1
|
Lithi IJ, Ahmed Nakib KI, Chowdhury AMS, Sahadat Hossain M. A review on the green synthesis of metal (Ag, Cu, and Au) and metal oxide (ZnO, MgO, Co 3O 4, and TiO 2) nanoparticles using plant extracts for developing antimicrobial properties. NANOSCALE ADVANCES 2025:d5na00037h. [PMID: 40207090 PMCID: PMC11976448 DOI: 10.1039/d5na00037h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Green synthesis (GS) is a vital method for producing metal nanoparticles with antimicrobial properties. Unlike traditional methods, green synthesis utilizes natural substances, such as plant extracts, microorganisms, etc., to create nanoparticles. This eco-friendly approach results in non-toxic and biocompatible nanoparticles with superior antimicrobial activity. This paper reviews the prospects of green synthesis of metal nanoparticles of silver (Ag), copper (Cu), gold (Au) and metal oxide nanoparticles of zinc (ZnO), magnesium (MgO), cobalt (Co3O4), and titanium (TiO2) using plant extracts from tissues of leaves, barks, roots, etc., antibacterial mechanisms of metal and metal oxide nanoparticles, and obstacles and factors that need to be considered to overcome the limitations of the green synthesis process. The clean surfaces and minimal chemical residues of these nanoparticles contribute to their effectiveness. Certain metals exhibit enhanced antibacterial properties only in GS methods due to the presence of bioactive compounds from natural reducing agents such as Au and MgO. GS improves TiO2 antibacterial properties under visible light, while it would be impossible without UV activation. These nanoparticles have important antimicrobial properties for treating microbial infections and combating antibiotic resistance against bacteria, fungi, and viruses by disrupting microbial membranes, generating ROS, and interfering with DNA and protein synthesis. Nanoscale size and large surface area make them critical for developing advanced antimicrobial treatments. They are effective antibacterial agents for treating infections, suitable in water purification systems, and fostering innovation by creating green, economically viable antibacterial materials. Therefore, green synthesis of metal and metal oxide nanoparticles for antibacterial agents supports several United Nations Sustainable Development Goals (SDGs), including health improvement, sustainability, and innovation.
Collapse
Affiliation(s)
- Israt Jahan Lithi
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Kazi Imtiaz Ahmed Nakib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - A M Sarwaruddin Chowdhury
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
2
|
Nguyen AL, Griffin QJ, Wang A, Zou S, Jing H. Optimization of the Surfactant Ratio in the Formation of Penta-Twinned Seeds for Precision Synthesis of Gold Nanobipyramids with Tunable Plasmon Resonances. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:4303-4312. [PMID: 40041389 PMCID: PMC11873936 DOI: 10.1021/acs.jpcc.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
The synthesis of high-purity gold nano bipyramids (Au NBPs) with a narrow size distribution and tunable plasmon resonances is of great significance for plasmon resonance-related applications. However, the synthesis Au NBP approach involves multiple steps with many parameters that can affect the purity of the final product. In this work, we were devoted to studying the effect of the molar ratio between hexadecyltrimethylammonium chloride (CTAC) and sodium citrate tribasic dihydrate (CiNa3) on the seed formation stage. The results showed that the yield of Au NBP product has dramatically increased with the seed solution made from the molar ratio of CTAC:CiNa3 at 21:1. Furthermore, using this optimal seed, we can efficiently synthesize Au NBPs with various sizes by adjusting the concentration of the seed but keeping the rest of the parameters constant. In this study, the longitudinal localized surface plasmon resonances (LSPRs) of Au NBPs exhibit tunability beyond 450 nm across the visible and near-infrared regions from 774 to 1224 nm. We were able to successfully fine-tune the LSPRs of Au NBPs in the spectral region to become resonant with the excitation wavelengths of an 808 nm near-infrared (NIR) laser. The photothermal activities of Au NBPs were studied under 808 nm laser irradiation at ambient conditions. The present work demonstrates a paradigm for the synthesis of Au NBPs with tunable LSPRs in a precise and controllable manner, achieved by examining the surfactant ratios in the formation of penta-twinned seeds.
Collapse
Affiliation(s)
- Au Lac Nguyen
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 22030, United States
| | - Quinn J. Griffin
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 22030, United States
| | - Ankai Wang
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Shengli Zou
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Hao Jing
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia 22030, United States
| |
Collapse
|
3
|
Karmakar P, Das S, Das S, Das S. Neuro-computational simulation of blood flow loaded with gold and maghemite nanoparticles inside an electromagnetic microchannel under rapid and unexpected change in pressure gradient. Electromagn Biol Med 2025; 44:137-172. [PMID: 39878694 DOI: 10.1080/15368378.2025.2453923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method. Results, including shear stress (SS) and rate of heat transfer (RHT), are graphically detailed, demonstrating changes in blood velocity profile with modifications in the Hartmann number and the width of electrodes, and differences in temperature and RHT between hybrid nano-blood (HNB) and nano-blood (NB). The key results indicate an increase in blood velocity distribution with higher modified Hartmann number, and a decrease with wider electrodes. Temperature is elevated in both hybrid nano-blood (HNB) and nano-blood (NB). Notably, HNB with gold and maghemite enhances heat transmission in the flow. Furthermore, an artificial intelligence-driven methodology employing an artificial neural network (ANN) has been incorporated to facilitate rapid and precise evaluations of SS and RHT, demonstrating remarkable predictive accuracy. The proposed algorithm exhibits outstanding accuracy, achieving 99.998% on the testing dataset and 96.843% during cross-validation for predicting SS, and 100% on the testing dataset, and 95.008% during cross-validation for predicting RHT. The implementation of nanotechnology with artificial intelligence promises new tools for doctors and surgeons, potentially transforming patient care in fields such as oncology, cardiology, and radiology. This model also facilitates the generation of precise electromagnetic fields to guide drug-loaded magnetic nanoparticles for applications in targeted drug delivery, hyperthermia treatment, MRI contrast enhancement, blood flow monitoring, cancer treatment, and controlled drug release.
Collapse
Affiliation(s)
- Poly Karmakar
- Department of Mathematics, Gour Mahavidyalaya, Malda, India
| | - Sukanya Das
- Department of Biotechnology, Saint Xavier's College, Kolkata, India
| | - Sayan Das
- Department of Computer Science & Engineering, R. M. Government Engineering College, Purulia, India
| | - Sanatan Das
- Department of Mathematics, University of Gour Banga, Malda, India
| |
Collapse
|
4
|
Machado NGP, Raele MP, Jimenez-Villar E, de Rossi W. Green synthesis of silica-coated gold nanoparticles employing femtosecond laser, solid targets, and water. DISCOVER NANO 2025; 20:17. [PMID: 39871012 PMCID: PMC11772632 DOI: 10.1186/s11671-024-04141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/04/2024] [Indexed: 01/29/2025]
Abstract
Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications. This study introduces a novel approach for synthesizing silica-coated gold nanoparticles (AuNP@SiO₂) using femtosecond laser ablation in water, eliminating the need for chemical reagents. The process involves three key laser-based steps: Si ablation, SiNP@SiO₂ fragmentation, and Au ablation, all conducted in a liquid environment. The resulting AuNP@SiO₂ were characterized using transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), and zeta potential measurements. The results demonstrated that the AuNP@SiO₂ nanoparticles exhibit high colloidal stability, with a notably negative zeta potential of (-72.0 ± 0.3) mV, effectively preventing particle aggregation. TEM analysis confirmed predominantly spherical nanoparticles with an average diameter of (15.87 ± 0.70) nm, encapsulated by a SiO₂ layer ranging from 1 to 3 nm in thickness. The synthesis approach produced nanoparticles with an average size distribution below 35 nm. This green synthesis method not only produces stable and well-characterized AuNP@SiO₂ nanoparticles but also represents a significant step towards more sustainable nanomaterial production, with promising implications for biomedical applications.
Collapse
Affiliation(s)
- N G P Machado
- Nuclear and Energy Research Institute, IPEN, CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP05508-000, Brazil
| | - M P Raele
- Nuclear and Energy Research Institute, IPEN, CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP05508-000, Brazil.
| | - E Jimenez-Villar
- The College of Optics and Photonics, CREOL, University of Central Florida, Orlando, FL, 32816, USA
| | - W de Rossi
- Nuclear and Energy Research Institute, IPEN, CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP05508-000, Brazil
| |
Collapse
|
5
|
Nishal S, Kumar V, Phaugat P, Kumar D, Khatri N, Singh G. A Systematic Review and Meta-Analysis of the Metal Nano-Particles Loaded with Herbal Drugs Moieties Against Breast Cancer. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:120-130. [PMID: 37691225 DOI: 10.2174/1872210518666230907115056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Breast cancer is the most prevalent cancer among women. About 685K deaths were globally listed in 2020 by the World Health Organization. Nowadays, scientists prefer to use herbal medicines due to their low toxicity. Herbal medicines are used to overcome the toxicity effects of surgical removal, radio-chemo therapy and medication, which have a lot of risk of damaging the healthy tissues. To overcome this, enhance bioavailability and target specify, nano-formulation chemotherapy was introduced using herbal moiety for anticancer activity. The use of metallic nanoparticles (MNPs), particularly those made of silver, cobalt, zinc, and gold as contrast, antibacterial, anticancer, and drug delivery agents has revolutionised the medicinal field. Although MNPs can be made via exacting physical and chemical processes, a biological method utilising natural materials has been established recently. OBJECTIVES This patent review article will offer a succinct explanation of the use of MNPs and its potential impact on herbal medicines in the future. METHODS Using PRISMA principles, this review systematically examines studies that concentrate on metal nanoparticles loaded with herbal compounds for the treatment of breast cancer. Various Databases were studied: PubMed, Elsevier, ScienceDirect, SpringerLink, Taylor & Francis Online, ACS Publications, Publishing Royal Society of Chemistry, and Future Medicines. Studies were selected if they were peer-reviewed primary studies published in the past 10 years. RESULTS We found that many herbal nano-formulations are more effective in breast cancer treatment than other types of formulations. Efficacy, safety and drug stability are also enhanced using nanoformulations. CONCLUSION Nano-formulation is found to be more effective in the treatment of breast cancer.
