1
|
Aquino G, Palagini L, Alfì G, Feige B, Spiegelhalder K, Piarulli A, Gemignani A. The Interplay Between the Sleep Slow Oscillation and Cerebrospinal Fluid: New Vistas for Insomnia Research. J Sleep Res 2025:e70069. [PMID: 40243037 DOI: 10.1111/jsr.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Insomnia disorder affects about 10% of the global population, representing a major health concern. Despite the availability of evidence-based treatments, the neurobiological mechanisms underpinning this disorder remain poorly understood. Recently, the investigation of the less than 1 Hz oscillations (commonly termed slow oscillations), a hallmark of slow wave sleep, has gained increased interest in research on insomnia. In this context, an intriguing perspective arises from the association between slow oscillations and metabolic waste clearance, an impaired process in individuals suffering from insomnia disorder. Indeed, the exploration of the relationships between cerebrospinal fluid dynamics and glymphatic system functions, which relate to brain metabolic clearance, and sleep slow oscillations may represent a promising avenue for future research in this field. This narrative review examines current knowledge about the intricate interplay among these mechanisms and their implications for insomnia disorder. Particular attention is given to the role of sleep slow oscillations in the clearance of metabolic waste during sleep, their coupling with cerebrospinal fluid oscillations, and the regulatory mechanisms underlying glymphatic function. The review emphasises the relevance of investigating sleep slow oscillations-related mechanisms in insomnia, intending to provide novel insights into the neurophysiological underpinnings of the disorder and contribute to more accurate diagnostic approaches. Furthermore, a deeper understanding of these mechanisms could pave the way for the development of innovative or adjunctive therapeutic strategies targeting sleep slow oscillations-related alterations in insomnia disorder.
Collapse
Affiliation(s)
- Giulia Aquino
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Laura Palagini
- Department of Neuroscience, University of Pisa Hospital, Pisa, Italy
| | - Gaspare Alfì
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Andrea Piarulli
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Department of Neuroscience, University of Pisa Hospital, Pisa, Italy
| |
Collapse
|
2
|
Xu H, Du YN, Yang S, Guo YW. Relationship between BDNF content in cord blood and early neurobehavior in newborns with subclinical hypothyroidism during pregnancy: a preliminary study. Front Neurol 2025; 15:1465715. [PMID: 39839860 PMCID: PMC11746076 DOI: 10.3389/fneur.2024.1465715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Research on neurobehavioral abnormalities in neonates of mothers with subclinical hypothyroidism (SCH) is limited. The link between umbilical cord blood brain-derived neurotrophic factor (BDNF) levels and neurobehavioral outcomes in neonates has not been explored. This study investigates the correlation between alterations in umbilical cord blood BDNF levels and early neurobehavioral abnormalities in neonates born to pregnant women with SCH. Methods This study recruited 72 pregnant women with SCH and 76 healthy controls (HC). The study collected general information for all subjects, including body mass index, parity, thyroid function assessed during early to late pregnancy, and neonatal birth weight. Neonatal behavioral and neural abilities were evaluated using the Neonatal Behavioral Neurological Assessment (NBNA). BDNF levels in umbilical cord blood were measured using the Enzyme-Linked Immunosorbent Assay method. Results The results indicated that neonates with SCH during pregnancy had lower total NBNA scores, behavioral ability, passive muscle tone, active muscle tone, primitive reflexes, general assessment, and lower levels of cord blood BDNF compared to healthy controls. The cord blood BDNF of newborns with SCH during pregnancy was positively correlated with total NBNA score, behavioral ability, active muscle tone, and general assessment. Moreover, multiple linear regression analysis demonstrated an association between cord blood BDNF levels in pregnant patients with SCH and multiple measures of newborn health, including total NBNA score, behavioral ability, active muscle tone, and general assessment. Conclusion Infants born to pregnant women with SCH exhibit reduced behavioral and neural abilities linked to BDNF levels in umbilical cord blood.
Collapse
Affiliation(s)
- Hui Xu
- Department of Obstetrics, Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
| | - Ya-Nan Du
- Department of Obstetrics, Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
| | - Shuai Yang
- Department of Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu-Wen Guo
- Department of Obstetrics, Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Sahin K, Korkusuz AK, Sahin E, Orhan C, Er B, Morde A, Padigaru M, Kilic E. The Effect of Water-Soluble Alpinia Galanga Extract on Sleep and the Activation of the GABAAergic/Serotonergic Pathway in Mice. Pharmaceuticals (Basel) 2024; 17:1649. [PMID: 39770491 PMCID: PMC11728628 DOI: 10.3390/ph17121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: With increasing interest in plant-based compounds that can enhance sleep quality without the side effects of caffeine, Alpinia galanga (AG) has emerged as a promising herbal supplement for improving mental alertness. This study assessed the impact of water-soluble AG extract on sleep quality; the activity of GABAergic, glutamatergic, and serotonergic receptors; and concentrations of dopamine and serotonin in the brains of mice. Methods: The study employed two experimental models using BALB/c mice to examine the impact of pentobarbital-induced sleep and caffeine-induced insomnia. In the first model, a set of 20 mice was assigned to four groups to assess the effects of pentobarbital (42 mg/kg) or pentobarbital with AG extract on sleep induction, with observations made 45 min post-administration. In the second model, 20 mice were divided into four groups to evaluate the impact of caffeine (25 mg/kg) alone or caffeine with varying doses of AG extract (61.25 or 205.50 mg/kg administered orally) on brain activity along with additional analyses on receptor proteins and neurotransmitters. Results: A higher dose of AG extract (205.50 mg/kg) significantly increased total deep sleep duration compared to the caffeine group (p < 0.0001). Furthermore, this dose extended sleep latency and suppressed GABAergic and glutamatergic receptor activity compared to the lower AG dose (p < 0.05). Additionally, the 205.50 mg/kg dose elevated serotonin and dopamine levels compared to caffeine (p < 0.0001), suggesting improved sleep quality alongside enhanced wakefulness. Conclusions: Our data indicate that a higher dose of AG extract improved sleep latency and duration by regulating GABAergic and glutamatergic receptors through the GABAergic/serotonergic pathway in mice.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Türkiye;
| | - Ahmet Kayhan Korkusuz
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Türkiye;
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, 12000 Bingol, Türkiye;
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Türkiye;
| | - Besir Er
- Department of Biology, Faculty of Science, Firat University, 23119 Elazig, Türkiye;
| | - Abhijeet Morde
- Research and Development, OmniActive Health Technologies, Mumbai 400013, India; (A.M.); (M.P.)
| | - Muralidhara Padigaru
- Research and Development, OmniActive Health Technologies, Mumbai 400013, India; (A.M.); (M.P.)
