1
|
Zheng S, Zhang Y, Cai R, Cai B, Luo S, He S, Peng T, Wang W, Cui H, Li H, Lu X. The untold story of CD82: Exploring its non-canonical roles in cancer. Pathol Res Pract 2025; 270:155979. [PMID: 40252385 DOI: 10.1016/j.prp.2025.155979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
CD82, traditionally recognized as a metastasis suppressor within the tetraspanin family, has emerged as a key player in diverse cancer-related processes beyond its canonical functions. This review highlights recent research on the non-canonical roles of CD82 in cancer progression, with a particular focus on its regulation of immune cell interactions, its impact on tumor microenvironment modulation, and its potential as both a therapeutic target and a biomarker. By examining the novel functions of CD82 in immune modulation and its influence on key signaling pathways, we propose that CD82 offers promising avenues for therapeutic interventions in cancer. This paper provides a comprehensive synthesis of the current understanding of CD82's expanded roles, underscoring its potential in improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Yao Zhang
- Beijing Beanstalk International Bilingual School, Beijing 100016, PR China
| | - Ren Cai
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Bangwu Cai
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Shujuan Luo
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Shuo He
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Tianyuan Peng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Wei Wang
- Department of Digestive Internal Medicine, the Affiliated Tumor Hospital of Xinjiang Medical University, PR China
| | - Hong Cui
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Huifang Li
- Department of Breast Surgery, the First Affiliated Hospital of Xinjiang Medical University, PR China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China.
| |
Collapse
|
2
|
Na K, Lee S, Kim DK, Kim YS, Hwang JY, Kang SS, Baek S, Lee CY, Yang SM, Han YJ, Kim MH, Han H, Kim Y, Kim JH, Jeon S, Byeon Y, Lee JB, Lim SM, Hong MH, Pyo KH, Cho BC. CD81 and CD82 expressing tumor-infiltrating lymphocytes in the NSCLC tumor microenvironment play a crucial role in T-cell activation and cytokine production. Front Immunol 2024; 15:1336246. [PMID: 38515751 PMCID: PMC10954780 DOI: 10.3389/fimmu.2024.1336246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction To understand the immune system within the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC), it is crucial to elucidate the characteristics of molecules associated with T cell activation. Methods We conducted an in-depth analysis using single-cell RNA sequencing data obtained from tissue samples of 19 NSCLC patients. T cells were classified based on the Tumor Proportion Score (TPS) within the tumor region, and molecular markers associated with activation and exhaustion were analyzed in T cells from high TPS areas. Results Notably, tetraspanins CD81 and CD82, belonging to the tetraspanin protein family, were found to be expressed in activated T cells, particularly in cytotoxic T cells. These tetraspanins showed strong correlations with activation and exhaustion markers. In vitro experiments confirmed increased expression of CD81 and CD82 in IL-2-stimulated T cells. T cells were categorized into CD81highCD82high and CD81lowCD82low groups based on their expression levels, with CD81highCD82high T cells exhibiting elevated activation markers such as CD25 and CD69 compared to CD81lowCD82low T cells. This trend was consistent across CD3+, CD8+, and CD4+ T cell subsets. Moreover, CD81highCD82high T cells, when stimulated with anti-CD3, demonstrated enhanced secretion of cytokines such as IFN-γ, TNF-α, and IL-2, along with an increase in the proportion of memory T cells. Bulk RNA sequencing results after sorting CD81highCD82high and CD81lowCD82low T cells consistently supported the roles of CD81 and CD82. Experiments with overexpressed CD81 and CD82 showed increased cytotoxicity against target cells. Discussion These findings highlight the multifaceted roles of CD81 and CD82 in T cell activation, cytokine production, memory subset accumulation, and target cell cytolysis. Therefore, these findings suggest the potential of CD81 and CD82 as promising candidates for co-stimulatory molecules in immune therapeutic strategies for cancer treatment within the intricate TME.
