1
|
Madhukar G, Haque MA, Khan S, Kim JJ, Danishuddin. E3 ubiquitin ligases and their therapeutic potential in disease Management. Biochem Pharmacol 2025; 236:116875. [PMID: 40120724 DOI: 10.1016/j.bcp.2025.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Ubiquitination is a vital post-translational modification that regulates protein stability and various cellular processes through the addition of ubiquitin molecules. Central to this process are E3 ubiquitin ligases, which determine the specificity of ubiquitination by coordinating the attachment of ubiquitin to target proteins, influencing their degradation, localization, and activity. E3 ubiquitin ligases are involved in numerous cellular pathways, including DNA repair, cell proliferation, and immune responses. Dysregulation of E3 ubiquitin ligases is often associated with cancer, contributing to tumor progression and resistance to therapies. The development of targeted protein degraders, such as proteolysis-targeting chimeras (PROTACs), represents a significant advancement in drug discovery, leveraging the specificity of E3 ubiquitin ligases to selectively eliminate pathogenic proteins. However, challenges remain in translating this knowledge into effective therapies, including issues related to tissue-specific targeting and off-target effects. The limitations also include a limited understanding of ligase-substrate interactions that includes both the identification of novel E3 ligases and their substrates, as well as understanding the dynamic, context-dependent nature of these interactions, which can vary across tissue types or disease states This review emphasizes the therapeutic potential of E3 ubiquitin ligases, exploring their diverse roles in disease, their contribution to targeted degradation strategies while highlighting the need for further research to overcome current limitations and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Geet Madhukar
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
2
|
Tsai HHD, Oware KD, Wright FA, Chiu WA, Rusyn I. A workflow for human health hazard evaluation using transcriptomic data and Key Characteristics-based gene sets. Toxicol Sci 2025; 205:310-325. [PMID: 40116072 PMCID: PMC12118962 DOI: 10.1093/toxsci/kfaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
Key characteristics (KCs) are properties of chemicals that are associated with different types of human health hazards. KCs are used for systematic reviews in support of hazard identification. Transcriptomic data are a rich source of mechanistic data and are frequently interpreted through "enriched" pathways/gene sets. Such analyses may be challenging to interpret in regulatory science because of redundancy among pathways, complex data analyses, and unclear relevance to hazard identification. We hypothesized that by cross-mapping pathways/gene sets and KCs, the interpretability of transcriptomic data can be improved. We summarized 72 published KCs across 7 hazard traits into 34 umbrella KC terms. Gene sets from Reactome and Kyoto Encyclopedia of Genes and Genomes (KEGG) were mapped to these, resulting in "KC gene sets." These sets exhibit minimal overlap and vary in the number of genes. Comparisons of the same KC gene sets mapped from Reactome and KEGG revealed low similarity, indicating complementarity. Performance of these KC gene sets was tested using publicly available transcriptomic datasets of chemicals with known organ-specific toxicity: benzene and 2,3,7,8-tetrachlorodibenzo-p-dioxin tested in mouse liver and drugs sunitinib and amoxicillin tested in human-induced pluripotent stem cell-derived cardiomyocytes. We found that KC terms related to the mechanisms affected by tested compounds were highly enriched, while the negative control (amoxicillin) showed limited enrichment with marginal significance. This study's impact is in presenting a computational approach based on KCs for the analysis of toxicogenomic data and facilitating transparent interpretation of these data in the process of chemical hazard identification.
Collapse
Affiliation(s)
- Han-Hsuan D Tsai
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - King D Oware
- School of Public Health, Texas A&M University, College Station, TX 77843, United States
| | - Fred A Wright
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27603, United States
- Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27603, United States
| | - Weihsueh A Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, United States
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
3
|
Shafik MS, El-Tanbouly DM, Bishr A, Soubh AA, Attia AS, Muhammad RN. Activation of Sig-1R by afobazole attenuates Tollip/HMGB1-mediaded CCN2 autophagic degradation and NETs formation in sunitinib-induced cardiotoxicity in mice: Involvement of IRE 1α/ASK1/JNK/ AP-1 trajectory. Toxicol Appl Pharmacol 2025:117423. [PMID: 40449751 DOI: 10.1016/j.taap.2025.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/25/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Although the contribution of sigma1 receptor (Sig-1R) to afobazole's cardioprotection has been meticulously investigated, Sig-1R-mediated cardioprotective effect of afobazole against sunitinib cardiotoxicity has not been studied yet. Hence, we aimed at studying the potential modulatory impact of afobazole on Sig-1R to combat sunitinib-induced endoplasmic reticulum (ER) stress, maladaptive autophagy, and hyperactivation of neutrophils that ends up with neutrophil extracellular traps (NETs) formation. Pre-treatment with afobazole attenuated sunitinib-induced cardiotoxicity and enhanced cardiac function via significant reduction of TNNT2 and CK-MB, and restoration of nearly normal hemodynamic measurements. Afobazole-mediated Sig-1R activation mitigated the ER stress sensor, IRE1α activation and its downstream (ASK/JNK/AP-1) pathways along with caspase-3 and FK18. Subsequently, afobazole hindered NETs formation by prohibiting ER stress-induced activation of caspase-2 and pro-inflammatory cytokines; IL-1β and TNFα, as indicated by the significant reduction of NETs' specific components, namely, PAD4, NE, and MPO, along with the NETs' specific marker Cit H3. Afobazole also downregulated sunitinib-induced maladaptive autophagy, as reflected by reducing the expressions of autophagy-regulating proteins (ATG5 and ATG7) and microtubule-associated protein light chain 3 (LC3-II/I) ratio as well p62 upregulation. Furthermore, afobazole exhibited a cardioprotective effect by restoring nearly normal CCN2 level that was degraded by Tollip and HMGB1. The above-mentioned outcomes triggered by afobazole were clearly negated upon administration of the Sig-1R antagonist (BD1047), confirming that Sig-1R activation predominantly mediates the observed cardioprotective effects. Afobazole demonstrated efficacy in mitigating sunitinib-induced cardiotoxicity, as evidenced through the enhancements in hemodynamic stability, reduction of ER stress, amelioration of maladaptive autophagy, and inhibition of NETs formation.
Collapse
Affiliation(s)
- Marihan S Shafik
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Egypt.
| | - Dalia M El-Tanbouly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Abeer Bishr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Ayman A Soubh
- Pharmacology and Toxicology Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Amina S Attia
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Radwa N Muhammad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
4
|
Rusu A, Oancea OL, Tanase C, Uncu L. Unlocking the Potential of Pyrrole: Recent Advances in New Pyrrole-Containing Compounds with Antibacterial Potential. Int J Mol Sci 2024; 25:12873. [PMID: 39684580 PMCID: PMC11640851 DOI: 10.3390/ijms252312873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Nitrogen heterocycles are valuable structural elements in the molecules of antibacterial drugs approved and used to treat bacterial infections. Pyrrole is a five-atom heterocycle found in many natural compounds with biological activity, including antibacterial activity. Numerous compounds are being develop based on the pyrrole heterocycle as new potential antibacterial drugs. Due to the phenomenon of antibacterial resistance, there is a continuous need to create new effective antibacterials. In the scientific literature, we have identified the most relevant studies that aim to develop new compounds, such as pyrrole derivatives, that are proven to have antibacterial activity. Nature is an endless reservoir of inspiration for designing new compounds based on the structure of pyrrole heterocycles such as calcimycin, lynamycins, marinopyrroles, nargenicines, phallusialides, and others. However, many other synthetic compounds based on the pyrrole heterocycle have been developed and can be optimized in the future. The identified compounds were classified according to the type of chemical structure. The chemical structure-activity relationships, mechanisms of action, and antibacterial effectiveness of the most valuable compounds were highlighted. This review highlights scientific progress in designing new pyrrole-containing compounds and provides examples of lead compounds that can be successfully optimized further.
Collapse
Affiliation(s)
- Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Octavia-Laura Oancea
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Livia Uncu
- Scientific Center for Drug Research, Pharmaceutical and Toxicological Chemistry Department, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Bd. Stefan Cel Mare si Sfant, MD-2004 Chisinau, Moldova;
| |
Collapse
|
5
|
Huang C, Luo MY, Wen NQ, Chen YM, Zhang LZ, Cao Y. The prognostic implications and oncogenic role of NSUN5 in clear cell renal cell carcinoma. Clin Exp Med 2024; 25:8. [PMID: 39549185 PMCID: PMC11568983 DOI: 10.1007/s10238-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC), a predominant form of urinary malignancy, requires the identification of reliable biomarkers to enhance both prognostic outcomes and therapeutic developments specific to ccRCC. NSUN5, a member of the NOL1/NOP2/SUN domain (NSUN) family, plays a critical role in RNA stabilization and exhibits widespread expression across various tumor types. However, the exact function of NSUN5 in ccRCC remains insufficiently understood. Data were collated from cohorts of ccRCC patients who underwent nephrectomy, including those from the Cancer Genome Atlas (TCGA) and the Sun Yat-sen University Cancer Center (SYSUCC), to evaluate the clinical relevance of NSUN5. Integrative models based on NSUN5 expression were subsequently developed to predict the prognosis of ccRCC within the TCGA and SYSUCC cohorts. Furthermore, the impact of NSUN5 on RCC cells and its association with cellular senescence were corroborated through in vitro experimental analyses. NSUN5 exhibited elevated expression in both ccRCC patients and renal cancer cell lines, whose upregulation significantly correlated with age, tumor size, TNM stage, WHO/International Society of Urological Pathology (ISUP) grade, presence of necrosis, and a poor prognosis. An accessible nomogram, incorporating NSUN5 along with various clinicopathological parameters, was adept at predicting outcomes for ccRCC patients. Additionally, in vitro findings indicated that reduced expression of NSUN5 enhanced tumor cell senescence and simultaneously inhibiting cell proliferation and migration. These observations suggest that elevated NSUN5 expression is linked to poorer overall survival (OS) and progression-free survival (PFS), positioning NSUN5 as a viable diagnostic and prognostic biomarker in ccRCC.
Collapse
Affiliation(s)
- Chan Huang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Mu-Yang Luo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Neng-Qiao Wen
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yu-Man Chen
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Li-Zhen Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, People's Republic of China.
| | - Yun Cao
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Chaudhari PJ, Nemade AR, Shirkhedkar AA. Recent updates on potential of VEGFR-2 small-molecule inhibitors as anticancer agents. RSC Adv 2024; 14:33384-33417. [PMID: 39439843 PMCID: PMC11495155 DOI: 10.1039/d4ra05244g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
The vascular endothelial growth factor receptor (VEGFR) system is the key component for controlling angiogenesis in cancer cells. Blocking vascular endothelial growth factor receptor 2 (VEGFR2) signalling is one of the most promising approaches to hindering angiogenesis and the subsequent growth of cancer cells. The USFDA-approved small-molecule drugs targeting VEGFR-2 are developing drug resistance over the course of chemotherapy, and cardiac-related side effects are consistently being reported; hence, there is an urgent need for more safe and effective anticancer molecules. The present review focuses on the structure and physiology of VEGFR-2 and its involvement in the progression of cancer cells. The recent updates from the last five years through papers and patents on structure-activity relationships, pharmacophoric attributes, molecular docking interactions, antiangiogenic assays, cancer cell line studies, and the potencies (IC50) of VEGFR-2 inhibitors are discussed herein. The common structural framework requirements, such as the Asp-Phe-Gly (DFG) motif of VEGFR-2 interacting with the HBD-HBA region in the ligand molecules, the central aryl ring occupying the linker region, and a variety of bio-isosteres, can enhance activity against VEGFR-2. At one end, the heteroaryl moiety is essential for interaction within the ATP-binding site of VEGFR-2, while the terminal hydrophobic tail occupies the allosteric binding site. Three to five bond spacers between the heteroaryl and HBD-HBA regions provided a better result towards VEGFR-2 inhibition, mirroring the behaviors of standard drugs. The in-depth analysis of recent updates on VEGFR-2 inhibitors presented in this paper will help prospective synthetic and medicinal chemists to discover new lead molecules for the treatment of various cancers.