Collapse
Affiliation(s)
- Suchitra Nishal
- College of Pharmacy, Pt. B.D. Sharma University of Health Sciences, Rohtak, India
| | - Virender Kumar
- College of Pharmacy, Pt. B.D. Sharma University of Health Sciences, Rohtak, India
| | - Parmita Phaugat
- College of Pharmacy, Pt. B.D. Sharma University of Health Sciences, Rohtak, India
| | - Davinder Kumar
- College of Pharmacy, Pt. B.D. Sharma University of Health Sciences, Rohtak, India
| | - Naveen Khatri
- College of Pharmacy, Pt. B.D. Sharma University of Health Sciences, Rohtak, India
| | - Gajendra Singh
- College of Pharmacy, Pt. B.D. Sharma University of Health Sciences, Rohtak, India
| |
Collapse
|
6
|
Li Y, Wang J, Li Y, Luo Z, Peng T, Zou T. Nanomaterials based on hollow gold nanospheres for cancer therapy. Regen Biomater 2024; 11:rbae126. [PMID: 39664940 PMCID: PMC11631698 DOI: 10.1093/rb/rbae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 12/13/2024] Open
Abstract
Gold nanoparticles have recently been exploited as versatile nanocarriers in diagnostic and therapeutic drug delivery for cancer nanomedicine, owing to their biocompatibility, low biotoxicity, surface modifiability and plasma optical properties. A variety of gold nanoparticles have emerged for drug delivery, mainly including gold nanorods, gold nanocages, gold nanostars, gold solid nanospheres and hollow gold nanospheres (HGNs). Among these, HGNs have widely been studied for their higher photothermal conversion efficiency, wider spectral absorption range and stronger surface-enhanced Raman scattering compared with solid gold nanospheres. Therefore, nowadays, researchers prefer to use HGNs to other metal nanocarriers, which can not only play the role of controlled-release drugs but also act as photothermal agents for tumor therapy and diagnosis, due to their properties of surface modification. Combined with the Au-S bond on the surface of HGNs, the targeted preparation is loaded to achieve precise drug delivery. With the assistance of the photothermal characteristics of HGNs themselves, the efficacy of loaded drugs in HGNs is enhanced. In addition, HGNs also have vital values in the field of bioimaging, which serve as photothermal imaging agents and Raman scattering-guided preparations due to their surface-enhanced Raman scattering properties to assist researchers in achieving the purpose of tumor diagnosis. In this review, we summarize the synthesis methods of HGNs and the recent application of HGNs-based nanomaterials in the field of cancer diagnosis and therapy. In addition, the issues to be addressed were pointed out for a bright prospect of HGNs-based nanomaterials.
Collapse
Affiliation(s)
- You Li
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| | - Jing Wang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Ying Li
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| | - Ziqiang Luo
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| | - Tao Peng
- GEM (Wuhan) Urban Mining Industrial Group Co., Ltd, Wuhan 430415, P.R. China
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| |
Collapse
|
7
|
Bashir S, Amn Zia M, Shoukat M, Kaleem I, Bashir S. Nanoparticles as a novel key driver for the isolation and detection of circulating tumour cells. Sci Rep 2024; 14:22580. [PMID: 39343959 PMCID: PMC11439955 DOI: 10.1038/s41598-024-67221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/09/2024] [Indexed: 10/01/2024] Open
Abstract
Circulating tumour cells (CTCs), derived from primary tumours, play a pivotal role in cancer metastasis by migrating into the peripheral bloodstream. These cells are paramount in clinical research, serving as early diagnostic markers for metastatic cancer. Analysing CTC counts and their biomarker characteristics can provide invaluable insights into tumour identification, profiling, and metastatic capabilities. However, the rarity and diverse nature of CTCs in the bloodstream present significant challenges to their isolation and detection, especially in the initial stages of metastasis. Recent advancements in nanotechnology have led to the development of innovative CTC separation and detection methods. This review focuses on applying nanoparticles, nanomaterials, and microfluidic platforms to simplify the isolation and detection of CTCs. The infusion of nanotechnology in this field marks a crucial turning point, enabling the necessary progress to advance CTC research.
Collapse
Affiliation(s)
- Shahab Bashir
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Amn Zia
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Madiha Shoukat
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan.
| | - Shahid Bashir
- Neuroscience Centre, King Fahad Specialist Hospital, Dammam, KSA, Saudi Arabia
| |
Collapse
|
8
|
Qureshi S, Anjum S, Hussain M, Sheikh A, Gupta G, Almoyad MAA, Wahab S, Kesharwani P. A recent insight of applications of gold nanoparticles in glioblastoma multiforme therapy. Int J Pharm 2024; 660:124301. [PMID: 38851411 DOI: 10.1016/j.ijpharm.2024.124301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The application of gold nanoparticles (AuNPs) in cancer therapy, particularly targeted therapy of glioblastoma multiforme (GBM), is an up-and-coming field of research that has gained much interest in recent years. GBM is a life-threatening malignant tumour of the brain that currently has a 95 % death rate with an average of 15 months of survival. AuNPs have proven to have wide clinical implications and compelling therapeutic potential in many researches, specifically in GBM treatment. It was found that the reason why AuNPs were highly desired for GBM treatment was due to their unique properties that diversified the applications of AuNPs further to include imaging, diagnosis, and photothermal therapy. These properties include easy synthesis, biocompatibility, and surface functionalization. Various studies also underscored the ability of AuNPs to cross the blood-brain-barrier and selectively target tumour cells while displaying no major safety concerns which resulted in better therapy results. We attempt to bring together some of these studies in this review and provide a comprehensive overview of safety evaluations and current and potential applications of AuNPs in GBM therapy that may result in AuNP-mediated therapy to be the new gold standard for GBM treatment.
Collapse
Affiliation(s)
- Saima Qureshi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Samiah Anjum
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Muzammil Hussain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India. https://scholar.google.com/citations?user=DJkvOAQAAAAJ&hl=en
| |
Collapse
|
9
|
Dezfuli AAZ, Abu-Elghait M, Salem SS. Recent Insights into Nanotechnology in Colorectal Cancer. Appl Biochem Biotechnol 2024; 196:4457-4471. [PMID: 37751009 DOI: 10.1007/s12010-023-04696-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/27/2023]
Abstract
Colorectal cancer (CRC) is the third cancer among the known causes of cancer that impact people. Although CRC drug options are imperfect, primary detection of CRC can play a key role in treating the disease and reducing mortality. Cancer tissues show many molecular markers that can be used as a new way to advance therapeutic methods. Nanotechnology includes a wide range of nanomaterials with high diagnostic and therapeutic power. Several nanomaterials and nanoformulations can be used to treat cancer, especially CRC. In this review, we discuss recent insights into nanotechnology in colorectal cancer.
Collapse
Affiliation(s)
- Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Salem S Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
10
|
Kumar S, Shukla A, Singh SP, Singh RK, Patel AK, Verma PK, Kumar S, Kumar N, Singh V, Wasnik K, Acharya A. Synthesized Gold Nanoparticles with Moringa Oleifera leaf Extract Induce Mitotic Arrest (G2/M phase) and Apoptosis in Dalton's Lymphoma Cells. Cell Biochem Biophys 2024; 82:1043-1059. [PMID: 38696103 DOI: 10.1007/s12013-024-01257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 08/25/2024]
Abstract
The therapeutic potential of chemically synthesized AuNPs has been demonstrated in various types of cancer. However, gold nanoparticles (AuNPs) synthesized using typical chemical methods have concerns regarding their environmental safety and adverse impact on human well-being. To overcome this issue, we used an environmentally friendly approach in which gold nanoparticles were synthesized using Moringa oleifera leaf extract (MLE). The present research was mainly focused on the biosynthesis and characterization of gold nanoparticles (AuNPs) using Moringa oleifera leaf extract (MLE-AuNPs) and explore its anticancer potential against Dalton's Lymphoma (DL) cells. Characterization of the MLE-AuNPs was conducted using UV-Vis Spectroscopy to confirm the reduction process, FTIR analysis to ascertain the presence of functional groups, and XRD analysis to confirm the crystallinity. SEM and TEM images were used to examine size and morphology. After characterization, MLE-AuNPs were evaluated for their cytotoxic effects on Dalton's lymphoma cells, and the results showed an IC50 value of 75 ± 2.31 µg/mL; however, there was no discernible cytotoxicity towards normal murine thymocytes. Furthermore, flow cytometric analysis revealed G2/M phase cell cycle arrest mediated by the downregulation of cyclin B1 and Cdc2 and upregulation of p21. Additionally, apoptosis induction was evidenced by Annexin V Staining, accompanied by modulation of apoptosis-related genes including decreased Bcl-2 expression and increased expression of Bax, Cyt-c, and Caspase-3 at both the mRNA and protein levels. Collectively, our findings underscore the promising anti-cancer properties of MLE-AuNPs, advocating their potential as a novel therapeutic avenue for Dalton's lymphoma.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Alok Shukla
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Surya Pratap Singh
- The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rishi Kant Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Anand Kumar Patel
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Praveen Kumar Verma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Sanjay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Naveen Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Varsha Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Arbind Acharya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|
11
|
Mal S, Chakraborty S, Mahapatra M, Pakeeraiah K, Das S, Paidesetty SK, Roy P. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. NANOSCALE ADVANCES 2024; 6:2766-2812. [PMID: 38817429 PMCID: PMC11134266 DOI: 10.1039/d3na00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | | | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management Action Area III, B/5, Newtown Kolkata West Bengal 700160 India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University) Vishakhapatnam 530045 India
| |
Collapse
|
12
|
Tanudji J, Kasai H, Okada M, Ogawa T, Aspera SM, Nakanishi H. 211At on gold nanoparticles for targeted radionuclide therapy application. Phys Chem Chem Phys 2024; 26:12915-12927. [PMID: 38629229 DOI: 10.1039/d3cp05326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Targeted alpha therapy (TAT) is a methodology that is being developed as a promising cancer treatment using the α-particle decay of radionuclides. This technique involves the use of heavy radioactive elements being placed near the cancer target area to cause maximum damage to the cancer cells while minimizing the damage to healthy cells. Using gold nanoparticles (AuNPs) as carriers, a more effective therapy methodology may be realized. AuNPs can be good candidates for transporting these radionuclides to the vicinity of the cancer cells since they can be labeled not just with the radionuclides, but also a host of other proteins and ligands to target these cells and serve as additional treatment options. Research has shown that astatine and iodine are capable of adsorbing onto the surface of gold, creating a covalent bond that is quite stable for use in experiments. However, there are still many challenges that lie ahead in this area, whether they be theoretical, experimental, and even in real-life applications. This review will cover some of the major developments, as well as the current state of technology, and the problems that need to be tackled as this research topic moves along to maturity. The hope is that with more workers joining the field, we can make a positive impact on society, in addition to bringing improvement and more knowledge to science.
