1
|
Simão VA, Floriano JF, Cesário RC, Tonon KDS, de Oliveira LRC, Delella FK, Almeida F, dos Santos LD, Seiva FRF, de Campos Zuccari DAP, Ribeiro-Paes JT, Reiter RJ, de Almeida Chuffa LG. Extracellular Signaling Molecules from Adipose-Derived Stem Cells and Ovarian Cancer Cells Induce a Hybrid Epithelial-Mesenchymal Phenotype in a Bidirectional Interaction. Cells 2025; 14:374. [PMID: 40072102 PMCID: PMC11899480 DOI: 10.3390/cells14050374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Ovarian cancer (OC) is characterized by high mortality rates due to late diagnosis, recurrence, and metastasis. Here, we show that extracellular signaling molecules secreted by adipose-derived mesenchymal stem cells (ASCs) and OC cells-either in the conditioned medium (CM) or within small extracellular vesicles (sEVs)-modulate cellular responses and drive OC progression. ASC-derived sEVs and CM secretome promoted OC cell colony formation, invasion, and migration while upregulating tumor-associated signaling pathways, including TGFβ/Smad, p38MAPK/ERK1/2, Wnt/β-catenin, and MMP-9. Additionally, OC-derived sEVs and CM induced a pro-tumorigenic phenotype in ASCs, enhancing their invasiveness and expression of tumor-associated factors. Notably, both ASCs and OC cells exhibited increased expression of E-cadherin and Snail/Slug proteins, key markers of epithelial/mesenchymal hybrid phenotype, enhancing cellular plasticity and metastatic potential. We also demonstrated that these cellular features are, at least in part, due to the presence of tumor-supportive molecules such as TNF-α, Tenascin-C, MMP-2, and SDF-1α in the CM secretome of ASCs and OC cells. In silico analyses linked these molecular changes to poor prognostic outcomes in OC patients. These findings highlight the critical role of sEVs and tumor/stem cell-derived secretome in OC progression through bidirectional interactions that impact cellular behavior and phenotypic transitions. We suggest that targeting EV-mediated communication could improve therapeutic strategies and patient outcomes.
Collapse
Affiliation(s)
- Vinícius Augusto Simão
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, São Paulo, Brazil
| | - Juliana Ferreira Floriano
- Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Km 01 Araraquara-Jaú Road, Araraquara 14800-903, São Paulo, Brazil
| | - Roberta Carvalho Cesário
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, São Paulo, Brazil
| | - Karolina da Silva Tonon
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, São Paulo, Brazil
| | - Larissa Ragozo Cardoso de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, São Paulo, Brazil
| | - Flávia Karina Delella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, São Paulo, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo (Usp), Ribeirão Preto 14049-900, São Paulo, Brazil
| | | | - Fábio Rodrigues Ferreira Seiva
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, São Paulo, Brazil
| | | | - João Tadeu Ribeiro-Paes
- Department of Biotechnology, School of Sciences, Humanities and Languages, São Paulo State University (Unesp), Assis 19806-900, São Paulo, Brazil
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, São Paulo, Brazil
| |
Collapse
|
2
|
Dai W, Zhou J, Chen T. Unraveling the extracellular vesicle network: insights into ovarian cancer metastasis and chemoresistance. Mol Cancer 2024; 23:201. [PMID: 39285475 PMCID: PMC11404010 DOI: 10.1186/s12943-024-02103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Ovarian cancer (OC) is one of the most prevalent and lethal gynecological malignancies, with high mortality primarily due to its aggressive nature, frequent metastasis, and resistance to standard therapies. Recent research has highlighted the critical role of extracellular vesicles (EVs) in these processes. EVs, secreted by living organisms and carrying versatile and bioactive cargoes, play a vital role in intercellular communication. Functionally, the transfer of cargoes orchestrates multiple processes that actively affect not only the primary tumor but also local and distant pre-metastatic niche. Furthermore, their unique biological properties position EVs as novel therapeutic targets and promising drug delivery systems, with potential profound implications for cancer patients.This review summarizes recent progress in EV biology, delving into the intricate mechanisms by which EVs contribute to OC metastasis and drug resistance. It also explores the latest advances and therapeutic potential of EVs in the clinical context of OC. Despite the progress made, EV research in OC remains in its nascent stages. Consequently, this review presents existing research limitations and suggests avenues for future investigation. Altogether, the review aims to elucidate the critical roles of EVs in OC and spotlight their promising potential in this field.
Collapse
Affiliation(s)
- Wei Dai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, 310009, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ting Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, 310009, China.
