1
|
El-Said KS, Attia MS, Abdelmoaty BE, Salim EI. Synergistic antitumor effects of atorvastatin and chemotherapies: In vitro and in vivo studies. Biochem Biophys Res Commun 2025; 742:151078. [PMID: 39632292 DOI: 10.1016/j.bbrc.2024.151078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Atorvastatin (ATOR) acts on certain antitumor pathways; the consequences of chemotherapies continue to be a major concern, notwithstanding the increased efficacy provided by contemporary therapies. This study investigated the synergistic effects and underlying mechanisms of different treatment protocols using ATOR on the THP-1 cell line and on lung cancer in mice. For the in vitro study, an MTT assay was performed, and then different combinations against the THP-1 cell line were used as follows: non-treated cells, THP-1/ATOR IC50, THP-1/cytarabine (CYT) IC50, THP-1/doxorubicin (DOX) IC50, THP-1/DOX/CYT, THP-1/ATOR/CYT, THP-1/ATOR/DOX, and THP-1/ATOR/CYT/DOX. For the in vivo study, CD-1 male mice were used; G1 was the normal control. Gs2-5 were administered with urethane (Ure) and butylated hydroxytoluene (BHT). G2 was the positive control. G3 was treated with ATOR (20 mg/kg). G4 was treated with Bevacizumab (Bev) (5 mg/kg). G5 was co-treated with ATOR/Bev. Histopathological and immunohistochemical investigations, flow cytometry and molecular analysis of PI3K, Akt, and mTOR genes were performed after different treatment protocols. The results showed that different combinatorial treatment settings of ATOR in vitro increase the apoptotic-inducing capacity and cell cycle arrest. Co-treatment with ATOR and Bev led to a significant decrease in S-phase and G2/M percentages. Furthermore, in vivo co-treatment with ATOR/Bev decreased tumor incidence and size with a significant reduction of the immunohistochemical PCNA (LI%) in lung parenchyma, targeting PI3K/Akt/mTOR, and VEGF-A signaling pathways. Co-treatment with ATOR and chemotherapies led to cell cycle arrest, modulation of the PI3K/Akt/mTOR, and VEGF-A signaling pathways in tumor cells.
Collapse
Affiliation(s)
- Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Merna Saied Attia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Bassant Ezzat Abdelmoaty
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Elsayed Ibrahim Salim
- Research Lab. of Molecular Carcinogenesis, Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Wang Q, Ji X, Sun J, Zhang A, Jia J, Zhang T, Li W, Duan X. Stereotactic Body Radiotherapy Combined With Lenvatinib With or Without PD-1 Inhibitors as Initial Treatment for Unresectable Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 2024; 120:1363-1376. [PMID: 38583495 DOI: 10.1016/j.ijrobp.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE The aim of this study was to compare the clinical benefit and safety of the triple combination of stereotactic body radiotherapy (SBRT), lenvatinib, and programmed cell death protein 1 (PD-1) inhibitors with the dual combination of SBRT and lenvatinib in patients with unresectable hepatocellular carcinoma (uHCC). METHODS AND MATERIALS Patients with uHCC who received SBRT in combination with lenvatinib and PD-1 inhibitors or SBRT in combination with lenvatinib alone as first-line treatment from October 2018 to July 2022 were reviewed in this study. The primary endpoints were overall survival (OS) and progression-free survival (PFS). The secondary endpoints were intrahepatic PFS, extrahepatic PFS, and objective remission rate. In addition, safety profiles were assessed by analyzing treatment-related adverse events between the two groups to assess safety profiles. RESULTS In total, 214 patients with uHCC who received combination therapy were included in this retrospective study. Among them, 146 patients received triple combination therapy of SBRT, lenvatinib, and PD-1 inhibitors (SBRT-L-P group), and 68 patients received dual therapy of SBRT and lenvatinib (SBRT-L group). The median OS times of the 2 groups were 31.2 months and 17.4 months, respectively (P < .001). The median PFS time was significantly longer in the SBRT-L-P group than in the SBRT-L group (15.6 months vs 8.8 months, P < .001). Additionally, the median intrahepatic PFS (17.5 vs 9.9 months, P < .001) and extrahepatic PFS (20.9 vs 11.6 months, P < .001) were significantly longer in the SBRT-L-P group than in the SBRT-L group. The objective remission rate in the SBRT-L-P group was higher than in the SBRT-L group (63.0 vs 39.7%, P = .002). The incidence and severity of treatment-related adverse events in the SBRT-L-P group were comparable to those in the SBRT-L group. CONCLUSION The use of both lenvatinib and PD-1 inhibitors with SBRT in patients with uHCC was associated with improved overall survival compared with lenvatinib and SBRT alone with a manageable safety profile.
Collapse
Affiliation(s)
- Quan Wang
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoquan Ji
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Aimin Zhang
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jun Jia
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Teng Zhang
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wengang Li
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Xuezhang Duan
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Wang D, Qiu CJ, Chu Y, Zhang A, Huang R, Pan SJ, Tan L. A Polymeric Vesicle System for Combined Lung Cancer Therapy through Chemotherapy and Vasculature Normalization. Biomater Res 2024; 28:0117. [PMID: 39606153 PMCID: PMC11599482 DOI: 10.34133/bmr.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Lung cancer remains a great threat to human health despite the rapid development of various therapeutic methods. Chemotherapy continues to be the most commonly employed treatment for lung cancer; however, it often suffers from low drug delivery efficiency and severe side effects. To enhance the therapeutic efficacy of chemotherapy, we developed a novel strategy that integrates tumor vasculature normalization with the co-delivery of therapeutic agents. This strategy employs a diblock polymeric vesicle with a reduction-sensitive linkage. Paclitaxel (PTX) is encapsulated in the bilayer, while an acid-sensitive nitric oxide (NO) precursor, DETA NONOate, and zinc oxide nanoparticles (ZnO NPs) are loaded into the central cavity. The resulting nanosystem, (ZnO,NONO)@Ves-PTX, is designed to release NO under the acidic conditions typical of the tumor microenvironment (TME) and intracellular environment. The released NO in the TME inhibits angiogenesis, thereby facilitating the delivery and distribution of therapeutic agents. Upon internalization by tumor cells, (ZnO,NONO)@Ves-PTX decomposes in response to intracellular glutathione (GSH), releasing the loaded agents. DETA NONOate and ZnO NPs generate NO and Zn2+ ions, respectively, at the intracellular pH, which synergistically inhibit tumor growth alongside PTX. This combined therapeutic approach demonstrated remarkable potential in improving the chemotherapeutic efficacy for lung cancer, offering a promising direction for future cancer treatments.
