC3262361 DOI: 10.2147/cpaa.s8931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanotechnology has been described as a general purpose technology. It has already generated a range of inventions and innovations. Development of nanotechnology will provide clinical medicine with a range of new diagnostic and therapeutic opportunities such as medical imaging, medical diagnosis, drug delivery, and cancer detection and management. Nanoparticles such as manganese, polystyrene, silica, titanium oxide, gold, silver, carbon, quantum dots, and iron oxide have received enormous attention in the creation of new types of analytical tools for biotechnology and life sciences. Labeling of stem cells with nanoparticles overcame the problems in homing and fixing stem cells to their desired site and guiding extension of stem cells to specific directions. Although the biologic effects of some nanoparticles have already been assessed, information on toxicity and possible mechanisms of various particle types remains inadequate. The aim of this review is to give an overview of the mechanisms of internalization and distribution of nanoparticles inside stem cells, as well as the influence of different types of nanoparticles on stem cell viability, proliferation, differentiation, and cytotoxicity, and to assess the role of nanoparticles in tracking the fate of stem cells used in tissue regeneration.
Collapse
Affiliation(s)
- Abir O El-Sadik
- Stem Cell Unit, Anatomy Department, College of Medicine, Health Science Colleges, Cairo, Egypt.
| | | | | |
Collapse
|
37
|
Wu W, Tang YW. Emerging molecular assays for detection and characterization of respiratory viruses. Clin Lab Med 2010; 29:673-93. [PMID: 19892228 PMCID: PMC7130760 DOI: 10.1016/j.cll.2009.07.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This article describes several emerging molecular assays that have potential applications in the diagnosis and monitoring of respiratory viral infections. These techniques include direct nucleic acid detection by quantum dots, loop-mediated isothermal amplification, multiplex ligation-dependent probe amplification, amplification using arbitrary primers, target-enriched multiplexing amplification, pyrosequencing, padlock probes, solid and suspension microarrays, and mass spectrometry. Several of these systems already are commercially available to provide multiplex amplification and high-throughput detection and identification of a panel of respiratory viral pathogens. Further validation and implementation of such emerging molecular assays in routine clinical virology services will enhance the rapid diagnosis of respiratory viral infections and improve patient care.
Collapse
Affiliation(s)
- Wenjuan Wu
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
38
|
Ma Q, Cui H, Su X. Highly sensitive gaseous formaldehyde sensor with CdTe quantum dots multilayer films. Biosens Bioelectron 2009; 25:839-44. [DOI: 10.1016/j.bios.2009.08.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/08/2009] [Accepted: 08/26/2009] [Indexed: 11/17/2022]
|
39
|
|
40
|
Card JW, Zeldin DC, Bonner JC, Nestmann ER. Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 2008; 295:L400-11. [PMID: 18641236 DOI: 10.1152/ajplung.00041.2008] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because of their unique physicochemical properties, engineered nanoparticles have the potential to significantly impact respiratory research and medicine by means of improving imaging capability and drug delivery, among other applications. These same properties, however, present potential safety concerns, and there is accumulating evidence to suggest that nanoparticles may exert adverse effects on pulmonary structure and function. The respiratory system is susceptible to injury resulting from inhalation of gases, aerosols, and particles, and also from systemic delivery of drugs, chemicals, and other compounds to the lungs via direct cardiac output to the pulmonary arteries. As such, it is a prime target for the possible toxic effects of engineered nanoparticles. The purpose of this article is to provide an overview of the potential usefulness of nanoparticles and nanotechnology in respiratory research and medicine and to highlight important issues and recent data pertaining to nanoparticle-related pulmonary toxicity.
Collapse
Affiliation(s)
- Jeffrey W Card
- Cantox Health Sciences International, 2233 Argentia Rd., Suite 308, Mississauga, Ontario, Canada L5N 2X7.
| | | | | | | |
Collapse
|
41
|
Sukhanova A, Nabiev I. Fluorescent nanocrystal quantum dots as medical diagnostic tools. ACTA ACUST UNITED AC 2008; 2:429-47. [DOI: 10.1517/17530059.2.4.429] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|