Collapse
Affiliation(s)
- Prashant Jagannath Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
- Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| | - Aditya Ramchandra Nemade
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
- Department of Pharmaceutics, M.S. Ramaiah University of Applied Sciences Bengaluru Karnataka 560054 India
| | - Atul Arun Shirkhedkar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist-Dhule Maharashtra 425 405 India
| |
Collapse
|
7
|
Basheeruddin M, Qausain S. Hypoxia-Inducible Factor 1-Alpha (HIF-1α) and Cancer: Mechanisms of Tumor Hypoxia and Therapeutic Targeting. Cureus 2024; 16:e70700. [PMID: 39493156 PMCID: PMC11529905 DOI: 10.7759/cureus.70700] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Hypoxia-inducible factor 1-alpha (HIF-1α) is necessary for cells to adapt to low oxygen levels often present in the tumor microenvironment. HIF-1α triggers a transcriptional program that promotes invasion, angiogenesis, metabolic reprogramming, and cell survival when it is active in hypoxic environments. These processes together lead to the growth and spread of tumors. This review article examines the molecular mechanisms by which HIF-1α contributes to tumor progression, including its regulation by oxygen-dependent and independent pathways, interactions with oncogenic signaling networks, and impact on the tumor microenvironment. Additionally, we explore current therapeutic strategies targeting HIF-1α, such as small molecule inhibitors, RNA interference, and immunotherapy approaches. Understanding the multifaceted roles of HIF-1α in cancer biology not only elucidates the complexities of tumor hypoxia but also opens avenues for developing novel and more effective cancer therapies.
Collapse
Affiliation(s)
- Mohd Basheeruddin
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sana Qausain
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
8
|
Li J, Zhang H, Chen XD. Effect and safety of ripretinib in the treatment of advanced gastrointestinal stromal tumor: A systematic review and meta-analysis. World J Clin Oncol 2024; 15:1092-1101. [PMID: 39193156 PMCID: PMC11346076 DOI: 10.5306/wjco.v15.i8.1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Imatinib (IMA) has received approval as the primary treatment for gastrointestinal stromal tumors (GIST). Nonetheless, approximately half of the patients with advanced GIST show disease advancement following IMA treatment. Presently, the efficacy of secondary and tertiary medications in addressing various GIST secondary mutations is somewhat restricted. Consequently, there is a significant medical demand for the creation of kinase inhibitors that extensively block secondary drug-resistant mutations in advanced GIST. Ripretinib (RPT) is a new, switch-control tyrosine kinase inhibitors that can suppress different mutations of KIT and PDGFRA via a dual mechanism of action. AIM To investigate the literature on RPT to assess an effective, safe, and successful treatment strategy against advanced GIST. METHODS The present systematic review and meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. PubMed, Embase, Cochrane, Web of Science and ClinicalTrials.gov databases were screened from January 1, 2003 to May 1, 2024. RESULTS A total of 4 studies were included, with a total of 507 patients enrolled. The objective response rate (ORR) of the RPT-treated advanced GIST was 17% (95%CI: 0.11-0.27), while the disease control rate (DCR) was 66% (95%CI: 0.59-0.73). The overall occurrence of adverse events with varying degrees was 97% (95%CI: 0.93-1), whereas that of grade ≥ 3 adverse reactions was 42% (95%CI: 0.28-0.63). The sensitivity analysis revealed that omitting some studies did not yield statistically notable variances in the aggregate data regarding the ORR, DCR, and the occurrence of adverse events of grade 3 or higher. The publication bias was absent because no significant asymmetry was observed in Begg's funnel plot in all studies. CONCLUSION RPT has favorable efficacy profiles in GIST patients, but the adverse reactions are obvious, and patient management needs to be strengthened to achieve better safety and tolerability.
Collapse
Affiliation(s)
- Ji Li
- Department of General Surgery, Chongqing Western Hospital, Chongqing 400051, China
| | - Hao Zhang
- Department of General Surgery, Chongqing Western Hospital, Chongqing 400051, China
| | - Xiao-Dong Chen
- Department of General Surgery, Chongqing Western Hospital, Chongqing 400051, China
| |
Collapse
|
9
|
Sales CBS, Dias RB, de Faro Valverde L, Bomfim LM, Silva LA, de Carvalho NC, Bastos JLA, Tilli TM, Rocha GV, Soares MBP, de Freitas LAR, Gurgel Rocha CA, Bezerra DP. Hedgehog components are overexpressed in a series of liver cancer cases. Sci Rep 2024; 14:19507. [PMID: 39174588 PMCID: PMC11341691 DOI: 10.1038/s41598-024-70220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Liver cancers, including hepatocellular carcinoma (HCC), are the sixth most common cancer and the third leading cause of cancer-related death worldwide, representing a global public health problem. This study evaluated nine patients with HCC. Six of the cases involved hepatic explants, and three involved hepatic segmentectomy for tumor resection. Eight out of nine tumors were HCC, with one being a combined hepatocellular-cholangiocarcinoma tumor. Conventional markers of hepatocellular differentiation (Hep Par-1, arginase, pCEA, and glutamine synthetase) were positive in all patients, while markers of hepatic precursor cells (CK19, CK7, EpCAM, and CD56) were negative in most patients, and when positive, they were detected in small, isolated foci. Based on in silico analysis of HCC tumors from The Cancer Genome Atlas database, we found that Hedgehog (HH) pathway components (GLI1, GLI2, GLI3 and GAS1) have high connectivity values (module membership > 0.7) and are strongly correlated with each other and with other genes in biologically relevant modules for HCC. We further validated this finding by analyzing the gene expression of HH components (PTCH1, GLI1, GLI2 and GLI3) in our samples through qPCR, as well as by immunohistochemical analysis. Additionally, we conducted a chemosensitivity analysis using primary HCC cultures treated with a panel of 18 drugs that affect the HH pathway and/or HCC. Most HCC samples were sensitive to sunitinib. Our results offer a comprehensive view of the molecular landscape of HCC, highlighting the significance of the HH pathway and providing insight into focused treatments for HCC.
Collapse
Affiliation(s)
- Caroline Brandi Schlaepfer Sales
- Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, Bahia, 40110-902, Brazil
| | - Rosane Borges Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia (UFBA), Salvador, Bahia, 40110-909, Brazil
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, 44036-900, Brazil
| | - Ludmila de Faro Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
- Department of Dentistry, Federal University of Sergipe (UFS), Lagarto, Sergipe, 49400-000, Brazil
| | - Larissa M Bomfim
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Lais Almeida Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Nanashara C de Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | | | - Tatiana Martins Tilli
- Translational Oncology Platform, Center for Technological Development in Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, 21040-900, Brazil
- Laboratory of Cardiovascular Research, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, 21040-900, Brazil
| | - Gisele Vieira Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
- D'Or Institute for Research and Education (IDOR), São Rafael Hospital Center for Biotechnology and Cell Therapy, Salvador, Bahia, 41650-010, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
- SENAI Institute for Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador, Bahia, 41650-010, Brazil.
| | - Luiz Antonio Rodrigues de Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
- Medical School of Bahia, Federal University of Bahia (UFBA), Salvador, Bahia, 40110-100, Brazil.
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
- Department of Propedeutics, School of Dentistry of the Federal University of Bahia (UFBA), Salvador, Bahia, 40110-909, Brazil.
- D'Or Institute for Research and Education (IDOR), São Rafael Hospital Center for Biotechnology and Cell Therapy, Salvador, Bahia, 41650-010, Brazil.
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
10
|
Qiu Y, Zhang S, Man C, Gong D, Xu Y, Fan Y, Wang X, Zhang W. Advances on Senescence-associated secretory phenotype regulated by circular RNAs in tumors. Ageing Res Rev 2024; 97:102287. [PMID: 38570142 DOI: 10.1016/j.arr.2024.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The components that comprise the senescence-associated secretory phenotype (SASP) include growth factors, proteases, chemokines, cytokines, and bioactive lipids. It drives secondary aging and disrupts tissue homeostasis, ultimately leading to tissue repair and regeneration loss. It has a two-way regulatory effect on tumor cells, resisting cancer occurrence and promoting its progression. A category of single-stranded circular non-coding RNA molecules known as circular RNAs (circRNAs) carries out a series of cellular activities, including sequestering miRNAs and modulating gene editing and expression. Research has demonstrated that a large number of circRNAs exhibit aberrant expression in pathological settings, and play a part in the onset and progress of cancer via modulating SASP factors. However, the research related to SASP and circRNAs in tumors is still in its infancy at this stage. This review centers on the bidirectional modulation of SASP and the role of circRNAs in regulating SASP factors across different types of tumors. The aim is to present novel perspectives for the diagnosis and therapeutic management of malignancies.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Ying Xu
- Laboratory Center, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu 212002, People's Republic of China.
| | - Xiaoyan Wang
- Department of Gastroenterology, Affiliated Suqian First People's Hospital of Nanjing Medical University, No 120, Suzhi Road, Suqian, Jiangsu 223812, People's Republic of China.
| | - Wenbo Zhang
- General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Yadav P, Rana K, Chakraborty R, Khan A, Mehta D, Jain D, Aggarwal B, Jha SK, Dasgupta U, Bajaj A. Engineered nanomicelles targeting proliferation and angiogenesis inhibit tumour progression by impairing the synthesis of ceramide-1-phosphate. NANOSCALE 2024; 16:10350-10365. [PMID: 38739006 DOI: 10.1039/d3nr04806c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Tumour cells secrete various proangiogenic factors like VEGF, PDGF, and EGF that result in the formation of highly vascularized tumours with an immunosuppressive tumour microenvironment. As tumour growth and metastasis are highly dependent on angiogenesis, targeting tumour vasculature along with rapidly dividing tumour cells is a potential approach for cancer treatment. Here, we specifically engineered sub-100 sized nanomicelles (DTX-CA4 NMs) targeting proliferation and angiogenesis using an esterase-sensitive phosphocholine-tethered docetaxel conjugate of lithocholic acid (LCA) (PC-LCA-DTX) and a poly(ethylene glycol) (PEG) derivative of an LCA-combretastatin A4 conjugate (PEG-LCA-CA4). DTX-CA4 NMs effectively inhibit the tumour growth in syngeneic (CT26) and xenograft (HCT116) colorectal cancer models, inhibit tumour recurrence, and enhance the percentage survival in comparison with individual drug-loaded NMs. DTX-CA4 NMs enhance the T cell-mediated anti-tumour immune response and DTX-CA4 NMs in combination with an immune checkpoint inhibitor, anti-PDL1 antibody, enhance the anti-tumour response. We additionally showed that DTX-CA4 NMs effectively attenuate the production of ceramide-1-phosphate, a key metabolite of the sphingolipid pathway, by downregulating the expression of ceramide kinase at both transcriptional and translational levels. Therefore, this study presents the engineering of effective DTX-CA4 NMs for targeting the tumour microenvironment that can be explored further for clinical applications.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ruchira Chakraborty
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ali Khan
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Devashish Mehta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Bharti Aggarwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Somesh K Jha
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Manesar, Gurgaon-122413, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
12
|
Elrashidy RA, Mohamed HE, Abdel Aal SM, Mohamed SR, Tolba SM, Mahmoud YK. Oleuropein attenuates the nephrotoxic effect of sunitinib in rats: Unraveling the potential role of SIRT6/Notch-1/NLRP-3/IL-1β axis. Arch Biochem Biophys 2024; 755:109986. [PMID: 38582273 DOI: 10.1016/j.abb.2024.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Sunitinib (SUN) is a chemotherapeutic agent clinically approved for treatment of metastatic renal carcinoma. Despite its remarkable benefits, various renal toxicities have been reported that limit its clinical uses. Oleuropein (OLE) is the main polyphenolic constituent of olive tree and mediates the majority of its valuable pharmacological activities. The current study examined the probable renoprotective effects of OLE against SUN-induced nephrotoxicity. Adult male albino rats were co-treated by SUN (25 mg/kg, 3 times/week, PO) with either a drug vehicle or OLE (60 mg/kg/day, daily, PO) for four weeks. A control group comprising of age-matched rats was used. Four weeks later, blood specimens were collected to assess kidney functions. Kidneys were harvested for biochemical and histopathological analyses. Administration of SUN induced kidney dysfunction, along with marked rises in endothelin-1 (ET-1) and monocyte chemotactic protein-1 (MCP-1) levels in renal tissues. Histological abnormalities were also detected in kidneys of SUN-treated rats including glomerular and tubular interstitial congestion along with interstitial fibrosis. On molecular levels, there was a decline in renal SIRT6 expression along with significant up-regulation of Notch-1, NLRP-3, interleukin -1β (IL-1β) and cleaved caspsase-3. All these changes were almost alleviated by OLE co-treatment. These findings suggest the implication of SIRT6/Notch-1/NLRP3/IL-1β axis in the pathogenesis of SUN-induced nephrotoxicity and highlight OLE as a prospective renoprotective agent during SUN chemotherapy to halt its renal toxicity likely through promotion of SIRT6 and suppression of Notch-1/NLRP3/IL-1β signaling pathway.