Collapse
Affiliation(s)
- Kwangmin Na
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seul Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Dong Kwon Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Young Seob Kim
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Yeon Hwang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-San Kang
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Republic of Korea
| | - Sujeong Baek
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chai Young Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Min Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Jin Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Hyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heekyung Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngtaek Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seunghyun Jeon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngseon Byeon
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Chul Cho
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Komlosh PG, Chen JL, Childs-Disney J, Disney MD, Canaani D. Broad-spectrum metastasis suppressing compounds and therapeutic uses thereof in human tumors. Sci Rep 2023; 13:20420. [PMID: 37990044 PMCID: PMC10663508 DOI: 10.1038/s41598-023-47478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
Previously, we have identified a novel human metastasis-inducing lncRNA (named SKAI1BC), that suppresses the KAI1/CD82 metastasis-suppressing gene and is upregulated in triple negative breast cancer and melanoma derived cell lines. Modeling of the SKAI1BC lncRNA secondary structure and its potential interaction with Inforna compounds, led us to identify several compounds that might bind the SKAI1BC lncRNA. We found that these compounds inhibit metastasis invasion and cell migration in culture, in all eight types of solid human cancers tested: several of which are the most lethal and/or frequent human malignancies. Moreover, in most cases, the mechanism of action of several of our compounds involves enhancement of KAI1/CD82 RNA level depending on the specific compound and the human tumor type. With the epigenetic inactivation of KAI1/CD82 in at least ten additional solid human cancers, this implies a very good chance to broaden the spectrum of human cancers affected by our compounds. This is the first time that modeling of a large lncRNA (> 700 bp) secondary structure followed by its potential interaction with Inforna like compounds database has led to the identification of potential biologically active small molecule drugs.
Collapse
Affiliation(s)
- Pnina Gottfried Komlosh
- Department of Biochemistry and Molecular Biology, George Wise Faculty of Life Sciences, Tel Aviv University, 69978, Ramat Aviv, Israel
| | - Jonathan L Chen
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Ave., Box 712, Rochester, NY, 14642, USA
| | - Jessica Childs-Disney
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Dan Canaani
- Department of Biochemistry and Molecular Biology, George Wise Faculty of Life Sciences, Tel Aviv University, 69978, Ramat Aviv, Israel.
| |
Collapse
|
4
|
Wang S, Chen J, Guo XZ. KAI1/CD82 gene and autotaxin-lysophosphatidic acid axis in gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:1388-1405. [PMID: 36160748 PMCID: PMC9412925 DOI: 10.4251/wjgo.v14.i8.1388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
The KAI1/CD82 gene inhibits the metastasis of most tumors and is remarkably correlated with tumor invasion and prognosis. Cell metabolism dysregulation is an important cause of tumor occurrence, development, and metastasis. As one of the important characteristics of tumors, cell metabolism dysregulation is attracting increasing research attention. Phospholipids are an indispensable substance in the metabolism in various tumor cells. Phospholipid metabolites have become important cell signaling molecules. The pathological role of lysophosphatidic acid (LPA) in tumors was identified in the early 1990s. Currently, LPA inhibitors have entered clinical trials but are not yet used in clinical treatment. Autotaxin (ATX) has lysophospholipase D (lysoPLD) activity and can regulate LPA levels in vivo. The LPA receptor family and ATX/lysoPLD are abnormally expressed in various gastrointestinal tumors. According to our recent pre-experimental results, KAI1/CD82 might inhibit the migration and metastasis of cancer cells by regulating the ATX-LPA axis. However, no relevant research has been reported. Clarifying the mechanism of ATX-LPA in the inhibition of cancer metastasis by KAI1/CD82 will provide an important theoretical basis for targeted cancer therapy. In this paper, the molecular compositions of the KAI1/CD82 gene and the ATX-LPA axis, their physiological functions in tumors, and their roles in gastrointestinal cancers and target therapy are reviewed.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Jiang Chen