Collapse
Affiliation(s)
- Ding Wang
- School of Materials Science and Engineering,
Shanghai Institute of Technology, Shanghai 201418, China
| | - Cheng-Jie Qiu
- Department of Neurosurgery, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yaoqing Chu
- School of Materials Science and Engineering,
Shanghai Institute of Technology, Shanghai 201418, China
| | - Anzhuo Zhang
- School of Materials Science and Engineering,
Shanghai Institute of Technology, Shanghai 201418, China
| | - Ran Huang
- Academy for Engineering and Technology; Yiwu Research Institute; Zhuhai Fudan Innovation Institute,
Fudan University, Shanghai 200433, China
- Center for Innovation and Entrepreneurship,
Taizhou Institute of Zhejiang University, Taizhou, Zhejiang 318000, China
| | - Si-Jian Pan
- Department of Neurosurgery, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lianjiang Tan
- School of Materials Science and Engineering,
Shanghai Institute of Technology, Shanghai 201418, China
- Department of Neurosurgery, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Chen D, Man LY, Wang YY, Zhu WY, Zhao HM, Li SP, Zhang YL, Li SC, Wu YX, Ling-Ai, Pang QF. Nrf2 deficiency exacerbated pulmonary pyroptosis in maternal hypoxia-induced intrauterine growth restriction offspring mice. Reprod Toxicol 2024; 129:108671. [PMID: 39038764 DOI: 10.1016/j.reprotox.2024.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Maternal prenatal hypoxia is an important contributor to intrauterine growth restriction (IUGR), which impedes fetal lung maturation and leads to the development of chronic lung diseases. Although evidence suggests the involvement of pyroptosis in IUGR, the molecular mechanism of pyroptosis is still unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been found to potentially interact with gasdermin D (GSDMD), the key protein responsible for pyroptosis, indicating its crucial role in inhibiting pyroptosis. Therefore, we hypothesized that Nrf2 deficiency is a key molecular responsible for lung pyroptosis in maternal hypoxia-induced IUGR offspring mice. Pregnant WT and Nrf2-/- mice were exposed to hypoxia (10.5 % O2) to mimic IUGR model. We assessed body weight, lung histopathology, pulmonary angiogenesis, oxidative stress levels, as well as mRNA and protein expressions related to inflammation in the 2-week-old offspring. Additionally, we conducted a dual-luciferase reporter assay to confirm the targeting relationship between Nrf2 and GSDMD. Our findings revealed that offspring with maternal hypoxia-induced IUGR exhibited reduced birth weight, catch-up growth delay, and pulmonary dysplasia. Furthermore, we observed impaired nuclear translocation of Nrf2 and increased GSDMD-mediated pyroptosis in these offspring with IUGR. Moreover, the dual-luciferase reporter assay demonstrated that Nrf2 could directly inhibit GSDMD transcription; deficiency of Nrf2 exacerbated pyroptosis and pulmonary dysplasia in offspring with maternal hypoxia-induced IUGR. Collectively, our findings suggest that Nrf2 deficiency induces GSDMD-mediated pyroptosis and pulmonary dysplasia in offspring with maternal hypoxia-induced IUGR; thus highlighting the potential therapeutic approach of targeting Nrf2 for treating prenatal hypoxia-induced pulmonary dysplasia in offspring.
Collapse
Affiliation(s)
- Dan Chen
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Ling-Yun Man
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Ying-Ying Wang
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Wei-Ying Zhu
- Department of obstetric, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing 314000, China
| | - Hui-Min Zhao
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Sheng-Peng Li
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Yan-Li Zhang
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Shuai-Chao Li
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Ya-Xian Wu
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Ling-Ai
- Department of obstetric, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing 314000, China.
| | - Qing-Feng Pang
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
5
|
Wang K, Xu M, Wang Y, Xu C, Hao Y, Song Z. Exploration of efficacy of different therapy regimens for advanced NSCLC patients with KRAS mutation in the first-line treatment. Clin Transl Oncol 2024; 26:2479-2487. [PMID: 38625494 DOI: 10.1007/s12094-024-03485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE The treatment of the advanced non-small cell lung cancer (NSCLC) with KRAS mutation has been closely paid more attention. The aim of this study is to investigate the efficacy of different first-line regimens in advanced KRAS-mutated non-small cell lung cancer. METHODS In our retrospective study, we collected patients with advanced NSCLC with KRAS mutation in Zhejiang Cancer Hospital between January 2015 and May 2023. We analyzed the benefit of different first-line therapy according to theraputic methods and the differential effect of the same treatment method among KRAS-mutated subtypes. We divided the patients into group A (A1, chemotherapy alone; A2, immunotherapy alone) and group B (B1, chemotherapy plus immunotherapy; B2, chemotherapy combined with antiangiogenic therapy; B3, chemotherapy combined with immunotherapy plus antiangiogenic therapy). The Kaplan-Meier survival curve was used to reflect the PFS and OS of different methods. The objective response rate (ORR) and the disease control rate (DCR) were used to evaluated the response. RESULTS We enrolled 227 patients including eighty-two with KRAS G12C mutation. The ORR and DCR of first-line treatment in the overall population were 32.2% and 80.6% respectively. The median PFS was 6.7 months and the median OS was 17.4 months for the overall population. The PFS of the Group B was significantly better than that of the Group A (7.7 months vs 5.4 months, P = 0.003), while no significant difference in OS was observed (19.4 months vs 15.0 months, P = 0.077). In the Group B, chemotherapy combined immunotherapy with antiangiogenic therapy showed better PFS than chemotherapy plus immunotherapy (14.1 months vs 7.7 months, P = 0.049), and OS also showed that tendency of difference (31.9 months vs 19.3 months, P = 0.158). There was no statistically significant difference between KRAS G12C and non-G12C mutation according to first-line treatment methods, whereas patients with TP53 co-mutation showed a better survival benefit (OS, 23.7 vs 12.5 months, P = 0.023). CONCLUSION In the first-line treatment, combination regimen has advantages over single regimen. Among them, chemotherapy combined with immunotherapy plus antiangiogenic therapy can achieve significant efficacy benefits.
Collapse
Affiliation(s)
- Ke Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Manyi Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Yanhua Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Chunwei Xu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Yue Hao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China.
| | - Zhengbo Song
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, People's Republic of China.
| |
Collapse
|
6
|
Sakai M, Iwamoto H, Shimose S, Niizeki T, Nakano M, Shirono T, Noda Y, Moriyama E, Suzuki H, Koga H, Kuromatsu R, Kawaguchi T. Dose-Reduction of Bevacizumab in Atezolizumab plus Bevacizumab Therapy Extends Treatment duration with Disease Control in Patients with Hepatocellular Carcinoma. Oncology 2024; 103:265-276. [PMID: 39265538 DOI: 10.1159/000541082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
INTRODUCTION Atezolizumab (ATZ) and bevacizumab (BEV) combination therapy is widely used in patients with unresectable hepatocellular carcinoma (HCC). However, combination therapy is typically interrupted or discontinued owing to BEV-related adverse events. In this study, we examined the effects of BEV dose-reduction on the treatment of unresectable HCC using propensity score matching (PSM). METHOD Overall, 119 patients with HCC who were treated with ATZ + BEV between November 2020 and October 2022 were enrolled retrospectively at our institute. The therapeutic effects and safety of BEV dose-reduction and non-dose reduction after PSM were compared. Decision-tree analysis was used to investigate treatment duration in the patients. RESULTS Significant differences were not observed between the two groups after PSM. The objective response rate (ORR) and disease control rate (DCR) assessed by modified RECIST did not differ significantly between the two groups (BEV non-dose-reduction/dose-reduction: ORR; 46/34%, DCR; 80/91%). Progression-free survival (PFS) and overall survival (OS) also did not differ significantly between the two groups (BEV non-dose-reduction/dose-reduction: PFS; 5.6/8.6 months, OS; 18.6/15.5 months). The median duration of treatment in the BEV dose-reduction group was significantly longer than that in the non-dose-reduction group (BEV non-dose-reduction/dose-reduction: 4.8/9.1 months, p = 0.038). Decision-tree analysis revealed that dose-reduction of BEV was the first distinguish factor for the extension of treatment duration with ATZ + BEV. CONCLUSION BEV dose-reduction can be effectively used in maintaining the treatment duration of ATZ + BEV while maintaining therapeutic effects and safety in real-world clinical practice.
Collapse
Affiliation(s)
- Miwa Sakai
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan,
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Iwamoto Internal Medicine Clinic, Kitakyushu, Japan
| | - Shigeo Shimose
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takashi Niizeki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masahito Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tomotake Shirono
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yu Noda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Etsuko Moriyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ryoko Kuromatsu
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
7
|
Garlisi B, Lauks S, Aitken C, Ogilvie LM, Lockington C, Petrik D, Eichhorn JS, Petrik J. The Complex Tumor Microenvironment in Ovarian Cancer: Therapeutic Challenges and Opportunities. Curr Oncol 2024; 31:3826-3844. [PMID: 39057155 PMCID: PMC11275383 DOI: 10.3390/curroncol31070283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) in ovarian cancer (OC) has much greater complexity than previously understood. In response to aggressive pro-angiogenic stimulus, blood vessels form rapidly and are dysfunctional, resulting in poor perfusion, tissue hypoxia, and leakiness, which leads to increased interstitial fluid pressure (IFP). Decreased perfusion and high IFP significantly inhibit the uptake of therapies into the tumor. Within the TME, there are numerous inhibitor cells, such as myeloid-derived suppressor cells (MDSCs), tumor association macrophages (TAMs), regulatory T cells (Tregs), and cancer-associated fibroblasts (CAFs) that secrete high numbers of immunosuppressive cytokines. This immunosuppressive environment is thought to contribute to the lack of success of immunotherapies such as immune checkpoint inhibitor (ICI) treatment. This review discusses the components of the TME in OC, how these characteristics impede therapeutic efficacy, and some strategies to alleviate this inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (B.G.); (S.L.); (C.A.); (L.M.O.); (C.L.); (D.P.); (J.S.E.)