Collapse
Affiliation(s)
- Rania A Elrashidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Hoda E Mohamed
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Sara M Abdel Aal
- Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Samar R Mohamed
- Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Sara M Tolba
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmin K Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
13
|
Doostmohammadi A, Jooya H, Ghorbanian K, Gohari S, Dadashpour M. Potentials and future perspectives of multi-target drugs in cancer treatment: the next generation anti-cancer agents. Cell Commun Signal 2024; 22:228. [PMID: 38622735 PMCID: PMC11020265 DOI: 10.1186/s12964-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer is a major public health problem worldwide with more than an estimated 19.3 million new cases in 2020. The occurrence rises dramatically with age, and the overall risk accumulation is combined with the tendency for cellular repair mechanisms to be less effective in older individuals. Conventional cancer treatments, such as radiotherapy, surgery, and chemotherapy, have been used for decades to combat cancer. However, the emergence of novel fields of cancer research has led to the exploration of innovative treatment approaches focused on immunotherapy, epigenetic therapy, targeted therapy, multi-omics, and also multi-target therapy. The hypothesis was based on that drugs designed to act against individual targets cannot usually battle multigenic diseases like cancer. Multi-target therapies, either in combination or sequential order, have been recommended to combat acquired and intrinsic resistance to anti-cancer treatments. Several studies focused on multi-targeting treatments due to their advantages include; overcoming clonal heterogeneity, lower risk of multi-drug resistance (MDR), decreased drug toxicity, and thereby lower side effects. In this study, we'll discuss about multi-target drugs, their benefits in improving cancer treatments, and recent advances in the field of multi-targeted drugs. Also, we will study the research that performed clinical trials using multi-target therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Ali Doostmohammadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kimia Ghorbanian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sargol Gohari
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
14
|
Suleiman M, Al Najjar A, Zakaria ZZ, Ahmed R, Yalcin HC, Korashy HM, Uddin S, Riaz S, Abdulrahman N, Mraiche F. The Role of p90 Ribosomal S6 Kinase (RSK) in Tyrosine Kinase Inhibitor (TKI)-Induced Cardiotoxicity. J Cardiovasc Transl Res 2024; 17:334-344. [PMID: 37725271 DOI: 10.1007/s12265-023-10431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Targeted therapy, such as tyrosine kinase inhibitors (TKIs), has been approved to manage various cancer types. However, TKI-induced cardiotoxicity is a limiting factor for their use. This issue has raised the need for investigating potential cardioprotective techniques to be combined with TKIs. Ribosomal S6-kinases (RSKs) are a downstream effector of the mitogen-activated-protein-kinase (MAPK) pathway; specific RSK isoforms, such as RSK1 and RSK2, have been expressed in cancer cells, in which they increase tumour proliferation. Selective targeting of those isoforms would result in tumour suppression. Moreover, activation of RSKs expressed in the heart has resulted in cardiac hypertrophy and arrhythmia; thus, inhibiting RSKs would result in cardio-protection. This review article presents an overview of the usefulness of RSK inhibitors that can be novel agents to be assessed in future research for their effect in reducing cancer proliferation, as well as protecting the heart from cardiotoxicity induced by TKIs.
Collapse
Affiliation(s)
- Muna Suleiman
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Afnan Al Najjar
- National Center for Cancer Care and Research, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Zain Z Zakaria
- Medical and Health Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Rashid Ahmed
- Department of Biotechnology, Faculty of Science, Mirpur University of Science and Technology, Mirpur, 10250, AJK, Pakistan
| | - Huseyin C Yalcin
- Biomedical Research Centre (BRC), Qatar University, PO Box 2713, Doha, Qatar
- College of Health Sciences, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Hesham M Korashy
- National Center for Cancer Care and Research, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Sadaf Riaz
- Pharmacy Department, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Nabeel Abdulrahman
- College of Health Sciences, QU-Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Fatima Mraiche
- National Center for Cancer Care and Research, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
15
|
Calfa CJ, Rothe M, Mangat PK, Garrett-Mayer E, Ahn ER, Burness ML, Gogineni K, Rohatgi N, Al Baghdadi T, Conlin A, Gaba A, Hamid O, Krishnamurthy J, Gavini NJ, Gold PJ, Rodon J, Rueter J, Thota R, Grantham GN, Hinshaw DC, Gregory A, Halabi S, Schilsky RL. Sunitinib in Patients With Breast Cancer With FGFR1 or FGFR2 Amplifications or Mutations: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis Oncol 2024; 8:e2300513. [PMID: 38354330 DOI: 10.1200/po.23.00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 02/16/2024] Open
Abstract
PURPOSE The Targeted Agent and Profiling Utilization Registry Study is a phase II basket trial evaluating the antitumor activity of commercially available targeted agents in patients with advanced cancer and genomic alterations known to be drug targets. Results from cohorts of patients with metastatic breast cancer (BC) with FGFR1 and FGFR2 alterations treated with sunitinib are reported. METHODS Eligible patients had measurable disease, Eastern Cooperative Oncology Group performance status 0-2, adequate organ function, and no standard treatment options. Simon's two-stage design was used with a primary end point of disease control (DC), defined as objective response (OR) or stable disease of at least 16 weeks duration (SD16+) according to RECIST v1.1. Secondary end points included OR, progression-free survival, overall survival, duration of response, duration of stable disease, and safety. RESULTS Forty patients with BC with FGFR1 (N = 30; amplification only n = 26, mutation only n = 1, both n = 3) or FGFR2 (N = 10; amplification only n = 2, mutation only n = 6, both n = 2) alterations were enrolled. Three patients in the FGFR1 cohort were not evaluable for efficacy; all patients in the FGFR2 cohort were evaluable. For the FGFR1 cohort, two patients with partial response and four with SD16+ were observed for DC and OR rates of 27% (90% CI, 13 to 100) and 7% (95% CI, 1 to 24), respectively. The null hypothesis of 15% DC rate was not rejected (P = .169). No patients achieved DC in the FGFR2 cohort (P = 1.00). Thirteen of the 40 total patients across both cohorts had at least one grade 3-4 adverse event or serious adverse event at least possibly related to sunitinib. CONCLUSION Sunitinib did not meet prespecified criteria to declare a signal of antitumor activity in patients with BC with either FGFR1 or FGFR2 alterations. Other treatments and clinical trials should be considered for these patient populations.
Collapse
Affiliation(s)
- Carmen J Calfa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Michael Rothe
- American Society of Clinical Oncology, Alexandria, VA
| | - Pam K Mangat
- American Society of Clinical Oncology, Alexandria, VA
| | | | | | | | | | | | - Tareq Al Baghdadi
- Michigan Cancer Research Consortium, IHA Hematology Oncology, Ypsilanti, MI
| | | | | | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA
| | | | | | | | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Santorsola M, Capuozzo M, Nasti G, Sabbatino F, Di Mauro A, Di Mauro G, Vanni G, Maiolino P, Correra M, Granata V, Gualillo O, Berretta M, Ottaiano A. Exploring the Spectrum of VEGF Inhibitors' Toxicities from Systemic to Intra-Vitreal Usage in Medical Practice. Cancers (Basel) 2024; 16:350. [PMID: 38254839 PMCID: PMC10813960 DOI: 10.3390/cancers16020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The use of Vascular Endothelial Growth Factor inhibitors (VEGFi) has become prevalent in the field of medicine, given the high incidence of various pathological conditions necessitating VEGF inhibition within the general population. These conditions encompass a range of advanced neoplasms, such as colorectal cancer, non-small cell lung cancer, renal cancer, ovarian cancer, and others, along with ocular diseases. The utilization of VEGFi is not without potential risks and adverse effects, requiring healthcare providers to be well-prepared for identification and management. VEGFi can be broadly categorized into two groups: antibodies or chimeric proteins that specifically target VEGF (bevacizumab, ramucirumab, aflibercept, ranibizumab, and brolucizumab) and non-selective and selective small molecules (sunitinib, sorafenib, cabozantinib, lenvatinib, regorafenib, etc.) designed to impede intracellular signaling of the VEGF receptor (RTKi, receptor tyrosine kinase inhibitors). The presentation and mechanisms of adverse effects resulting from VEGFi depend primarily on this distinction and the route of drug administration (systemic or intra-vitreal). This review provides a thorough examination of the causes, recognition, management, and preventive strategies for VEGFi toxicities with the goal of offering support to oncologists in both clinical practice and the design of clinical trials.
Collapse
Affiliation(s)
- Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| | | | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy;
| | - Annabella Di Mauro
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| | - Giordana Di Mauro
- Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy;
| | - Gianluca Vanni
- Breast Unit, Department of Surgical Science, PTV Policlinico Tor Vergata University, 00133 Rome, Italy;
| | - Piera Maiolino
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| | - Marco Correra
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude), NEIRID Laboratory (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| |
Collapse
|
17
|
Wang L, Liu WQ, Broussy S, Han B, Fang H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front Pharmacol 2024; 14:1307860. [PMID: 38239196 PMCID: PMC10794590 DOI: 10.3389/fphar.2023.1307860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Vascular endothelial growth factors (VEGF), Vascular endothelial growth factor receptors (VEGFR) and their downstream signaling pathways are promising targets in anti-angiogenic therapy. They constitute a crucial system to regulate physiological and pathological angiogenesis. In the last 20 years, many anti-angiogenic drugs have been developed based on VEGF/VEGFR system to treat diverse cancers and retinopathies, and new drugs with improved properties continue to emerge at a fast rate. They consist of different molecular structures and characteristics, which enable them to inhibit the interaction of VEGF/VEGFR, to inhibit the activity of VEGFR tyrosine kinase (TK), or to inhibit VEGFR downstream signaling. In this paper, we reviewed the development of marketed anti-angiogenic drugs involved in the VEGF/VEGFR axis, as well as some important drug candidates in clinical trials. We discuss their mode of action, their clinical benefits, and the current challenges that will need to be addressed by the next-generation of anti-angiogenic drugs. We focus on the molecular structures and characteristics of each drug, including those approved only in China.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wang-Qing Liu
- CiTCoM, CNRS, INSERM, Université Paris Cité, Paris, France
| | | | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongming Fang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
| |
Collapse
|
18
|
Zhang S, Xia Y, Chen W, Dong H, Cui B, Liu C, Liu Z, Wang F, Du J. Regulation and Therapeutic Application of Long non-Coding RNA in Tumor Angiogenesis. Technol Cancer Res Treat 2024; 23:15330338241273239. [PMID: 39110070 PMCID: PMC11307360 DOI: 10.1177/15330338241273239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Tumor growth and metastasis rely on angiogenesis. In recent years, long non-coding RNAs have been shown to play an important role in regulating tumor angiogenesis. Here, we review the multidimensional modes and relevant molecular mechanisms of long non-coding RNAs in regulating tumor angiogenesis. In addition, we summarize new strategies for tumor anti-angiogenesis therapies by targeting long non-coding RNAs. The aim of this study is to provide new diagnostic targets and treatment strategies for anti-angiogenic tumor therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
- The First School of Clinical Medicine of Binzhou Medical University, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Yunxiu Xia
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
- The First School of Clinical Medicine of Binzhou Medical University, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Weiwei Chen
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Hongliang Dong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Zhiqiang Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Fei Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Medical Integration and Practice Center, Shandong University, Jinan, P.R. China
- Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, P.R. China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, P.R. China
| |
Collapse
|
19
|
Seidkhani E, Moradi F, Rustamzadeh A, Simorgh S, Shirvalilou S, Mehdizadeh M, Dehghani H, Akbarnejad Z, Motevalian M, Gorgich EAC. Intranasal delivery of sunitinib: A new therapeutic approach for targeting angiogenesis of glioblastoma. Toxicol Appl Pharmacol 2023; 481:116754. [PMID: 37956929 DOI: 10.1016/j.taap.2023.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most vascular among solid tumors, and despite the use of multimodal therapies, the survival of these patients is poor. In order to target angiogenesis in GBM as a promising strategy, an antiangiogenic drug is required. This study was designed to evaluate the effects of sunitinib, a multityrosine kinase inhibitor with tumor proliferation and angiogenesis inhibitory properties, on GBM-bearing rats. Given the ineffective drug delivery to the brain due to the presence of the blood-brain barrier (BBB), intra-nasal (IN) drug delivery has recently been considered as a non-invasive method to bypass BBB. Therefore, in the current study, IN was used as an ideal method for the delivery of sunitinib to the brain, and the effects of this method were also compared to the OR administration of the sunitinib. GBM was induced in the brain of male Wistar rats, and they were randomly divided into 4 groups; IN-STB (sunitinib intranasal delivery), IN-sham (placebo intranasal delivery), OR-STB (sunitinib oral delivery) and OR-sham (placebo oral delivery). After the end of the treatment period, an MRI of animals' brains showed a reduction in tumor growth in the treatment groups. Immunohistochemistry revealed that sunitinib inhibits angiogenesis in GBM in both OR and IN delivery methods. Analysis of liver tissue and enzymes showed that IN delivery of sunitinib had less hepatotoxicity than the OR method. Overall, it was found that IN sunitinib delivery could be used as a potential non-hepatotoxic alternative for the treatment of GBM.