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
3
|
Williams ME, Howard D, Donnelly C, Izadi F, Parra JG, Pugh M, Edwards K, Lutchman-Sigh K, Jones S, Margarit L, Francis L, Conlan RS, Taraballi F, Gonzalez D. Adipocyte derived exosomes promote cell invasion and challenge paclitaxel efficacy in ovarian cancer. Cell Commun Signal 2024; 22:443. [PMID: 39285292 PMCID: PMC11404028 DOI: 10.1186/s12964-024-01806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the deadliest gynaecological cancer with high mortality rates driven by the common development of resistance to chemotherapy. EOC frequently invades the omentum, an adipocyte-rich organ of the peritoneum and omental adipocytes have been implicated in promoting disease progression, metastasis and chemoresistance. The signalling mechanisms underpinning EOC omentum tropism have yet to be elucidated. METHODS Three-dimensional co-culture models were used to explore adipocyte-EOC interactions. The impact of adipocytes on EOC proliferation, response to therapy and invasive capacity was assessed. Primary adipocytes and omental tissue were isolated from patients with ovarian malignancies and benign ovarian neoplasms. Exosomes were isolated from omentum tissue conditioned media and the effect of omentum-derived exosomes on EOC evaluated. Exosomal microRNA (miRNA) sequencing was used to identify miRNAs abundant in omental exosomes and EOC cells were transfected with highly abundant miRNAs miR-21, let-7b, miR-16 and miR-92a. RESULTS We demonstrate the capacity of adipocytes to induce an invasive phenotype in EOC populations through driving epithelial-to-mesenchymal transition (EMT). Exosomes secreted by omental tissue of ovarian cancer patients, as well as patients without malignancies, induced proliferation, upregulated EMT markers and reduced response to paclitaxel therapy in EOC cell lines and HGSOC patient samples. Analysis of the omentum-derived exosomes from cancer patients revealed highly abundant miRNAs that included miR-21, let-7b, miR-16 and miR-92a that promoted cancer cell proliferation and protection from chemotherapy when transfected in ovarian cancer cells. CONCLUSIONS These observations highlight the capacity of omental adipocytes to generate a pro-tumorigenic and chemoprotective microenvironment in ovarian cancer and other adipose-related malignancies.
Collapse
Affiliation(s)
- Michael Ellis Williams
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - David Howard
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Claire Donnelly
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Fereshteh Izadi
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Jezabel Garcia Parra
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Megan Pugh
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Kadie Edwards
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Kerryn Lutchman-Sigh
- Department of Gynaecology Oncology, Singleton Hospital, Swansea Bay University Health Board, Swansea, Wales, SA2 8QA, UK
| | - Sadie Jones
- Department of Obstetrics and Gynaecology, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
| | - Lavinia Margarit
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
- Department of Obstetrics and Gynaecology, Princess of Wales Hospital, Cwm Taf Morgannwg University Health Board, Bridgend, Wales, CF31 1RQ, UK
| | - Lewis Francis
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - R Steven Conlan
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Deyarina Gonzalez
- Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University Singleton Park, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
4
|
Tang PW, Frisbie L, Hempel N, Coffman L. Insights into the tumor-stromal-immune cell metabolism cross talk in ovarian cancer. Am J Physiol Cell Physiol 2023; 325:C731-C749. [PMID: 37545409 DOI: 10.1152/ajpcell.00588.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The ovarian cancer tumor microenvironment (TME) consists of a constellation of abundant cellular components, extracellular matrix, and soluble factors. Soluble factors, such as cytokines, chemokines, structural proteins, extracellular vesicles, and metabolites, are critical means of noncontact cellular communication acting as messengers to convey pro- or antitumorigenic signals. Vast advancements have been made in our understanding of how cancer cells adapt their metabolism to meet environmental demands and utilize these adaptations to promote survival, metastasis, and therapeutic resistance. The stromal TME contribution to this metabolic rewiring has been relatively underexplored, particularly in ovarian cancer. Thus, metabolic activity alterations in the TME hold promise for further study and potential therapeutic exploitation. In this review, we focus on the cellular components of the TME with emphasis on 1) metabolic signatures of ovarian cancer; 2) understanding the stromal cell network and their metabolic cross talk with tumor cells; and 3) how stromal and tumor cell metabolites alter intratumoral immune cell metabolism and function. Together, these elements provide insight into the metabolic influence of the TME and emphasize the importance of understanding how metabolic performance drives cancer progression.