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, 34700 Istanbul, Türkiye;
| |
Collapse
|
4
|
Su AX, Ma ZJ, Li ZY, Li XY, Xia L, Ge YJ, Chen GH. Serum levels of neurotensin, pannexin-1, and sestrin-2 and the correlations with sleep quality or/and cognitive function in the patients with chronic insomnia disorder. Front Psychiatry 2024; 15:1360305. [PMID: 38803679 PMCID: PMC11128551 DOI: 10.3389/fpsyt.2024.1360305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Objectives To examine serum concentrations of neurotensin, pannexin-1 and sestrin-2, and their correlations with subjective and objective sleep quality and cognitive function in the patients with chronic insomnia disorder (CID). Methods Sixty-five CID patients were enrolled continuously and fifty-six good sleepers in the same period were served as healthy controls (HCs). Serum levels of neurotensin, pannexin-1 and sestrin-2 were measured by enzyme-linked immunosorbent assays. Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI) and polysomnography, and mood was evaluated by 17-item Hamilton Depression Rating Scale. General cognitive function was assessed with the Chinese-Beijing Version of Montreal Cognitive Assessment and spatial memory was evaluated by Blue Velvet Arena Test (BVAT). Results Relative to the HCs, the CID sufferers had higher levels of neurotensin (t=5.210, p<0.001) and pannexin-1 (Z=-4.169, p<0.001), and lower level of sestrin-2 (Z=-2.438, p=0.015). In terms of objective sleep measures, pannexin-1 was positively associated with total sleep time (r=0.562, p=0.002) and sleep efficiency (r=0.588, p=0.001), and negatively with wake time after sleep onset (r=-0.590, p=0.001) and wake time (r=-0.590, p=0.001); sestrin-2 was positively associated with percentage of rapid eye movement sleep (r=0.442, p=0.016) and negatively with non-rapid eye movement sleep stage 2 in the percentage (r=-0.394, p=0.034). Adjusted for sex, age and HAMD, pannexin-1 was still associated with the above objective sleep measures, but sestrin-2 was only negatively with wake time (r=-0.446, p=0.022). However, these biomarkers showed no significant correlations with subjective sleep quality (PSQI score). Serum concentrations of neurotensin and pannexin-1 were positively associated with the mean erroneous distance in the BVAT. Adjusted for sex, age and depression, neurotensin was negatively associated with MoCA score (r=-0.257, p=0.044), pannexin-1 was positively associated with the mean erroneous distance in the BVAT (r=0.270, p=0.033). Conclusions The CID patients had increased neurotensin and pannexin-1 and decreased sestrin-2 in the serum levels, indicating neuron dysfunction, which could be related to poor sleep quality and cognitive dysfunction measured objectively.
Collapse
Affiliation(s)
- Ai-Xi Su
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
- Department of General Medicine, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zi-Jie Ma
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Zong-Yin Li
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Lan Xia
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Chaohu, China
| |
Collapse
|
5
|
Werner JK, Albrecht J, Capaldi VF, Jain S, Sun X, Mukherjee P, Williams SG, Collen J, Diaz-Arrastia R, Manley GT, Krystal AD, Wickwire E. Association of Biomarkers of Neuronal Injury and Inflammation With Insomnia Trajectories After Traumatic Brain Injury: A TRACK-TBI Study. Neurology 2024; 102:e209269. [PMID: 38547447 PMCID: PMC11210587 DOI: 10.1212/wnl.0000000000209269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/05/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Insomnia affects about one-third of patients with traumatic brain injury and is associated with worsened outcomes after injury. We hypothesized that higher levels of plasma neuroinflammation biomarkers at the time of TBI would be associated with worse 12-month insomnia trajectories. METHODS Participants were prospectively enrolled from 18 level-1 trauma centers participating in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury study from February 26, 2014, to August 8, 2018. Plasma glial fibrillary acidic protein (GFAP), high-sensitivity C-reactive protein (hsCRP), S100b, neuron-specific enolase (NSE), and ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1) were collected on days 1 (D1) and 14 (D14) after TBI. The insomnia severity index was collected at 2 weeks, 3, 6, and 12 months postinjury. Participants were classified into insomnia trajectory classes based on a latent class model. We assessed the association of biomarkers with insomnia trajectories, controlling for medical and psychological comorbidities and demographics. RESULTS Two thousand twenty-two individuals with TBI were studied. Elevations in D1 hsCRP were associated with persistent insomnia (severe, odds ratio [OR] = 1.33 [1.11, 1.59], p = 0.002; mild, OR = 1.10 [1.02, 1.19], p = 0.011). Similarly, D14 hsCRP elevations were associated with persistent insomnia (severe, OR = 1.27 [1.02, 1.59], p = 0.03). Of interest, D1 GFAP was lower in persistent severe insomnia (median [Q1, Q3]: 154 [19, 445] pg/mL) compared with resolving mild (491 [154, 1,423], p < 0.001) and persistent mild (344 [79, 1,287], p < 0.001). D14 GFAP was similarly lower in persistent (11.8 [6.4, 19.4], p = 0.001) and resolving (13.9 [10.3, 20.7], p = 0.011) severe insomnia compared with resolving mild (20.6 [12.4, 39.6]. Accordingly, increases in D1 GFAP were associated with reduced likelihood of having persistent severe (OR = 0.76 [95% CI 0.63-0.92], p = 0.004) and persistent mild (OR = 0.88 [0.81, 0.96], p = 0.003) compared with mild resolving insomnia. No differences were found with other biomarkers. DISCUSSION Elevated plasma hsCRP and, surprisingly, lower GFAP were associated with adverse insomnia trajectories after TBI. Results support future prospective studies to examine their utility in guiding insomnia care after TBI. Further work is needed to explore potential mechanistic connections between GFAP levels and the adverse insomnia trajectories.