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| | - Xiao-Zhong Guo
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang 110840, Liaoning Province, China
| |
Collapse
|
5
|
Grzanka M, Stachurska-Skrodzka A, Adamiok-Ostrowska A, Gajda E, Czarnocka B. Extracellular Vesicles as Signal Carriers in Malignant Thyroid Tumors? Int J Mol Sci 2022; 23:ijms23063262. [PMID: 35328683 PMCID: PMC8955189 DOI: 10.3390/ijms23063262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are small, membranous structures involved in intercellular communication. Here, we analyzed the effects of thyroid cancer-derived EVs on the properties of normal thyroid cells and cells contributing to the tumor microenvironment. EVs isolated from thyroid cancer cell lines (CGTH, FTC-133, 8505c, TPC-1 and BcPAP) were used for treatment of normal thyroid cells (NTHY), as well as monocytes and endothelial cells (HUVEC). EVs' size/number were analyzed by flow cytometry and confocal microscopy. Gene expression, protein level and localization were investigated by qRT-PCR, WB and ICC/IF, respectively. Proliferation, migration and tube formation were analyzed. When compared with NTHY, CGTH and BcPAP secreted significantly more EVs. Treatment of NTHY with cancer-derived EVs changed the expression of tetraspanin genes, but did not affect proliferation and migration. Cancer-derived EVs suppressed tube formation by endothelial cells and did not affect the phagocytic index of monocytes. The number of 6 μm size fraction of cancer-derived EVs correlated negatively with the CD63 and CD81 expression in NTHY cells, as well as positively with angiogenesis in vitro. Thyroid cancer-derived EVs can affect the expression of tetraspanins in normal thyroid cells. It is possible that 6 μm EVs contribute to the regulation of NTHY gene expression and angiogenesis.
Collapse
Affiliation(s)
- Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.A.-O.); (E.G.)
- Correspondence: (M.G.); (B.C.)
| | - Anna Stachurska-Skrodzka
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland;
| | - Anna Adamiok-Ostrowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.A.-O.); (E.G.)
| | - Ewa Gajda
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.A.-O.); (E.G.)
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.A.-O.); (E.G.)
- Correspondence: (M.G.); (B.C.)
| |
Collapse
|
6
|
Role of a metastatic suppressor gene KAI1/CD82 in the diagnosis and prognosis of breast cancer. Saudi J Biol Sci 2021; 28:3391-3398. [PMID: 34121877 PMCID: PMC8176039 DOI: 10.1016/j.sjbs.2021.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Globally, breast cancer is the most common type of cancer in females and is one of the leading causes of cancer death in women. The advancement in the targeted therapies and the slight understanding of the molecular cascades of the disease have led to small improvement in the rate of survival of breast cancer patients. However, metastasis and resistance to the current drugs still remain as challenges in the management of breast cancer patients. Metastasis, potentially, leads to failure of the available treatment, and thereby, makes the research on metastatic suppressors a high priority. Tumor metastasis suppressors are several genes and their protein products that have the capability of arresting the metastatic process without affecting the tumor formation. The metastasis suppressors KAI1 (also known as CD82) has been found to inhibit tumor metastasis in various types of solid cancers, including breast cancer. KAI1 was identified as a metastasis suppressor that inhibits the process of metastasis by regulating several mechanisms, including cell motility and invasion, induction of cell senescence, cell–cell adhesion and apoptosis. KAI1 is a member of tetraspanin membrane protein family. It interacts with other tetraspanins, chemokines and integrins to control diverse signaling pathways, which are crucial for protein trafficking and intracellular communication. It follows that better understanding of the molecular events of such genes is needed to develop prognostic biomarkers, and to identify specific therapies for breast cancer patients. This review aims to discuss the role of KAI1/CD82 as a prognosticator in breast cancer.