Collapse
Affiliation(s)
- Priscilla W Tang
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Leonard Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Gynecologic Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
Jeong JH, Park KN, Kim JH, Noh K, Hur SS, Kim Y, Hong M, Chung JC, Park JH, Lee J, Son YI, Lee JH, Kim SH, Hwang Y. Self-organized insulin-producing β-cells differentiated from human omentum-derived stem cells and their in vivo therapeutic potential. Biomater Res 2023; 27:82. [PMID: 37644502 PMCID: PMC10466773 DOI: 10.1186/s40824-023-00419-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Human omentum-derived mesenchymal stem cells (hO-MSCs) possess great potential to differentiate into multiple lineages and have self-renewal capacity, allowing them to be utilized as patient-specific cell-based therapeutics. Although the use of various stem cell-derived β-cells has been proposed as a novel approach for treating diabetes mellitus, developing an efficient method to establish highly functional β-cells remains challenging. METHODS We aimed to develop a novel cell culture platform that utilizes a fibroblast growth factor 2 (FGF2)-immobilized matrix to regulate the adhesion and differentiation of hO-MSCs into insulin-producing β-cells via cell-matrix/cell-cell interactions. In our study, we evaluated the in vitro differentiation potential of hO-MSCs cultured on an FGF2-immobilized matrix and a round-bottom plate (RBP). Further, the in vivo therapeutic efficacy of the β-cells transplanted into kidney capsules was evaluated using animal models with streptozotocin (STZ)-induced diabetes. RESULTS Our findings demonstrated that cells cultured on an FGF2-immobilized matrix could self-organize into insulin-producing β-cell progenitors, as evident from the upregulation of pancreatic β-cell-specific markers (PDX-1, Insulin, and Glut-2). Moreover, we observed significant upregulation of heparan sulfate proteoglycan, gap junction proteins (Cx36 and Cx43), and cell adhesion molecules (E-cadherin and Ncam1) in cells cultured on the FGF2-immobilized matrix. In addition, in vivo transplantation of differentiated β-cells into animal models of STZ-induced diabetes revealed their survival and engraftment as well as glucose-sensitive production of insulin within the host microenvironment, at over 4 weeks after transplantation. CONCLUSIONS Our findings suggest that the FGF2-immobilized matrix can support initial cell adhesion, maturation, and glucose-stimulated insulin secretion within the host microenvironment. Such a cell culture platform can offer novel strategies to obtain functional pancreatic β-cells from patient-specific cell sources, ultimately enabling better treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Ki Nam Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, 14584, Republic of Korea
| | - Joo Hyun Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - KyungMu Noh
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Moonju Hong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
| | - Jun Chul Chung
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Jongsoon Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Young-Ik Son
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Department of Bio-Med Engineering, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea.
| |
Collapse
|
6
|
Berta D, Girma M, Melku M, Adane T, Birke B, Yalew A. Role of RNA Splicing Mutations in Diffuse Large B Cell Lymphoma. Int J Gen Med 2023; 16:2469-2480. [PMID: 37342407 PMCID: PMC10278864 DOI: 10.2147/ijgm.s414106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Ribonucleic acid splicing is a crucial process to create a mature mRNA molecule by removing introns and ligating exons. This is a highly regulated process, but any alteration in splicing factors, splicing sites, or auxiliary components affects the final products of the gene. In diffuse large B-cell lymphoma, splicing mutations such as mutant splice sites, aberrant alternative splicing, exon skipping, and intron retention are detected. The alteration affects tumor suppression, DNA repair, cell cycle, cell differentiation, cell proliferation, and apoptosis. As a result, malignant transformation, cancer progression, and metastasis occurred in B cells at the germinal center. B-cell lymphoma 7 protein family member A (BCL7A), cluster of differentiation 79B (CD79B), myeloid differentiation primary response gene 88 (MYD88), tumor protein P53 (TP53), signal transducer and activator of transcription (STAT), serum- and glucose-regulated kinase 1 (SGK1), Pou class 2 associating factor 1 (POU2AF1), and neurogenic locus notch homolog protein 1 (NOTCH) are the most common genes affected by splicing mutations in diffuse large B cell lymphoma.
Collapse
Affiliation(s)
- Dereje Berta
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mekonnen Girma
- Department of Quality Assurance and Laboratory Management, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulugeta Melku
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tiruneh Adane
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bisrat Birke
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Aregawi Yalew
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
7
|
Qu Q, Liu L, Cui Y, Chen Y, Wang Y, Wang Y. Exosomes from Human Omental Adipose-Derived Mesenchymal Stem Cells Secreted into Ascites Promote Peritoneal Metastasis of Epithelial Ovarian Cancer. Cells 2022; 11:3392. [PMID: 36359787 PMCID: PMC9655202 DOI: 10.3390/cells11213392] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 03/26/2024] Open
Abstract
Epithelial ovarian cancer (EOC) patients frequently develop peritoneal metastasis, especially in the human omentum. However, the mechanism underlying this propensity remains unknown. A previous study found that human omental adipose-derived mesenchymal stem cells are potentially involved in ovarian cancer growth and metastasis, but the results were inconsistent and even contradictory. In addition, the underlying mechanisms of visceral adipose metastasis remain poorly understood. Here, our goal is to clarify the role and mechanism of human omental adipose-derived mesenchymal stem cells (HO-ADSCs) in EOC cancer growth and metastasis. We first found that human omental tissue conditioned medium (HO-CM) enhances EOC cell function. Subsequent coculture studies indicated that HO-ADSCs increase the growth, migratory and invasive capabilities of ovarian cancer cells. Then, we demonstrated that exosomes secreted by HO-ADSCs (HO-ADSC exosomes) enhanced ovarian cancer cell function, and further mechanistic studies showed that the FOXM1, Cyclin F, KIF20A, and MAPK signaling pathways were involved in this process. In addition, subcutaneous tumorigenesis and peritoneal metastatic xenograft experiments provided evidence that HO-ADSC exosomes promote ovarian cancer growth and metastasis in vivo. Finally, our clinical studies provided evidence that ascites from ovarian cancer patients enhance EOC cell line proliferation, migration, and invasion in vitro. The present study indicated that HO-ADSC exosomes are secreted into ascites and exert a tumor-promoting effect on EOC growth and metastasis, providing a new perspective and method to develop future novel therapeutic strategies for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qingxi Qu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Linghong Liu
- Research Center of Stem Cell and Regenerative Medicine, Shandong University, Jinan 250012, China
- Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yuqian Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu Chen
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yaodu Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
8
|
Can mesenchymal stem cells derived from adipose tissue and their conditioned medium improve ovarian functions? A mini-review. ZYGOTE 2022; 30:589-592. [PMID: 35730554 DOI: 10.1017/s0967199422000235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stable ovarian function is a key factor in the performance of the reproductive system. In contrast, some ovarian function-related diseases, such as polycystic ovarian syndrome, premature ovarian failure (POF), and ovarian cancer, are the main cause of infertility and death of women around the world. Despite multiple attempts, there are no effective tools against these conditions; however, mesenchymal stem cell-based therapy, especially using adipose tissue, has attracted much attention in medicine in light of its advantages such as easy isolation and accessibility. Conversely, it has been suggested that MSC-conditioned medium (CM) can restore injured tissues and has high immunocompatibility. So, here, we will summarize the effects of administration of MSCs and CM derived from adipose tissue on ovarian functions and related diseases.