Collapse
Affiliation(s)
- J Kent Werner
- From the Department of Neurology (J.K.W.); Center for Neuroscience and Regenerative Medicine (J.K.W.), Uniformed Services University; Sleep Disorders Center (J.K.W., J.C.), Department of Medicine, Walter Reed National Military Medical Center, Bethesda; Department of Epidemiology and Public Health (J.A.), University of Maryland School of Medicine, Baltimore; Center for Military Psychiatry and Neuroscience (V.F.C., S.G.W.), Walter Reed Army Institute of Research, Silver Spring; Department of Medicine (V.F.C., J.C.), Uniformed Services University of the Health Sciences, Bethesda, MD; Biostatistics Research Center (V.F.C., S.G.W.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego; Department of Radiology (S.J., X.S.), School of Medicine, University of California San Francisco; Department of Medicine (P.M.), Alexander T. Augusta Military Medical Center, Fort Belvoir, VA; Department of Psychiatry (S.G.W.), Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Brain and Spinal Injury Center (G.T.M.); Department of Neurosurgery (G.T.M.); Department of Psychiatry and Behavioral Sciences (A.D.K.); Weill Institute for Neurosciences (A.D.K.), University of California, San Francisco; Sleep Disorders Center (E.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Psychiatry (E.W.), University of Maryland School of Medicine, Baltimore
| | - Jennifer Albrecht
- From the Department of Neurology (J.K.W.); Center for Neuroscience and Regenerative Medicine (J.K.W.), Uniformed Services University; Sleep Disorders Center (J.K.W., J.C.), Department of Medicine, Walter Reed National Military Medical Center, Bethesda; Department of Epidemiology and Public Health (J.A.), University of Maryland School of Medicine, Baltimore; Center for Military Psychiatry and Neuroscience (V.F.C., S.G.W.), Walter Reed Army Institute of Research, Silver Spring; Department of Medicine (V.F.C., J.C.), Uniformed Services University of the Health Sciences, Bethesda, MD; Biostatistics Research Center (V.F.C., S.G.W.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego; Department of Radiology (S.J., X.S.), School of Medicine, University of California San Francisco; Department of Medicine (P.M.), Alexander T. Augusta Military Medical Center, Fort Belvoir, VA; Department of Psychiatry (S.G.W.), Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Brain and Spinal Injury Center (G.T.M.); Department of Neurosurgery (G.T.M.); Department of Psychiatry and Behavioral Sciences (A.D.K.); Weill Institute for Neurosciences (A.D.K.), University of California, San Francisco; Sleep Disorders Center (E.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Psychiatry (E.W.), University of Maryland School of Medicine, Baltimore
| | - Vincent F Capaldi
- From the Department of Neurology (J.K.W.); Center for Neuroscience and Regenerative Medicine (J.K.W.), Uniformed Services University; Sleep Disorders Center (J.K.W., J.C.), Department of Medicine, Walter Reed National Military Medical Center, Bethesda; Department of Epidemiology and Public Health (J.A.), University of Maryland School of Medicine, Baltimore; Center for Military Psychiatry and Neuroscience (V.F.C., S.G.W.), Walter Reed Army Institute of Research, Silver Spring; Department of Medicine (V.F.C., J.C.), Uniformed Services University of the Health Sciences, Bethesda, MD; Biostatistics Research Center (V.F.C., S.G.W.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego; Department of Radiology (S.J., X.S.), School of Medicine, University of California San Francisco; Department of Medicine (P.M.), Alexander T. Augusta Military Medical Center, Fort Belvoir, VA; Department of Psychiatry (S.G.W.), Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Brain and Spinal Injury Center (G.T.M.); Department of Neurosurgery (G.T.M.); Department of Psychiatry and Behavioral Sciences (A.D.K.); Weill Institute for Neurosciences (A.D.K.), University of California, San Francisco; Sleep Disorders Center (E.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Psychiatry (E.W.), University of Maryland School of Medicine, Baltimore
| | - Sonia Jain
- From the Department of Neurology (J.K.W.); Center for Neuroscience and Regenerative Medicine (J.K.W.), Uniformed Services University; Sleep Disorders Center (J.K.W., J.C.), Department of Medicine, Walter Reed National Military Medical Center, Bethesda; Department of Epidemiology and Public Health (J.A.), University of Maryland School of Medicine, Baltimore; Center for Military Psychiatry and Neuroscience (V.F.C., S.G.W.), Walter Reed Army Institute of Research, Silver Spring; Department of Medicine (V.F.C., J.C.), Uniformed Services University of the Health Sciences, Bethesda, MD; Biostatistics Research Center (V.F.C., S.G.W.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego; Department of Radiology (S.J., X.S.), School of Medicine, University of California San Francisco; Department of Medicine (P.M.), Alexander T. Augusta Military Medical Center, Fort Belvoir, VA; Department of Psychiatry (S.G.W.), Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Brain and Spinal Injury Center (G.T.M.); Department of Neurosurgery (G.T.M.); Department of Psychiatry and Behavioral Sciences (A.D.K.); Weill Institute for Neurosciences (A.D.K.), University of California, San Francisco; Sleep Disorders Center (E.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Psychiatry (E.W.), University of Maryland School of Medicine, Baltimore
| | - Xiaoying Sun
- From the Department of Neurology (J.K.W.); Center for Neuroscience and Regenerative Medicine (J.K.W.), Uniformed Services University; Sleep Disorders Center (J.K.W., J.C.), Department of Medicine, Walter Reed National Military Medical Center, Bethesda; Department of Epidemiology and Public Health (J.A.), University of Maryland School of Medicine, Baltimore; Center for Military Psychiatry and Neuroscience (V.F.C., S.G.W.), Walter Reed Army Institute of Research, Silver Spring; Department of Medicine (V.F.C., J.C.), Uniformed Services University of the Health Sciences, Bethesda, MD; Biostatistics Research Center (V.F.C., S.G.W.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego; Department of Radiology (S.J., X.S.), School of Medicine, University of California San Francisco; Department of Medicine (P.M.), Alexander T. Augusta Military Medical Center, Fort Belvoir, VA; Department of Psychiatry (S.G.W.), Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Brain and Spinal Injury Center (G.T.M.); Department of Neurosurgery (G.T.M.); Department of Psychiatry and Behavioral Sciences (A.D.K.); Weill Institute for Neurosciences (A.D.K.), University of California, San Francisco; Sleep Disorders Center (E.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Psychiatry (E.W.), University of Maryland School of Medicine, Baltimore
| | - Pratik Mukherjee
- From the Department of Neurology (J.K.W.); Center for Neuroscience and Regenerative Medicine (J.K.W.), Uniformed Services University; Sleep Disorders Center (J.K.W., J.C.), Department of Medicine, Walter Reed National Military Medical Center, Bethesda; Department of Epidemiology and Public Health (J.A.), University of Maryland School of Medicine, Baltimore; Center for Military Psychiatry and Neuroscience (V.F.C., S.G.W.), Walter Reed Army Institute of Research, Silver Spring; Department of Medicine (V.F.C., J.C.), Uniformed Services University of the Health Sciences, Bethesda, MD; Biostatistics Research Center (V.F.C., S.G.W.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego; Department of Radiology (S.J., X.S.), School of Medicine, University of California San Francisco; Department of Medicine (P.M.), Alexander T. Augusta Military Medical Center, Fort Belvoir, VA; Department of Psychiatry (S.G.W.), Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Brain and Spinal Injury Center (G.T.M.); Department of Neurosurgery (G.T.M.); Department of Psychiatry and Behavioral Sciences (A.D.K.); Weill Institute for Neurosciences (A.D.K.), University of California, San Francisco; Sleep Disorders Center (E.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Psychiatry (E.W.), University of Maryland School of Medicine, Baltimore
| | - Scott G Williams
- From the Department of Neurology (J.K.W.); Center for Neuroscience and Regenerative Medicine (J.K.W.), Uniformed Services University; Sleep Disorders Center (J.K.W., J.C.), Department of Medicine, Walter Reed National Military Medical Center, Bethesda; Department of Epidemiology and Public Health (J.A.), University of Maryland School of Medicine, Baltimore; Center for Military Psychiatry and Neuroscience (V.F.C., S.G.W.), Walter Reed Army Institute of Research, Silver Spring; Department of Medicine (V.F.C., J.C.), Uniformed Services University of the Health Sciences, Bethesda, MD; Biostatistics Research Center (V.F.C., S.G.W.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego; Department of Radiology (S.J., X.S.), School of Medicine, University of California San Francisco; Department of Medicine (P.M.), Alexander T. Augusta Military Medical Center, Fort Belvoir, VA; Department of Psychiatry (S.G.W.), Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Brain and Spinal Injury Center (G.T.M.); Department of Neurosurgery (G.T.M.); Department of Psychiatry and Behavioral Sciences (A.D.K.); Weill Institute for Neurosciences (A.D.K.), University of California, San Francisco; Sleep Disorders Center (E.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Psychiatry (E.W.), University of Maryland School of Medicine, Baltimore