Collapse
Affiliation(s)
- Elham Seidkhani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Auob Rustamzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sakine Shirvalilou
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Dehghani
- Department of Medical Physics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, the Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
20
|
Abdelhamed AM, Hassan RA, Kadry HH, Helwa AA. Novel pyrazolo[3,4- d]pyrimidine derivatives: design, synthesis, anticancer evaluation, VEGFR-2 inhibition, and antiangiogenic activity. RSC Med Chem 2023; 14:2640-2657. [PMID: 38107182 PMCID: PMC10718518 DOI: 10.1039/d3md00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023] Open
Abstract
A novel series of 12 pyrazolo[3,4-d]pyrimidine derivatives were created and evaluated in vitro for their antiproliferative activity against the NCI 60 human tumor cell line panel. Compounds 12a-d displayed significant antitumor activity against MDA-MB-468 and T-47D (breast cancer cell lines), especially compound 12b, which exhibited the highest anticancer activity against MDA-MB-468 and T-47D cell lines with IC50 values of 3.343 ± 0.13 and 4.792 ± 0.21 μM, respectively compared to staurosporine with IC50 values of 6.358 ± 0.24 and 4.849 ± 0.22 μM. The most potent cytotoxic derivatives 12a-d were studied for their VEGFR-2 inhibitory activity to explore the mechanism of action of these substances. Compound 12b had potent activity against VEGFR-2 with an IC50 value of 0.063 ± 0.003 μM, compared to sunitinib with IC50 = 0.035 ± 0.012 μM. Moreover, there was an excellent reduction in HUVEC migratory potential that resulted in a significant disruption of wound healing patterns by 23% after 72 h of treatment with compound 12b. Cell cycle and apoptosis investigations showed that compound 12b could stop the cell cycle at the S phase and significantly increase total apoptosis in the MDA-MB-468 cell line by 18.98-fold compared to the control. Moreover, compound 12b increased the caspase-3 level in the MDA-MB-468 cell line by 7.32-fold as compared to the control.
Collapse
Affiliation(s)
- Ahmed M Abdelhamed
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Hanan H Kadry
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Amira A Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| |
Collapse
|
21
|
Choi J. Spatial simulation of autologous cell defection for cancer treatment. Evol Med Public Health 2023; 11:461-471. [PMID: 38111808 PMCID: PMC10727474 DOI: 10.1093/emph/eoad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Indexed: 12/20/2023] Open
Abstract
Cancer cells are highly cooperative in a nepotistic way and evolutionarily dynamic. Present cancer treatments often overlook these aspects, inducing the selection of resistant cancer cells and the corresponding relapse. As an alternative method of cancer elimination, autologous cell defection (ACD) was suggested by which modified cancer cells parasitically reliant on other cancer cells are implemented to the cancer cluster. Specifically, modified cancer cells should not produce costly growth factors that promote the growth of other cancer cells while receiving the benefit of exposure to such growth factors. Analytical models and rudimentary experiments up to date provide the medical feasibility of this method. In this study, I built comprehensive spatial simulation models by embracing the effects of the multiple growth factors, the Warburg effect, mutations and immunity. The simulation results based on planar spatial structures indicate that implementation of the defective modified tumours may replace the existing cancer cluster and defective cells would later collapse by themselves. Furthermore, I built a mathematical model that compares the fitness of the cells adjacent to the hypertumour-cancer interface. I also calculated whether anticancer drugs that reduce the effects of the growth factors promote or demote the utility of ACD under diverse fitness functions. The computational examination implies that anticancer drugs may impede the therapeutic effect of ACD when there is a strong concavity in the fitness function. The analysis results could work as a general guidance for effective ACD that may expand the paradigm of cancer treatment.
Collapse
Affiliation(s)
- Jibeom Choi
- Department of Applied Mathematics, College of Applied Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
22
|
Bokhari SMZ, Hamar P. Vascular Endothelial Growth Factor-D (VEGF-D): An Angiogenesis Bypass in Malignant Tumors. Int J Mol Sci 2023; 24:13317. [PMID: 37686121 PMCID: PMC10487419 DOI: 10.3390/ijms241713317] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are the key regulators of vasculogenesis in normal and oncological development. VEGF-A is the most studied angiogenic factor secreted by malignant tumor cells under hypoxic and inflammatory stress, which made VEGF-A a rational target for anticancer therapy. However, inhibition of VEGF-A by monoclonal antibody drugs led to the upregulation of VEGF-D. VEGF-D was primarily described as a lymphangiogenic factor; however, VEGF-D's blood angiogenic potential comparable to VEGF-A has already been demonstrated in glioblastoma and colorectal carcinoma. These findings suggested a role for VEGF-D in facilitating malignant tumor growth by bypassing the anti-VEGF-A antiangiogenic therapy. Owing to its high mitogenic ability, higher affinity for VEGFR-2, and higher expression in cancer, VEGF-D might even be a stronger angiogenic driver and, hence, a better therapeutic target than VEGF-A. In this review, we summarized the angiogenic role of VEGF-D in blood vasculogenesis and its targetability as an antiangiogenic therapy in cancer.
Collapse
Affiliation(s)
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
| |
Collapse
|
23
|
Seif SE, Mahmoud Z, Wardakhan WW, Abdou AM, Hassan RA. Design and synthesis of novel hexahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives as potential anticancer agents with antiangiogenic activity via VEGFR-2 inhibition, and down-regulation of PI3K/AKT/mTOR signaling pathway. Drug Dev Res 2023; 84:839-860. [PMID: 37016480 DOI: 10.1002/ddr.22058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
New thieno[2,3-d]pyrimidine derivatives were designed and synthesized. The National Cancer Institute (NCI) evaluated the synthesized novel compounds against a panel of 60 tumor cell lines for their antiproliferative activity. Compounds 6b, 6f, and 6g showed potent anticancer activity at 10 µM dose, with mean GI of 20.86%, 76.41%, and 31.49%, respectively. Compound 6f was selected for five-dose concentrations evaluation. Compound 6f scored a submicromolar range of GI50 values against 10 cancer cell lines, indicating broad-spectrum and potent antiproliferative activity. Compound 6f TGI values were recorded in the cytostatic range of 4.02-95.1 µM. In comparison to sorafenib, the tested compounds 6b, 6f, and 6g inhibited VEGFR-2 with IC50 values of 0.290 ± 0.032, 0.066 ± 0.004, and 0.16 ± 0.006 µM, correspondingly. Compound 6f significantly reduced the total VEGFR-2 expression and its phosphorylation. Additionally, 6f reduced the phosphorylation of PI3K, Akt, and mTOR pathway proteins. Moreover, the migratory potential of HUVECs was significantly reduced, after 72 h of treatment with compound 6f, resulting in disrupted wound healing patterns which verified the angiogenesis suppression properties of compound 6f. Compound 6f increased the total apoptosis percentage by 21.27-fold compared to sorafenib, which caused a 24.11-fold increase in the total apoptosis percentage. This apoptotic activity was accompanied by a 7.81-fold increase in the level of apoptotic caspase-3. Furthermore, the cell cycle analysis revealed that the target derivative 6f reduced cellular proliferation and induced an arrest in HCT-15 colon cancer cell cycle at the S phase. Molecular modeling was used to determine the binding profile and affinity of derivative 6f toward the VEGFR-2 active site.
Collapse
Affiliation(s)
| | - Zeinab Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Giza, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Ertugrul B, Aytatli A, Karatas OF, Saracoglu N. Design, synthesis, and biological evaluation of indole-modified tamoxifen relatives as potent anticancer agents. RSC Med Chem 2023; 14:1362-1376. [PMID: 37484572 PMCID: PMC10357932 DOI: 10.1039/d3md00157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/25/2023] Open
Abstract
Modulation of existing drugs is an attractive strategy to achieve improved activity in cancer therapy by lowering their effective dose. Preparation of relatives has been suggested and explored to improve the therapeutic effect of anticancer agents. In the current study, we attempted to modulate tamoxifen (TMX) by replacing the C-phenyl ring in its backbone with an indole or oxindole. In addition, it was possible to convert indole-modified tamoxifens to the corresponding 3,3'-bis(indolyl)methanes (BIMs) via an electrophilic substitution reaction with various benzaldehydes. We analyzed the anticancer potential of these indole-modified tamoxifens against various breast cancer cell lines and identified certain tamoxifen relatives with the potential to treat estrogen receptor (ER)-positive breast cancers, based on preliminary results of cell viability and caspase activity assays. The indole-modified tamoxifen BIM-Z,Z-35b, BIM-Z,Z-35f, and E-33 selectively reduced the viability of receptor-sensitive breast cancer cells more effectively than tamoxifen and suppressed the expression of ER-regulated genes. Moreover, Caspase-8 activity showed a specific increase in MCF-7 cells treated with these compounds. Our results indicate that these compounds may be an alternative to tamoxifen for the treatment of breast cancer.