| |
Collapse
|
8
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
9
|
Ning C, Zhang X, Wang Y, Yang X, Yang X, Chao J, Xun Z, Xue J, Wang Y, Sun H, Li Y, Zhang N, Zhu C, Hou X, Sang X, Zhao H. Radiation Therapy With Combination Therapy of Immune Checkpoint Inhibitors and Antiangiogenic Therapy for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 2024; 118:1461-1471. [PMID: 37433375 DOI: 10.1016/j.ijrobp.2023.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) combined with antiangiogenic therapy have limited efficacy in treating advanced hepatocellular carcinoma (HCC). The synergistic effect of systemic therapy and radiation therapy (RT) might resolve this problem. We aimed to investigate the effect of RT on the treatment outcomes of ICIs and antiangiogenic combination therapy in patients with advanced-stage HCC. METHODS AND MATERIALS This retrospective observational study analyzed the medical records of 194 patients with Barcelona Clinic Liver Cancer stage C HCC who were admitted to our center from August 2018 to June 2022 and received ICIs combined with antiangiogenic therapy as the first-line treatment. Patients who were administered RT for tumor thrombus or symptomatic metastases within 8 weeks of the commencement of combination therapy were allocated to the RT group, whereas those who did not receive RT were assigned to the non-radiation therapy (NRT) group. Propensity score matching was used to mitigate selection bias. The primary endpoints were progression-free survival (PFS) and overall survival (OS). The secondary endpoints included objective response rate, disease control rate (DCR), local PFS, out-of-field PFS, and treatment-related adverse events. RESULTS A total of 76 patients diagnosed with advanced-stage HCC and treated with ICIs and antiangiogenic therapy were included in the study, with 33 patients in the RT group and 43 patients in the non-RT group. After propensity score matching, 29 matched patient pairs were generated. The median follow-up was 15.5 months, and the RT sites were mainly located on the tumor thrombus (55.2%) and extrahepatic metastatic lesions (48.3%). The median PFS was 8.3 months (95% CI, 5.4-11.3) in the RT group and 4.2 months (95% CI, 3.4-5.0) in the NRT group (P < .001). The median OS was not reached in the RT group and was 9.7 months (95% CI, 4.1-15.3) in the NRT group (P = .002). The objective response rate was 75.9% (95% CI, 56.5-89.7) in the RT group and 24.1% (95% CI, 10.3-43.5) in the NRT group (P < .001). The DCR was 100% in the RT group and 75.9% (95% CI, 56.5-89.7) in the NRT group (P = .005). The median local PFS and out-of-field PFS were 13.2 months (95% CI, 6.3-20.1) and 10.8 months (95% CI, 7.0-14.7), respectively. RT was an independent prognostic factor for PFS (hazard ratio = 0.33; 95% CI, 0.17-0.64; P < .001) and OS (hazard ratio = 0.28; 95% CI, 0.11-0.68; P = .005), respectively. The rates of any grade treatment-related adverse events were similar between the 2 groups. CONCLUSIONS In comparison to the combination of ICIs and antiangiogenic therapy, the inclusion of RT has been observed to improve the DCR and survival outcomes in patients with advanced-stage HCC. The safety profile of this triple therapy was satisfactory.
Collapse
Affiliation(s)
- Cong Ning
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinmu Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yanyu Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xu Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jiashuo Chao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jingnan Xue
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yunchao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Huishan Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yiran Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Chengpei Zhu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaorong Hou
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xinting Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
10
|
Rayati M, Mansouri V, Ahmadbeigi N. Gene therapy in glioblastoma multiforme: Can it be a role changer? Heliyon 2024; 10:e27087. [PMID: 38439834 PMCID: PMC10909773 DOI: 10.1016/j.heliyon.2024.e27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal cancers with a poor prognosis. Over the past century since its initial discovery and medical description, the development of effective treatments for this condition has seen limited progress. Despite numerous efforts, only a handful of drugs have gained approval for its treatment. However, these treatments have not yielded substantial improvements in both overall survival and progression-free survival rates. One reason for this is its unique features such as heterogeneity and difficulty of drug delivery because of two formidable barriers, namely the blood-brain barrier and the tumor-blood barrier. Over the past few years, significant developments in therapeutic approaches have given rise to promising novel and advanced therapies. Target-specific therapies, such as monoclonal antibodies (mAbs) and small molecules, stand as two important examples; however, they have not yielded a significant improvement in survival among GBM patients. Gene therapy, a relatively nascent advanced approach, holds promise as a potential treatment for cancer, particularly GBM. It possesses the potential to address the limitations of previous treatments and even newer advanced therapies like mAbs, owing to its distinct properties. This review aims to elucidate the current status and advancements in gene therapy for GBM treatment, while also presenting its future prospects.
Collapse
Affiliation(s)
- Mohammad Rayati
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Chen D, Zhao HM, Deng XH, Li SP, Zhou MH, Wu YX, Tong Y, Yu RQ, Pang QF. BCL6 attenuates hyperoxia-induced lung injury by inhibiting NLRP3-mediated inflammation in fetal mouse. Exp Lung Res 2024; 50:25-41. [PMID: 38419581 DOI: 10.1080/01902148.2024.2320665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.
Collapse
Affiliation(s)
- Dan Chen
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hui-Min Zhao
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xian-Hui Deng
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Sheng-Peng Li
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mei-Hui Zhou
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ya-Xian Wu
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Tong
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ren-Qiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Qing-Feng Pang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Lin H, Ma C, Zhong A, Zang H, Chen W, Li L, Le Y, Xie Q. Anti-Angiogenic Agents Combined with Immunotherapy for Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Comb Chem High Throughput Screen 2024; 27:1081-1091. [PMID: 37559541 DOI: 10.2174/1386207326666230808112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Anti-angiogenic agents could enhance tumor immunity response, and anti- angiogenesis plus immunotherapy has become a novel treatment option for advanced non-small cell lung cancer (NSCLC). The efficacy of this combination therapy remains controversial and obscure. AIM We conducted a meta-analysis to evaluate the clinical efficacy and safety of this therapeutic strategy in patients with advanced NSCLC and provide more guidance for treating NSCLC clinically. METHODS A systematic literature search was performed in PubMed, Embase, Web of Science, CNKI, and Wanfang databases to identify relevant studies published up to December 2021. The primary endpoint was the objective response rate (ORR). Second endpoints were progression-free survival (PFS), overall survival (OS), and grade ≥3 AEs adverse events (AEs). The sensitivity analysis was conducted to confirm the stability of the results. STATA 15.0 was utilized for all pooled analyses. RESULTS Eleven studies were eventually included in the meta-analysis, involving 533 patients with advanced NSCLC. The pooled ORR rate was 27% (95% CI 18% to 35%; I2 =84.2%; p<0.001), while the pooled median PFS and OS was 5.84 months (95% CI 4.66 to 7.03 months; I2=78.4%; p<0.001) and 14.20 months (95% CI 11.08 to 17.32 months; I2=82.2%; p=0.001), respectively. Most common grade ≥3 AEs included hypertension, hand-foot syndrome, diarrhea, adrenal insufficiency, hyponatremia, proteinuria, rash, thrombocytopenia, and fatigue. CONCLUSION Anti-angiogenesis combined with immunotherapy demonstrated satisfactory antitumor activity and an acceptable toxicity profile in patients with advanced NSCLC. The pooled results of our meta-analysis provided further evidence supporting the favorable efficacy and safety of this therapeutic strategy.