| | - Jacob Collen
- From the Department of Neurology (J.K.W.); Center for Neuroscience and Regenerative Medicine (J.K.W.), Uniformed Services University; Sleep Disorders Center (J.K.W., J.C.), Department of Medicine, Walter Reed National Military Medical Center, Bethesda; Department of Epidemiology and Public Health (J.A.), University of Maryland School of Medicine, Baltimore; Center for Military Psychiatry and Neuroscience (V.F.C., S.G.W.), Walter Reed Army Institute of Research, Silver Spring; Department of Medicine (V.F.C., J.C.), Uniformed Services University of the Health Sciences, Bethesda, MD; Biostatistics Research Center (V.F.C., S.G.W.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego; Department of Radiology (S.J., X.S.), School of Medicine, University of California San Francisco; Department of Medicine (P.M.), Alexander T. Augusta Military Medical Center, Fort Belvoir, VA; Department of Psychiatry (S.G.W.), Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Brain and Spinal Injury Center (G.T.M.); Department of Neurosurgery (G.T.M.); Department of Psychiatry and Behavioral Sciences (A.D.K.); Weill Institute for Neurosciences (A.D.K.), University of California, San Francisco; Sleep Disorders Center (E.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Psychiatry (E.W.), University of Maryland School of Medicine, Baltimore
| | - Ramon Diaz-Arrastia
- From the Department of Neurology (J.K.W.); Center for Neuroscience and Regenerative Medicine (J.K.W.), Uniformed Services University; Sleep Disorders Center (J.K.W., J.C.), Department of Medicine, Walter Reed National Military Medical Center, Bethesda; Department of Epidemiology and Public Health (J.A.), University of Maryland School of Medicine, Baltimore; Center for Military Psychiatry and Neuroscience (V.F.C., S.G.W.), Walter Reed Army Institute of Research, Silver Spring; Department of Medicine (V.F.C., J.C.), Uniformed Services University of the Health Sciences, Bethesda, MD; Biostatistics Research Center (V.F.C., S.G.W.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego; Department of Radiology (S.J., X.S.), School of Medicine, University of California San Francisco; Department of Medicine (P.M.), Alexander T. Augusta Military Medical Center, Fort Belvoir, VA; Department of Psychiatry (S.G.W.), Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Brain and Spinal Injury Center (G.T.M.); Department of Neurosurgery (G.T.M.); Department of Psychiatry and Behavioral Sciences (A.D.K.); Weill Institute for Neurosciences (A.D.K.), University of California, San Francisco; Sleep Disorders Center (E.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Psychiatry (E.W.), University of Maryland School of Medicine, Baltimore
| | - Geoffrey T Manley
- From the Department of Neurology (J.K.W.); Center for Neuroscience and Regenerative Medicine (J.K.W.), Uniformed Services University; Sleep Disorders Center (J.K.W., J.C.), Department of Medicine, Walter Reed National Military Medical Center, Bethesda; Department of Epidemiology and Public Health (J.A.), University of Maryland School of Medicine, Baltimore; Center for Military Psychiatry and Neuroscience (V.F.C., S.G.W.), Walter Reed Army Institute of Research, Silver Spring; Department of Medicine (V.F.C., J.C.), Uniformed Services University of the Health Sciences, Bethesda, MD; Biostatistics Research Center (V.F.C., S.G.W.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego; Department of Radiology (S.J., X.S.), School of Medicine, University of California San Francisco; Department of Medicine (P.M.), Alexander T. Augusta Military Medical Center, Fort Belvoir, VA; Department of Psychiatry (S.G.W.), Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Brain and Spinal Injury Center (G.T.M.); Department of Neurosurgery (G.T.M.); Department of Psychiatry and Behavioral Sciences (A.D.K.); Weill Institute for Neurosciences (A.D.K.), University of California, San Francisco; Sleep Disorders Center (E.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Psychiatry (E.W.), University of Maryland School of Medicine, Baltimore
| | - Andrew D Krystal
- From the Department of Neurology (J.K.W.); Center for Neuroscience and Regenerative Medicine (J.K.W.), Uniformed Services University; Sleep Disorders Center (J.K.W., J.C.), Department of Medicine, Walter Reed National Military Medical Center, Bethesda; Department of Epidemiology and Public Health (J.A.), University of Maryland School of Medicine, Baltimore; Center for Military Psychiatry and Neuroscience (V.F.C., S.G.W.), Walter Reed Army Institute of Research, Silver Spring; Department of Medicine (V.F.C., J.C.), Uniformed Services University of the Health Sciences, Bethesda, MD; Biostatistics Research Center (V.F.C., S.G.W.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego; Department of Radiology (S.J., X.S.), School of Medicine, University of California San Francisco; Department of Medicine (P.M.), Alexander T. Augusta Military Medical Center, Fort Belvoir, VA; Department of Psychiatry (S.G.W.), Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Brain and Spinal Injury Center (G.T.M.); Department of Neurosurgery (G.T.M.); Department of Psychiatry and Behavioral Sciences (A.D.K.); Weill Institute for Neurosciences (A.D.K.), University of California, San Francisco; Sleep Disorders Center (E.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Psychiatry (E.W.), University of Maryland School of Medicine, Baltimore
| | - Emerson Wickwire
- From the Department of Neurology (J.K.W.); Center for Neuroscience and Regenerative Medicine (J.K.W.), Uniformed Services University; Sleep Disorders Center (J.K.W., J.C.), Department of Medicine, Walter Reed National Military Medical Center, Bethesda; Department of Epidemiology and Public Health (J.A.), University of Maryland School of Medicine, Baltimore; Center for Military Psychiatry and Neuroscience (V.F.C., S.G.W.), Walter Reed Army Institute of Research, Silver Spring; Department of Medicine (V.F.C., J.C.), Uniformed Services University of the Health Sciences, Bethesda, MD; Biostatistics Research Center (V.F.C., S.G.W.), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego; Department of Radiology (S.J., X.S.), School of Medicine, University of California San Francisco; Department of Medicine (P.M.), Alexander T. Augusta Military Medical Center, Fort Belvoir, VA; Department of Psychiatry (S.G.W.), Uniformed Services University of the Health Sciences, Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania Perelman School of Medicine, Philadelphia; Brain and Spinal Injury Center (G.T.M.); Department of Neurosurgery (G.T.M.); Department of Psychiatry and Behavioral Sciences (A.D.K.); Weill Institute for Neurosciences (A.D.K.), University of California, San Francisco; Sleep Disorders Center (E.W.), Division of Pulmonary and Critical Care Medicine, Department of Medicine; and Department of Psychiatry (E.W.), University of Maryland School of Medicine, Baltimore
| |
Collapse
|
6
|
Sochal M, Ditmer M, Binienda A, Tarasiuk A, Białasiewicz P, Turkiewicz S, Karuga FF, Jakub F, Gabryelska A. Interactions between neurotrophins, mood, and physical activity under the conditions of sleep deprivation. Transl Psychiatry 2024; 14:158. [PMID: 38519465 PMCID: PMC10960007 DOI: 10.1038/s41398-024-02871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Sleep deprivation (DS) is the forced elimination of sleep. While brain-derived neurotrophic factor (BDNF) has been extensively studied in the context of in mood changes following DS, the role of other neurotrophins remains elusive. This study explores the impact of DS on BDNF, glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT3), and neurotrophin-4 (NT4) at mRNA and protein level, considering their potential links to mood disturbances. The study involved 81 participants subjected to polysomnography (PSG) and DS. Blood samples, mood assessments, and actigraphy data were collected twice, after PSG and DS. NT mRNA expression and serum protein concentrations of BDNF, GDNF, NT3, and NT4 were measured. Participants were divided into Responders and Non-Responders based on mood improvement after DS. DS reduced BDNF mRNA expression in all participants, with no change in serum BDNF protein. GDNF protein decreased in Non-Responders, while Responders exhibited reduced GDNF mRNA. NT3 protein increased in both groups, while NT3 mRNA decreased in Respondents. NT4 protein rose universally post-DS, but NT4 mRNA remained unchanged. Physical activity (PA) negatively correlated with mRNA expression of BDNF, GDNF, and NT3 post-DS. The study's short DS duration and exclusion of immature NT forms limit comprehensive insights. GDNF, together with NT3, might play an important role in mood response to DS. PA during DS seems to impair the mRNA expression of NTs in leukocytes. Future studies on the subject of sleep deprivation might consider investigating the relationship between BDNF and NT4 in the context of their apparent redundancy.