Collapse
Affiliation(s)
- Berrak Ertugrul
- Department of Chemistry, Faculty of Sciences, Ataturk University 25240 Erzurum Türkiye
| | - Abdulmelik Aytatli
- Department of Molecular Biology and Genetics, Erzurum Technical University 25050 Erzurum Türkiye
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University 25050 Erzurum Türkiye
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University 25050 Erzurum Türkiye
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University 25050 Erzurum Türkiye
| | - Nurullah Saracoglu
- Department of Chemistry, Faculty of Sciences, Ataturk University 25240 Erzurum Türkiye
| |
Collapse
|
25
|
Shi J, Yang J, Xu H, Luo Q, Sun J, Zhang Y, Liang Z, Zhao N, Zhang J. Preparation of a Sunitinib loaded microemulsion for ocular delivery and evaluation for the treatment of corneal neovascularization in vitro and in vivo. Front Pharmacol 2023; 14:1157084. [PMID: 37497104 PMCID: PMC10366539 DOI: 10.3389/fphar.2023.1157084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Corneal neovascularization (CNV) is a pathological condition that can disrupt corneal transparency, thus harming visual acuity. However, there is no effective drug to treat CNV. Sunitinib (STB), a small-molecule multiple receptor tyrosine kinase inhibitor, was shown to have an effect on CNV. The purpose of this study was to develop an STB microemulsion (STB-ME) eye drop to inhibit CNV by topical application. Methods: We successfully prepared an STB-ME by the phase inversion emulsification method, and the physicochemical properties of STB-MEs were investigated. The short-term storage stability, cytotoxicity to human corneal epithelial cells, drug release, ocular irritation, ocular pharmacokinetics and the inhibitory effect on CNV were evaluated in vitro and in vivo. Results: The optimal formulation of STB-ME is composed of oleic acid, CRH 40, Transcutol P, water and sodium hyaluronate (SH). It is a uniform spherical particle with a mean droplet size of 18.74 ± 0.09 nm and a polydispersity index of 0.196 ± 0.004. In the in vitro drug release results, STB-ME showed sustained release and was best fitted by a Korsmeyer-Peppas model (R 2 = 0.9960). The results of the ocular pharmacokinetics in rabbits showed that the formulation containing SH increased the bioavailability in the cornea (2.47-fold) and conjunctiva (2.14-fold). STB-ME (0.05% and 0.1%), administered topically, suppressed alkali burn-induced CNV in mice more effectively than saline, and high-dose (0.1%) STB-ME had similar efficacy to dexamethasone (0.025%). Conclusion: This study provides a promising formulation of STB-ME for the inhibition of CNV by topical administration, which has the excellent characteristics of effectiveness, sustained release and high ocular bioavailability.
Collapse
Affiliation(s)
- Jieran Shi
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qing Luo
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jun Sun
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yali Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
26
|
Russo E, Grondona C, Brullo C, Spallarossa A, Villa C, Tasso B. Indole Antitumor Agents in Nanotechnology Formulations: An Overview. Pharmaceutics 2023; 15:1815. [PMID: 37514002 PMCID: PMC10385756 DOI: 10.3390/pharmaceutics15071815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The indole heterocycle represents one of the most important scaffolds in medicinal chemistry and is shared among a number of drugs clinically used in different therapeutic areas. Due to its varied biological activities, high unique chemical properties and significant pharmacological behaviors, indole derivatives have drawn considerable interest in the last decade as antitumor agents active against different types of cancers. The research of novel antiproliferative drugs endowed with enhanced efficacy and reduced toxicity led to the approval by U.S. Food and Drug Administration of the indole-based anticancer agents Sunitinib, Nintedanib, Osimertinib, Panobinostat, Alectinib and Anlotinib. Additionally, new drug delivery systems have been developed to protect the active principle from degradation and to direct the drug to the specific site for clinical use, thus reducing its toxicity. In the present work is an updated review of the recently approved indole-based anti-cancer agents and the nanotechnology systems developed for their delivery.
Collapse
Affiliation(s)
- Eleonora Russo
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Carola Grondona
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Chiara Brullo
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Andrea Spallarossa
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Carla Villa
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Bruno Tasso
- Section of Medicinal and Cosmetic Chemistry, Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| |
Collapse
|
27
|
Cao J, Chow L, Dow S. Strategies to overcome myeloid cell induced immune suppression in the tumor microenvironment. Front Oncol 2023; 13:1116016. [PMID: 37114134 PMCID: PMC10126309 DOI: 10.3389/fonc.2023.1116016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer progression and metastasis due to tumor immune evasion and drug resistance is strongly associated with immune suppressive cellular responses, particularly in the case of metastatic tumors. The myeloid cell component plays a key role within the tumor microenvironment (TME) and disrupts both adaptive and innate immune cell responses leading to loss of tumor control. Therefore, strategies to eliminate or modulate the myeloid cell compartment of the TME are increasingly attractive to non-specifically increase anti-tumoral immunity and enhance existing immunotherapies. This review covers current strategies targeting myeloid suppressor cells in the TME to enhance anti-tumoral immunity, including strategies that target chemokine receptors to deplete selected immune suppressive myeloid cells and relieve the inhibition imposed on the effector arms of adaptive immunity. Remodeling the TME can in turn improve the activity of other immunotherapies such as checkpoint blockade and adoptive T cell therapies in immunologically "cold" tumors. When possible, in this review, we have provided evidence and outcomes from recent or current clinical trials evaluating the effectiveness of the specific strategies used to target myeloid cells in the TME. The review seeks to provide a broad overview of how myeloid cell targeting can become a key foundational approach to an overall strategy for improving tumor responses to immunotherapy.
Collapse
Affiliation(s)
- Jennifer Cao
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
28
|
Design, Synthesis, and Biological Evaluation of 2-Mercaptobenzoxazole Derivatives as Potential Multi-Kinase Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16010097. [PMID: 36678593 PMCID: PMC9863562 DOI: 10.3390/ph16010097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
A series of 12 compounds was designed and synthesized, based on 2-mercaptobenzoxazole derivatives containing either the substituted benzenes 4a-d, substituted isatins 5a-f, or heterocycles 6a-b. The in vitro antiproliferative activity of the compounds was evaluated against hepatocellular carcinoma (HepG2), mammary gland cancer (MCF-7), breast cancer (MDA-MB-231), and the epithelioid cervix carcinoma (HeLa) cancer cell lines. Compounds 4b, 4d, 5d, and 6b had the most potent antiproliferative activity, with IC50 values ranging from 2.14 to 19.34 µM, compared to the reference drugs, doxorubicin and sunitinib. Compound 6b revealed a remarkably broad antitumor activity pattern against HepG2 (IC50 6.83 µM), MCF-7 (IC50 3.64 µM), MDA-MB-231 (IC50 2.14 µM), and HeLa (IC50 5.18 µM). In addition, compound 6b showed potent inhibitory activities against EGFR, HER2, VEGFR2, and the CDK2 protein kinase enzymes, with IC50 values of 0.279, 0.224, 0.565, and 0.886 µM, respectively. Moreover, compound 6b induced caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Finally, a molecular docking simulation was performed for compound 6b to predict the potential ligand-protein interactions with the active sites of the EGFR, HER2, and VEGFR2 proteins.
Collapse
|
29
|
Sheppard‐Olivares S, Bello NM, Johannes CM, Hocker SE, Biller B, Husbands B, Snyder E, McMillan M, McKee T, Wouda RM. Toceranib phosphate in the management of canine insulinoma: A retrospective multicentre study of 30 cases (2009-2019). Vet Rec Open 2022; 9:e27. [PMID: 35079406 PMCID: PMC8776903 DOI: 10.1002/vro2.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Insulinomas are the most common tumour of the endocrine pancreas in dogs. These malignant tumours have a high metastatic rate and limited chemotherapeutic options. The multi-receptor tyrosine kinase inhibitor sunitinib malate has benefit in the treatment of metastatic insulinoma in people. Toceranib phosphate, an analogous veterinary agent, may provide benefit for dogs. METHODS A retrospective study describing the extent and duration of clinical outcomes and adverse events (AEs) in dogs diagnosed with insulinoma and receiving toceranib. RESULTS Records for 30 dogs diagnosed with insulinoma and having received toceranib were identified from a medical record search of five university and eight referral hospitals. The median progression-free interval and overall survival time were 561 days (95% confidence interval (CI): [246, 727 days]) and 656 days (95% CI: [310, 1045 days]), respectively. Of the dogs for which the canine Response evaluation criteria for solid tumours tool could be applied, the majority (66.7%) showed either a complete response, partial response or stable disease. Time to clinical progression was associated with prior intervention and type of veterinary practice. Larger dogs were at increased risk for disease progression and death. No novel AEs were reported. CONCLUSIONS Most dogs diagnosed with insulinoma and receiving toceranib appeared to have a clinical benefit. Randomised, prospective studies are needed to better elucidate and objectively quantify the potential effect and survival benefit of toceranib therapy for management of insulinoma in dogs.
Collapse
Affiliation(s)
- Sabina Sheppard‐Olivares
- Department of Clinical SciencesCollege of Veterinary MedicineKansas State UniversityManhattanKansasUSA
- Present address:
3901 Guadalupe Street, Austin, TX 78751, USA.
| | - Nora M. Bello
- Department of StatisticsCollege of Arts and SciencesKansas State UniversityManhattanKansasUSA
| | - Chad M. Johannes
- Department of Clinical SciencesCollege of Veterinary MedicineIowa State UniversityAmesIowaUSA
| | - Samuel E. Hocker
- Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
- Present address:
Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Barbara Biller
- Flint Animal Cancer CenterCollege of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
- Present address:
4120 Clydesdale Pkwy, Loveland, CO 80538, USA.
| | - Brian Husbands
- Veterinary Clinical Sciences DepartmentCollege of Veterinary MedicineUniversity of MinnesotaSt. PaulMinnesotaUSA
- Present address:
Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA.
| | - Elizabeth Snyder
- Department of Medical SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Present address:
BluePearl Specialty and Emergency Pet Hospital, 1646 Spring Cypress Rd Ste 100, Spring, TX 77388, USA.
| | - Mattison McMillan
- Las Vegas Veterinary Specialty CenterLas VegasNevadaUSA
- Present address:
College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| | - Talon McKee
- Clinical Studies DepartmentVCA Inc.Los AngelesCaliforniaUSA
| | - Raelene M. Wouda
- Department of Clinical SciencesCollege of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| |
Collapse
|
30
|
Bauer S, Jones RL, Blay JY, Gelderblom H, George S, Schöffski P, von Mehren M, Zalcberg JR, Kang YK, Razak AA, Trent J, Attia S, Le Cesne A, Su Y, Meade J, Wang T, Sherman ML, Ruiz-Soto R, Heinrich MC. Ripretinib Versus Sunitinib in Patients With Advanced Gastrointestinal Stromal Tumor After Treatment With Imatinib (INTRIGUE): A Randomized, Open-Label, Phase III Trial. J Clin Oncol 2022; 40:3918-3928. [PMID: 35947817 PMCID: PMC9746771 DOI: 10.1200/jco.22.00294] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Sunitinib, a multitargeted tyrosine kinase inhibitor (TKI), is approved for advanced gastrointestinal stromal tumor (GIST) after imatinib failure. Ripretinib is a switch-control TKI approved for advanced GIST after prior treatment with three or more TKIs, including imatinib. We compared efficacy and safety of ripretinib versus sunitinib in patients with advanced GIST who were previously treated with imatinib (INTRIGUE, ClinicalTrials.gov identifier: NCT03673501). PATIENTS AND METHODS Random assignment was 1:1 to once-daily ripretinib 150 mg or once-daily sunitinib 50 mg (4 weeks on/2 weeks off) and stratified by KIT/platelet-derived growth factor α mutation and imatinib intolerance. The primary end point was progression-free survival (PFS) by independent radiologic review using modified Response Evaluation Criteria in Solid Tumors version 1.1. Secondary end points included objective response rate by independent radiologic review, safety, and patient-reported outcome measures. RESULTS Overall, 453 patients were randomly assigned to ripretinib (intention-to-treat [ITT], n = 226; KIT exon 11 ITT, n = 163) or sunitinib (ITT, n = 227; KIT exon 11 ITT, n = 164). Median PFS for ripretinib and sunitinib (KIT exon 11 ITT) was 8.3 and 7.0 months, respectively (hazard ratio, 0.88; 95% CI, 0.66 to 1.16; P = .36); median PFS (ITT) was 8.0 and 8.3 months, respectively (hazard ratio, 1.05; 95% CI, 0.82 to 1.33; nominal P = .72). Neither was statistically significant. Objective response rate was higher for ripretinib versus sunitinib in the KIT exon 11 ITT population (23.9% v 14.6%, nominal P = .03). Ripretinib was associated with a more favorable safety profile, fewer grade 3/4 treatment-emergent adverse events (41.3% v 65.6%, nominal P < .0001), and better scores on patient-reported outcome measures of tolerability. CONCLUSION Ripretinib was not superior to sunitinib in terms of PFS. However, meaningful clinical activity, fewer grade 3/4 treatment-emergent adverse events, and improved tolerability were observed with ripretinib.