Collapse
Affiliation(s)
- Heng Lin
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Chenhui Ma
- Department of Thoracis Surgery, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Aihong Zhong
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Huanping Zang
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Wenxin Chen
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Lixiu Li
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Yuyin Le
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| | - Qiang Xie
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, Fujian, 350008, China
| |
Collapse
|
13
|
Kumari R, Syeda S, Shrivastava A. Nature's Elixir for Cancer Treatment: Targeting Tumor-induced Neovascularization. Curr Med Chem 2024; 31:5281-5304. [PMID: 38425113 DOI: 10.2174/0109298673282525240222050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Angiogenesis, a multistep process, involves sprouting of new vessels from the pre-existing vessels in response to a stimulus in its microenvironment. Normally, angiogenesis is important for tissue maintenance and homeostasis, however it is also known to be associated with various pathologies, including cancer. Importantly, neovascularization is very crucial for tumors to grow and metastasize since it allows delivery of oxygen and nutrients as well as promotes tumor cell dissemination to distant sites. Activation of angiogenic switch is a consequence of imbalance in pro- as well as anti-angiogenic factors, that are immensely impacted by reactive oxygen species and epigenetic regulation. Several reports have suggested that angiogenic inhibitors significantly inhibit tumor growth. Therefore, anti-angiogenic therapy has gained substantial attention and has been considered a rational approach in cancer therapeutics. In this line, several anti- angiogenic drugs have been approved, however, their long term usage caused several side effects. In view of this, researchers switched to plant-based natural compounds for identifying safe and cost-effective anti-angiogenic drugs. Of note, various phytochemicals have been evaluated to reduce tumor growth by inhibiting tumor-induced angiogenesis. Moreover, the implication of nano-carriers to enhance the bioavailability of phytochemicals has proven to be more efficient anti-cancer agents. The present review highlights the existing knowledge on tumor-induced neovascularization and its regulation at the epigenetic level. Further, we emphasize the inhibitory effect of phytochemicals on tumor- induced angiogenesis that will open up new avenues in cancer therapeutics.
Collapse
Affiliation(s)
- Rani Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Saima Syeda
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
14
|
Sadowski EA, Lees B, McMillian AB, Kusmirek JE, Cho SY, Barroilhet LM. Distribution of prostate specific membrane antigen (PSMA) on PET-MRI in patients with and without ovarian cancer. Abdom Radiol (NY) 2023; 48:3643-3652. [PMID: 37261441 DOI: 10.1007/s00261-023-03957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVES Ovarian cancer is the most lethal cancer and future research needs to focus on the early detection and exploration of new therapeutic agents. The objectives of this proof-of-concept study are to assess the feasibility of PSMA 18F-DCFPyl PET/MR imaging for detecting ovarian cancer and to evaluate the PSMA distribution in patients with and without ovarian cancer. METHODS This prospective pilot proof-of-concept study in patients with and without ovarian cancers occurred between October 2017 and January 2020. Patients were recruited from gynecologic oncology or hereditary ovarian cancer clinics, and underwent surgical removal of the uterus and ovaries for gynecologic indications. PSMA 18F-DCFPyl PET/MRI was obtained prior to standard of care surgery. RESULTS Fourteen patients were scanned: four patients with normal ovaries, six patients with benign ovarian lesions, and four patients with malignant ovarian lesions. Tracer uptake in normal ovaries (SUVmax = 2.8 ± 0.4) was greater than blood pool (SUVmax = 1.8 ± 0.5, p < 0.0001). Tracer uptake in benign ovarian lesions (2.2 ± 1.0) did not differ significantly from blood pool (p = 0.331). Tracer uptake in ovarian cancer (SUVmax = 7.8 ± 3.8) was greater than blood pool (p < 0.0001), normal ovaries (p = 0.0014), and benign ovarian lesions (p = 0.005). CONCLUSION PET/MR imaging detected PSMA uptake in ovarian cancer, with little to no uptake in benign ovarian findings. These results are encouraging and further studies in a larger patient cohort would be useful to help determine the extent and heterogeneity of PSMA uptake in ovarian cancer patients.
Collapse
Affiliation(s)
- Elizabeth A Sadowski
- Departments of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/372, Madison, WI, 53792-3252, USA.
| | - Brittany Lees
- Atrium Health Levine Cancer Institute, 1021 Morehead Medical Drive, Suite 2100, Charlotte, NC, 28204, USA
| | - Alan B McMillian
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Rm 1139, Madison, WI, 53705, USA
| | - Joanna E Kusmirek
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., E3/372, Madison, WI, 53792-3252, USA
| | - Steve Y Cho
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., E3/372, Madison, WI, 53792-3252, USA
| | - Lisa M Barroilhet
- Departments of Radiology, Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, E3/372, Madison, WI, 53792-3252, USA
| |
Collapse
|
15
|
Xu Y, Zhu Y, Xu J, Mao H, Li J, Zhu X, Kong X, Zhang J. Analysis of microRNA expression in rat kidneys after VEGF inhibitor treatment under different degrees of hypoxia. Physiol Genomics 2023; 55:504-516. [PMID: 37642276 PMCID: PMC11178269 DOI: 10.1152/physiolgenomics.00023.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Previously, we found that the incidence of kidney injury in patients with chronic hypoxia was related to the partial pressure of arterial oxygen. However, at oxygen concentrations that contribute to kidney injury, the changes in the relationship between microRNAs (miRNAs) and the hypoxia-inducible factor-1α (HIF-1α)-vascular endothelial growth factor (VEGF) axis and the key miRNAs involved in this process have not been elucidated. Therefore, we elucidated the relationship between VEGF and kidney injury at different oxygen concentrations and the mechanisms mediated by miRNAs. Sprague-Dawley rats were exposed to normobaric hypoxia and categorized into six groups based on the concentration of the oxygen inhaled and injection of the angiogenesis inhibitor bevacizumab, a humanized anti-VEGF monoclonal antibody. Renal tissue samples were processed to determine pathological and morphological changes and HIF-1α, VEGF, and miRNA expression. We performed a clustering analysis of high-risk pathways and key hub genes. The results were validated using two Gene Expression Omnibus datasets (GSE94717 and GSE30718). As inhaled oxygen concentration decreased, destructive changes in the kidney tissues became more severe. Although the kidney possesses a self-protective mechanism under an intermediate degree of hypoxia (10% O2), bevacizumab injections disrupted this mechanism, and VEGF expression was associated with the ability of the kidney to repair itself. rno-miR-124-3p was identified as a crucial miRNA; a key gene target, Mapk14, was identified during this process. VEGF plays an important role in kidney protection from injury under different hypoxia levels. Specific miRNAs and their target genes may serve as biomarkers that provide new insights into kidney injury treatment.NEW & NOTEWORTHY Renal tolerance to hypoxic environments is limited, and the degree of hypoxia does not show a linear relationship with angiogenesis. VEGF plays an important role in the kidney's self-protective mechanism under different levels of hypoxia. miR-124-3p may be particularly important in kidney repair, and it may modulate VEGF expression through the miR-124-3p/Mapk14 signaling pathway. These microRNAs may serve as biomarkers that provide new insights into kidney injury treatment.
Collapse
Affiliation(s)
- Yaya Xu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Yueniu Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Jiayue Xu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Haoyun Mao
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Jiru Li
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Xiaodong Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Xiangmei Kong
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Jianhua Zhang
- Department of Pediatric Respiratory Department, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
16
|
Choi Y, Jung K. Normalization of the tumor microenvironment by harnessing vascular and immune modulation to achieve enhanced cancer therapy. Exp Mol Med 2023; 55:2308-2319. [PMID: 37907742 PMCID: PMC10689787 DOI: 10.1038/s12276-023-01114-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
Solid tumors are complex entities that actively shape their microenvironment to create a supportive environment for their own growth. Angiogenesis and immune suppression are two key characteristics of this tumor microenvironment. Despite attempts to deplete tumor blood vessels using antiangiogenic drugs, extensive vessel pruning has shown limited efficacy. Instead, a targeted approach involving the judicious use of drugs at specific time points can normalize the function and structure of tumor vessels, leading to improved outcomes when combined with other anticancer therapies. Additionally, normalizing the immune microenvironment by suppressing immunosuppressive cells and activating immunostimulatory cells has shown promise in suppressing tumor growth and improving overall survival. Based on these findings, many studies have been conducted to normalize each component of the tumor microenvironment, leading to the development of a variety of strategies. In this review, we provide an overview of the concepts of vascular and immune normalization and discuss some of the strategies employed to achieve these goals.