Collapse
Affiliation(s)
- Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland.
| | - Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Agata Binienda
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | | | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Fichna Jakub
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Liu X, Xu P, Wei R, Cheng B, Sun L, Yang L, Chen G. Gender-and age-specific associations of sleep duration and quality with cognitive impairment in community-dwelling older adults in Anhui Province, China. Front Public Health 2024; 11:1047025. [PMID: 38249381 PMCID: PMC10796606 DOI: 10.3389/fpubh.2023.1047025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Objective To examine associations of sleep duration and quality with cognitive impairment in older adults and the moderating role of gender and age in these associations. Methods This community-based cross-sectional study included 4,837 participants aged 60 years and above. Cognitive function was assessed using the Chinese version of the Mini-Mental State Examination (MMSE), and the participants were grouped based on the presence of cognitive impairment. The duration and quality of sleep were assessed using the Pittsburgh Sleep Quality Index (PSQI). Multivariate logistic regression models were used to analyze associations of sleep duration and quality with cognitive impairment. The role of age and gender in these associations have also been explored. Results The age (mean ± SD) of the participants was 71.13 ± 5.50 years. Of all older adults, 1,811 (37.44%) were detected as cognitive impairment, and 1755 (36.8%) had poor sleep quality. Among those with cognitive impairment, 51.09% were female. The proportion of the participants with cognitive impairment is significantly higher in those with symptoms of depression (49.73%, 273/549) (χ2 = 41.275, p < 0.001) than in those without depressive symptoms. After adjustment for multiple confounding factors and the crucial covariate (depressive symptoms), the odds ratios (OR) (95% confidence interval [CI]) of cognitive impairment (with 7-7.9 h regarded as the reference group) for individuals with a sleep duration of <6, 6-6.9, 8-8.9, and ≥ 9 h were 1.280 (1.053-1.557), 1.425 (1.175-1.728), 1.294 (1.068-1.566), and 1.360 (1.109-1.668), respectively. Subgroup analysis showed a V-shaped association between night sleep duration and cognitive impairment in males (p ≤ 0.05), and the association was stronger for individuals aged 60-80 years. With regard to sleep quality, the fully adjusted OR (95%CI) of cognitive impairment were 1.263 (1.108-1.440). According to scores of subscales in the PSQI, daytime dysfunction was associated with an increased risk of cognitive impairment (OR: 1.128, 95%CI: 1.055-1.207). Subgroup analysis also revealed a statistically significant correlation between poor sleep quality (including daytime dysfunction) and cognitive impairment in different gender and age groups, with the association being stronger in females (OR: 1.287, 95%CI: 1.080-1.534) and those aged 81-97 years (OR: 2.128, 95%CI: 1.152-3.934). For cognitive impairment, the group aged 81-97 years with daytime dysfunction was associated with a higher odds ratio than other age groups. Conclusion The present study showed that inadequate or excessive sleep was associated with cognitive impairment, especially in males, who exhibited a V-shaped association. Cognitive impairment was also associated with poor sleep quality as well as daytime dysfunction, with females and individuals aged 81-97 years exhibiting the strongest association.
Collapse
Affiliation(s)
- Xuechun Liu
- Department of Neurology, The Second People’s Hospital of Hefei, Hefei, China
| | - Peiru Xu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Rong Wei
- Outpatient Department of the Second Hospital of Anhui Medical University, Hefei, China
| | - Beijing Cheng
- School of Public Health, Anhui Medical University, Hefei, China
| | - Liang Sun
- Fuyang Center of Disease Control and Prevention, Fuyang, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Guihai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Bozzay ML, Joyce HE, Jiang L, De Vito AN, Emrani S, Browne J, Bayer TA, Quinn MJ, Primack JM, Kelso CM, Wu WC, Rudolph JL, McGeary JE, Kunicki ZJ. Time to Dementia Diagnosis Among Veterans with Comorbid Insomnia and Depressive Episodes. J Alzheimers Dis 2024; 100:899-909. [PMID: 38995783 DOI: 10.3233/jad-240080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Background Older adults with heart failure are at elevated risk of Alzheimer's disease and related dementias (AD/ADRD). Research suggests that insomnia and depressive episodes contribute somewhat dissociable impacts on risk for AD/ADRD in this patient population, although the temporal ordering of effects is unknown. Objective This study examined time to dementia diagnosis among patients with comorbid insomnia and/or depressive episodes in an epidemiological sample. Methods Secondary data analyses were conducted using a cohort study of 203,819 Veterans with a primary admission diagnosis of heart failure in 129 VA Medical Centers. Results Patients with diagnoses of both insomnia and depressive episodes had the shortest time to a dementia diagnosis at both 1-year (Hazard ratio = 1.43, 95% CI [1.36, 1.51]) and 3-year follow-up time points (Hazard ratio = 1.40, 95% CI [1.34, 1.47]) versus patients with one or neither comorbidity. Conclusions Individuals with both comorbidities had the shortest time to dementia onset. Screening for these comorbidities may help to identify patients at elevated risk of dementia who could benefit from enhanced monitoring or early intervention strategies for more rapid detection and management of dementia symptoms.
Collapse
Affiliation(s)
- Melanie L Bozzay
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Lan Jiang
- VA Center of Innovation in Long Term Services, Providence VA Medical Center, Providence, RI, USA
| | - Alyssa N De Vito
- Butler Hospital, Providence, RI, USA
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sheina Emrani
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Julia Browne
- VA Center of Innovation in Long Term Services, Providence VA Medical Center, Providence, RI, USA
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Thomas A Bayer
- VA Center of Innovation in Long Term Services, Providence VA Medical Center, Providence, RI, USA
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - McKenzie J Quinn
- VA RR& D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, USA
| | - Jennifer M Primack
- VA Center of Innovation in Long Term Services, Providence VA Medical Center, Providence, RI, USA
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Catherine M Kelso
- VA RR& D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, USA
- Veterans Health Administration, Office of Patient Care Services, Geriatrics and Extended Care, Washington, DC, USA
| | - Wen-Chih Wu
- VA Center of Innovation in Long Term Services, Providence VA Medical Center, Providence, RI, USA
| | - James L Rudolph
- VA Center of Innovation in Long Term Services, Providence VA Medical Center, Providence, RI, USA
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - John E McGeary
- VA Center of Innovation in Long Term Services, Providence VA Medical Center, Providence, RI, USA
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Zachary J Kunicki
- VA Center of Innovation in Long Term Services, Providence VA Medical Center, Providence, RI, USA
- Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Ditmer M, Gabryelska A, Turkiewicz S, Sochal M. Investigating the Role of BDNF in Insomnia: Current Insights. Nat Sci Sleep 2023; 15:1045-1060. [PMID: 38090631 PMCID: PMC10712264 DOI: 10.2147/nss.s401271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2025] Open
Abstract
Insomnia is a common disorder defined as frequent and persistent difficulty initiating, maintaining, or going back to sleep. A hallmark symptom of this condition is a sense of nonrestorative sleep. It is frequently associated with other psychiatric disorders, such as depression, as well as somatic ones, including immunomediated diseases. BDNF is a neurotrophin primarily responsible for synaptic plasticity and proper functioning of neurons. Due to its role in the central nervous system, it might be connected to insomnia of multiple levels, from predisposing traits (neuroticism, genetic/epigenetic factors, etc.) through its influence on different modes of neurotransmission (histaminergic and GABAergic in particular), maintenance of circadian rhythm, and sleep architecture, and changes occurring in the course of mood disturbances, substance abuse, or dementia. Extensive and interdisciplinary evaluation of the role of BDNF could aid in charting new areas for research and further elucidate the molecular background of sleep disorder. In this review, we summarize knowledge on the role of BDNF in insomnia with a focus on currently relevant studies and discuss their implications for future projects.