Collapse
Affiliation(s)
- Sebastian Bauer
- Department of Medical Oncology and Sarcoma Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Germany
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | | | | | | | - Patrick Schöffski
- Department of General Medical Oncology, Leuven Cancer Institute, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | | | - John R. Zalcberg
- Monash University School of Public Health and Preventive Medicine and Department of Medical Oncology, Alfred Health, Melbourne, Victoria, Australia
| | - Yoon-Koo Kang
- Asan Medical Center, University of Ulsan, Seoul, South Korea
| | | | - Jonathan Trent
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL
| | | | | | - Ying Su
- Deciphera Pharmaceuticals, LLC, Waltham, MA
| | | | - Tao Wang
- Deciphera Pharmaceuticals, LLC, Waltham, MA
| | | | | | - Michael C. Heinrich
- Portland VA Health Care System, Portland, OR
- OHSU Knight Cancer Institute, Portland, OR
| |
Collapse
|
31
|
Yadav P, Dua C, Bajaj A. Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy. CHEM REC 2022; 22:e202200152. [PMID: 36103616 DOI: 10.1002/tcr.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Antiangiogenic therapy in combination with chemotherapeutic agents is an effective strategy for cancer treatment. However, this combination therapy is associated with several challenges including non-specific biodistribution leading to systemic toxicity. Biomaterial-mediated codelivery of chemotherapeutic and anti-angiogenic agents can exploit their passive and active targeting abilities, leading to improved drug accumulation at the tumor site and therapeutic outcomes. In this review, we present the progress made in the field of engineered biomaterials for codelivery of chemotherapeutic and antiangiogenic agents. We present advances in engineering of liposome/hydrogel/micelle-based biomaterials for delivery of combination of anticancer and anti-angiogenesis drugs, or combination of anticancer and siRNA targeting angiogenesis, and targeted nanoparticles. We then present our perspective on developing strategies for targeting angiogenesis and cell proliferation for cancer therapy.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Chhavi Dua
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
32
|
SOFU M, GOKER BAGCA B, ERISIK D, AVCI CB, UYANIKGIL Y. Adipose Tissue Mesenchymal Stem Cells Exposed To Oxytocin and Sunitinib are Synergistically Dystrophic. DICLE MEDICAL JOURNAL 2022. [DOI: 10.5798/dicletip.1170070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objective: Mesenchymal stem cells (MSCs) are also promising in immunosuppressed patients after organ and tissue transplantation, in addition to their current wide range of uses and research areas. Sunitinib is a receptor tyrosine kinase with immunosuppressive properties and its cytotoxic activity in different types of cells is known. Our study aimed to elucidate the effect of oxytocin on sunitinib-treated MSCs.
Methods: For this purpose, commercially available rat adipose tissue-derived MSC (ADMSCs) was used. The individual or combinational effect of the active substances on viability was evaluated with WST-1, the effect on apoptosis Annexin V, the effect on oxidative stress markers MDA, CAT, GPX, and SOD ELISA tests.
Results: The IC50 value of sunitinib was determined as 44.57 μM at the 48th hour, and it was determined that oxytocin had no cytotoxic effect in doses up to 100 μM. Treatment of the two agents in combination increased the cytotoxic effect of sunitinib. Oxytocin attenuated the effect of sunitinib on apoptosis and lipid peroxidation.
Conclusion: It is important to investigate the efficacy of these two substances individually and in combination with ADMSCs with further experiments to evaluate the potential use of oxytocin in organ and tissue transplantations.
Collapse
|
33
|
Sheldon H, Zhang W, Bridges E, Ang KH, Lin S, Masiero M, Li D, Handford PA, Whiteman P, Fischer R, Buffa F, Vatish M, Banham AH, Harris AL. ELTD1 is present in extracellular vesicles derived from endothelial cells as a cleaved extracellular domain which induces in vivo angiogenesis. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e52. [PMID: 38939053 PMCID: PMC11080856 DOI: 10.1002/jex2.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/29/2024]
Abstract
ELTD1/ADGRL4 is an adhesion GPCR with an important role in angiogenesis. We recently identified a role for ELTD1 in wound repair and inflammation. Activation of ELTD1 in endothelial cells results in a type II EMT to myofibroblast-like cells that have enhanced angiogenic ability. Furthermore, expression of Eltd1 in murine breast cancer cells increases tumour growth by increasing blood vessel size and perfusion and by creating an immunosuppressive microenvironment. As extracellular vesicles (EVs) are known to be involved in vascular development, growth and maturation we investigated the composition and functional effects of the EVs isolated from ELTD1 expressing cells to elucidate their role in these processes. A highly glycosylated form of the extracellular domain (ECD) of ELTD1 is readily incorporated into EVs. Using mass spectrometry-based proteomics we identified proteins that are enriched in ELTD1-EVs and are involved in haemostasis and immune responses. ELTD1 enriched EVs were pro-angiogenic in vivo and in vitro and the presence of the ECD alone induced endothelial sprouting. In endothelial cells experiencing laminar flow, ELTD1 levels were reduced in the EVs when they are quiescent, showing a relationship between ELTD1 and the activation state of the endothelium. Using FACS, we detected a significant increase in vesicular ELTD1 in the plasma of patients with preeclampsia, a condition characterized by endothelial dysfunction. These data confirm a role for ELTD1 in wound repair and inflammation and reveal its potential as a biomarker of vessel dysfunction.
Collapse
Affiliation(s)
- Helen Sheldon
- Cancer Research UK Molecular Oncology LaboratoriesWeatherall Institute of Molecular MedicineUniversity of OxfordJohn Radcliffe HospitalOxfordUK
| | - Wei Zhang
- Nuffield Department of Women's & Reproductive Health, Women's CentreUniversity of OxfordJohn Radcliffe HospitalOxfordUK
| | - Esther Bridges
- Cancer Research UK Molecular Oncology LaboratoriesWeatherall Institute of Molecular MedicineUniversity of OxfordJohn Radcliffe HospitalOxfordUK
| | - Koon Hwee Ang
- Cancer Research UK Molecular Oncology LaboratoriesWeatherall Institute of Molecular MedicineUniversity of OxfordJohn Radcliffe HospitalOxfordUK
| | - Salwa Lin
- Cancer Research UK Molecular Oncology LaboratoriesWeatherall Institute of Molecular MedicineUniversity of OxfordJohn Radcliffe HospitalOxfordUK
| | - Massimo Masiero
- Nuffield Division of Clinical Laboratory SciencesRadcliffe Department of MedicineJohn Radcliffe HospitalOxfordUK
| | - Demin Li
- Nuffield Division of Clinical Laboratory SciencesRadcliffe Department of MedicineJohn Radcliffe HospitalOxfordUK
| | | | - Pat Whiteman
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Roman Fischer
- Nuffield Department of MedicineTarget Discovery InstituteOxford University, NDM Research BuildingOxfordUK
| | - Francesca Buffa
- Department of OncologyUniversity of OxfordChurchill HospitalOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, Women's CentreUniversity of OxfordJohn Radcliffe HospitalOxfordUK
| | - Alison H. Banham
- Nuffield Division of Clinical Laboratory SciencesRadcliffe Department of MedicineJohn Radcliffe HospitalOxfordUK
| | - Adrian L. Harris
- Cancer Research UK Molecular Oncology LaboratoriesWeatherall Institute of Molecular MedicineUniversity of OxfordJohn Radcliffe HospitalOxfordUK
| |
Collapse
|
34
|
Halogenated Flavonoid Derivatives Display Antiangiogenic Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154757. [PMID: 35897938 PMCID: PMC9331694 DOI: 10.3390/molecules27154757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Antiangiogenic agents attenuate tumours' growth and metastases and are therefore beneficial as an adjuvant or standalone cancer regimen. Drugs with dual antiproliferative and antiangiogenic activities can achieve anticancer efficacy and overcome acquired resistance. In this study, synthetic flavones (5a,b) with reported anticancer activity, and derivatives (4b and 6a), exhibited significant inhibition of endothelial cell tube formation (40-55%, 12 h) at 1 µM, which is comparable to sunitinib (50% inhibition at 1 µM, 48 h). Flavones (4b, 5a,b and 6a) also showed 25-37% reduction in HUVECs migration at 10 µM. In a Western blotting assay, 5a and 5b subdued VEGFR2 phosphorylation by 37% and 57%, respectively, suggesting that VEGFR2 may be their main antiangiogenic target. 5b displayed the best docking fit with VEGFR2 in an in silico study, followed by 5a, emphasizing the importance of the 7-hydroxyl group accompanied by a 4-C=S for activity. Conversely, derivatives with a 4-carbonyl moiety fitted poorly into the target's binding pocket, suggesting that their antiangiogenic activity depends on a different target. This study provides valuable insight into the Structure Activity Relationships (SAR) and modes of action of halogenated flavones with VEGFR2 and highlights their therapeutic potential as antiangiogenic/anticancer lead compounds.
Collapse
|
35
|
Jiao Y, Gao Y, Wang J, An H, Xiang Li Y, Zhang X. Intelligent porphyrin nano-delivery system for photostimulated and targeted inhibition of angiogenesis. Int J Pharm 2022; 621:121805. [DOI: 10.1016/j.ijpharm.2022.121805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 12/17/2022]
|
36
|
Sunitinib and Pterostilbene Combination Treatment Exerts Antitumor Effects in Gastric Cancer via Suppression of PDZD8. Int J Mol Sci 2022; 23:ijms23074002. [PMID: 35409367 PMCID: PMC8999764 DOI: 10.3390/ijms23074002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
The use of molecular-targeted drugs in the treatment of gastric cancer is increasing. However, the variety of molecular-targeted drugs in gastric cancer is still limited, and the development of new molecular-targeted therapies is required. The effect of combining sunitinib (SUN) with pterostilbene (PTE) on the human gastric cancer cell lines TMK1 and MKN74 was examined in in vitro and in vivo. Compared with SUN or PTE treatment alone, cotreatment induced pronounced suppression of cell proliferation, with a marked increase in oxidative stress. SUN was associated with a significant retention of mitochondrial Fe2+. SUN-treated cells decreased expression of PDZ domain-containing protein 8 (PDZD8). Knockdown of PDZD8 in both cells induced Fe2+ retention, and siPDZD8+PTE markedly suppressed cell proliferation with suppressed oxidative phosphorylation, as did the combination of SUN+PTE. In a nude mouse tumor model, a pronounced antitumor effect was observed with SUN+PTE treatment compared to SUN alone. PDZD8 may be a newly discovered off-target for SUN, and that the combined use of PTE with SUN significantly promotes antitumor activity in gastric cancer cell lines. The combined use of SUN and PTE might be a new molecular-targeted therapy for gastric cancer.
Collapse
|
37
|
Mengie Ayele T, Tilahun Muche Z, Behaile Teklemariam A, Bogale Kassie A, Chekol Abebe E. Role of JAK2/STAT3 Signaling Pathway in the Tumorigenesis, Chemotherapy Resistance, and Treatment of Solid Tumors: A Systemic Review. J Inflamm Res 2022; 15:1349-1364. [PMID: 35241923 PMCID: PMC8887966 DOI: 10.2147/jir.s353489] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway is a common signaling pathway used to transduce signals from the extracellular to the intracellular (nucleus) upon the binding of cytokines and growth factors to the extracellular domain of specific cell surface receptors. This signaling pathway is tightly regulated and has a multitude of biological functions such as cell proliferation, differentiation, and apoptosis. Besides, the regulated JAK2/STAT3 signaling plays a crucial role in embryonic development, hemopoiesis, and controlling the immune system. Conversely, aberrantly activated JAK2/STAT3 is frequently detected in varieties of tumors and involved in oncogenesis, angiogenesis, and metastasis of many cancer diseases that are usually refractory to the standard chemotherapy. However, the JAK3/STAT3 pathway recently emerged interestingly as a new site for the development of novel anti-tumor agents and becomes a promising therapeutic target in the treatment of many solid malignancies. Herein, this review aimed to provide insight into the JAK2/STAT3 pathway, in the hope to gain an understanding of its potential role in the pathogenesis, progression, chemotherapy resistance, and cancer therapy of solid tumors.