Collapse
|
9
|
Storti G, Scioli MG, Kim BS, Terriaca S, Fiorelli E, Orlandi A, Cervelli V. Mesenchymal Stem Cells in Adipose Tissue and Extracellular Vesicles in Ovarian Cancer Patients: A Bridge toward Metastatic Diffusion or a New Therapeutic Opportunity? Cells 2021; 10:cells10082117. [PMID: 34440886 PMCID: PMC8392703 DOI: 10.3390/cells10082117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one of the deadliest malignancies among women. Approximately 75% of the patients with ovarian cancer are diagnosed with advanced disease that already has metastasis, particularly to the omentum. The omentum constitutes the ideal soil for ovarian cancer metastasis due to a complex intraperitoneal milieu that favors and supports the whole metastatic process. Adipose-derived stem/stromal cells (ADSCs) are part of this microenvironment and foster tumor progression via sustained paracrine secretion, including extracellular vesicles (EVs). Nonetheless, the preferential relationship between ADSCs, ADSC-derived EVs, and ovarian cancer cells could be exploited to use ADSCs and EVs as a vehicle for anti-cancer therapies. This review will analyze the strict relations between tumor progression, metastatic disease, and adipose tissue with its staminal components. In addition, we will describe the crosstalk and biologic relationship between ADSCs and tumor cells, the role of EVs in intercellular communication, the establishment of drug resistance, metastatic capacity, and ovarian cancer progression. We will analyze the new therapeutic opportunities in treating ovarian cancer offered by ADSCs and EVs as a vehicle for therapeutic molecules to target precisely tumor cells and limit the systemic adverse effects. Finally, we will discuss the limitations of these therapeutic approaches.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-06-23188514; Fax: +39-06-23188466
| | - Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Sonia Terriaca
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Elena Fiorelli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy;
| |
Collapse
|
10
|
Raj AT, Kheur S, Bhonde R, Gupta AA, Patil S. Assessing the effect of human mesenchymal stem cell-derived conditioned media on human cancer cell lines: A systematic review. Tissue Cell 2021; 71:101505. [PMID: 33582384 DOI: 10.1016/j.tice.2021.101505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) exhibit differential effect (augmentation or inhibition) on cancer cells depending on the tissue of origin. Given the increasing demand to use MSCs in regenerative medicine, it is vital to ensure that the MSCs being employed are not pro-carcinogenic. OBJECTIVE To assess the effect of human MSC derived conditioned media (CM) on human cancer cell lines. MATERIALS AND METHODS PubMed, SCOPUS, and Web of Science were searched using the keyword combination 'human mesenchymal stem cell and conditioned media and human cancer cell line and in-vitro'. RESULTS MSC-CM pro-carcinogenic molecules were IL-6, IL-8, FGF10, VEGF, PDGF, TGF-b1, IGF-1, GRO-a, OSP, MMPs, TNFα, IL-4, IL-10, IL-13, IL-17, IL-1 β, G-CSF, MCP‑1, MIP‑1α, MIP‑1β, RANTES, MIG, IP‑10, HGFa, ETX, DKK1; anti-carcinogenic molecules were IFN-β, OST, LIGHT, FRTK3, INF-γ, IP-10, LAP, IL‑1RA, IL‑2, IL-5, IL-7, IL-12, IL-15, IFN-α, IFN‑γ. Effector pathways were STAT 1, JAK2/STAT3, Ras-Raf-MEK-ERK, Wnt/β-catenin, NF-κB, ERK1/2, PI3K/ Akt/mTOR, MAPK/ERK. BMSC, ADMSC, UCMSC, WJMSC DPMSC, AMSC, and UTCMSC had a differential effect on carcinogenesis. GMSC, LMSC, FDMSC were anti-carcinogenic. OMSC was pro-carcinogenic. CONCLUSION Use of MSC-CM with a pro-carcinogenic effect must be restricted in cancer patients irrespective of the nature of the application.
Collapse
Affiliation(s)
- A Thirumal Raj
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India.
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India.
| | | | - Archana A Gupta
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India.