Collapse
Affiliation(s)
- Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| |
Collapse
|
10
|
Li Y, Li F, Liu X, Zu J, Zhang W, Zhou S, Zhu J, Zhang T, Cui G, Xu C. Association between serum neurofilament light chain levels and sleep disorders in patients with Parkinson's disease. Neurosci Lett 2023; 812:137394. [PMID: 37437874 DOI: 10.1016/j.neulet.2023.137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES This study aimed to investigate the levels of serum neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP) in patients with Parkinson's disease (PD) and PD patients with sleep disorders (PD-SD), as well as the relationship between these proteins and sleep disorders in PD patients. METHODS A total of 96 PD patients and 38 healthy controls (HC) were included in this study, of which 70 PD patients experienced sleep disorders. Both motor symptoms and sleep conditions were assessed in all PD patients. The ultrasensitive single molecule array (SIMOA) technique was used to quantify NFL and GFAP in the serum. All data were statistically analyzed using SPSS 23.0. RESULTS Serum NFL and GFAP levels were significantly higher in PD patients than in HC. Similarly, PD-SD patients exhibited higher levels of these two proteins than PD patients without sleep disorders (PD-NSD). In addition, both serum GFAP and NFL were significantly associated with sleep-related scales in PD patients. After covariate-adjusted binary logistic regression analysis, NFL remained statistically significant in PD patients with or without sleep disorders, unlike GFAP. CONCLUSIONS Our findings substantiate that serum NFL and GFAP levels are elevated in PD and PD-SD, suggesting neurological axon damage in PD patients, which may be more severe in PD-SD than in PD-NSD. These findings may affect disease diagnosis and provide the foothold for future studies on the underlying mechanisms.
Collapse
Affiliation(s)
- Yangdanyu Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fujia Li
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xu Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Su Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jienan Zhu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tao Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
11
|
Lo YJ, Mishra VK, Lo HY, Dubey NK, Lo WC. Clinical Spectrum and Trajectory of Innovative Therapeutic Interventions for Insomnia: A Perspective. Aging Dis 2023; 14:1038-1069. [PMID: 37163444 PMCID: PMC10389812 DOI: 10.14336/ad.2022.1203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/03/2022] [Indexed: 05/12/2023] Open
Abstract
Increasing incidences of insomnia in adults, as well as the aging population, have been reported for their negative impact on the quality of life. Insomnia episodes may be associated with neurocognitive, musculoskeletal, cardiovascular, gastrointestinal, renal, hepatic, and metabolic disorders. Epidemiological evidence also revealed the association of insomnia with oncologic and asthmatic complications, which has been indicated as bidirectional. Two therapeutic approaches including cognitive behavioral therapy (CBT) and drugs-based therapies are being practiced for a long time. However, the adverse events associated with drugs limit their wide and long-term application. Further, Traditional Chinese medicine, acupressure, and pulsed magnetic field therapy may also provide therapeutic relief. Notably, the recently introduced cryotherapy has been demonstrated as a potential candidate for insomnia which could reduce pain, by suppressing oxidative stress and inflammation. It seems that the synergistic therapeutic approach of cryotherapy and the above-mentioned approaches might offer promising prospects to further improve efficacy and safety. Considering these facts, this perspective presents a comprehensive summary of recent advances in pathological aetiologies of insomnia including COVID-19, and its therapeutic management with a greater emphasis on cryotherapy.
Collapse
Affiliation(s)
| | | | | | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan.
- ShiNeo Technology Co., Ltd., New Taipei City 24262, Taiwan.
| | - Wen-Cheng Lo
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
12
|
Carvalhas-Almeida C, Serra J, Moita J, Cavadas C, Álvaro AR. Understanding neuron-glia crosstalk and biological clocks in insomnia. Neurosci Biobehav Rev 2023; 147:105100. [PMID: 36804265 DOI: 10.1016/j.neubiorev.2023.105100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
According to the World Health Organization, about one-third of the population experiences insomnia symptoms, and about 10-15% suffer from chronic insomnia, the most common sleep disorder. Sleeping difficulties associated with insomnia are often linked to chronic sleep deprivation, which has a negative health impact partly due to disruption in the internal synchronisation of biological clocks. These are regulated by clock genes and modulate most biological processes. Most studies addressing circadian rhythm regulation have focused on the role of neurons, yet glial cells also impact circadian rhythms and sleep regulation. Chronic insomnia and sleep loss have been associated with glial cell activation, exacerbated neuroinflammation, oxidative stress, altered neuronal metabolism and synaptic plasticity, accelerated age-related processes and decreased lifespan. It is, therefore, essential to highlight the importance of glia-neuron interplay on sleep/circadian regulation and overall healthy brain function. Hence, in this review, we aim to address the main neurobiological mechanisms involved in neuron-glia crosstalk, with an emphasis on microglia and astrocytes, in both healthy sleep, chronic sleep deprivation and chronic insomnia.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Joana Serra
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Joaquim Moita
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
13
|
Ballesio A, Zagaria A, Curti DG, Moran R, Goadsby PJ, Rosenzweig I, Lombardo C. Peripheral brain-derived neurotrophic factor (BDNF) in insomnia: A systematic review and meta-analysis. Sleep Med Rev 2023; 67:101738. [PMID: 36577338 DOI: 10.1016/j.smrv.2022.101738] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) is associated with emotional and cognitive functioning, and it is considered a transdiagnostic biomarker for mental disorders. Literature on insomnia related BDNF changes yielded contrasting results and it has never been synthetized using meta-analysis. To fill this gap, we conducted a systematic review and meta-analysis of case-control studies examining the levels of peripheric BDNF in individuals with insomnia and healthy controls using the PRISMA guidelines. PubMed, Scopus, Medline, PsycINFO and CINAHL were searched up to Nov 2022. Nine studies met the inclusion criteria and were assessed using the Newcastle-Ottawa Scale. Eight studies reported sufficient data for meta-analysis. Random-effects models showed lower BDNF in subjects with insomnia (n = 446) than in controls (n = 706) (Hedge's g = -0.86, 95% CI: -1.39 to -0.32, p = .002). Leave-one-out sensitivity analysis confirmed that the pooled effect size was robust and not driven by any single study. However, given the small sample size, the cross-sectional nature of the measurement, and the high heterogeneity of included data, the results should be cautiously interpreted. Progress in the study of BDNF in insomnia is clinically relevant to better understand the mechanisms that may explain the relationship between disturbed sleep and mental disorders.