Collapse
Affiliation(s)
- Jeffrey Tanudji
- Department of Applied Physics, The University of Osaka, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideaki Kasai
- Institute of Radiation Sciences, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Michio Okada
- Institute of Radiation Sciences, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
- Department of Chemistry, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Tetsuo Ogawa
- Institute of Radiation Sciences, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
- Department of Physics, The University of Osaka, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Susan M Aspera
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Hiroshi Nakanishi
- National Institute of Technology, Akashi College, 679-3 Nishioka, Uozumi-cho, Akashi, Hyogo 674-8501, Japan
| |
Collapse
|
13
|
Mendes de Almeida Junior A, Ferreira AS, Camacho SA, Gontijo Moreira L, de Toledo KA, Oliveira ON, Aoki PHB. Enhancing Phototoxicity in Human Colorectal Tumor Cells Through Nanoarchitectonics for Synergistic Photothermal and Photodynamic Therapies. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652860 DOI: 10.1021/acsami.4c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Phototherapies are promising for noninvasive treatment of aggressive tumors, especially when combining heat induction and oxidative processes. Herein, we show enhanced phototoxicity of gold shell-isolated nanorods conjugated with toluidine blue-O (AuSHINRs@TBO) against human colorectal tumor cells (Caco-2) with synergic effects of photothermal (PTT) and photodynamic therapies (PDT). Mitochondrial metabolic activity tests (MTT) performed on Caco-2 cell cultures indicated a photothermal effect from AuSHINRs owing to enhanced light absorption from the localized surface plasmon resonance (LSPR). The phototoxicity against Caco-2 cells was further increased with AuSHINRs@TBO where oxidative processes, such as hydroperoxidation, were also present, leading to a cell viability reduction from 85.5 to 39.0%. The molecular-level mechanisms responsible for these effects were investigated on bioinspired tumor membranes using Langmuir monolayers of Caco-2 lipid extract. Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) revealed that the AuSHINRs@TBO incorporation is due to attractive electrostatic interactions with negatively charged groups of the Caco-2 lipid extract, resulting in the expansion of surface pressure isotherms. Upon irradiation, Caco-2 lipid extract monolayers containing AuSHINRs@TBO (1:1 v/v) exhibited ca. 1.0% increase in surface area. This is attributed to the generation of reactive oxygen species (ROS) and their interaction with Caco-2 lipid extract monolayers, leading to hydroperoxide formation. The oxidative effects are facilitated by AuSHINRs@TBO penetration into the polar groups of the extract, allowing oxidative reactions with carbon chain unsaturations. These mechanisms are consistent with findings from confocal fluorescence microscopy, where the Caco-2 plasma membrane was the primary site of the cell death induction process.
Collapse
Affiliation(s)
| | - André Satoshi Ferreira
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Sabrina Aléssio Camacho
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Lucas Gontijo Moreira
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Karina Alves de Toledo
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Pedro Henrique Benites Aoki
- School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis, SP 19806-900, Brazil
| |
Collapse
|
14
|
Xiao B, Adjei-Sowah E, Benoit DSW. Integrating osteoimmunology and nanoparticle-based drug delivery systems for enhanced fracture healing. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102727. [PMID: 38056586 PMCID: PMC10872334 DOI: 10.1016/j.nano.2023.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Fracture healing is a complex interplay of molecular and cellular mechanisms lasting from days to weeks. The inflammatory phase is the first stage of fracture healing and is critical in setting the stage for successful healing. There has been growing interest in exploring the role of the immune system and novel therapeutic strategies, such as nanoparticle drug delivery systems in enhancing fracture healing. Advancements in nanotechnology have revolutionized drug delivery systems to the extent that they can modulate immune response during fracture healing by leveraging unique physiochemical properties. Therefore, understanding the intricate interactions between nanoparticle-based drug delivery systems and the immune response, specifically macrophages, is essential for therapeutic efficacy. This review provides a comprehensive overview of the relationship between the immune system and nanoparticles during fracture healing. Specifically, we highlight the influence of nanoparticle characteristics, such as size, surface properties, and composition, on macrophage activation, polarization, and subsequent immune responses. IMPACT STATEMENT: This review provides valuable insights into the interplay between fracture healing, the immune system, and nanoparticle-based drug delivery systems. Understanding nanoparticle-macrophage interactions can advance the development of innovative therapeutic approaches to enhance fracture healing, improve patient outcomes, and pave the way for advancements in regenerative medicine.
Collapse
Affiliation(s)
- Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14623, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY 14623, USA; Materials Science Program, University of Rochester, Rochester, NY 14623, USA; Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
15
|
Kim YH, Cho HS, Yoo K, Ham KM, Kang H, Pham XH, Jun BH. High-Throughput Synthesis of Nanogap-Rich Gold Nanoshells Using Dual-Channel Infusion System. Int J Mol Sci 2024; 25:1649. [PMID: 38338926 PMCID: PMC10855030 DOI: 10.3390/ijms25031649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Gold nanoshells have been actively applied in industries beyond the research stage because of their unique optical properties. Although numerous methods have been reported for gold nanoshell synthesis, the labor-intensive and time-consuming production process is an issue that must be overcome to meet industrial demands. To resolve this, we report a high-throughput synthesis method for nanogap-rich gold nanoshells based on a core silica support (denoted as SiO2@Au NS), affording a 50-fold increase in scale by combining it with a dual-channel infusion pump system. By continuously dropping the reactant solution through the pump, nanoshells with closely packed Au nanoparticles were prepared without interparticle aggregation. The thickness of the gold nanoshells was precisely controlled at 2.3-17.2 nm by regulating the volume of the reactant solution added dropwise. Depending on the shell thickness, the plasmonic characteristics of SiO2@Au NS prepared by the proposed method could be tuned. Moreover, SiO2@Au NS exhibited surface-enhanced Raman scattering activity comparable to that of gold nanoshells prepared by a previously reported low-throughput method at the same reactant ratio. The results indicate that the proposed high-throughput synthesis method involving the use of a dual-channel infusion system will contribute to improving the productivity of SiO2@Au NS with tunable plasmonic characteristics.
Collapse
Affiliation(s)
- Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (Y.-H.K.); (H.-S.C.); (K.Y.); (K.-M.H.)
| | - Hye-Seong Cho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (Y.-H.K.); (H.-S.C.); (K.Y.); (K.-M.H.)
| | - Kwanghee Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (Y.-H.K.); (H.-S.C.); (K.Y.); (K.-M.H.)
| | - Kyeong-Min Ham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (Y.-H.K.); (H.-S.C.); (K.Y.); (K.-M.H.)
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (Y.-H.K.); (H.-S.C.); (K.Y.); (K.-M.H.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (Y.-H.K.); (H.-S.C.); (K.Y.); (K.-M.H.)
| |
Collapse
|
16
|
Gandhi S, Shende P. Anti-CD64 Antibody-Conjugated PLGA Nanoparticles Containing Methotrexate and Gold for Theranostics Application in Rheumatoid Arthritis. AAPS PharmSciTech 2024; 25:22. [PMID: 38267687 DOI: 10.1208/s12249-024-02733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Rheumatoid arthritis, an autoimmune disorder, exerts a considerable effect on quality of life. The inflammatory mechanism involved in rheumatoid arthritis is not clearly known, and therefore the need to develop effective medicines as well as new methods for early detection is a challenge. In this study, we developed PLGA nanoparticles containing gold and methotrexate in core and anti-CD64 antibody conjugated to nanoparticle surface via coupling process. The nanoparticles were examined for their surface morphology using SEM and TEM. The mean particle size, zeta potential, and PDI values of nanoparticles were 413.6 ± 2.89 nm, -10.12 ± 2.12 mV, and 0.23 ± 0.04, respectively, indicating good stability and particle homogeneity. In vitro drug release revealed a controlled release pattern with 93.44 ± 1.60% up to 72 h of release in the presence of pH 5.8, indicating the influence of pH and NIR on drug release. In vivo results on adjuvant-induced arthritis on Wistar rats indicated that animals receiving antibody-conjugated nanoparticles showed improvement in clinical indices and arthritic score as compared to non-conjugated nanoparticles and free drugs. This innovative drug delivery system will be an excellent strategy to maximize therapeutic effectiveness by limiting dosage-related side effects.
Collapse
Affiliation(s)
- Sahil Gandhi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
17
|
Kumari R, Syeda S, Shrivastava A. Nature's Elixir for Cancer Treatment: Targeting Tumor-induced Neovascularization. Curr Med Chem 2024; 31:5281-5304. [PMID: 38425113 DOI: 10.2174/0109298673282525240222050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Angiogenesis, a multistep process, involves sprouting of new vessels from the pre-existing vessels in response to a stimulus in its microenvironment. Normally, angiogenesis is important for tissue maintenance and homeostasis, however it is also known to be associated with various pathologies, including cancer. Importantly, neovascularization is very crucial for tumors to grow and metastasize since it allows delivery of oxygen and nutrients as well as promotes tumor cell dissemination to distant sites. Activation of angiogenic switch is a consequence of imbalance in pro- as well as anti-angiogenic factors, that are immensely impacted by reactive oxygen species and epigenetic regulation. Several reports have suggested that angiogenic inhibitors significantly inhibit tumor growth. Therefore, anti-angiogenic therapy has gained substantial attention and has been considered a rational approach in cancer therapeutics. In this line, several anti- angiogenic drugs have been approved, however, their long term usage caused several side effects. In view of this, researchers switched to plant-based natural compounds for identifying safe and cost-effective anti-angiogenic drugs. Of note, various phytochemicals have been evaluated to reduce tumor growth by inhibiting tumor-induced angiogenesis. Moreover, the implication of nano-carriers to enhance the bioavailability of phytochemicals has proven to be more efficient anti-cancer agents. The present review highlights the existing knowledge on tumor-induced neovascularization and its regulation at the epigenetic level. Further, we emphasize the inhibitory effect of phytochemicals on tumor- induced angiogenesis that will open up new avenues in cancer therapeutics.
Collapse
Affiliation(s)
- Rani Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Saima Syeda
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
18
|
Khurana S, Kukreti S, Kaushik M. Prospecting the cancer therapeutic edge of chitosan-based gold nanoparticles through conformation selective binding to the parallel G-quadruplex formed by short telomeric DNA sequence: A multi-spectroscopic approach. Int J Biol Macromol 2023; 253:126835. [PMID: 37709220 DOI: 10.1016/j.ijbiomac.2023.126835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The biological relevance of G4 structures formed in telomere & oncogenes promoters make them extremely crucial therapeutic target for cancer treatment. Herein, we have synthesized chitosan-based gold nanoparticles (CH-Au NPs) through green method and have investigated their interaction with G4 structures formed by short telomeric sequences to evaluate their potential for targeting G4 structures. Firstly, we have characterized morphological/physical attributes of synthesized CH-Au NPs and salt dependent structural aspects of model G-rich DNA sequence, 12-mer d(T2G4)2 [TETRA] using spectroscopic and biophysical techniques. The molecular interactions between CH-Au NPs and parallel/antiparallel TETRA G4 structures were evaluated using UV-Visible, CD, Fluorescence, CD melting, DLS and Zeta potential studies. The experimental data indicated that CH-Au NPs showed strong binding interactions with Parallel TETRA G4 and provided thermal stabilization to the structure, whereas their interactions with Antiparallel TETRA G4 DNA and Ct-DNA (DNA duplex) were found to be negligible. Further, CH-Au NPs were also investigated for their selectivity aptitude for different G4 structures formed by human telomeric sequences; d(T2AG3)3 [HUM-12] and d(T2AG3)4T [HUM-25]. Our findings suggested that CH-Au NPs exhibited topology specific binding aptitude towards G4 structure, which can be utilized to inhibit/modulate crucial biological functions for potential anticancer activity.