Collapse
Affiliation(s)
- Yechan Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Keehoon Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
| |
Collapse
|
17
|
Liu J, Zhang J, Gao Y, Jiang Y, Guan Z, Xie Y, Hu J, Chen J. Barrier permeation and improved nanomedicine delivery in tumor microenvironments. Cancer Lett 2023; 562:216166. [PMID: 37028698 DOI: 10.1016/j.canlet.2023.216166] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023]
Abstract
Nanomedicines can effectively penetrate tumor sites compared to traditionally used drugs. However, effective drugs that reach the interior of tumors remain limited. Based on studies of the complex tumor microenvironment, we summarized the barriers restricting tumor penetration of nanomedicines in this review. Penetration barriers are mainly caused by tumor blood vessels, stroma, and cell abnormalities. The repair of abnormal tumor blood vessels and tumor stroma and adjusting the physicochemical properties of nanoparticles are considered promising strategies to improve the tumor permeation of nanomedicines. The effects of nanoparticle properties, including size, shape, and surface charge, on tumor penetration were also reviewed. We expect to provide research ideas and a scientific basis for nanomedicines to increase intratumoral permeability and improve anti-tumor effects.
Collapse
Affiliation(s)
- Jinxiang Liu
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Jiaying Zhang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Yang Gao
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yuxuan Jiang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Zhenxin Guan
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Yiying Xie
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Jinghui Hu
- School of Rehabilitation, Institute of Rehabilitation Engineering, Binzhou Medical University, Yantai, 264003, PR China.
| | - Jing Chen
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China.
| |
Collapse
|
18
|
Subhan MA, Parveen F, Filipczak N, Yalamarty SSK, Torchilin VP. Approaches to Improve EPR-Based Drug Delivery for Cancer Therapy and Diagnosis. J Pers Med 2023; 13:jpm13030389. [PMID: 36983571 PMCID: PMC10051487 DOI: 10.3390/jpm13030389] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The innovative development of nanomedicine has promised effective treatment options compared to the standard therapeutics for cancer therapy. However, the efficiency of EPR-targeted nanodrugs is not always pleasing as it is strongly prejudiced by the heterogeneity of the enhanced permeability and retention effect (EPR). Targeting the dynamics of the EPR effect and improvement of the therapeutic effects of nanotherapeutics by using EPR enhancers is a vital approach to developing cancer therapy. Inadequate data on the efficacy of EPR in humans hampers the clinical translation of cancer drugs. Molecular targeting, physical amendment, or physiological renovation of the tumor microenvironment (TME) are crucial approaches for improving the EPR effect. Advanced imaging technologies for the visualization of EPR-induced nanomedicine distribution in tumors, and the use of better animal models, are necessary to enhance the EPR effect. This review discusses strategies to enhance EPR effect-based drug delivery approaches for cancer therapy and imaging technologies for the diagnosis of EPR effects. The effort of studying the EPR effect is beneficial, as some of the advanced nanomedicine-based EPR-enhancing approaches are currently undergoing clinical trials, which may be helpful to improve EPR-induced drug delivery and translation to clinics.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
- Correspondence: (M.A.S.); (V.P.T.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital Jhang 35200, Primary and Secondary Healthcare Department, Government of Punjab, Lahore, Punjab 54000, Pakistan
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Correspondence: (M.A.S.); (V.P.T.)
| |
Collapse
|
19
|
Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer 2023; 22:40. [PMID: 36810079 PMCID: PMC9942077 DOI: 10.1186/s12943-023-01740-y] [Citation(s) in RCA: 464] [Impact Index Per Article: 232.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/22/2022] [Indexed: 02/23/2023] Open
Abstract
Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse. Immunotherapy is profoundly altering the approach to cancer treatment owing to its tolerable safety profile, sustained therapeutic response due to immunological memory generation, and effectiveness across a broad patient population. Different tumor-specific vaccination strategies are gaining ground in the treatment of lung cancer. Recent advances in adoptive cell therapy (CAR T, TCR, TIL), the associated clinical trials on lung cancer, and associated hurdles are discussed in this review. Recent trials on lung cancer patients (without a targetable oncogenic driver alteration) reveal significant and sustained responses when treated with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockade immunotherapies. Accumulating evidence indicates that a loss of effective anti-tumor immunity is associated with lung tumor evolution. Therapeutic cancer vaccines combined with immune checkpoint inhibitors (ICI) can achieve better therapeutic effects. To this end, the present article encompasses a detailed overview of the recent developments in the immunotherapeutic landscape in targeting small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Additionally, the review also explores the implication of nanomedicine in lung cancer immunotherapy as well as the combinatorial application of traditional therapy along with immunotherapy regimens. Finally, ongoing clinical trials, significant obstacles, and the future outlook of this treatment strategy are also highlighted to boost further research in the field.
Collapse
Affiliation(s)
- Aritraa Lahiri
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Avik Maji
- Department of Radiation Oncology, N. R. S. Medical College & Hospital, 138 A.J.C. Bose Road, Kolkata, 700014, India
| | - Pravin D Potdar
- Department of Molecular Medicine and Stem Cell Biology, Jaslok Hospital and Research Centre, Mumbai, 400026, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Purvish Parikh
- Department of Clinical Hematology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, 302022, India
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, 400012, India
| | - Bharti Bisht
- Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Anubhab Mukherjee
- Esperer Onco Nutrition Pvt Ltd, 4BA, 4Th Floor, B Wing, Gundecha Onclave, Khairani Road, Sakinaka, Andheri East, Mumbai, Maharashtra, 400072, India.
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
20
|
S V, Kajal K, Mondal S, Wahan SK, Das Kurmi B, Das Gupta G, Patel P. Novel VEGFR-2 Kinase Inhibitors as Anticancer Agents: A Review Focusing on SAR and Molecular Docking Studies (2016-2021). Chem Biodivers 2023; 20:e202200847. [PMID: 36721068 DOI: 10.1002/cbdv.202200847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
Cancer growth, annexation, and metastatic spread are all aided by the formation of new blood vessels (angiogenesis). The commencement of the VEGF pathway leads to signal transduction that enhances endothelial cell survival, relocation, and divergence from pre-existing vasculature. The ability of solid malignancies to bloom and spread depends critically on their ability to establish their independent blood circulation (tumor angiogenesis). VEGFR is a major receptor tyrosine kinase that regulates angiogenesis, cell growth, and metastasis, diminishing apoptosis, cytoskeletal function, and other biological processes VEGFR has proven to be a remarkable focus for a variety of anticancer medicines in clinical studies. This Review explores the development of anti-VEGF-based antiangiogenic therapies having different scaffolds. This review had focused on SAR and docking studies of previously reported molecules.
Collapse
Affiliation(s)
- Vishakha S
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kumari Kajal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sitanshu Mondal
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Simranpreet K Wahan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
21
|
Cunningham C, Bolcaen J, Bisio A, Genis A, Strijdom H, Vandevoorde C. Recombinant Endostatin as a Potential Radiosensitizer in the Treatment of Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2023; 16:219. [PMID: 37259367 PMCID: PMC9961924 DOI: 10.3390/ph16020219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 11/03/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most prevalent type of lung cancer, which is the leading cause of cancer-related deaths worldwide. Over the past decades, tumour angiogenesis has been intensely studied in the treatment of NSCLC due to its fundamental role in cancer progression. Several anti-angiogenic drugs, such as recombinant endostatin (RE), have been evaluated in several preclinical and clinical trials, with mixed and often disappointing results. However, there is currently an emerging interest in RE due to its ability to create a vascular normalization window, which could further improve treatment efficacy of the standard NSCLC treatment. This review provides an overview of preclinical and clinical studies that combined RE and radiotherapy for NSCLC treatment. Furthermore, it highlights the ongoing challenges that have to be overcome in order to maximize the benefit; as well as the potential advantage of combinations with particle therapy and immunotherapy, which are rapidly gaining momentum in the treatment landscape of NSCLC. Different angiogenic and immunosuppressive effects are observed between particle therapy and conventional X-ray radiotherapy. The combination of RE, particle therapy and immunotherapy presents a promising future therapeutic triad for NSCLC.