Collapse
Affiliation(s)
- Andrea Ballesio
- Department of Psychology, Sapienza University of Rome, Italy.
| | - Andrea Zagaria
- Department of Psychology, Sapienza University of Rome, Italy
| | | | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London UK
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK; Sleep Disorders Centre, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
| | | |
Collapse
|
14
|
Wang MF, He Q, Liu Z, Du J. The relationship between perceived organizational support and insomnia in Chinese nurses: The Serial multiple mediation analysis. Front Psychol 2022; 13:1026317. [PMID: 36591078 PMCID: PMC9802667 DOI: 10.3389/fpsyg.2022.1026317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Background Nurses are in high-pressure, high-load, and high-risk environment for a long time, and their insomnia cannot be ignored. Insomnia not only has a negative impact on the physical and mental health of nurses, but also on the efficiency and quality of nursing work. Objective The purpose of this study was to investigate the multiple mediating effect of psychological capital, effort-reward ratio, and overcommitment in the relationship between perceived organizational support and insomnia among Chinese nurses. Methods A cross-sectional study has been carried out in a tertiary grade A hospital in Shandong Province, China from March 2021 to May 2021. The demographic questionnaire, Perceived Organization Support Questionnaire, Psychological Capital Questionnaire, Chinese version Effort-Reward Imbalance, Questionnaire and Athens Insomnia Scale were used for data collection. SPSS PROCESS 3.4 macro program developed by Hayes was used to test the serial multiple mediation. Descriptive analysis, independent-samples t-test, one-way analysis of variance, Pearson's correlation analyses, ordinary least-squares regression, and the bootstrap method were used for data analysis. Results 658 valid questionnaires were collected (81.2%). Nurses' perceived organizational support was positively correlated with psychological capital (r = 0.455, p < 0.001), and was significantly negatively correlated with effort-reward ratio (r = -0.318, p < 0.001), overcommitment (r = -0.328, p < 0.001), and insomnia (r = -0.358, p < 0.001); Psychological capital was negatively correlated with effort-reward ratio (r = -0.275, p < 0.001), overcommitment (r = -0.339, p < 0.001), and insomnia (r = -0.402, p < 0.001), respectively; effort-reward ratio and overcommitment were significantly positively correlated with insomnia (r = 0.379, p < 0.001; r = 0.466, p < 0.001), respectively. In the model of perceived organizational support-psychological capital-effort-reward ratio-insomnia, the overall mediating effect was -0.080 (95%CI: -0.109 ~ -0.058), and the mediating effect of psychological capital was -0.050, accounting for 34.30% of the total effect; the mediating effect of effort-reward ratio was -0.024, accounting for 16.49% of the total effect; the chain mediating effect of psychological capital and effort-reward ratio was -0.007, accounting for 4.49% of the total effect. In the model of perceived organizational support-psychological capital-overcommitment-insomnia, the overall mediating effect was -0.085 (95%CI: -0.109 ~ -0.064), and the mediating effect of psychological capital was -0.042, accounting for 28.64% of the total effect; the mediating effect of overcommitment was -0.029, accounting for 19.81% of the total effect; the chain mediating effect of psychological capital and overcommitment was -0.015, accounting for 10.14% of the total effect. Conclusion Perceived organizational support had direct negative influence on insomnia. Psychological capital and effort-reward ratio/overcommitment acted as chained mediating factor could partially relieve insomnia symptoms related to perceived organizational support. It is suggested to improve the level of organizational support and psychological capital of nurses, and reduce the effort-reward imbalance and overcommitment of nurses, so as to effectively decline and deal with nurses' insomnia.
Collapse
Affiliation(s)
- Mei-Fang Wang
- Nursing Department, Xi’an Jiaotong University City College, Xi’an, China
| | - Qing He
- School of Nursing and Rehabilitation, Xi’an Medical University, Xi’an, China
| | - Zhuo Liu
- School of Nursing, The Fourth Military Medical University, Xi’an, China
| | - Juan Du
- School of Nursing, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
15
|
MCU knockdown in hippocampal neurons improves memory performance of an Alzheimer's disease mouse model. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1528-1539. [PMID: 36239352 PMCID: PMC9828087 DOI: 10.3724/abbs.2022138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive and degenerative disorder accompanied by cognitive decline, which could be promoted by mitochondrial dysfunction induced by mitochondrial Ca 2+ (mCa 2+) homeostasis Mitochondrial calcium uniporter (MCU), a key channel of mCa 2+ uptake, may be a target for AD treatment. In the present study, we reveal for the first time that MCU knockdown in hippocampal neurons improves the memory performance of APP/PS1/tau mice through radial arm maze task. Western blot analysis, transmission electron microscopy (TEM), Golgi staining, immunohistochemistry (IHC) and ELISA results demonstrate that MCU knockdown in hippocampal neurons upregulates the levels of postsynaptic density protein 95 (PSD95) and synaptophysin (SYP), and increases the numbers of synapses and dendritic spines. Meanwhile, MCU knockdown in hippocampal neurons decreases the neuroinflammatory response induced by astrogliosis and high levels of IL-1β and TNF-α, and improves the PINK1-Parkin mitophagy signaling pathway and increases the level of Beclin-1 but decreases the level of P62. In addition, MCU knockdown in hippocampal neurons recovers the average volume and number of mitochondria. These data confirm that MCU knockdown in hippocampal neurons improves the memory performance of APP/PS1/tau mice through ameliorating the synapse structure and function, relieving the inflammation response and recovering mitophagy, indicating that MCU inhibition has the potential to be developed as a novel therapy for AD.