Collapse
Affiliation(s)
- Sonia Khurana
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
19
|
Angjelova A, Jovanova E, Polizzi A, Santonocito S, Lo Giudice A, Isola G. The Potential of Nano-Based Photodynamic Treatment as a Therapy against Oral Leukoplakia: A Narrative Review. J Clin Med 2023; 12:6819. [PMID: 37959284 PMCID: PMC10649116 DOI: 10.3390/jcm12216819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Oral leukoplakia is a predominantly white lesion of the oral mucosa that cannot be classified as any other definable lesion with the risk of progressing into malignancy. Despite the advancements in conventional therapy, the rates of malignant transformation remain notably high, affecting 4.11% of adults, due to the difficulty of accurate diagnosis and indistinct treatment. Photodynamic therapy (PDT), being a minimally invasive surgical intervention, employs a variety of factors, including light, nano-photosensitizers (PSs) and oxygen in the management of precancerous lesions. PDT faces limitations in administering photosensitizers (PSs) because of their low water solubility. However, these challenges could be effectively resolved through the incorporation of PSs in nanostructured drug delivery systems, such as gold nanoparticles, micelles, liposomes, metal nanoparticles, dendrimers and quantum dots. This review will give an overview of the different innovative PS approaches in the management of premalignant lesions, highlighting the most recent advancements. From a clinical perspective, it is expected that nanotechnology will overcome barriers faced by traditional therapeutics and will address critical gaps in clinical cancer care.
Collapse
Affiliation(s)
- Angela Angjelova
- University Dental Clinical Center St. Pantelejmon, Skopje, Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia; (A.A.); (E.J.)
| | - Elena Jovanova
- University Dental Clinical Center St. Pantelejmon, Skopje, Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia; (A.A.); (E.J.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| |
Collapse
|
20
|
Shoaib TH, Ibraheem W, Abdelrahman M, Osman W, Sherif AE, Ashour A, Ibrahim SRM, Ghazawi KF, Miski SF, Almadani SA, ALsiyud DF, Mohamed GA, Alzain AA. Exploring the potential of approved drugs for triple-negative breast cancer treatment by targeting casein kinase 2: Insights from computational studies. PLoS One 2023; 18:e0289887. [PMID: 37578958 PMCID: PMC10424868 DOI: 10.1371/journal.pone.0289887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy that requires effective targeted drug therapy. In this study, we employed in silico methods to evaluate the efficacy of seven approved drugs against human ck2 alpha kinase, a significant modulator of TNBC metastasis and invasiveness. Molecular docking revealed that the co-crystallized reference inhibitor 108600 achieved a docking score of (-7.390 kcal/mol). Notably, among the seven approved drugs tested, sunitinib, bazedoxifene, and etravirine exhibited superior docking scores compared to the reference inhibitor. Specifically, their respective docking scores were -10.401, -7.937, and -7.743 kcal/mol. Further analysis using MM/GBSA demonstrated that these three top-ranked drugs possessed better binding energies than the reference ligand. Subsequent molecular dynamics simulations identified etravirine, an FDA-approved antiviral drug, as the only repurposed drug that demonstrated a stable and reliable binding mode with the human ck2 alpha protein, based on various analysis measures including RMSD, RMSF, and radius of gyration. Principal component analysis indicated that etravirine exhibited comparable stability of motion as a complex with human ck2 alpha protein, similar to the co-crystallized inhibitor. Additionally, Density functional theory (DFT) calculations were performed on a complex of etravirine and a representative gold atom positioned at different sites relative to the heteroatoms of etravirine. The results of the DFT calculations revealed low-energy complexes that could potentially serve as guides for experimental trials involving gold nanocarriers of etravirine, enhancing its delivery to malignant cells and introducing a new drug delivery route. Based on the results obtained in this research study, etravirine shows promise as a potential antitumor agent targeting TNBC, warranting further investigation through experimental and clinical assessments.
Collapse
Affiliation(s)
- Tagyedeen H. Shoaib
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Gezira, Gezira, Sudan
| | - Walaa Ibraheem
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Gezira, Gezira, Sudan
| | - Mohammed Abdelrahman
- Faculty of Pharmacy, Department of Pharmaceutics, University of Gezira, Gezira, Sudan
| | - Wadah Osman
- Faculty of Pharmacy, Department of Pharmacognosy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
- Faculty of Pharmacy, Department of Pharmacognosy, University of Khartoum, Khartoum, Sudan
| | - Asmaa E. Sherif
- Faculty of Pharmacy, Department of Pharmacognosy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
- Faculty of Pharmacy, Department of Pharmacognosy, Mansoura University, Mansoura, Egypt
| | - Ahmed Ashour
- Faculty of Pharmacy, Department of Pharmacognosy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
- Faculty of Pharmacy, Department of Pharmacognosy, Mansoura University, Mansoura, Egypt
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Faculty of Pharmacy, Department of Pharmacognosy, Assiut University, Assiut, Egypt
| | - Kholoud F. Ghazawi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samar F. Miski
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Sara A. Almadani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Duaa Fahad ALsiyud
- Department of Medical Laboratories—Hematology, King Fahd Armed Forces Hospital, Corniche Road, Andalus, Jeddah, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahim A. Alzain
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Gezira, Gezira, Sudan
| |
Collapse
|
21
|
El-Naggar NEA, Rabei NH, Elmansy MF, Elmessiry OT, El-Sherbeny MK, El-Saidy ME, Sarhan MT, Helal MG. Artificial neural network approach for prediction of AuNPs biosynthesis by Streptomyces flavolimosus, characterization, antitumor potency in-vitro and in-vivo against Ehrlich ascites carcinoma. Sci Rep 2023; 13:12686. [PMID: 37542154 PMCID: PMC10403537 DOI: 10.1038/s41598-023-39177-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
Gold nanoparticles (AuNPs) have emerged as promising and versatile nanoparticles for cancer therapy and are widely used in drug and gene delivery, biomedical imaging, diagnosis, and biosensors. The current study describes a biological-based strategy for AuNPs biosynthesis using the cell-free supernatant of Streptomyces flavolimosus. The biosynthesized AuNPs have an absorption peak at 530-535 nm. The TEM images indicate that AuNPs were spherical and ranged in size from 4 to 20 nm. The surface capping molecules of AuNPs are negatively charged, having a Zeta potential of - 10.9 mV. FTIR analysis revealed that the AuNPs surface composition contains a variety of functional groups as -OH, C-H, N-, C=O, NH3+, amine hydrochloride, amide group of proteins, C-C and C-N. The bioprocess variables affecting AuNPs biosynthesis were optimized by using the central composite design (CCD) in order to maximize the AuNPs biosynthesis. The maximum yield of AuNPs (866.29 µg AuNPs/mL) was obtained using temperature (35 °C), incubation period (4 days), HAuCl4 concentration (1000 µg/mL) and initial pH level 6. Comparison was made between the fitness of CCD versus Artificial neural network (ANN) approach based on their prediction and the corresponding experimental results. AuNPs biosynthesis values predicted by ANN exhibit a more reasonable agreement with the experimental result. The anticancer activities of AuNPs were assessed under both in vitro and in vivo conditions. The results revealed a significant inhibitory effect on the proliferation of the MCF-7 and Hela carcinoma cell lines treated with AuNPs with IC50 value of 13.4 ± 0.44 μg/mL and 13.8 ± 0.45 μg/mL for MCF-7 and Hela cells; respectively. Further, AuNPs showed potential inhibitory effect against tumor growth in tumor-bearing mice models. AuNPs significantly reduced the tumor volume, tumor weight, and decreased number of viable tumor cells in EAC bearing mice.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Nashwa H Rabei
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Mohamed F Elmansy
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Omar T Elmessiry
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mostafa K El-Sherbeny
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohanad E El-Saidy
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed T Sarhan
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
22
|
Abdelrahman FAAF, El-Sayed SA, Abuel-Atta AA, Ghonimi WAM. Nephrotoxicity induced by different diameters of sphere gold nanoparticles with special emphasis on the nephroprotective role of quercetin. Open Vet J 2023; 13:723-731. [PMID: 37545706 PMCID: PMC10399658 DOI: 10.5455/ovj.2023.v13.i6.7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/09/2023] [Indexed: 08/08/2023] Open
Abstract
Background Although, gold nanoparticles (GNPs) are attracting more and more attention due to their ease of synthesis, modification, and great potential value in biomedical applications, exhibited harmful effects on human health and other living species. Quercetin (Qur) clarifies diverse pharmacological effects, especially anti-inflammatory, antiapoptotic, and antioxidant ones. Aim This study aimed to evaluate the probable nephrotoxicity induced by different diameters of sphere GNPs, as well as the nephroprotective role of Qur. Methods A total of 54 healthy mature male albino rats were grouped and treated with or without sphere GNPs; 10, 20, and 50 nm and Qur (200 mg/kg b.wt.). The effects of GNPs and Qur were estimated through the collection of blood and kidney samples from euthanized rats and performed biochemical, histopathological, and immunohistochemical investigations. Results In comparison between different diameters of GNPs, the 10 nm GNPs revealed more significant elevations in all renal function parameters: creatinine, urea, blood urea nitrogen, and uric acid followed by 20 nm then 50 nm. Pre-cotreatment with Qur decreased all renal functional values. Histopathologically, 10 nm revealed the most potent renal pathological changes represented in the renal cortex with cloudy swelling of renal tubules, hypercellularity of some glomeruli, severe congestion of renal blood vessels, focal inter tubular edema, and vascular endotheliosis (degeneration of endothelium). In addition, the renal medulla revealed perivascular inflammatory cellular infiltration, perivascular fibrosis, intra tubular glycogen deposition, and casts deposition of mainly cellular casts. On the other hand, the Qur treatment ameliorated most of these pathological changes. Conclusion The size of GNPs is pivotal in their pathological effect on renal tissues where the small-sized GNPs; 10 nm have more potent cytotoxic, inflammatory, and apoptotic effects rather than the larger ones. Otherwise, Qur clarified a significant mitigating role against the nephrotoxicity of the GNPs.