Collapse
Affiliation(s)
- Teklie Mengie Ayele
- Department of Pharmacy, Debre Tabor University, Debre Tabor, Amhara, Ethiopia
| | | | | | | | - Endeshaw Chekol Abebe
- Department of Medical Biochemistry, Debre Tabor University, Debre Tabor, Amhara, Ethiopia
- Correspondence: Endeshaw Chekol Abebe, Tel +251928428133, Email
| |
Collapse
|
38
|
Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol 2022; 915:174512. [PMID: 34555395 DOI: 10.1016/j.ejphar.2021.174512] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023]
Abstract
A complete cure for cancer is still the holy grail for scientists. The existing treatment of cancer is primarily focused on surgery, radiation and conventional chemotherapy. However, chemotherapeutic agents also affect healthy tissues or organs due to a lack of specificity. While passive targeting is studied for anticancer drugs focused on the enhanced permeability and retention effect, it failed to achieve drug accumulation at the tumor site and desired therapeutic efficacy. This review presents an outline of the current significant targets for active tumor drug delivery systems and provides insight into the direction of active tumor-targeting strategies. For this purpose, a systematic understanding of the physiological factors, tumor microenvironment and its components, overexpressed receptor and associated proteins are covered here. We focused on angiogenesis mediated targeting, receptor-mediated targeting and peptide targeting. This active targeting along with integration with nano delivery systems helps in achieving specific action, thus reducing the associated adverse effects to healthy tissues. Although the tumor-targeting methods and possibilities explored so far seem revolutionary in cancer treatment, in-depth clinical studies data is required for its commercial translation.
Collapse
Affiliation(s)
- Darshan Vyas
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
39
|
Abd El-wahab HA, Mansour HS, Ali AM, El-Awady R, Aboul-Fadl T. New Cell Cycle Checkpoint Pathways Regulators with 2-Oxo-indoline Scaffold as Potential Anticancer Agents: Design, Synthesis, Biological Activities and In Silico Studies. Bioorg Chem 2022; 120:105622. [DOI: 10.1016/j.bioorg.2022.105622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 12/18/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
|
40
|
Qin A, Musket A, Musich PR, Schweitzer JB, Xie Q. Receptor tyrosine kinases as druggable targets in glioblastoma: Do signaling pathways matter? Neurooncol Adv 2021; 3:vdab133. [PMID: 34806012 PMCID: PMC8598918 DOI: 10.1093/noajnl/vdab133] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor without effective therapies. Since bevacizumab was FDA approved for targeting vascular endothelial growth factor receptor 2 (VEGFR2) in adult patients with recurrent GBM, targeted therapy against receptor tyrosine kinases (RTKs) has become a new avenue for GBM therapeutics. In addition to VEGFR, the epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), hepatocyte growth factor receptor (HGFR/MET), and fibroblast growth factor receptor (FGFR) are major RTK targets. However, results from clinical Phase II/III trials indicate that most RTK-targeting therapeutics including tyrosine kinase inhibitors (TKIs) and neutralizing antibodies lack clinical efficacy, either alone or in combination. The major challenge is to uncover the genetic RTK alterations driving GBM initiation and progression, as well as to elucidate the mechanisms toward therapeutic resistance. In this review, we will discuss the genetic alterations in these 5 commonly targeted RTKs, the clinical trial outcomes of the associated RTK-targeting therapeutics, and the potential mechanisms toward the resistance. We anticipate that future design of new clinical trials with combination strategies, based on the genetic alterations within an individual patient’s tumor and mechanisms contributing to therapeutic resistance after treatment, will achieve durable remissions and improve outcomes in GBM patients.
Collapse
Affiliation(s)
- Anna Qin
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Anna Musket
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Phillip R Musich
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - John B Schweitzer
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Qian Xie
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
41
|
Szymanska M, Mahmood D, Yap TE, Cordeiro MF. Recent Advancements in the Medical Treatment of Diabetic Retinal Disease. Int J Mol Sci 2021; 22:ijms22179441. [PMID: 34502350 PMCID: PMC8430918 DOI: 10.3390/ijms22179441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinal disease remains one of the most common complications of diabetes mellitus (DM) and a leading cause of preventable blindness. The mainstay of management involves glycemic control, intravitreal, and laser therapy. However, intravitreal therapy commonly requires frequent hospital visits and some patients fail to achieve a significant improvement in vision. Novel and long-acting therapies targeting a range of pathways are warranted, while evidence to support optimal combinations of treatments is currently insufficient. Improved understanding of the molecular pathways involved in pathogenesis is driving the development of therapeutic agents not only targeting visible microvascular disease and metabolic derangements, but also inflammation and accelerated retinal neurodegeneration. This review summarizes the current and emerging treatments of diabetic retinal diseases and provides an insight into the future of managing this important condition.
Collapse
Affiliation(s)
- Maja Szymanska
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
| | - Daanyaal Mahmood
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
| | - Timothy E. Yap
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
| | - Maria F. Cordeiro
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London NW1 5QH, UK; (M.S.); (D.M.); (T.E.Y.)
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London NW1 5QH, UK
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Correspondence:
| |
Collapse
|
42
|
G-protein-coupled receptors as therapeutic targets for glioblastoma. Drug Discov Today 2021; 26:2858-2870. [PMID: 34271165 DOI: 10.1016/j.drudis.2021.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumour in adults. Treatments include surgical resection, radiotherapy, and chemotherapy. Despite this, the prognosis remains poor, with an impacted quality of life during treatment coupled with brain tumour recurrence; thus, new treatments are desperately needed. In this review, we focus on recent advances in G-protein-coupled receptor (GPCR) targets. To date, the most promising targets are the chemokine, cannabinoid, and dopamine receptors, but future work should further examine the melanocortin receptor-4 (MC4R), adhesion, lysophosphatidic acid (LPA) and smoothened (Smo) receptors to initiate new drug-screening strategies and targeted delivery of safe and effective GBM therapies.
Collapse
|
43
|
Basso U, Facchinetti A, Rossi E, Maruzzo M, Conteduca V, Aieta M, Massari F, Fraccon AP, Mucciarini C, Sava T, Santoni M, Pegoraro C, Durante E, Nicodemo M, Perin A, Bearz A, Gatti C, Fiduccia P, Diminutto A, Barile C, De Giorgi U, Zamarchi R, Zagonel V. Prognostic Role of Circulating Tumor Cells in Metastatic Renal Cell Carcinoma: A Large, Multicenter, Prospective Trial. Oncologist 2021; 26:740-750. [PMID: 34077597 DOI: 10.1002/onco.13842] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) correlate with adverse prognosis in patients with breast, colorectal, lung, and prostate cancer. Little data are available for renal cell carcinoma (RCC). MATERIALS AND METHODS We designed a multicenter prospective observational study to assess the correlation between CTC counts and progression-free survival (PFS) in patients with metastatic RCC treated with an antiangiogenic tyrosine kinase inhibitor as a first-line regimen; overall survival (OS) and response were secondary objectives. CTC counts were enumerated by the CellSearch system at four time points: day 0 of treatment, day 28, day 56 and then at progression, or at 12 months in the absence of progression. RESULTS One hundred ninety-five eligible patients with a median age of 69 years were treated with sunitinib (77.5%) or pazopanib (21%). At baseline, 46.7% of patients had one or more CTCs per milliliter (range, 1 to 263). Thirty patients had at least three CTCs, with a median PFS of 5.8 versus 15 months in the remaining patients (p = .002; hazard ratio [HR], 1.99), independently of the International Metastatic RCC Database Consortium score at multivariate analysis (HR, 1.91; 95% confidence interval [CI], 1.16-3.14). Patients with at least three CTCs had a shorter estimated OS of 13.8 months versus 52.8 months in those with fewer than three CTCs (p = .003; HR, 1.99; multivariate analysis HR, 1.67; 95% CI, 0.95-2.93). Baseline CTC counts did not correlate with response; neither did having CTC sequencing counts greater than or equal to one, two, three, four, or five. CONCLUSION We provide prospective evidence that the presence of three or more CTCs at baseline is associated with a significantly shorter PFS and OS in patients with metastatic RCC. IMPLICATIONS FOR PRACTICE This prospective study evaluated whether the presence of circulating tumor cells (CTCs) in the peripheral blood correlates with activity of first-line tyrosine kinase inhibitors in metastatic renal cell carcinoma (RCC). This study demonstrated that almost half of patients with metastatic RCC have at least one CTC in their blood and that those patients with at least three CTCs are at increased risk of early progressive disease and early death due to RCC. Studies incorporating CTC counts in the prognostic algorithms of metastatic RCC are warranted.
Collapse
Affiliation(s)
- Umberto Basso
- Oncology Unit 1, Department of Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Elisabetta Rossi
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Marco Maruzzo
- Oncology Unit 1, Department of Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Vincenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Michele Aieta
- Department of Onco-Hematology, Division of Medical Oncology, Centro di Riferimento Oncologico della Basilicata IRCCS, Rionero in Vulture, Italy
| | - Francesco Massari
- Department of Medical Oncology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.,Medical Oncology, IRCCS Azienda Ospedaliera Universitaria, Bologna, Italy
| | - Anna Paola Fraccon
- Medical Oncology, Ospedale P. Pederzoli, Peschiera Del Garda, Peschiera Del Garda (VR), Italy
| | - Claudia Mucciarini
- Medical Oncology Unit, Ramazzini Hospital, Carpi-AUSL Modena, Modena, Italy
| | - Teodoro Sava
- Medical Oncology, Ospedale Borgo Trento, Verona, Italy
| | - Matteo Santoni
- Medical Oncology, Polytechnic University of the Marche Region, Azienda Ospedaliero-Universitaria, Ospedali Riuniti Umberto I-GM Lancisi and G Salesi, Ancona, Italy
| | - Cristina Pegoraro
- Medical Oncology Ospedale di Montecchio Maggiore, Azienda ULSS 8 Berica, Berica, Italy
| | - Emilia Durante
- Department of Medical Oncology, Ospedale di Legnago, Azienda ULSS 9 Scaligera, Scaligera, Italy
| | - Maurizio Nicodemo
- Department of Medical Oncology, Sacro Cuore - Don Calabria Hospital, Negrar, Italy
| | - Alessandra Perin
- Medical Oncology, Polo Unico Ospedale Santorso, Santorso, Azienda ULSS 7 Pedemontana, Pedemontana, Italy
| | - Alessandra Bearz
- Department of Medical Oncology, Centro Riferimento Oncologico CRO IRCCS, Aviano, Italy
| | - Carlo Gatti
- Medical Oncology, Ospedale di Chioggia, Azienda ULSS 3 Serenissima, Chioggia, Italy
| | - Pasquale Fiduccia
- Clinical Research Unit, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Alberto Diminutto
- Oncology Unit 1, Department of Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Carmen Barile
- Medical Oncology, Ospedale di Rovigo, Azienda ULSS 5 Polesana, Rovigo, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Rita Zamarchi
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| | - Vittorina Zagonel
- Oncology Unit 1, Department of Oncology, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy
| |
Collapse
|
44
|
Rausch M, Rutz A, Allard PM, Delucinge-Vivier C, Docquier M, Dormond O, Wolfender JL, Nowak-Sliwinska P. Molecular and Functional Analysis of Sunitinib-Resistance Induction in Human Renal Cell Carcinoma Cells. Int J Mol Sci 2021; 22:6467. [PMID: 34208775 PMCID: PMC8235637 DOI: 10.3390/ijms22126467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Resistance in clear cell renal cell carcinoma (ccRCC) against sunitinib is a multifaceted process encompassing numerous molecular aberrations. This induces clinical complications, reducing the treatment success. Understanding these aberrations helps us to select an adapted treatment strategy that surpasses resistance mechanisms, reverting the treatment insensitivity. In this regard, we investigated the dominant mechanisms of resistance to sunitinib and validated an optimized multidrug combination to overcome this resistance. Human ccRCC cells were exposed to single or chronic treatment with sunitinib to obtain three resistant clones. Upon manifestation of sunitinib resistance, morphometric changes in the cells were observed. At the molecular level, the production of cell membrane and extracellular matrix components, chemotaxis, and cell cycle progression were dysregulated. Molecules enforcing the cell cycle progression, i.e., cyclin A, B1, and E, were upregulated. Mass spectrometry analysis revealed the intra- and extracellular presence of N-desethyl sunitinib, the active metabolite. Lysosomal sequestration of sunitinib was confirmed. After treatment with a synergistic optimized drug combination, the cell metabolic activity in Caki-1-sunitinib-resistant cells and 3D heterotypic co-cultures was reduced by >80%, remaining inactive in non-cancerous cells. These results demonstrate geno- and phenotypic changes in response to sunitinib treatment upon resistance induction. Mimicking resistance in the laboratory served as a platform to study drug responses.