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Science, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
11
|
Motohara T, Yoshida GJ, Katabuchi H. The hallmarks of ovarian cancer stem cells and niches: Exploring their harmonious interplay in therapy resistance. Semin Cancer Biol 2021; 77:182-193. [PMID: 33812986 DOI: 10.1016/j.semcancer.2021.03.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
The concept of a "cancer stem cell" has evolved over the past decades, and research on cancer stem cell biology has entered into a stage of remarkable progress. Cancer stem cells are a major determining factor contributing to the establishment of phenotypic and functional intratumoral heterogeneity in synchronization with their surrounding "cancer stem cell niches." They serve as the driving force for cancer initiation, metastasis, and therapeutic resistance in various types of malignancies. In verity, reciprocal interplay between ovarian cancer stem cells and their niches involves a complex but ingeniously orchestrated tumor microenvironment within the intraperitoneal milieu and especially contribute to chemotherapy resistance in patients with advanced ovarian cancer. Herein, we review the principles of our current understanding of the biological features of ovarian cancer stem cells, focusing mainly on the precise mechanisms underlying acquired chemotherapy resistance. Furthermore, we highlight the specific roles of various cancer-associated stromal and immune cells in creating possible cancer stem cell niches that regulate ovarian cancer stemness.
Collapse
Affiliation(s)
- Takeshi Motohara
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan.
| | - Go J Yoshida
- Department of Immunological Diagnosis, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| |
Collapse
|
12
|
Extracellular vesicles (EVs): What we know of the mesmerizing roles of these tiny vesicles in hematological malignancies? Life Sci 2021; 271:119177. [PMID: 33577843 DOI: 10.1016/j.lfs.2021.119177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a complex disease in which a bidirectional collaboration between malignant cells and surrounding microenvironment creates an appropriate platform which ultimately facilitates the progression of the disease. The discovery of extracellular vesicles (EVs) was a turning point in the modern era of cancer biology, as their importance in human malignancies has set the stage to widen research interest in the field of cell-to-cell communication. The implication in short- and long-distance interaction via horizontally transfer of cellular components, ranging from non-coding RNAs to functional proteins, as well as stimulating target cells receptors by the means of ligands anchored on their membrane endows these "tiny vesicles with giant impacts" with incredible potential to re-educate normal tissues, and thus, to re-shape the surrounding niche. In this review, we highlight the pathogenic roles of EVs in human cancers, with an extensive focus on the recent advances in hematological malignancies.
Collapse
|
13
|
Xie F, Teng L, Xu J, Lu J, Zhang C, Yang L, Ma X, Zhao M. Adipose-derived mesenchymal stem cells inhibit cell proliferation and migration and suppress extracellular matrix synthesis in hypertrophic-scar and keloid fibroblasts. Exp Ther Med 2021; 21:139. [PMID: 33456506 PMCID: PMC7791925 DOI: 10.3892/etm.2020.9571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Pathological scars occur during skin wound healing, and the use of adipose-derived stem cells (ADSCs) is one of the various treatments. The present study aimed to investigate the in vitro effects of ADSCs on the biological properties of hypertrophic scar fibroblasts (HSFs) and keloid fibroblasts (KFs), such as proliferation, migration, and the synthesis of extracellular matrix proteins. Transwell chambers were used to establish a co-culture system of ADSCs with normal skin fibroblasts (NFs), HSFs or KFs. The effect of ADSCs on the proliferation of fibroblasts was evaluated by CCK8 measurement, while the migration ability of fibroblasts was assessed using cell scratch assay. The expression of extracellular matrix proteins was measured by immunoblotting. Co-culture of NFs with ADSCs did not affect cell proliferation and migration, nor the expression of extracellular matrix proteins [collagen-I, collagen-III, fibronectin (FN) and α-smooth muscle actin (α-SMA)] in NFs. However, as with the inhibitor SB431542, ADSCs significantly inhibited cell proliferation and migration and the expression of extracellular matrix proteins (collagen-I, collagen-III, FN and α-SMA), but also suppressed the protein expression of transforming growth factor β1 (TGF-β1), phosphorylated (p-) mothers against decapentaplegic homolog (Smad) 2, p-Smad3 and Smad7 in HSFs and KFs. The results show that ADSCs inhibited cell proliferation and migration and the expression of extracellular matrix proteins in HSCs and KFs in vitro, possibly through inhibition of the TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Fang Xie
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Li Teng
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Jiajie Xu
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Jianjian Lu
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Chao Zhang
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Liya Yang
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Xiaoyang Ma
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Minghao Zhao
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| |
Collapse
|
14
|
Bilbao M, Aikins JK, Ostrovsky O. Is routine omentectomy of grossly normal omentum helpful in surgery for ovarian cancer? A look at the tumor microenvironment and its clinical implications. Gynecol Oncol 2021; 161:78-82. [PMID: 33436287 DOI: 10.1016/j.ygyno.2020.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023]
Abstract
Ovarian cancer is uncommon in relation to other women's cancer, however, it is associated with a disproportionate number of deaths due to women's cancer. According to the National Institute of Health, only 1.2% of new cancer diagnoses in the United States are attributed to ovarian cancer, yet it is the fifth leading cause of cancer death in women and is responsible for 2.3% of all female cancer deaths. Ovarian cancer deaths are largely due to widely metastatic and chemoresistant disease that often presents at a late stage. The omentum is one of the most common sites for ovarian cancer metastasis. Recent research findings have highlighted the specific tumor microenvironment of the omentum and how it can be manipulated to prevent ovarian cancer proliferation, metastasis and chemoresistance. Debulking surgery has been the mainstay in the treatment for ovarian cancer. Total omentectomy is classically described as essential to this procedure. This article explores the known benefits of total omentectomy in the surgical treatment of epithelial ovarian cancer as well as the potential benefit contained within the omental tumor microenvironment when the omentum is macroscopically free of disease at the time of initial surgery.