Collapse
|
16
|
Yao Y, Jia Y, Wen Y, Cheng B, Cheng S, Liu L, Yang X, Meng P, Chen Y, Li C, Zhang J, Zhang Z, Pan C, Zhang H, Wu C, Wang X, Ning Y, Wang S, Zhang F. Genome-Wide Association Study and Genetic Correlation Scan Provide Insights into Its Genetic Architecture of Sleep Health Score in the UK Biobank Cohort. Nat Sci Sleep 2022; 14:1-12. [PMID: 35023977 PMCID: PMC8747788 DOI: 10.2147/nss.s326818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Most previous genetic studies of sleep behaviors were conducted individually, without comprehensive consideration of the complexity of various sleep behaviors. Our aim is to identify the genetic architecture and potential biomarker of the sleep health score, which more powerfully represents overall sleep traits. PATIENTS AND METHODS We conducted a genome-wide association study (GWAS) of sleep health score (overall assessment of sleep duration, snoring, insomnia, chronotype, and daytime dozing) using 336,463 participants from the UK Biobank. Proteome-wide association study (PWAS) and transcriptome-wide association study (TWAS) were then performed to identify candidate genes at the protein and mRNA level, respectively. We finally used linkage disequilibrium score regression (LDSC) to estimate the genetic correlations between sleep health score and other functionally relevance traits. RESULTS GWAS identified multiple variants near known candidate genes associated with sleep health score, such as MEIS1, FBXL13, MED20 and SMAD5. HDHD2 (PPWAS = 0.0146) and GFAP (PPWAS = 0.0236) were identified associated with sleep health score by PWAS. TWAS identified ORC4 (PTWAS = 0.0212) and ZNF732 (PTWAS = 0.0349) considering mRNA expression level. LDSC found significant genetic correlations of sleep health score with 3 sleep behaviors (including insomnia, snoring, dozing), 4 psychiatry disorders (major depressive disorder, attention deficit/hyperactivity disorder, schizophrenia, autism spectrum disorder), and 9 plasma protein (such as Stabilin-1, Stromelysin-2, Cytochrome c) (all LDSC PLDSC < 0.05). CONCLUSION Our results advance the comprehensive understanding of the aetiology and genetic architecture of the sleep health score, refine the understanding of the relationship of sleep health score with other traits and diseases, and may serve as potential targets for future mechanistic studies of sleep phenotype.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Cuiyan Wu
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xi Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Sen Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
17
|
Yang S, Kong XY, Hu T, Ge YJ, Li XY, Chen JT, He S, Zhang P, Chen GH. Aquaporin-4, Connexin-30, and Connexin-43 as Biomarkers for Decreased Objective Sleep Quality and/or Cognition Dysfunction in Patients With Chronic Insomnia Disorder. Front Psychiatry 2022; 13:856867. [PMID: 35401278 PMCID: PMC8989729 DOI: 10.3389/fpsyt.2022.856867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES To examine serum concentrations of aquaporin-4 (AQP4), connexin-30 (CX30), connexin-43 (CX43), and their correlations with cognitive function in the patients with chronic insomnia disorder (CID). METHODS We enrolled 76 subjects with CID and 32 healthy controls (HCs). Serum levels of AQP4, CX30, and CX43 were measured by enzyme-linked immunosorbent assays. Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI) and polysomnography, and mood was evaluated with 17-item Hamilton Depression Rating Scale and 14-item Hamilton Anxiety Rating Scale. Cognitive function was evaluated by the Chinese-Beijing Version of Montreal Cognitive Assessment (MoCA-C) and Nine Box Maze Test. RESULTS The serum levels of AQP4, CX43, and CX30 were significantly reduced in the CID group compared to the HCs. Partial correlation analysis showed that the biomarkers showed no significant correlations with PSQI score, AHI, ODI and TS90, but AQP4, CX43, and CX30 were positively associated with the percentage and total time of slow wave sleep in the CID group. Serum concentrations of AQP4 and CX30 were positively associated with MoCA-C score in the CID group, and AQP4 level negatively correlated with spatial working memory errors. CONCLUSIONS Subjects with CID patients have decreased serum levels of AQP4, CX30, and CX43 indicating astrocyte dysfunction, which could be related to poor objective sleep quality and/or cognition dysfunction.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Yi Kong
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Ting Hu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jun-Tao Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Shuo He
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Ping Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Changed signals of blood adenosine and cytokines are associated with parameters of sleep and/or cognition in the patients with chronic insomnia disorder. Sleep Med 2021; 81:42-51. [PMID: 33636543 DOI: 10.1016/j.sleep.2021.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES This study aimed to investigate whether plasma levels of adenosine, adenosine deaminase (ADA), and certain cytokines change in patients with chronic insomnia disorder (CID), and if so, whether these alterations are associated with poor sleep quality and cognitive dysfunction. METHODS Fifty-five CID patients were selected for the study, along with fifty-five healthy controls (HC) matched to the patients according to their basic data. All subjects completed sleep, emotion, and cognition assessments, with some CID patients also completing an overnight polysomnography. The plasma level of adenosine was measured using liquid chromatography-tandem mass spectrometry, while ADA level was quantified using a quantitative sandwich enzyme-linked immunosorbent assay. Levels of cytokines, including IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, TNF-α, and IFN-γ, were measured using Luminex liquid chip technology. RESULTS CID patients had a lower adenosine level, and higher levels of ADA and some of the cytokines (IL-1β, IL-2, IL-6, IL-10 and TNF-α) compared with controls. In the CID group, plasma concentrations of adenosine were negatively correlated with Pittsburgh Sleep Quality Index scores, while concentrations of IL-1β, IL-6 and TNF-α were positively correlated with these scores. Concentrations of IL-1β and TNF-α were negatively correlated with scores on the Chinese-Beijing Version of the Montreal Cognitive Assessment. Moreover, levels of IL-1β, TNF-α, IL-6, and IL-2 were positively correlated with memory test errors by CID patients after controlling for confounding factors. CONCLUSIONS The reduced adenosine and elevated cytokine levels of CID patients were associated with the severity of insomnia and/or cognitive dysfunction.
Collapse
|
19
|
Xia L, Zhang P, Niu JW, Ge W, Chen JT, Yang S, Su AX, Feng YZ, Wang F, Chen G, Chen GH. Relationships Between a Range of Inflammatory Biomarkers and Subjective Sleep Quality in Chronic Insomnia Patients: A Clinical Study. Nat Sci Sleep 2021; 13:1419-1428. [PMID: 34413689 PMCID: PMC8369225 DOI: 10.2147/nss.s310698] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/06/2021] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To examine whether associations exist between chronic insomnia disorder (CID) and overlooked inflammatory factors (Serum amyloid protein A [SAA]), tumor necrosis factor [TNF]-α, granulocyte-macrophage colony-stimulating factor [GM-CSF], and regulated on activation and normal T cell expressed and presumably secreted [RANTES]). PATIENTS AND METHODS A total of 65 CID patients and 39 sex- and age-matched good sleeper (GS) controls participated in this study. They completed a baseline survey to collect data on demographics, and were elevated sleep and mood by Pittsburgh Sleep Quality Index (PSQI), Athens Insomnia Scale (AIS), 17-item Hamilton Depression Rating Scale (HAMD-17) and 14-item Hamilton Anxiety Rating Scale (HAMA-14), respectively. The blood samples were collected and tested the serum levels of SAA, TNF-α, GM-CSF and RANTES. RESULTS The CID group had higher serum levels of SAA, TNF-α, and GM-CSF and a lower level of RANTES than the GS group. In the Spearman correlation analysis, SAA and GM-CSF positively correlated with the PSQI and AIS scores. After controlling for sex, HAMD-17 score, and HAMA-14 score, the partial correlation analysis showed that GM-CSF was positively correlated with PSQI score. Further stepwise linear regression analyses showed that GM-CSF was positively associated with the PSQI and AIS scores, while RANTES was negatively associated with them, and SAA was positively associated with just the AIS score. CONCLUSION The serum levels of inflammatory mediators (SAA, TNF-α, and GM-CSF) were significantly elevated and the level of RANTES was significantly decreased in CID patients and, to some extent, the changes are related to the severity of insomnia. These findings may help us to improve interventions to prevent the biological consequences of CID by inhibiting inflammation, thereby promoting health.
Collapse
Affiliation(s)
- Lan Xia
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ping Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Jing-Wen Niu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Wei Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Jun-Tao Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Shuai Yang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Ai-Xi Su
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Yi-Zhou Feng
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Gong Chen
- Hefei Technology College, Hefei (Chaohu), People's Republic of China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), People's Republic of China
| |
Collapse
|