Collapse
|
7
|
Tetraspanins: useful multifunction proteins for the possible design and development of small-molecule therapeutic tools. Drug Discov Today 2020; 26:56-68. [PMID: 33137483 DOI: 10.1016/j.drudis.2020.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Tetraspanins constitute a well-conserved superfamily of four-span small membrane proteins (TM4SF), with >30 members in humans, with important roles in numerous mechanisms of cell biology. Moreover, tetraspanins associate with either specific partner proteins or another tetraspanin, generating a network of interactions involved in cell and membrane compartmentalization and having a role in cellular development, proliferation, activation, motility, and membrane fusions. Therefore, tetraspanins are considered regulators of cellular signaling and are often depicted as 'molecular facilitators'. In view of these many physiological functions, it is likely that these molecules are important actors in pathological processes. In this review, we present the main characteristics of this superfamily, providing a more detailed description of some significant representatives and discuss their relevance as potential targets for the design and development of small-molecule therapeutics in different pathologies.
Collapse
|
8
|
Krishna Latha T, Verma A, Thakur GK, Banerjee B, Kaur N, Singh UR, Sharma S. Down Regulation of KAI1/CD82 in Lymph Node Positive and Advanced T-Stage Group in Breast Cancer Patients. Asian Pac J Cancer Prev 2019; 20:3321-3329. [PMID: 31759355 PMCID: PMC7063004 DOI: 10.31557/apjcp.2019.20.11.3321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Metastasis represents a deadly aspect of any cancer including breast cancer, given its high prevalence; treatment of metastatic breast cancer remains a clinically unmet need, which necessitates the exploration of metastasis suppressor genes (MSGs). KAI-1/CD82 is an important member of MSGs; the role of KAI1 has been well explored in prostate cancer, however its role in breast cancer is not fully explored and in fact the results of breast cancer studies are contentious. Thus, the present study aimed to investigate expression of KAI1 at both transcriptional and translational levels in the tissue of breast cancer patients and benign breast disease. Further, we analysed the relationship between expression levels of KAI1 and clinicopathological parameters in breast cancer patients. MATERIALS AND METHODS mRNA expression was studied by Real time PCR and protein expression was analyzed by both Western blot and Immunohistochemistry. RESULTS The results of the study indicate that KAI1 expression was remarkably decreased in breast cancer both at the gene and the protein levels (P < 0.05) compared to benign breast disease. In addition, KAI1 expression levels were strongly associated with axillary lymph node status and advanced T stage (p < 0.05), however no association was found with tumor grade, age, menopausal status and receptor status like ER, PR and Her2. CONCLUSION Low expression of KAI1 might be helpful for predicting the lymph node metastasis and T staging, thus predicts malignant prognosis of breast cancer.<br />.
Collapse
Affiliation(s)
- Thammineni Krishna Latha
- Department of Biochemistry University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Ankur Verma
- Department of Pathology, University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Gaurav Kumar Thakur
- Department of Biochemistry University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Basudev Banerjee
- Department of Biochemistry University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Navneet Kaur
- Department of Surgery, University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Usha Rani Singh
- Department of Pathology, University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| |
Collapse
|
9
|
Song W, Wang X, Yang R, Wu S, Wang D. The expression of metastasis-associated in colon cancer-1, Snail, and KAI1 in esophageal carcinoma and their clinical significance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:987-995. [PMID: 31933909 PMCID: PMC6945158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/16/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Metastasis-associated in colon cancer-1 (MACC1) is a key transcriptional regulator of mesenchymal-epithelial transition (MET) gene and so involved in the hepatocyte growth factor/MET signaling pathway. Snail has been reported to be associated with tumor epithelial-mesenchymal transition (EMT) and involved in the process of invasion and metastasis. KAI1 is a suppressor gene of tumor metastasis. The aim of this study is to explore the associations of MACC1, Snail, and KAI1 expression in esophageal squamous cell carcinoma (ESCC) and clinicopathologic characteristics of ESCC