Collapse
Affiliation(s)
| | | | | | - Wael A. M. Ghonimi
- Corresponding Author: Wael A. M. Ghonimi. Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt. ;
| |
Collapse
|
23
|
Al-Fahdawi MQ, Aldoghachi AF, Alhassan FH, Al-Doghachi FA, Alshwyeh HA, Rasedee A, Alnasser SM, Al-Qubaisi MS, Ibrahim WN. Physicochemical characterization and cancer cell antiproliferative effect of silver-doped magnesia nanoparticles. Heliyon 2023; 9:e15560. [PMID: 37159701 PMCID: PMC10163622 DOI: 10.1016/j.heliyon.2023.e15560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Silver-doped magnesia nanoparticles (Ag/MgO) were synthesized using the precipitation method and characterized by various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), Brunner-Emmett-Teller (BET) surface area measurements, and dispersive X-ray spectroscopy (EDX). The morphology of Ag/MgO nanoparticles was determined by transmission and scanning electron microscopy, which revealed cuboidal shaped nanoparticles with sizes ranging from 31 to 68 nm and an average size of 43.5 ± 10.6 nm. The anticancer effects of Ag/MgO nanoparticles were evaluated on human colorectal (HT29) and lung adenocarcinoma (A549) cell lines, and their caspase-3, -8, and -9 activities, as well as Bcl-2, Bax, p53, cytochrome C protein expressions were estimated. Ag/MgO nanoparticles showed selective toxicity towards HT29 and A549 cells while remaining relatively innocuous towards the normal human colorectal, CCD-18Co, and lung, MRC-5 cells. The IC50 values of Ag/MgO nanoparticles on the HT29 and A549 cells were found to be 90.2 ± 2.6 and 85.0 ± 3.5 μg/mL, respectively. The Ag/MgO nanoparticles upregulated caspase-3 and -9 activities, downregulated Bcl-2, upregulated Bax and p53 protein expressions in the cancer cells. The morphology of the Ag/MgO nanoparticle treated HT29 and A549 cells was typical of apoptosis, with cell detachment, shrinkage, and membrane blebbing. The results suggest that Ag/MgO nanoparticles induce apoptosis in cancer cells and exhibit potential as a promising anticancer agent.
Collapse
Affiliation(s)
| | - Ahmed Faris Aldoghachi
- Faculty of Medicine and Health Sciences, University Putra Malaysia, UPM, Serdang, 43300, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, 43000, Malaysia
| | - Fatah H. Alhassan
- Department of Applied Chemistry and Technology, College of Science and Arts, Alkamel University of Jeddah, Jeddah, 21589, Saudi Arabia
- Department of Nanoscience and Nanotechnology, Africa City of Technology, Khartoum Bahari, Khartoum, Sudan
| | | | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Abdullah Rasedee
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Corresponding author.Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | | | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Corresponding author. Department of Biomedical sciences, College of Health sciences, QU Health, Qatar University, Qatar.
| |
Collapse
|
24
|
Edris A, Abdelrahman M, Osman W, Sherif AE, Ashour A, Garelnabi EAE, Ibrahim SRM, Bafail R, Samman WA, Ghazawi KF, Mohamed GA, Alzain AA. Design of Novel Letrozole Analogues Targeting Aromatase for Breast Cancer: Molecular Docking, Molecular Dynamics, and Theoretical Studies on Gold Nanoparticles. Metabolites 2023; 13:metabo13050583. [PMID: 37233624 DOI: 10.3390/metabo13050583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
The use of aromatase inhibitors is an established therapy for estrogen-dependent breast cancer in postmenopausal women. However, the only commercially available aromatase inhibitor, letrozole, is not highly selective; in addition to aromatase, it has an affinity for binding to desmolase, an enzyme involved in steroidogenesis, which explains the main side effects. Therefore, we designed new compounds based on the structure of letrozole. More than five thousand compounds were constructed based on the letrozole structure. Then, these compounds were screened for their binding ability toward the target protein, aromatase. Quantum docking, Glide docking, and ADME studies showed 14 new molecules with docking scores of ≤-7 kcal/mol, compared to the docking score of -4.109 kcal/mol of the reference, letrozole. Moreover, molecular dynamics (MD) and post-MD MM-GBSA calculations were calculated for the top three compounds, and the results supported in their interaction's stability. Finally, the density-functional theory (DFT) study applied to the top compound to study the interaction with gold nanoparticles revealed the most stable position for the interaction with the gold nanoparticles. The results of this study confirmed that these newly designed compounds could be useful starting points for lead optimization. Further in vitro and in vivo studies are recommended for these compounds to verify these promising results experimentally.
Collapse
Affiliation(s)
- Alaa Edris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Mohammed Abdelrahman
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Wadah Osman
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum 11111, Sudan
| | - Asmaa E Sherif
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Elrashied A E Garelnabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave, Khartoum 11111, Sudan
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Rawan Bafail
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Waad A Samman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina 30078, Saudi Arabia
| | - Kholoud F Ghazawi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| |
Collapse
|
25
|
Singh R, Yadav V, Dhillon AK, Sharma A, Ahuja T, Siddhanta S. Emergence of Raman Spectroscopy as a Probing Tool for Theranostics. Nanotheranostics 2023; 7:216-235. [PMID: 37064614 PMCID: PMC10093420 DOI: 10.7150/ntno.81936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Although medical advances have increased our grasp of the amazing morphological, genetic, and phenotypic diversity of diseases, there are still significant technological barriers to understanding their complex and dynamic character. Specifically, the complexities of the biological systems throw a diverse set of challenges in developing efficient theranostic tools and methodologies that can probe and treat pathologies. Among several emerging theranostic techniques such as photodynamic therapy, photothermal therapy, magnetic resonance imaging, and computed tomography, Raman spectroscopy (RS) is emerging as a promising tool that is a label-free, cost-effective, and non-destructive technique. It can also provide real-time diagnostic information and can employ multimodal probes for detection and therapy. These attributes make it a perfect candidate for the analytical counterpart of the existing theranostic probes. The use of biocompatible nanomaterials for the fabrication of Raman probes provides rich structural information about the biological molecules, cells, and tissues and highly sensitive information down to single-molecule levels when integrated with advanced RS tools. This review discusses the fundamentals of Raman spectroscopic tools such as surface-enhanced Raman spectroscopy and Resonance Raman spectroscopy, their variants, and the associated theranostic applications. Besides the advantages, the current limitations, and future challenges of using RS in disease diagnosis and therapy have also been discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India
| |
Collapse
|
26
|
Mathematical modeling of fluid flow and pollutant transport in a homogeneous porous medium in the presence of plate stacks. Heliyon 2023; 9:e14329. [PMID: 36967901 PMCID: PMC10036493 DOI: 10.1016/j.heliyon.2023.e14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
This study aims at investigating the numerical analysis of pollutant transport in homogeneous porous media with solid plate stacks. The investigation was performed for solid/impervious objects of the same size placed in homogeneous porous media. The pollutant transport equation (i.e., steady-state and time dependent advection-dispersion) chosen in mathematical modeling. Three cases arise on the basis of dispersion coefficients: (a) when dispersion is uniformly constant, (b) when dispersion depends upon magnitude of the velocity, and (c) when dispersion depends upon magnitude of the velocity and directional dispersivities, all these are discussed in detail. Generally, analytical solution of such problems doesn't exist, so all the work is done numerically. The governing partial differential equation of pollutant concentration is approximated by using finite difference technique. Central, one-sided, backward and forward finite difference formulae of the same order are used to discretize the domain. Simulations of velocity potential and stream function are approximated by Matlab software. Then equipotential lines and streamlines are visualized in the form of contours. Both, velocity potential and stream function are harmonic and satisfy Laplace's equation. Fluid flow lines and pollutant concentration are represented graphically for several parameters involved in the study. It is found that entrance/exit length, shape, hydraulic conductivity, the number and position of impervious objects affect the fluid flow and pollutant transport. However, there is no significant affect of heated objects on pollutant transport. Moreover, advection and dispersion depend upon permeability of porous media and properties of solid matrix. To authenticate the Matlab scheme of finite difference, it is verified that fluid as well as pollutant fluxes (in and out) are equal. Moreover, time-dependent problem converges to steady-state form after very long time. For monitoring or forecasting the build up of contamination concentration, the pollutant transport model is considerable. As this model is affected by different parameters which are discussed above, can helps to overcome the pollutant accumulation. The solid object is main key to lessen the contamination in the underground. If the entrance or leakage point of the domain is blocked by impermeable object or filled the vertical column with material of low hydraulic conductivity it ultimately slows down or even refrains the pollutant particles to pass through. The pollutant concentration is also minimized by injecting the bioremedial agents with the help of treatment columns.
Collapse
|
27
|
Kong N, Ma H, Pu Z, Wan F, Li D, Huang L, Lian J, Huang X, Ling S, Yu H, Yao Y. De Novo Design and Synthesis of Polypeptide Immunomodulators for Resetting Macrophage Polarization. BIODESIGN RESEARCH 2023; 5:0006. [PMID: 37849457 PMCID: PMC10521685 DOI: 10.34133/bdr.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/25/2022] [Indexed: 10/19/2023] Open
Abstract
Modulating the extracellular matrix microenvironment is critical for achieving the desired macrophage phenotype in immune investigations or tumor therapy. Combining de novo protein design and biosynthesis techniques, herein, we designed a biomimetic polypeptide self-assembled nano-immunomodulator to trigger the activation of a specific macrophage phenotype. It was intended to be made up of (GGSGGPGGGPASAAANSASRATSNSP)n, the RGD motif from collagen, and the IKVAV motif from laminin. The combination of these domains allows the biomimetic polypeptide to assemble into extracellular matrix-like nanofibrils, creating an extracellular matrix-like milieu for macrophages. Furthermore, changing the concentration further provides a facile route to fine-tune macrophage polarization, which enhances antitumor immune responses by precisely resetting tumor-associated macrophage immune responses into an M1-like phenotype, which is generally considered to be tumor-killing macrophages, primarily antitumor, and immune-promoting. Unlike metal or synthetic polymer-based nanoparticles, this polypeptide-based nanomaterial exhibits excellent biocompatibility, high efficacy, and precise tunability in immunomodulatory effectiveness. These encouraging findings motivate us to continue our research into cancer immunotherapy applications in the future.
Collapse
Affiliation(s)
- Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Hongru Ma
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhongji Pu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Fengju Wan
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongfang Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lei Huang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jiazhang Lian
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xingxu Huang
- Zhejiang Lab, Hangzhou, Zhejiang 311121, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Haoran Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
28
|
Kumar R, Soni S. Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:205-217. [PMID: 36793324 PMCID: PMC9924363 DOI: 10.3762/bjnano.14.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The photothermal conversion efficiency of gold different nanoparticles (GNPs) in different concentrations (1.25-20 µg/mL) and at different irradiation intensities of near-infrared (NIR) broadband and NIR laser irradiation is evaluated. Results show that for a concentration of 20.0 µg/mL, 40 nm gold nanospheres, 25 × 47 nm gold nanorods (GNRs), and 10 × 41 nm GNRs show a 4-110% higher photothermal conversion efficiency under NIR broadband irradiation than under NIR laser irradiation. Broadband irradiation seems suitable to attain higher efficiencies for the nanoparticles whose absorption wavelength is different from the irradiation wavelength. Lower concentrations (1.25-5 µg/mL) of such nanoparticles show 2-3 times higher efficiency under NIR broadband irradiation. For GNRs of sizes 10 × 38 nm and 10 × 41 nm, the different concentrations show almost equal efficiencies for NIR laser and broadband irradiation. On increasing the irradiation power from 0.3 to 0.5 W, for 10 × 41 nm GNRs in the concentration range of 2.5-20.0 µg/mL, NIR laser irradiation results in 5-32% higher efficiencies, while NIR broadband irradiation leads to a 6-11% increase in efficiency. Under NIR laser irradiation, the photothermal conversion efficiency increases with an increase in optical power. The findings will facilitate the selection of nanoparticle concentrations, irradiation source, and irradiation power for a variety of plasmonic photothermal applications.