Collapse
Affiliation(s)
- Magdalena Rausch
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; (M.R.); (A.R.); (P.-M.A.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1205 Geneva, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; (M.R.); (A.R.); (P.-M.A.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; (M.R.); (A.R.); (P.-M.A.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | | | - Mylène Docquier
- iGE3 Genomics Platform, University of Geneva, 1206 Geneva, Switzerland; (C.D.-V.); (M.D.)
- Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland
| | - Olivier Dormond
- Department of Visceral Surgery, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland;
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; (M.R.); (A.R.); (P.-M.A.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland; (M.R.); (A.R.); (P.-M.A.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1205 Geneva, Switzerland
| |
Collapse
|
45
|
Khadge S, Cole K, Talmadge JE. Myeloid derived suppressor cells and the release of micro-metastases from dormancy. Clin Exp Metastasis 2021; 38:279-293. [PMID: 34014424 DOI: 10.1007/s10585-021-10098-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Metastasis is the primary cause of cancer mortality and an improved understanding of its pathology is critical to the development of novel therapeutic approaches. Mechanism-based therapeutic strategies require insight into the timing of tumor cell dissemination, seeding of distant organs, formation of occult lesions and critically, their release from dormancy. Due to imaging limitations, primary tumors can only be detected when they reach a relatively large size (e.g. > 1 cm3), which, based on our understanding of tumor evolution, occurs approximately 10 years and about 30 doubling times following tumor initiation. Genomic profiling of paired primary tumors and metastases has suggested that tumor seeding at secondary sites occurs early during tumor progression and frequently, years prior to clinical diagnosis. Following seeding, tumor cells may enter into and remain in a dormant state, and if they survive and are released from dormancy, they can proliferate into an overt lesion. The timeline of tumor initiation and metastatic dormancy is regulated by tumor interactions with its microenvironment, angiogenesis, and tumor-specific cytotoxic T-lymphocyte (CTL) responses. Therefore, a better understanding of the cellular interactions responsible for immune evasion and/or tumor cell release from dormancy would facilitate the development of therapeutics targeted against this critical part of tumor progression. The immunosuppressive mechanisms mediated by myeloid-derived suppressor cells (MDSCs) contribute to tumor progression and, we posit, promote tumor cell escape from CTL-associated dormancy. Thus, while clinical and translational research has demonstrated a role for MDSCs in facilitating tumor progression and metastasis through tumor escape from adoptive and innate immune responses (T-, natural killer and B-cell responses), few studies have considered the role of MDSCs in tumor release from dormancy. In this review, we discuss MDSC expansion, driven by tumor burden associated growth factor secretion and their role in tumor cell escape from dormancy, resulting in manifest metastases. Thus, the therapeutic strategies to inhibit MDSC expansion and function may provide an approach to delay metastatic relapse and prolong the survival of patients with advanced malignancies.
Collapse
Affiliation(s)
- Saraswoti Khadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kathryn Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5950, USA. .,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-6495, USA.
| |
Collapse
|
46
|
Mandula JK, Rodriguez PC. Tumor-related stress regulates functional plasticity of MDSCs. Cell Immunol 2021; 363:104312. [PMID: 33652258 PMCID: PMC8026602 DOI: 10.1016/j.cellimm.2021.104312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) impair protective anti-tumor immunity and remain major obstacles that stymie the effectiveness of promising cancer therapies. Diverse tumor-derived stressors galvanize the differentiation, intra-tumoral expansion, and immunomodulatory function of MDSCs. These tumor-associated 'axes of stress' underwrite the immunosuppressive programming of MDSCs in cancer and contribute to the phenotypic/functional heterogeneity that characterize tumor-MDSCs. This review discusses various tumor-associated axes of stress that direct MDSC development, accumulation, and immunosuppressive function, as well as current strategies aimed at overcoming the detrimental impact of MDSCs in cancer. To better understand the constellation of signals directing MDSC biology, we herein summarize the pivotal roles, signaling mediators, and effects of reactive oxygen/nitrogen species-related stress, chronic inflammatory stress, hypoxia-linked stress, endoplasmic reticulum stress, metabolic stress, and therapy-associated stress on MDSCs. Although therapeutic targeting of these processes remains mostly pre-clinical, intercepting signaling through the axes of stress could overcome MDSC-related immune suppression in tumor-bearing hosts.
Collapse
Affiliation(s)
- Jessica K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
47
|
Parmar D, Apte M. Angiopoietin inhibitors: A review on targeting tumor angiogenesis. Eur J Pharmacol 2021; 899:174021. [PMID: 33741382 DOI: 10.1016/j.ejphar.2021.174021] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
Angiogenesis is the process of formation of new blood vessels from existing ones. Vessels serve the purpose of providing oxygen, nutrients and removal of waste from the cells. The physiological angiogenesis is a normal process and is required in the embryonic development, wound healing, menstrual cycle. For homeostasis, balance of pro angiogenic factors and anti angiogenic factors like is important. Their imbalance causes a process known as "angiogenic switch" which leads to various pathological conditions like inflammation, tumor and restenosis. Like normal cells, tumor cells also require oxygen and nutrients to grow which is provided by tumor angiogenesis. Hence angiogenic process can be inhibited to prevent tumor growth. This gives rise to study of anti angiogenic drugs. Currently approved anti angiogenic drugs are mostly VEGF inhibitors, but VEGF inhibitors have certain limitations like toxicity, low progression free survival (PFS), and resistance to anti VEGF therapy. This article focuses on angiopoietins as alternative and potential targets for anti angiogenic therapy. Angiopoietins are ligands of Tie receptor and play a crucial role in angiogenesis, their inhibition can prevent many tumor growths even on later stages of development. We present current clinical and preclinical stages of angiopoietin inhibitors. Drugs studied in the article are selective as well as non-selective inhibitors of angiopoietin 2 like Trebananib (AMG 386), AMG 780, REGN 910, CVX 060, MEDI 3617 and dual inhibitors of angiopoietin 2 and VEGF like Vanucizumab and RG7716. The angiopoietin inhibitors show promising results alone and in combination with VEGF inhibitors in various malignancies.
Collapse
Affiliation(s)
- Digna Parmar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Maharashtra, India.
| | - Madhavi Apte
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Maharashtra, India.
| |
Collapse
|
48
|
Paroxetine-Overview of the Molecular Mechanisms of Action. Int J Mol Sci 2021; 22:ijms22041662. [PMID: 33562229 PMCID: PMC7914979 DOI: 10.3390/ijms22041662] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
In the 21st century and especially during a pandemic, the diagnosis and treatment of depression is an essential part of the daily practice of many family doctors. It mainly affects patients in the age category 15–44 years, regardless of gender. Anxiety disorders are often diagnosed in children and adolescents. Social phobias can account for up to 13% of these diagnoses. Social anxiety manifests itself in fear of negative social assessment and humiliation, which disrupts the quality of social functioning. Treatment of the above-mentioned disorders is based on psychotherapy and pharmacotherapy. Serious side effects or mortality from antidepressant drug overdose are currently rare. Recent studies indicate that paroxetine (ATC code: N06AB), belonging to the selective serotonin reuptake inhibitors, has promising therapeutic effects and is used off-label in children and adolescents. The purpose of this review is to describe the interaction of paroxetine with several molecular targets in various points of view including the basic chemical and pharmaceutical properties. The central point of the review is focused on the pharmacodynamic analysis based on the molecular mechanism of binding paroxetine to various therapeutic targets.
Collapse
|
49
|
Alsaab HO, Al-Hibs AS, Alzhrani R, Alrabighi KK, Alqathama A, Alwithenani A, Almalki AH, Althobaiti YS. Nanomaterials for Antiangiogenic Therapies for Cancer: A Promising Tool for Personalized Medicine. Int J Mol Sci 2021; 22:1631. [PMID: 33562829 PMCID: PMC7915670 DOI: 10.3390/ijms22041631] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is one of the hallmarks of cancer. Several studies have shown that vascular endothelium growth factor (VEGF) plays a leading role in angiogenesis progression. Antiangiogenic medication has gained substantial recognition and is commonly administered in many forms of human cancer, leading to a rising interest in cancer therapy. However, this treatment method can lead to a deteriorating outcome of resistance, invasion, distant metastasis, and overall survival relative to its cytotoxicity. Furthermore, there are significant obstacles in tracking the efficacy of antiangiogenic treatments by incorporating positive biomarkers into clinical settings. These shortcomings underline the essential need to identify additional angiogenic inhibitors that target numerous angiogenic factors or to develop a new method for drug delivery of current inhibitors. The great benefits of nanoparticles are their potential, based on their specific properties, to be effective mechanisms that concentrate on the biological system and control various important functions. Among various therapeutic approaches, nanotechnology has emerged as a new strategy for treating different cancer types. This article attempts to demonstrate the huge potential for targeted nanoparticles and their molecular imaging applications. Notably, several nanoparticles have been developed and engineered to demonstrate antiangiogenic features. This nanomedicine could effectively treat a number of cancers using antiangiogenic therapies as an alternative approach. We also discuss the latest antiangiogenic and nanotherapeutic strategies and highlight tumor vessels and their microenvironments.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.H.A.); (Y.S.A.)
| | - Alanoud S. Al-Hibs
- Department of Pharmacy, King Fahad Medical City, Riyadh 11564, Saudi Arabia;
| | - Rami Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Khawlah K. Alrabighi
- Batterjee Medical College for Sciences and Technology, Jeddah 21577, Saudi Arabia;
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Akram Alwithenani
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Atiah H. Almalki
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.H.A.); (Y.S.A.)
- Department of Pharmaceutical Chemistry, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yusuf S. Althobaiti
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.H.A.); (Y.S.A.)
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
50
|
A 60% Edible Ethanolic Extract of Ulmus davidiana Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis. Molecules 2021; 26:molecules26040781. [PMID: 33546250 PMCID: PMC7913375 DOI: 10.3390/molecules26040781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
As abnormal angiogenesis is associated with exacerbation of various diseases, precise control over angiogenesis is imperative. Vascular endothelial growth factor (VEGF), the most well-known angiogenic factor, binds to VEGF receptor (VEGFR), activates various signaling pathways, and mediates angiogenesis. Therefore, blocking the VEGF-induced angiogenic response-related signaling pathways may alleviate various disease symptoms through inhibition of angiogenesis. Ulmus davidiana is a safe natural product that has been traditionally consumed, but its effects on endothelial cells (ECs) and the underlying mechanism of action are unclear. In the present study, we focused on the effect of a 60% edible ethanolic extract of U. davidiana (U60E) on angiogenesis. U60E inhibited the VEGF-mediated proliferation, tube formation, and migration ability of ECs. Mechanistically, U60E inhibited endothelial nitric oxide synthase activation and nitric oxide production by blocking the protein kinase B signaling pathway activated by VEGF and consequently inhibiting proliferation, tube formation, and migration of ECs. These results suggest that U60E could be a potential and safe therapeutic agent capable of suppressing proangiogenic diseases by inhibiting VEGF-induced angiogenesis.
Collapse
|