Collapse
Affiliation(s)
- Michelle Bilbao
- MD Anderson Cancer Center at Cooper, Cooper University Healthcare, Division of Gynecologic Oncology, Camden, NJ, United States of America
| | - James K Aikins
- MD Anderson Cancer Center at Cooper, Cooper University Healthcare, Division of Gynecologic Oncology, Camden, NJ, United States of America
| | - Olga Ostrovsky
- Department of Surgery, Division of Surgical Research, Cooper University Healthcare, Camden, NJ, United States of America.
| |
Collapse
|
15
|
Raghavan S, Snyder CS, Wang A, McLean K, Zamarin D, Buckanovich RJ, Mehta G. Carcinoma-Associated Mesenchymal Stem Cells Promote Chemoresistance in Ovarian Cancer Stem Cells via PDGF Signaling. Cancers (Basel) 2020; 12:cancers12082063. [PMID: 32726910 PMCID: PMC7464970 DOI: 10.3390/cancers12082063] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Within the ovarian cancer tumor microenvironment, cancer stem-like cells (CSC) interact with carcinoma associated mesenchymal stem/stromal cells (CA-MSC) through multiple secreted cytokines and growth factors. These paracrine interactions have been revealed to cause enrichment of CSC and their chemoprotection; however, it is still not known if platelet-derived growth factor (PDGF) signaling is involved in facilitating these responses. In order to probe this undiscovered bidirectional communication, we created a model of ovarian malignant ascites in the three-dimensional (3D) hanging drop heterospheroid array, with CSC and CA-MSC. We hypothesized that PDGF secretion by CA-MSC increases self-renewal, migration, epithelial to mesenchymal transition (EMT) and chemoresistance in ovarian CSC. Our results indicate that PDGF signaling in the CSC-MSC heterospheroids significantly increased stemness, metastatic potential and chemoresistance of CSC. Knockdown of PDGFB in MSC resulted in abrogation of these phenotypes in the heterospheroids. Our studies also reveal a cross-talk between PDGF and Hedgehog signaling in ovarian cancer. Overall, our data suggest that when the stromal signaling via PDGF to ovarian CSC is blocked in addition to chemotherapy pressure, the tumor cells are significantly more sensitive to chemotherapy. Our results emphasize the importance of disrupting the signals from the microenvironment to the tumor cells, in order to improve response rates. These findings may lead to the development of combination therapies targeting stromal signaling (such as PDGF and Hedgehog) that can abrogate the tumorigenic, metastatic and platinum resistant phenotypes of ovarian CSC through additional investigations.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Catherine S. Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Anni Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Karen McLean
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dmitriy Zamarin
- Department of Gynecologic Medical Oncology and Immunotherapeutics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Ronald J. Buckanovich
- Director of Ovarian Cancer Research, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Macromolecular Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Precision Health, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-763-3957; Fax: +1-734-763-4788
| |
Collapse
|
16
|
Mesenchymal Stem Cells and Cancer: Clinical Challenges and Opportunities. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2820853. [PMID: 31205939 PMCID: PMC6530243 DOI: 10.1155/2019/2820853] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Stem cell-based therapies exhibit profound therapeutic potential for treating various human diseases, including cancer. Among the cell types that can be used for this purpose, mesenchymal stem cells (MSCs) are considered as promising source of stem cells in personalized cell-based therapies. The inherent tumor-tropic property of MSCs can be used to target cancer cells. Although the impacts of MSCs on tumor progression remain elusive, they have been genetically modified or engineered as targeted anticancer agents which could inhibit tumor growth by blocking different processes of tumor. In addition, there are close interactions between MSCs and cancer stem cells (CSCs). MSCs can regulate the growth of CSCs through paracrine mechanisms. This review aims to focus on the current knowledge about MSCs-based tumor therapies, the opportunities and challenges, as well as the prospective of its further clinical implications.