Collapse
Affiliation(s)
- Charnay Cunningham
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Cape Town 7602, South Africa
- Radiation Biophysics Division, SSC Laboratory, NRF Ithemba LABS, Cape Town 7131, South Africa
| | - Julie Bolcaen
- Radiation Biophysics Division, SSC Laboratory, NRF Ithemba LABS, Cape Town 7131, South Africa
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Amanda Genis
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Cape Town 7602, South Africa
| | - Hans Strijdom
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Cape Town 7602, South Africa
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany
| |
Collapse
|
22
|
Zhao Y, Yu L, Wang L, Wu Y, Chen H, Wang Q, Wu Y. Current status of and progress in the treatment of malignant pleural effusion of lung cancer. Front Oncol 2023; 12:961440. [PMID: 36818672 PMCID: PMC9933866 DOI: 10.3389/fonc.2022.961440] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/30/2022] [Indexed: 01/22/2023] Open
Abstract
Malignant pleural effusion (MPE) is a common complication in the late stage of malignant tumors. The appearance of MPE indicates that the primary tumor has spread to the pleura or progressed to an advanced stage. The survival time of the patients will be significantly shortened, with a median survival of only a few months. There are a variety of traditional treatments, and their advantages and disadvantages are relatively clear. There are still many problems that cannot be solved by traditional methods in clinical work. The most common one is intrapleural perfusion therapy with chemotherapy drugs, but it has a large side effect of chemotherapy. At present, with the development of medical technology, there are a variety of treatment methods, and many innovative, significant and valuable treatment methods have emerged, which also bring hope for the treatment of refractory and recurrent MPE patients. Several clinical trials had confirmed that drug-carrying microparticles has less adverse reactions and obvious curative effect. However, there is still a long way to go to completely control and cure MPE, and the organic combination of clinical work and scientific research results is needed to bring dawn to refractory MPE patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yufeng Wu
- *Correspondence: Qiming Wang, ; Yufeng Wu,
| |
Collapse
|
23
|
Meng F, Yang X, Xiao P. DNASE1L3 regulation by transcription factor FOXP2 affects the proliferation, migration, invasion and tube formation of lung adenocarcinoma. Exp Ther Med 2022; 25:72. [PMID: 36684646 PMCID: PMC9843492 DOI: 10.3892/etm.2022.11771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is prone to bone metastasis, resulting in poor prognosis. The present study aimed to detect the expression of deoxyribonuclease 1-like 3 (DNASE1L3) and forkhead-box P2 (FOXP2) in LUAD cells to investigate the role of DNASE1L3 in the regulation of proliferation, migration, invasion and tube formation of LUAD cells and how FOXP2 affects DNASE1L3 expression. The expression of DNASE1L3 and FOXP2 in LUAD cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. The transfection efficiency of DNASE1L3 overexpression plasmids, FOXP2 overexpression or interference plasmids into A549 cells was also confirmed by RT-qPCR and western blotting. The viability, proliferation, migration and invasion and tube formation of LUAD cells following transfection was in turn detected by MTT, EdU staining, wound healing, Transwell and tube formation assay. The expression of proteins associated with epithelial-mesenchymal transformation and tube formation was detected by western blotting. Binding between DNASE1L3 and FOXP2 was confirmed by dual-luciferase reporter assay and chromatin immunoprecipitation. Gene Expression Profiling Interactive Analysis database predicted that underexpression of DNASE1L3 in LUAD was associated with poor prognosis. DNASE1L3 expression was decreased in LUAD cells and overexpression of DNASE1L3 inhibited the proliferation, migration, invasion and tube formation of LUAD cells. Transcription factor FOXP2 positively regulated DNASE1L3 transcription in LUAD cells. FOXP2 was also underexpressed in LUAD cells and downregulation of FOXP2 promoted proliferation, migration, invasion and tube formation of LUAD cells, which was reversed by overexpression of DNASE1L3. In conclusion, DNASE1L3 was positively regulated by transcription factor FOXP2 and overexpression inhibited proliferation, migration, invasion and tube formation of LUAD cells.
Collapse
Affiliation(s)
- Fanlu Meng
- Department of Medical Oncology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China,Correspondence to: Dr Fanlu Meng, Department of Medical Oncology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin 300052, P.R. China
| | - Xue Yang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Ping Xiao
- Department of Medical Oncology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
24
|
Yadav P, Dua C, Bajaj A. Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy. CHEM REC 2022; 22:e202200152. [PMID: 36103616 DOI: 10.1002/tcr.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Antiangiogenic therapy in combination with chemotherapeutic agents is an effective strategy for cancer treatment. However, this combination therapy is associated with several challenges including non-specific biodistribution leading to systemic toxicity. Biomaterial-mediated codelivery of chemotherapeutic and anti-angiogenic agents can exploit their passive and active targeting abilities, leading to improved drug accumulation at the tumor site and therapeutic outcomes. In this review, we present the progress made in the field of engineered biomaterials for codelivery of chemotherapeutic and antiangiogenic agents. We present advances in engineering of liposome/hydrogel/micelle-based biomaterials for delivery of combination of anticancer and anti-angiogenesis drugs, or combination of anticancer and siRNA targeting angiogenesis, and targeted nanoparticles. We then present our perspective on developing strategies for targeting angiogenesis and cell proliferation for cancer therapy.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Chhavi Dua
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
25
|
Zhou Z, Chen J, Liu Y, Zheng C, Luo W, Chen L, Zhou S, Li Z, Shen J. Cascade two-stage tumor re-oxygenation and immune re-sensitization mediated by self-assembled albumin-sorafenib nanoparticles for enhanced photodynamic immunotherapy. Acta Pharm Sin B 2022; 12:4204-4223. [PMID: 36386474 PMCID: PMC9643273 DOI: 10.1016/j.apsb.2022.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
As a promising modality for cancer therapy, photodynamic therapy (PDT) still acquired limited success in clinical nowadays due to the extremely serious hypoxia and immunosuppression tumor microenvironment. To ameliorate such a situation, we rationally designed and prepared cascade two-stage re-oxygenation and immune re-sensitization BSA-MHI148@SRF nanoparticles via hydrophilic and hydrophobic self-assembly strategy by using near-infrared photodynamic dye MHI148 chemically modified bovine serum albumin (BSA-MHI148) and multi-kinase inhibitor Sorafenib (SRF) as a novel tumor oxygen and immune microenvironment regulation drug. Benefiting from the accumulation of SRF in tumors, BSA-MHI148@SRF nanoparticles dramatically enhanced the PDT efficacy by promoting cascade two-stage tumor re-oxygenation mechanisms: (i) SRF decreased tumor oxygen consumption via inhibiting mitochondria respiratory. (ii) SRF increased the oxygen supply via inducing tumor vessel normalization. Meanwhile, the immunosuppression micro-environment was also obviously reversed by two-stage immune re-sensitization as follows: (i) Enhanced immunogenic cell death (ICD) production amplified by BSA-MHI148@SRF induced reactive oxygen species (ROS) generation enhanced T cell infiltration and improve its tumor cell killing ability. (ii) BSA-MHI148@SRF amplified tumor vessel normalization by VEGF inhibition also obviously reversed the tumor immune-suppression microenvironment. Finally, the growth of solid tumors was significantly depressed by such well-designed BSA-MHI148@SRF nanoparticles, which could be potential for clinical cancer therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jiashe Chen
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Chunjuan Zheng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenjuan Luo
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Lele Chen
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shen Zhou
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhiming Li
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| |
Collapse
|
26
|
Zaman R, Islam RA, Chowdhury EH. Evolving therapeutic proteins to precisely kill cancer cells. J Control Release 2022; 351:779-804. [DOI: 10.1016/j.jconrel.2022.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
27
|
Tsao SY. Perspectives of traditional Chinese medicine to patch up immune checkpoint blockers. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:676-693. [PMCID: PMC9630551 DOI: 10.37349/etat.2022.00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
In this era of cancer immunotherapy, the response rates of immune checkpoint blockers (ICBs) are still too low and the adverse events may also be significant. Of the ways of patching up such deficits, chemotherapy (ChT), especially if metronomic, seems promising, especially as immunity induced by immunogenic cell death (ICD) may be preserved. However, side effects, e.g., lymphocytopenia and interstitial pneumonitis cannot be ignored; eventually, resistance may also ensue. Vascular endothelial growth factors (VEGFs), being potent angiogenic factors, promote cancer cells’ purposeful angiogenesis rendering an extremely resistant tumor microenvironment (TME). This highly evasive and extremely resilient TME actually demands multi-agent, multi-target agents as currently in use through traditional Chinese medicine (TCM). With a good track record of 3,000 years, TCM is favored by mainland Chinese cancer patients. Although TCM had been criticized as unscientific and imprecise, recently, artificial intelligence (AI) technologies serve to elucidate the sound scientific basis and validity of TCM. Several TCM preparations having anti-VEGF actions are found; others suppress immune checkpoints. Especially, these herbs’ multi-prong approach appears to be more effective than Western medicine’s primarily monotherapy approach if one wishes to eradicate the very resistant TME. A “bonus” point is that some autoimmune-related adverse side effects of ICBs may also be reduced by TCM. Nevertheless, as the TCM experience is mostly anecdotal, robust clinical trials are mandatory. Moreover, other TCM problems, e.g., herbal batch variations and consistency and uniformity of herbal prescriptions are outstanding. Invariably, TCM prescriptions have daily variations as the practice of “syndrome differentiation” is hailed. Despite experienced TCM practitioners would refuse to give up their time-honored traditional practice, the multi-prong approach is still very attractive for the undue resilience of TME, let alone its good safety profile, ready availability, and eminent affordability. Although the passage is dark, light is now appearing at the end of the tunnel.