Collapse
Affiliation(s)
- Raj Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Micro and Nano Optics Centre, CSIR Central Scientific Instruments Organisation, Sector-30C, Chandigarh-160030, India
| | - Sanjeev Soni
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Biomedical Applications Group, CSIR Central Scientific Instruments Organisation, Sector-30C, Chandigarh-160030, India
| |
Collapse
|
29
|
Sharifi M, Farahani MK, Salehi M, Atashi A, Alizadeh M, Kheradmandi R, Molzemi S. Exploring the Physicochemical, Electroactive, and Biodelivery Properties of Metal Nanoparticles on Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2023; 9:106-138. [PMID: 36545927 DOI: 10.1021/acsbiomaterials.2c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the advances in the regeneration/rehabilitation field of damaged tissues, the functional recovery of peripheral nerves (PNs), especially in a long gap injury, is considered a great medical challenge. Recent progress in nanomedicine has provided great hope for PN regeneration through the strategy of controlling cell behavior by metal nanoparticles individually or loaded on scaffolds/conduits. Despite the confirmed toxicity of metal nanoparticles due to long-term accumulation in nontarget tissues, they play a role in the damaged PN regeneration based on the topography modification of scaffolds/conduits, enhancing neurotrophic factor secretion, the ion flow improvement, and the regulation of electrical signals. Determining the fate of neural progenitor cells would be a major achievement in PN regeneration, which seems to be achievable by metal nanoparticles through altering cell vital approaches and controlling their functions. Therefore, in this literature, an attempt was made to provide an overview of the effective activities of metal nanoparticles on the PN regeneration, until the vital clues of the PN regeneration and how they are changed by metal nanoparticles are revealed to the researcher.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Mohammad Kamalabadi Farahani
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Sahar Molzemi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| |
Collapse
|
30
|
Sultana R, Yadav D, Puranik N, Chavda V, Kim J, Song M. A Review on the Use of Gold Nanoparticles in Cancer Treatment. Anticancer Agents Med Chem 2023; 23:2171-2182. [PMID: 37842886 DOI: 10.2174/0118715206268664231004040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
According to a 2020 WHO study, cancer is responsible for one in every six fatalities. One in four patients die due to side effects and intolerance to chemotherapy, making it a leading cause of patient death. Compared to traditional tumor therapy, emerging treatment methods, including immunotherapy, gene therapy, photothermal therapy, and photodynamic therapy, have proven to be more effective. The aim of this review is to highlight the role of gold nanoparticles in advanced cancer treatment. A systematic and extensive literature review was conducted using the Web of Science, PubMed, EMBASE, Google Scholar, NCBI, and various websites. Highly relevant literature from 141 references was chosen for inclusion in this review. Recently, the synergistic benefits of nano therapy and cancer immunotherapy have been shown, which could allow earlier diagnosis, more focused cancer treatment, and improved disease control. Compared to other nanoparticles, the physical and optical characteristics of gold nanoparticles appear to have significantly greater effects on the target. It has a crucial role in acting as a drug carrier, biomarker, anti-angiogenesis agent, diagnostic agent, radiosensitizer, cancer immunotherapy, photodynamic therapy, and photothermal therapy. Gold nanoparticle-based cancer treatments can greatly reduce current drug and chemotherapy dosages.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Zoology, SKM Govt College, Nawapara, Raipur, 493881, India
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Republic of Korea
| | - Nidhi Puranik
- Department of Biochemistry & Genetics, Barkatullah University, Bhopal, 462026, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Jeongyeon Kim
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Republic of Korea
| |
Collapse
|
31
|
Alavi N, Maghami P, Pakdel AF, Rezaei M, Avan A. Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment. Curr Pharm Des 2023; 29:3103-3122. [PMID: 37990429 DOI: 10.2174/0113816128265544231102065515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/03/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) is an innovative, non-invasive method of treating cancer that uses light-activated photosensitizers to create reactive oxygen species (ROS). However, challenges associated with the limited penetration depth of light and the need for precise control over photosensitizer activation have hindered its clinical translation. Nanomedicine, particularly gold nanobiostructures, offers promising solutions to overcome these limitations. This paper reviews the advancements in PDT and nanomedicine, focusing on applying antibody-modified gold nanobiostructures as multifunctional platforms for enhanced PDT efficacy and improved cancer treatment outcomes. The size, shape, and composition of gold nanobiostructures can significantly influence their PDT efficacy, making synthetic procedures crucial. Functionalizing the surface of gold nanobiostructures with various molecules, such as antibodies or targeting agents, bonding agents, PDT agents, photothermal therapy (PTT) agents, chemo-agents, immunotherapy agents, and imaging agents, allows composition modification. Integrating gold nanobiostructures with PDT holds immense potential for targeted cancer therapy. Antibody-modified gold nanobiostructures, in particular, have gained significant attention due to their tunable plasmonic characteristics, biocompatibility, and surface functionalization capabilities. These multifunctional nanosystems possess unique properties that enhance the efficacy of PDT, including improved light absorption, targeted delivery, and enhanced ROS generation. Passive and active targeting of gold nanobiostructures can enhance their localization near cancer cells, leading to efficient eradication of tumor tissues upon light irradiation. Future research and clinical studies will continue to explore the potential of gold nanobiostructures in PDT for personalized and effective cancer therapy. The synthesis, functionalization, and characterization of gold nanobiostructures, their interaction with light, and their impact on photosensitizers' photophysical and photochemical properties, are important areas of investigation. Strategies to enhance targeting efficiency and the evaluation of gold nanobiostructures in vitro and in vivo studies will further advance their application in PDT. The integrating antibody-modified gold nanobiostructures in PDT represents a promising strategy for targeted cancer therapy. These multifunctional nanosystems possess unique properties that enhance PDT efficacy, including improved light absorption, targeted delivery, and enhanced ROS generation. Continued research and development in this field will contribute to the advancement of personalized and effective cancer treatment approaches.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
32
|
Bhandari M, Raj S, Kumar A, Kaur DP. Bibliometric analysis on exploitation of biogenic gold and silver nanoparticles in breast, ovarian and cervical cancer therapy. Front Pharmacol 2022; 13:1035769. [PMID: 36618941 PMCID: PMC9818348 DOI: 10.3389/fphar.2022.1035769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Multifunctional nanoparticles are being formulated to overcome the side effects associated with anticancer drugs as well as conventional drug delivery systems. Cancer therapy has gained the advancement due to various pragmatic approaches with better treatment outcomes. The metal nanostructures such as gold and silver nanoparticles accessible via eco-friendly method provide amazing characteristics in the field of diagnosis and therapy towards cancer diseases. The environmental friendly approach has been proposed as a substitute to minimize the use of hazardous compounds associated in chemical synthesis of nanoparticles. In this attempt, researchers have used various microbes, and plant-based agents as reducing agents. In the last 2 decades various papers have been published emphasizing the benefits of the eco-friendly approach and advantages over the traditional method in the cancer therapy. Despite of various reports and published research papers, eco-based nanoparticles do not seem to find a way to clinical translation for cancer treatment. Present review enumerates the bibliometric data on biogenic silver and gold nanoparticles from Clarivate Analytics Web of Science (WoS) and Scopus for the duration 2010 to 2022 for cancer treatment with a special emphasis on breast, ovarian and cervical cancer. Furthermore, this review covers the recent advances in this area of research and also highlights the obstacles in the journey of biogenic nanodrug from clinic to market.
Collapse
Affiliation(s)
- Meena Bhandari
- Department of Chemistry, School of Basic and Applied Sciences, K.R Mangalam University, Gurugram, India
| | - Seema Raj
- Department of Chemistry, School of Basic and Applied Sciences, K.R Mangalam University, Gurugram, India,*Correspondence: Seema Raj, ,
| | - Ashwani Kumar
- Department of Computer Sciences, School of Engineering and Technology, K.R Mangalam University, Gurugram, India
| | - Dilraj Preet Kaur
- Department of Physics, School of Basic and Applied Sciences, K.R Mangalam University, Gurugram, India
| |
Collapse
|
33
|
Kafle U, Agrawal S, Dash AK. Injectable Nano Drug Delivery Systems for the Treatment of Breast Cancer. Pharmaceutics 2022; 14:2783. [PMID: 36559276 PMCID: PMC9785637 DOI: 10.3390/pharmaceutics14122783] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most diagnosed type of cancer, with 2.26 million cases and 685,000 deaths recorded in 2020. If left untreated, this deadly disease can metastasize to distant organs, which is the reason behind its incurability and related deaths. Currently, conventional therapies are used to treat breast cancer, but they have numerous shortcomings such as low bioavailability, short circulation time, and off-target toxicity. To address these challenges, nanomedicines are preferred and are being extensively investigated for breast cancer treatment. Nanomedicines are novel drug delivery systems that can improve drug stability, aqueous solubility, blood circulation time, controlled release, and targeted delivery at the tumoral site and enhance therapeutic safety and effectiveness. Nanoparticles (NPs) can be administered through different routes. Although the injectable route is less preferred than the oral route for drug administration, it has its advantages: it helps tailor drugs with targeted moiety, boosts payload, avoids first-pass metabolism, and improves the pharmacokinetic parameters of the active pharmaceutical ingredients. Targeted delivery of nanomedicine, closer to organelles such as the mitochondria and nuclei in breast cancer, reduces the dosage requirements and the toxic effects of chemotherapeutics. This review aims to provide the current status of the recent advances in various injectable nanomedicines for targeted treatment of breast cancer.
Collapse
Affiliation(s)
- Urmila Kafle
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Satish Agrawal
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Alekha K Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
34
|
Puja AM, Xu X, Wang R, Kim H, Kim YJ. Ginsenoside compound K-loaded gold nanoparticles synthesized from Curtobacterium proimmune K3 exerts anti-gastric cancer effect via promoting PI3K/Akt-mediated apoptosis. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Compound K (CK) is the minor ginsenoside present in fermented Panax ginseng extract. Despite the pharmacological efficacy of CK, its industrial use has been restricted due to its low water solubility and poor permeability. To overcome this defect, our study was to synthesize gold nanoparticles from CK (CK-AuNPs) to investigate their potential as anticancer candidates.
Methods
To biologically synthesize CK-AuNPs, a novel strain, Curtobacterium proimmune K3, was isolated from fermented ginseng beverage, then combined with CK and gold salts to biosynthesize gold nanoparticles (CurtoCK-AuNPs). Their physicochemical characteristics were evaluated using UV–Vis spectrometry, FE-TEM, EDX, elemental mapping, XRD, SAED, DLS and TGA.