Collapse
|
17
|
Sookram J, Zheng A, Linden KM, Morgan AB, Brown SA, Ostrovsky O. Epigenetic therapy can inhibit growth of ovarian cancer cells and reverse chemoresistant properties acquired from metastatic omentum. Int J Gynaecol Obstet 2019; 145:225-232. [DOI: 10.1002/ijgo.12800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/21/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Janhvi Sookram
- Division of Gynecologic OncologyDepartment of Obstetrics and GynecologyCooper University Hospital Camden NJ USA
| | - Andrew Zheng
- Department of SurgeryCooper University Hospital Camden NJ USA
| | | | | | - Spencer A. Brown
- Department of Surgical ResearchCooper University Hospital Camden NJ USA
| | - Olga Ostrovsky
- Department of Surgical ResearchCooper University Hospital Camden NJ USA
| |
Collapse
|
18
|
Kulsum S, Raju N, Raghavan N, Ramanjanappa RDR, Sharma A, Mehta A, Kuriakose MA, Suresh A. Cancer stem cells and fibroblast niche cross talk in an in-vitro oral dysplasia model. Mol Carcinog 2019; 58:820-831. [PMID: 30644602 DOI: 10.1002/mc.22974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/28/2022]
Abstract
Understanding the cellular interactions during oral carcinogenesis has the potential to identify novel prognostic and therapeutic targets. This study aimed at investigating the cancer stem cell (CSC)-fibroblast niche interactions using in-vitro dysplastic cell line models developed from different stages of 4NQO-induced oral carcinogenic mice model. The spontaneously transformed epithelial cells (DysMSCTR6, 14 and 16) were developed from three time points (mild/moderate/severe), while two fibroblast cell lines (FibroMSCTR12, 16) were developed from moderate and severe dysplastic tissue. The epithelial (Epcam+/Ck+) and the fibroblast cell lines (Vimentin+/α-SMA+/Ck-) were authenticated and assessment of cells representing progressive grades of dysplastic severity indicated a significant increase in dysplastic marker profile (P < 0.05). Evaluation of the CSC characteristics showed that an increase in expression of Cd133, Cd44, Aldh1a1, Notch1, and Sox2 was accompanied by an increase in migratory (P > 0.05) and colony formation capacity (P > 0.005). Targeting Notch1 (GSI inhibitor PZ0187; 30 μM), showed a significant reduction in cell proliferation capacity (P < 0.05) and in the dysplastic marker profile. Further, Notch1 inhibition resulted in down regulation of Cd133 and Aldh1a 1 (P < 0.05) and a complete abrogation of colony formation ability (P < 0.0001). The effect of niche interactions evaluated using FibroMSCTR12-conditioned media studies, revealed an enrichment of ALDH1A1+ cells (P < 0.05), induction of spheroid formation ability (P < 0.0001) and increased proliferation capacity (3.7 fold; P < 0.005). Although PZ0187 reduced cell viability by ∼40%, was unable to abrogate the conditioned-media induced increase in proliferation capacity completely. This study reports a Notch-1 dependent enrichment of CSC properties during dysplastic progression and a Notch-1 independent dysplastic cell-fibroblast interaction during oral carcinogenesis.
Collapse
Affiliation(s)
- Safeena Kulsum
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, MSMF, Bangalore, India.,Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nalini Raju
- Department of Histopathology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, India
| | - Nisheena Raghavan
- Department of Histopathology, Mazumdar Shaw Medical Centre, Narayana Health, Bangalore, India
| | - Ravindra D R Ramanjanappa
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, MSMF, Bangalore, India
| | - Anupam Sharma
- GROW Laboratory, Stem Cell Research Lab, Narayana Nethralaya, Narayana Health, Bangalore, India
| | - Alka Mehta
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Moni A Kuriakose
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, MSMF, Bangalore, India.,Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| | - Amritha Suresh
- Integrated Head and Neck Oncology Research Program, Mazumdar Shaw Centre for Translational Research, MSMF, Bangalore, India.,Head and Neck Oncology, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya, Bangalore, India
| |
Collapse
|
19
|
Hanyu S, Sakuma K, Tanaka A. A Study on the Effect of Human Dental Pulp Stem Cell Conditioned Medium on Human Oral Squamous Cell Carcinoma Cell Lines. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shintaro Hanyu
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Niigata
| | - Kaname Sakuma
- Department of Oral and Maxillofacial Surgery, Niigata Hospital, The Nippon Dental University
| | - Akira Tanaka
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Niigata
| |
Collapse
|
20
|
An evolving story of the metastatic voyage of ovarian cancer cells: cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene 2018; 38:2885-2898. [PMID: 30568223 PMCID: PMC6755962 DOI: 10.1038/s41388-018-0637-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is a complex multistep process that involves critical interactions between cancer cells and a variety of stromal components in the tumor microenvironment, which profoundly influence the different aspects of the metastatic cascade and organ tropism of disseminating cancer cells. Ovarian cancer is the most lethal gynecological malignancy and is characterized by peritoneal disseminated metastasis. Evidence has demonstrated that ovarian cancer possesses specific metastatic tropism for the adipose-rich omentum, which has a pivotal role in the creation of the metastatic tumor microenvironment in the intraperitoneal cavity. Considering the distinct biology of ovarian cancer metastasis, the elucidation of the cellular and molecular mechanisms underlying the reciprocal interplay between ovarian cancer cells and surrounding stromal cell types in the adipose-rich metastatic microenvironment will provide further insights into the development of novel therapeutic approaches for patients with advanced ovarian cancer. Herein, we review the biological mechanisms that regulate the highly orchestrated crosstalk between ovarian cancer cells and various cancer-associated stromal cells in the metastatic tumor microenvironment with regard to the omentum by illustrating how different stromal cells concertedly contribute to the development of ovarian cancer metastasis and metastatic tropism for the omentum.