Collapse
Affiliation(s)
- Shiu Ying Tsao
- Department of Clinical Research, Hong Kong SAR Oncology Centre, Hong Kong SAR 999077, China
| |
Collapse
|
28
|
Daneshimehr F, Barabadi Z, Abdolahi S, Soleimani M, Verdi J, Ebrahimi-Barough S, Ai J. Angiogenesis and Its Targeting in Glioblastoma with Focus on Clinical Approaches. CELL JOURNAL 2022; 24:555-568. [PMID: 36259473 PMCID: PMC9617020 DOI: 10.22074/cellj.2022.8154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 01/25/2023]
Abstract
Angiogenesis is a characteristic of glioblastoma (GBM), the most fatal and therapeutic-resistant brain tumor. Highly expressed angiogenic cytokines and proliferated microvascular system made anti-angiogenesis treatments a thoroughly plausible approach for GBM treatment. Many trials have proved to be not only as a safe but also as an effective approach in GBM retardation in a certain time window as seen in radiographic response rates; however, they have failed to implement significant improvements in clinical manifestation whether alone or in combination with radio/chemotherapy. Bevasizumab, an anti-vascular endothelial growth factor-A (VEGF-A) antibody, is the only agent that exerts meaningful clinical influence by improving progression-free survival (PFS) and partially alleviate clinical symptoms, nevertheless, it could not prolong the overall survival (OS) in patients with GBM. The data generated from phase II trials clearly revealed a correlation between elevated reperfusion, subsequent to vascular normalization induction, and improved clinical outcomes which explicitly indicates anti-angiogenesis treatments are beneficial. In order to prolong these initial benefits observed in a certain period of time after anti-angiogenesis targeting, some aspects of the therapy should be tackled: recognition of other bypass angiogenesis pathways activated following antiangiogenesis therapy, identification of probable pathways that induce insensitivity to shortage of blood supply, and classifying the patients by mapping their GBM-related gene profile as biomarkers to predict their responsiveness to therapy. Herein, the molecular basis of brain vasculature development in normal and tumoral conditions is briefly discussed and it is explained how "vascular normalization" concept opened a window to a better comprehension of some adverse effects observed in anti-angiogenesis therapy in clinical condition. Then, the most targeted angiogenesis pathways focused on ligand/receptor interactions in GBM clinical trials are reviewed. Lastly, different targeting strategies applied in anti-angiogenesis treatment are discussed.
Collapse
Affiliation(s)
- Fatemeh Daneshimehr
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Zahra Barabadi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of
Medical Sciences, Hamadan, Iran
| | - Shahrokh Abdolahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of
Medical Sciences, Tehran, Iran,P.O.Box: 14177-55469Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies
in MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
29
|
Alfwuaires M, Elsawy H, Sedky A. Acacetin Inhibits Cell Proliferation and Induces Apoptosis in Human Hepatocellular Carcinoma Cell Lines. Molecules 2022; 27:molecules27175361. [PMID: 36080130 PMCID: PMC9457933 DOI: 10.3390/molecules27175361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of death across the world. Recent evidence suggests that STAT3 regulates proliferative, survival, metastasis, and angiogenesis genes in HCC. Novel agents that suppress STAT3 activation can be used to prevent or treat HCC. We used a functional proteomics tumor pathway technology platform and multiple HCC cell lines to investigate the effects of acacetin (ACN) on STAT3 activation, protein kinases, phosphatases, products of STAT3-regulated genes, and apoptosis. ACN was found to inhibit STAT3 activation in a dose- and time-dependent manner in HCC cells. Upstream kinases c-Src, Janus-activated kinase 1, and Janus-activated kinase 2 were also inhibited. The ACN inhibition of STAT3 was abolished by vanadate treatment, suggesting the involvement of tyrosine phosphatase activity. ACN was found to suppress the protein expression of genes involved in proliferation, survival, and angiogenesis via STAT3 inhibition. ACN appears to be a novel STAT3 inhibitor and may be a promising therapeutic compound for application in the treatment of HCC and other cancers.
Collapse
Affiliation(s)
- Manal Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Correspondence: (M.A.); (H.E.); Tel.: +96-61-3589-1008 (M.A.); +96-61-3589-7402 (H.E.)
| | - Hany Elsawy
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: (M.A.); (H.E.); Tel.: +96-61-3589-1008 (M.A.); +96-61-3589-7402 (H.E.)
| | - Azza Sedky
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Zoology Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
30
|
Elebiyo TC, Rotimi D, Evbuomwan IO, Maimako RF, Iyobhebhe M, Ojo OA, Oluba OM, Adeyemi OS. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. Cancer Treat Res Commun 2022; 32:100620. [PMID: 35964475 DOI: 10.1016/j.ctarc.2022.100620] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/02/2022] [Accepted: 08/05/2022] [Indexed: 05/23/2023]
Abstract
Vascularization is fundamental to the growth and spread of tumor cells to distant sites. As a consequence, angiogenesis, the sprouting of new blood vessels from existing ones, is a characteristic trait of cancer. In 1971, Judah Folkman postulated that tumour growth is angiogenesis dependent and that by cutting off blood supply, a neoplastic lesion could be potentially starved into remission. Decades of research have been devoted to understanding the role that vascular endothelial growth factor (VEGF) plays in tumor angiogenesis, and it has been identified as a significant pro-angiogenic factor that is frequently overexpressed within a tumor mass. Today, anti-VEGF drugs such as Sunitinib, Sorafenib, Axitinib, Tanibirumab, and Ramucirumab have been approved for the treatment of advanced and metastatic cancers. However, anti-angiogenic therapy has turned out to be more complex than originally thought. The failure of this therapeutic option calls for a reevaluation of VEGF as the major target in anti-angiogenic cancer therapy. The call for reassessment is based on two rationales: first, tumour blood vessels are abnormal, disorganized, and leaky; this not only prevents optimal drug delivery but it also promotes hypoxia and metastasis; secondly, tumour growth or regrowth might be blood vessel dependent and not angiogenesis dependent as tumour cells can acquire blood vessels via non-angiogenic mechanisms. Therefore, a critical assessment of VEGF, VEGFRs, and their inhibitors could glean newer options such as repurposing anti-VEGF drugs as vascular normalizing agents to enhance drug delivery of immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Damilare Rotimi
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | | | | | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria..