Results
CurtoCK-AuNPs exerted significant selective cytotoxic effects on AGS human gastric cancer cells. Fluorescence staining with Hoechst, propidium iodide, and MitoTracker demonstrated that CurtoCK-AuNPs induce apoptosis and mitochondrial damage, respectively. Quantitative real-time PCR and western blotting analyses showed that cytotoxic effect of CurtoCK-AuNPs were involved in apoptosis, based on their activation of Bax/Bcl-2, cytochrome c, caspase 9, and caspase 3, as well as their suppression of PI3K–Akt signaling.
Conclusion
Our findings provide data for understanding the molecular mechanisms of nanoparticles; thus, providing insight into the development of alternative medications based on gold nanoparticles of ginseng-derived CK.
Collapse
|
35
|
Khan Y, Sadia H, Ali Shah SZ, Khan MN, Shah AA, Ullah N, Ullah MF, Bibi H, Bafakeeh OT, Khedher NB, Eldin SM, Fadhl BM, Khan MI. Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts 2022; 12:1386. [DOI: 10.3390/catal12111386] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Nanoparticles typically have dimensions of less than 100 nm. Scientists around the world have recently become interested in nanotechnology because of its potential applications in a wide range of fields, including catalysis, gas sensing, renewable energy, electronics, medicine, diagnostics, medication delivery, cosmetics, the construction industry, and the food industry. The sizes and forms of nanoparticles (NPs) are the primary determinants of their properties. Nanoparticles’ unique characteristics may be explored for use in electronics (transistors, LEDs, reusable catalysts), energy (oil recovery), medicine (imaging, tumor detection, drug administration), and more. For the aforementioned applications, the synthesis of nanoparticles with an appropriate size, structure, monodispersity, and morphology is essential. New procedures have been developed in nanotechnology that are safe for the environment and can be used to reliably create nanoparticles and nanomaterials. This research aims to illustrate top-down and bottom-up strategies for nanomaterial production, and numerous characterization methodologies, nanoparticle features, and sector-specific applications of nanotechnology.
Collapse
Affiliation(s)
- Yousaf Khan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Haleema Sadia
- Department of Chemistry, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | | | | | - Amjad Ali Shah
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Naimat Ullah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Muhammad Farhat Ullah
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Islamabad 15320, Pakistan
| | - Humaira Bibi
- Department of Chemistry, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Omar T. Bafakeeh
- Department of Industrial Engineering, Jazan University, Jazan 82822, Saudi Arabia
| | - Nidhal Ben Khedher
- Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il 81451, Saudi Arabia
- Laboratory of Thermal and Energy Systems Studies, National School of Engineering of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Bandar M. Fadhl
- Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad Ijaz Khan
- Department of Mechanical Engineering, Lebanese American University, Beirut P.O. Box 36, Lebanon
- Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan
| |
Collapse
|
36
|
Abdulateef S, Raypah ME, Omar A, Mat Jafri M, Ahmed NM, Haida Mohd Kaus N, Seeni A, Hafiz Mail M, Tabana Y, Ahmed M, Al Rawashdah S, Barakat K. Rapid Synthesis of Bovine Serum Albumin-Conjugated Gold Nanoparticles Using Pulsed Laser Ablation and Their Anticancer Activity on Hela Cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
37
|
Al Rugaie O, Jabir MS, Mohammed MKA, Abbas RH, Ahmed DS, Sulaiman GM, Mohammed SAA, Khan RA, Al-Regaiey KA, Alsharidah M, Mohany KM, Mohammed HA. Modification of SWCNTs with hybrid materials ZnO-Ag and ZnO-Au for enhancing bactericidal activity of phagocytic cells against Escherichia coli through NOX2 pathway. Sci Rep 2022; 12:17203. [PMID: 36229515 PMCID: PMC9562326 DOI: 10.1038/s41598-022-22193-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/11/2022] [Indexed: 01/06/2023] Open
Abstract
Zinc oxide-silver (ZnO-Ag), and zinc oxide-gold (ZnO-Au) nano-composites were prepared through wet chemical process and laced into single-walled carbon nanotubes (SWCNTs) to yield ZnO-Ag-SWCNTs, and ZnO-Au-SWCNTs hybrids. These nano-composite-laced SWCNTs hybrids were characterized using Raman spectroscopic, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses. The hybrids were evaluated for their effects on phagocytic cells and bactericidal activity against the gram-negative bacteria E. coli. Their phagocytic cell activities and intracellular killing actions were found to be significantly increased, as the ZnO-Ag-SWCNTs and ZnO-Au-SWCNTs nano-hybrids induced widespread clearance of Escherichia coli. An increase in the production of reactive oxygen species (ROS) also led to upregulated phagocytosis, which was determined mechanistically to involve the phagocyte NADPH oxidase (NOX2) pathway. The findings emphasized the roles of ZnO-Ag- and ZnO-Au-decorated SWCNTs in the prevention of bacterial infection by inhibiting biofilm formation, showing the potential to be utilized as catheter coatings in the clinic.
Collapse
Affiliation(s)
- Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, P.O. Box 991, Unaizah, 51911, Qassim, Saudi Arabia
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Mustafa K A Mohammed
- Department of Medical Physics, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Ruaa H Abbas
- Collage of Dentistry, Al-Farahidi University, Baghdad, Iraq
| | - Duha S Ahmed
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Salman A A Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia.
| | - Khalid A Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Khalid M Mohany
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia.
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt.
| |
Collapse
|
38
|
Soto KM, Luzardo-Ocampo I, López-Romero JM, Mendoza S, Loarca-Piña G, Rivera-Muñoz EM, Manzano-Ramírez A. Gold Nanoparticles Synthesized with Common Mullein (Verbascum thapsus) and Castor Bean (Ricinus communis) Ethanolic Extracts Displayed Antiproliferative Effects and induced Caspase 3 Activity in Human HT29 and SW480 Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14102069. [PMID: 36297503 PMCID: PMC9609588 DOI: 10.3390/pharmaceutics14102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are promising nanomaterials exhibiting anti-cancer effects. Green AuNPs synthesis using plant extracts can be used to achieve stable and beneficial nanoparticles due to their content of bioactive compounds. This research aimed to synthesize and evaluate the antiproliferative and caspase-3 activity induction of green AuNPs synthesized with common mullein (V. thapsus) flowers (AuNPsME) and castor bean (R. communis) leaves (AuNPsCE) ethanolic extracts in human HT29 and SW480 colorectal cancer cells. Their effect was compared with chemically synthesized AuNPs (AuNPsCS). The extracts mainly contained p-coumaric acid (71.88–79.93 µg/g), ferulic acid (19.07–310.71 µg/g), and rutin (8.14–13.31 µg/g). The obtained nanoparticles presented typical FT-IR bands confirming the inclusion of polyphenols from V. thapsus and R. communis and spherical/quasi-spherical morphologies with diameters in the 20.06–37.14 nm range. The nanoparticles (20–200 µg/mL) showed antiproliferative effects in both cell lines, with AuNPsCE being the most potent (IC50 HT29: 110.10 and IC50SW480: 64.57 µg/mL). The AuNPsCS showed the lowest intracellular reactive oxygen species (ROS) generation in SW480 cells. All treatments induced caspase 3/7 activity to a similar or greater extent than 30 mM H2O2-treated cells. Results indicated the suitability of V. thapsus and R. communis extracts to synthesize AuNPs, displaying a stronger antiproliferative effect than AuNPsCS.
Collapse
Affiliation(s)
- Karen M. Soto
- Centro de Investigaciones y de Estudios Avanzados del I. P. N. Unidad Querétaro, Queretaro 76230, Mexico
- Correspondence: (K.M.S.); (A.M.-R.)
| | - Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM-Campus Juriquilla), Queretaro 76230, Mexico
| | - José M. López-Romero
- Centro de Investigaciones y de Estudios Avanzados del I. P. N. Unidad Querétaro, Queretaro 76230, Mexico
| | - Sandra Mendoza
- Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Queretaro 76010, Mexico
| | - Guadalupe Loarca-Piña
- Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Queretaro 76010, Mexico
| | - Eric M. Rivera-Muñoz
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM-Campus Juriquilla), Queretaro 76230, Mexico
| | - Alejandro Manzano-Ramírez
- Centro de Investigaciones y de Estudios Avanzados del I. P. N. Unidad Querétaro, Queretaro 76230, Mexico
- Correspondence: (K.M.S.); (A.M.-R.)
| |
Collapse
|
39
|
Jannathul Firdhouse M, Lalitha P. Biogenic green synthesis of gold nanoparticles and their applications – A review of promising properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Role of incident beam shape on spatiotemporal photothermal temperatures for various nanoparticle concentrations for plasmonic photothermal cancer therapeutics. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
41
|
Bromma K, Dos Santos N, Barta I, Alexander A, Beckham W, Krishnan S, Chithrani DB. Enhancing nanoparticle accumulation in two dimensional, three dimensional, and xenograft mouse cancer cell models in the presence of docetaxel. Sci Rep 2022; 12:13508. [PMID: 35931743 PMCID: PMC9356051 DOI: 10.1038/s41598-022-17752-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Recent clinical trials show docetaxel (DTX), given in conjunction with radiation therapy (RT) and androgen suppression, improves survival in high-risk prostate cancer. Addition of gold nanoparticles (GNPs) to this current DTX/RT protocol is expected to further improve therapeutic benefits remarkably. However, the foundation for the triple combination of RT, DTX, and GNPs must be elucidated to ensure quicker facilitation to the clinic. In this study, we explored the use of low concentrations of DTX combined with GNPs in two prostate cancer cell lines in a two-dimensional monolayer, a three-dimensional spheroid, and a mouse xenograft model. When used together, DTX and GNPs induced a nearly identical relative increase in uptake of gold in both the spheroid model and the mouse xenograft, which saw a 130% and 126% increase respectively after 24 h, showcasing the benefit of using spheroids as an in vitro model to better optimize in vivo experiments. Further, the benefits of using low concentrations of DTX combined with GNPs extended for over 72 h, allowing for less frequency in dosing when translating to the clinic. Overall, these results highlight the benefits of using DTX combined with GNPs and lays the groundwork for the translation of the triple combination of RT, GNPs, and DTX to the clinic.
Collapse
Affiliation(s)
- Kyle Bromma
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Nancy Dos Santos
- British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Ingrid Barta
- Animal Care Services, University of British Columbia, Vancouver, BC, Canada
| | - Abraham Alexander
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
- British Columbia Cancer, Victoria, BC, Canada
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Devika B Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada.
- British Columbia Cancer, Victoria, BC, Canada.