patients and their associations with each other. METHODS Immunohistochemistry was conducted to detect the expression of MACC1, Snail, and KAI1 in 214 whole-ESCC-tissue samples and corresponding normal esophageal mucosa tissues. All clinicopathologic, demographic, and follow-up data were collected. RESULTS MACC1 and Snail were significantly up-regulated in ESCC samples when compared with control samples; KAI1 was significantly down-regulated in ESCC group when compared with control group. Furthermore, positive expression of MACC1 and Snail was positively associated with tumor stages, lymph-node-metastasis (LNM) stages, and tumor-node-metastasis (TNM) stages. Positive expression of KAI1 was negatively associated with tumor grade, tumor stage, and LNM stages as well as TNM stage. The MACC1- or Snail-positive expression group had more unfavorable overall survival (OS) time than did the MACC1- or Snail-negative group; the positive expression of KAI1 group had significantly longer OS time than did the KiSS-1 negative group. Multivariate analysis of OS showed that overexpression of MACC1 and Snail, and down expression of KAI1 and tumor stages as well as TNM stages were independent prognostic factors for patients with ESCC. CONCLUSIONS Levels of expression of MACC1, Snail, and KAI1 are associated with the duration of OS in patients with ESCC. MACC1, Snail, and KAI1 should be considered as useful biomarkers and therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Wenqing Song
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical UniversityAnhui, China
- Department of Pathology, Bengbu Medical UniversityAnhui, China
| | - Xiaolin Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical UniversityAnhui, China
- Department of Pathology, Bengbu Medical UniversityAnhui, China
| | - Ruixue Yang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical UniversityAnhui, China
- Department of Pathology, Bengbu Medical UniversityAnhui, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical UniversityAnhui, China
- Department of Pathology, Bengbu Medical UniversityAnhui, China
| | - Danna Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical UniversityAnhui, China
- Department of Pathology, Bengbu Medical UniversityAnhui, China
| |
Collapse
|
10
|
Wang Y, Yang R, Wang X, Ci H, Zhou L, Zhu B, Wu S, Wang D. Evaluation of the correlation of vasculogenic mimicry, Notch4, DLL4, and KAI1/CD82 in the prediction of metastasis and prognosis in non-small cell lung cancer. Medicine (Baltimore) 2018; 97:e13817. [PMID: 30593175 PMCID: PMC6314709 DOI: 10.1097/md.0000000000013817] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vasculogenic mimicry (VM) is a new blood supply style in tumors and has long been treated as a useful factor in malignant tumor metastasis and prognosis. Notch4 (a marker of Notch signaling pathway receptors), DLL4 (a marker of Notch signaling pathway ligands) and KAI1/CD82 (a suppressor gene of tumor metastasis) are all effective predictive factors for tumor metastasis. In this study, we analyzed correlations among VM, Notch4, DLL4, and KAI1/CD82 in non-small cell lung cancer (NSCLC), and their respective associations with patients' clinicopathological parameters and survival rate in NSCLC.Positive rates of VM, Notch4, DLL4, and KAI1/CD82 in 189 whole NSCLC specimens were detected by histochemical and immunohistochemical staining. Moreover, patients' clinicopathological information was also collected.Positive rates of VM, Notch4, and DLL4 were significantly higher, and levels of KAI1/CD82 were significantly lower in NSCLC than in normal lung tissues. Positive rates of VM, Notch4, and DLL4 were positively associated with tumor size, lymph node metastasis (LNM), distant metastasis (DM) and tumor-node-metastasis (TNM) stage, and inversely with patients, overall survival (OS) time and positive rate of DLL4 were positively associated with tumor grade. Levels of KAI1/CD82 were negatively associated with tumor size, LNM, DM, and TNM stage. The KAI1/CD82+ subgroup had significantly longer OS time than did the KAI1/CD82- subgroup. In multivariate analysis, high VM, Notch4, DLL4 levels, tumor size, LNM, DM, TNM stage, and low KAI1/CD82 levels were potential to be independent prognostic factors for overall survival time (OST) in NSCLC patients.VM and the expression of Notch4, DLL4, and KAI1/CD82 represent promising markers for tumor metastasis and prognosis, and maybe potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Ruixue Yang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Xiaolin Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lei Zhou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Bo Zhu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Danna Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| |
Collapse
|