Collapse
|
21
|
Zhang R, Lin P, Yang X, He RQ, Wu HY, Dang YW, Gu YY, Peng ZG, Feng ZB, Chen G. Survival associated alternative splicing events in diffuse large B-cell lymphoma. Am J Transl Res 2018; 10:2636-2647. [PMID: 30210700 PMCID: PMC6129525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Growing evidence has revealed that the initiation of various malignancies is closely associated with alternative splicing (AS) events in certain key oncogenes. However, in diffuse large B-cell lymphoma (DLBCL), there is still a great deal to learn about AS variants. In this study, 33,724 AS variant profiles were obtained from 16,278 genes in 48 DLBCL cases. A total of 10 AS variants were identified as overall survival (OS)- related events via multivariate Cox regression analysis. Notably, alternative donor (AD) sites in AS events in the low-risk group showed a significantly better outcome in DLBCL patients than in the high-risk group (P=0.0002). The area under the curve (AUC) of the receiver-operator characteristic curve (ROC) for ADs in DLBCL was 0.746. Furthermore, 66 related splicing factors were obtained to investigate their potential correlations with AS events. Factors SF1, HNRNPC, HNRNPD, and HNRNPH3 were significantly involved in different OS-related AS variants. Collectively, we constructed valuable prognostic predictors for DLBCL patients and mapped novel splicing networks for further investigation of the underlying mechanisms related to AS variants in DLBCLs.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Peng Lin
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xia Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, Guangxi Medical University22 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
22
|
Wang CW, Lee BH, Tai CJ. The inhibition of cordycepin on cancer stemness in TGF-beta induced chemo-resistant ovarian cancer cell. Oncotarget 2017; 8:111912-111921. [PMID: 29340100 PMCID: PMC5762368 DOI: 10.18632/oncotarget.22951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023] Open
Abstract
Chemotherapy is one of the main approach for ovarian cancer. Cancer stem cells (CSCs) escape chemotherapy and lead to chemoresistance. We previously demonstrated that cordycepin (Cd) inhibited metastasis in human ovarian carcinoma cells, the aim of this study is to investigate the effects of Cd on ovarian cancer stemness. TGF-beta was used to induce chemoresistance of chemotherapeutic agent cisplatin in SKOV-3 ovarian cancer cells. After treating with 100 μM of Cd, cell viability, the percentage of cancer stem cells, and the levels of matrix metalloproteinases (MMPs) were decreased in TGF-beta-induced SKOV-3 cells. Treatment of Cd recovered E-cadherin levels and inhibited vimentin levels while TGF-beta treatment significantly increased the expression of vimentin and PGC-1alpha, and decreased E-cadherin levels in SKOV-3 cells, indicating that the action of Cd on cancer stemness may contribute to the regulation of epithelial-mesenchymal transition (EMT). Cd efficiently attenuated chemoresistance caused by TGF-beta in SKOV-3 cancer stem cells to promote the cytotoxicity of cisplatin.
Collapse
Affiliation(s)
- Chia-Woei Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Bao-Hong Lee
- Department of Traditional Chinese Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11042, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11042, Taiwan
| | - Chen-Jei Tai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.,Department of Traditional Chinese Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11042, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11042, Taiwan
| |
Collapse
|
23
|
Oloyo AK, Ambele MA, Pepper MS. Contrasting Views on the Role of Mesenchymal Stromal/Stem Cells in Tumour Growth: A Systematic Review of Experimental Design. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:103-124. [DOI: 10.1007/5584_2017_118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Zhang B, Chen F, Xu Q, Han L, Xu J, Gao L, Sun X, Li Y, Li Y, Qian M, Sun Y. Revisiting ovarian cancer microenvironment: a friend or a foe? Protein Cell 2017; 9:674-692. [PMID: 28929459 PMCID: PMC6053350 DOI: 10.1007/s13238-017-0466-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Development of ovarian cancer involves the co-evolution of neoplastic cells together with the adjacent microenvironment. Steps of malignant progression including primary tumor outgrowth, therapeutic resistance, and distant metastasis are not determined solely by genetic alterations in ovarian cancer cells, but considerably shaped by the fitness advantage conferred by benign components in the ovarian stroma. As the dynamic cancer topography varies drastically during disease progression, heterologous cell types within the tumor microenvironment (TME) can actively determine the pathological track of ovarian cancer. Resembling many other solid tumor types, ovarian malignancy is nurtured by a TME whose dark side may have been overlooked, rather than overestimated. Further, harnessing breakthrough and targeting cures in human ovarian cancer requires insightful understanding of the merits and drawbacks of current treatment modalities, which mainly target transformed cells. Thus, designing novel and precise strategies that both eliminate cancer cells and manipulate the TME is increasingly recognized as a rational avenue to improve therapeutic outcome and prevent disease deterioration of ovarian cancer patients.
Collapse
Affiliation(s)
- Boyi Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fei Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qixia Xu
- Institute of Health Sciences, Shanghai Jiao Tong University, School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liu Han
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiaqian Xu
- Institute of Health Sciences, Shanghai Jiao Tong University, School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Libin Gao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaochen Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiwen Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Qian
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|