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
42
|
Dheyab MA, Aziz AA, Moradi Khaniabadi P, Jameel MS, Oladzadabbasabadi N, Mohammed SA, Abdullah RS, Mehrdel B. Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. Int J Mol Sci 2022; 23:7400. [PMID: 35806405 PMCID: PMC9266776 DOI: 10.3390/ijms23137400] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Gold nanoparticles (AuNPs) are becoming increasingly popular as drug carriers due to their unique properties such as size tenability, multivalency, low toxicity and biocompatibility. AuNPs have physical features that distinguish them from bulk materials, small molecules and other nanoscale particles. Their unique combination of characteristics is just now being fully realized in various biomedical applications. In this review, we focus on the research accomplishments and new opportunities in this field, and we describe the rising developments in the use of monodisperse AuNPs for diagnostic and therapeutic applications. This study addresses the key principles and the most recent published data, focusing on monodisperse AuNP synthesis, surface modifications, and future theranostic applications. Moving forward, we also consider the possible development of functionalized monodisperse AuNPs for theranostic applications based on these efforts. We anticipate that as research advances, flexible AuNPs will become a crucial platform for medical applications.
Collapse
Affiliation(s)
- Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Azlan Abdul Aziz
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, Muscat 112, Oman;
| | - Mahmood S. Jameel
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nazila Oladzadabbasabadi
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | | | - Raja Saleh Abdullah
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
| | - Baharak Mehrdel
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy & Health Science, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
43
|
Maldonado-Ortega DA, Martínez-Castañón G, Palestino G, Navarro-Tovar G, Gonzalez C. Two Methods of AuNPs Synthesis Induce Differential Vascular Effects. The Role of the Endothelial Glycocalyx. Front Med (Lausanne) 2022; 9:889952. [PMID: 35847820 PMCID: PMC9277019 DOI: 10.3389/fmed.2022.889952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
AuNPs are synthesized through several methods to tune their physicochemical properties. Although AuNPs are considered biocompatible, a change in morphology or properties can modify their biological impact. In this work, AuNPs (~12 to 16 nm) capping with either sodium citrate (CA) or gallic acid (GA) were evaluated in a rat aorta ex vivo model, which endothelial inner layer surface is formed by glycocalyx (hyaluronic acid, HA, as the main component), promoting vascular processes, most of them dependent on nitric oxide (NO) production. Results showed that contractile effects were more evident with AuNPsCA, while dilator effects predominated with AuNPsGA. Furthermore, treatments with AuNPsCA and AuNPsGA in the presence or absence of glycocalyx changed the NO levels, differently. This work contributes to understanding the biological effects of AuNPs with different capping agents, as well as the key role that of HA in the vascular effects induced by AuNPs in potential biomedical applications.
Collapse
Affiliation(s)
| | | | - Gabriela Palestino
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
| | - Gabriela Navarro-Tovar
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Consejo Nacional de Ciencia y Tecnología, Benito Juarez, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- *Correspondence: Carmen Gonzalez
| |
Collapse
|
44
|
Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022; 14:cancers14102362. [PMID: 35625966 PMCID: PMC9140059 DOI: 10.3390/cancers14102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.
Collapse
|
45
|
Calatayud DG, Neophytou S, Nicodemou E, Giuffrida SG, Ge H, Pascu SI. Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Front Chem 2022; 10:830133. [PMID: 35494646 PMCID: PMC9039169 DOI: 10.3389/fchem.2022.830133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 01/28/2023] Open
Abstract
We highlight hereby recent developments in the emerging field of theranostics, which encompasses the combination of therapeutics and diagnostics in a single entity aimed for an early-stage diagnosis, image-guided therapy as well as evaluation of therapeutic outcomes of relevance to prostate cancer (PCa). Prostate cancer is one of the most common malignancies in men and a frequent cause of male cancer death. As such, this overview is concerned with recent developments in imaging and sensing of relevance to prostate cancer diagnosis and therapeutic monitoring. A major advantage for the effective treatment of PCa is an early diagnosis that would provide information for an appropriate treatment. Several imaging techniques are being developed to diagnose and monitor different stages of cancer in general, and patient stratification is particularly relevant for PCa. Hybrid imaging techniques applicable for diagnosis combine complementary structural and morphological information to enhance resolution and sensitivity of imaging. The focus of this review is to sum up some of the most recent advances in the nanotechnological approaches to the sensing and treatment of prostate cancer (PCa). Targeted imaging using nanoparticles, radiotracers and biomarkers could result to a more specialised and personalised diagnosis and treatment of PCa. A myriad of reports has been published literature proposing methods to detect and treat PCa using nanoparticles but the number of techniques approved for clinical use is relatively small. Another facet of this report is on reviewing aspects of the role of functional nanoparticles in multimodality imaging therapy considering recent developments in simultaneous PET-MRI (Positron Emission Tomography-Magnetic Resonance Imaging) coupled with optical imaging in vitro and in vivo, whilst highlighting feasible case studies that hold promise for the next generation of dual modality medical imaging of PCa. It is envisaged that progress in the field of imaging and sensing domains, taken together, could benefit from the biomedical implementation of new synthetic platforms such as metal complexes and functional materials supported on organic molecular species, which can be conjugated to targeting biomolecules and encompass adaptable and versatile molecular architectures. Furthermore, we include hereby an overview of aspects of biosensing methods aimed to tackle PCa: prostate biomarkers such as Prostate Specific Antigen (PSA) have been incorporated into synthetic platforms and explored in the context of sensing and imaging applications in preclinical investigations for the early detection of PCa. Finally, some of the societal concerns around nanotechnology being used for the detection of PCa are considered and addressed together with the concerns about the toxicity of nanoparticles–these were aspects of recent lively debates that currently hamper the clinical advancements of nano-theranostics. The publications survey conducted for this review includes, to the best of our knowledge, some of the most recent relevant literature examples from the state-of-the-art. Highlighting these advances would be of interest to the biomedical research community aiming to advance the application of theranostics particularly in PCa diagnosis and treatment, but also to those interested in the development of new probes and methodologies for the simultaneous imaging and therapy monitoring employed for PCa targeting.
Collapse
Affiliation(s)
- David G. Calatayud
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Department of Electroceramics, Instituto de Ceramica y Vidrio - CSIC, Madrid, Spain
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| | - Sotia Neophytou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Eleni Nicodemou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | | | - Haobo Ge
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Sofia I. Pascu
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Centre of Therapeutic Innovations, University of Bath, Bath, United Kingdom
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| |
Collapse
|
46
|
Alzahrani HA. Encapsulation of peroxidase on hydrogel sodium polyacrylate spheres incorporated by silver and gold nanoparticles: A comparative study. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The selectivity of biocatalysts based on enzymes, eco-friendly reaction systems, and strong catalyst performance is exceptionally compelling. For improving enzyme recyclability and stability, a good option that has been proved is immobilization. For enzyme immobilization, hydrogel sodium polyacrylate combined with nanoparticles is an interesting class of support matrices as compared to others. This study synthesizes and uses the cross-linked hydrogel sodium polyacrylate-decorated gold or silver nanoparticles (HSP/AuNPs or AgNPs) as immobilized support for peroxidase and FTIR characterizes it. The novel supports immobilized system properties enhanced biocompatibility. They have attained a greater immobilization yield (91% with HSP/AuNPs and 84% with HSP/AgNPs). The rest of the immobilized peroxidase activity, after 10 recurring cycles of HSP/AuNPs was 61% and HSP/AgNPs was 54% . The remaining activity of the immobilized enzyme onto HSP/AgNPs, after storing at 4°C for 6 weeks, was 73% and HSP/AuNPs was 75% of its initial activity. It was revealed that the optimum temperature for the free enzyme and the immobilized enzyme was 50°C and 50–60°C, respectively. For the immobilized enzyme, the optimum pH is 7–7.5, as compared to the optimum pH of free enzyme pH 6.5.
Collapse
Affiliation(s)
- Hassan A.H. Alzahrani
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
47
|
Baghban N, Khoradmehr A, Nabipour I, Tamadon A, Ullah M. The potential of marine-based gold nanomaterials in cancer therapy: a mini-review. GOLD BULLETIN 2022; 55:53-63. [DOI: 10.1007/s13404-021-00304-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2025]
|
48
|
Morphological, Histological and Ultrastructural Changes in Hordeum vulgare (L.) Roots That Have Been Exposed to Negatively Charged Gold Nanoparticles. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, there has been an impressive development of nanotechnology. This has resulted in the increasing release of nanomaterials (NM) into the environment, thereby causing the risk of an uncontrolled impact on living organisms, including plants. More studies indicated the biotoxic effect of NM on plants, including crops. The interaction of nanoparticles (NP) with food crops is extremely important as they are a link to the food chain. The objective of this study was to investigate the effect of negatively charged gold nanoparticles (-) AuNP (at two concentrations; 25 µg/mL or 50 µg/mL) on barley (Hordeum vulgare L.) root development. Morphological, histological and ultrastructural analyses (with the use of stereomicroscope, bright filed microscope and transmission electron microscope) revealed that regardless of the concentration, (-) AuNP did not enter into the plant body. However, the dose of (-) AuNP proved to be important for the plant’s response because different morphological, histological and ultrastructural changes were observed in the treated roots. The NP treatment caused: red root colouration, a local increase in the root diameter and a decreased formation of the root hair cells (on morphological level), damage to the rhizodermal cells, vacuolisation of the cortical cells, a detachment of the cell files between the cortical cells, atypical divisions of the cells, disorder of the meristem organisation (on the histological level), the appearance of periplasmic space, numerous vesicles and multivesicular bodies, electron-dense spots in cytoplasm, alterations in the structure of the mitochondria, breakdown of the tonoplast and the plasmalemma (on the ultrastructural level).
Collapse
|
49
|
Pial MMH, Tomitaka A, Pala N, Roy U. Implantable Devices for the Treatment of Breast Cancer. JOURNAL OF NANOTHERANOSTICS 2022; 3:19-38. [PMID: 37600442 PMCID: PMC10438892 DOI: 10.3390/jnt3010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Breast cancer is one of the leading causes of death in the female population worldwide. Standard treatments such as chemotherapy show noticeable results. However, along with killing cancer cells, it causes systemic toxicity and apoptosis of the nearby healthy cells, therefore patients must endure side effects during the treatment process. Implantable drug delivery devices that enhance therapeutic efficacy by allowing localized therapy with programmed or controlled drug release can overcome the shortcomings of conventional treatments. An implantable device can be composed of biopolymer materials, nanocomposite materials, or a combination of both. This review summarizes the recent research and current state-of-the art in these types of implantable devices and gives perspective for future directions.
Collapse
Affiliation(s)
| | - Asahi Tomitaka
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Computer Science, University of Houston-Victoria, Victoria, TX 77901, USA
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
| | - Upal Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
50
|
Mostafa O, Saleh HM, Salaheldin TA, Elfeky SA. Fluorescein/gold nanoparticles conjugated EGFR antibody for imaging and P53 upregulation in hamster mucosal cells carcinoma. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|