| | | | | |
Collapse
|
31
|
Jiao L, Dong Q, Zhai W, Zhao W, Shi P, Wu Y, Zhou X, Gao Y. A PD-L1 and VEGFR2 dual targeted peptide and its combination with irradiation for cancer immunotherapy. Pharmacol Res 2022; 182:106343. [DOI: 10.1016/j.phrs.2022.106343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
|
32
|
Kwiatkowska I, Hermanowicz JM, Iwinska Z, Kowalczuk K, Iwanowska J, Pawlak D. Zebrafish—An Optimal Model in Experimental Oncology. Molecules 2022; 27:molecules27134223. [PMID: 35807468 PMCID: PMC9268704 DOI: 10.3390/molecules27134223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 02/02/2023] Open
Abstract
A thorough understanding of cancer pathogenesis is a necessary step in the development of more effective and safer therapy. However, due to the complexity of the process and intricate interactions, studying tumor development is an extremely difficult and challenging task. In bringing this issue closer, different scientific models with various advancement levels are helpful. Cell cultures is a system that is too simple and does not allow for multidirectional research. On the other hand, rodent models, although commonly used, are burdened with several limitations. For this reason, new model organisms that will allow for the studying of carcinogenesis stages and factors reliably involved in them are urgently sought after. Danio rerio, an inconspicuous fish endowed with unique features, is gaining in importance in the world of scientific research. Including it in oncological research brings solutions to many challenges afflicting modern medicine. This article aims to illustrate the usefulness of Danio rerio as a model organism which turns out to be a powerful and unique tool for studying the stages of carcinogenesis and solving the hitherto incomprehensible processes that lead to the development of the disease.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
- Correspondence: ; Tel./Fax: +48-8574-856-01
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Zaneta Iwinska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| | - Krystyna Kowalczuk
- Department of Integrated Medical Care, Medical University of Bialystok, ul. M Skłodowskiej-Curie 7A, 15-096 Bialystok, Poland;
| | - Jolanta Iwanowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| |
Collapse
|
33
|
Sanaei A, Mohammadzadeh G, Rashidi M. Quercetin Improves the Anti-angiogenic Property of 5-Fluorouracil on the Human Umbilical Vein Endothelial Cells HUVEC Cell Line. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022; 15. [DOI: 10.5812/ijcm-120315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 01/04/2025]
Abstract
Background: Angiogenesis provides the oxygen and nutrients needed for metastasis and tumor growth, so by inhibiting angiogenesis, metastasis to other parts of the body can be prevented at the first steps of cancer. 5-Fluorouracil (5-FU) as a common chemotherapy drug and Quercetin as a natural compound both have anti-angiogenic properties. Objectives: In the current study improvement of the anti-angiogenic property of 5-FU by combination with quercetin was investigated. Methods: After treating the cells with alone or a combination of drugs the angiogenesis, vascular endothelial growth factor receptors (VEGFRs) gene expression, migration, and viability of the cells were evaluated using chicken chorioallantoic membrane (CAM) assay, real-time RT-PCR, wound healing and MTT assay, respectively. Results: Treatment with alone 5-FU and Que led to a significant reduction in angiogenesis, VEGFR2 and VEGFR1gene expression, migration, and Cell viability. The reductions were significant in the combination state compared to alone treatment. Conclusions: The results showed that the combination treatment with Que with 5-FU enhances the anti-angiogenic property of 5-FU, so it can be proposed as a potential anti-angiogenic and as a result anti-metastatic treatment for future animal studies.
Collapse
|
34
|
Tang Y, Yu Z, Lu X, Fan Q, Huang W. Overcoming Vascular Barriers to Improve the Theranostic Outcomes of Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103148. [PMID: 35246962 PMCID: PMC9069202 DOI: 10.1002/advs.202103148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/16/2022] [Indexed: 05/04/2023]
Abstract
Nanotheranostics aims to utilize nanomaterials to prevent, diagnose, and treat diseases to improve the quality of patients' lives. Blood vessels are responsible to deliver nutrients and oxygen to the whole body, eliminate waste, and provide access for patrolling immune cells for healthy tissues. Meanwhile, they can also nourish disease tissues, spread disease factors or cells into other healthy tissues, and deliver nanotheranostic agents to cover all the regions of a disease tissue. Thus, blood vessels are the first and the most important barrier for highly efficient nanotheranostics. Here, the structure and function of blood vessels are explored and how these characteristics affect nanotheranostics is discussed. Moreover, new mechanisms and related strategies about overcoming vascular obstacles for improved nanotheranostic outcomes are critically summarized, and their merits and demerits of each strategy are analyzed. Moreover, the present challenges to completely exhibit the potential of overcoming vascular barriers to improve the theranostic outcomes of nanomedicines in life science are also discussed. Finally, the future perspective is further discussed.
Collapse
Affiliation(s)
- Yufu Tang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Zhongzheng Yu
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingapore637459Singapore
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| |
Collapse
|
35
|
Alhazzani K, Venkatesan T, Natarajan U, Algahtani M, Alaseem A, Alobid S, Rathinavelu A. Evaluation of antitumor effects of VEGFR-2 inhibitor F16 in a colorectal xenograft model. Biotechnol Lett 2022; 44:787-801. [PMID: 35501620 DOI: 10.1007/s10529-022-03243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES Colorectal cancer (CRC) is the third most prevalent type of cancer in the United States. The treatment options for cancer include surgery, chemotherapy, radiation, and/or targeted therapy, which show significant improvement in overall survival. Among the various available treatments, antagonizing VEGF/VEGFR-2 pathways have shown effectiveness in limiting colorectal cancer growth and improving clinical outcomes. In this regard, we hypothesized that F16, a novel VEGFR-2 inhibitor, would control colorectal cancer growth by blocking the VEGFR-2 singling pathway in both in vitro and in vivo conditions. Therefore, the current study was aimed to analyze the efficacy of F16 on the growth of Colo 320DM cells under in vitro and in vivo conditions. RESULTS Human RT2 profiler PCR array analysis results clearly showed that angiogenesis and anti-apoptosis-related gene expressions were significantly reduced in HUVEC cells after F16 (5 μM) treatment. In addition, Western blot results revealed that F16 attenuated the downstream signaling of the VEGFR-2 pathway in HUVEC cells by up-regulating the p53 and p21 levels and down-regulating the p-AKT and p-FAK levels. Accordingly, F16 confirmed potent cytotoxic effects against the cell viability of Colo 320DM tumors, with an IC50 value of 9.52 ± 1.49 µM. Furthermore, treatment of mice implanted with Colo 320DM xenograft tumors showed a significant reduction in tumor growth and increases in survival rate compared to controls. Immunohistochemistry analysis of tumor tissues showed a reduction in CD31 levels also in F16 treated groups. CONCLUSIONS These results justify further evaluation of F16 as a potential new therapeutic agent for treating colorectal cancers.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Thiagarajan Venkatesan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Ave., Fort Lauderdale, FL, 33314, USA
| | - Umamaheswari Natarajan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Ave., Fort Lauderdale, FL, 33314, USA
| | - Mohammad Algahtani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Ali Alaseem
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, 13317, Saudi Arabia
| | - Saad Alobid
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Appu Rathinavelu
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Ave., Fort Lauderdale, FL, 33314, USA. .,College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA.
| |
Collapse
|
36
|
βIV-spectrin as a stalk cell-intrinsic regulator of VEGF signaling. Nat Commun 2022; 13:1326. [PMID: 35288568 PMCID: PMC8921520 DOI: 10.1038/s41467-022-28933-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Defective angiogenesis underlies over 50 malignant, ischemic and inflammatory disorders yet long-term therapeutic applications inevitably fail, thus highlighting the need for greater understanding of the vast crosstalk and compensatory mechanisms. Based on proteomic profiling of angiogenic endothelial components, here we report βIV-spectrin, a non-erythrocytic cytoskeletal protein, as a critical regulator of sprouting angiogenesis. Early loss of endothelial-specific βIV-spectrin promotes embryonic lethality in mice due to hypervascularization and hemorrhagic defects whereas neonatal depletion yields higher vascular density and tip cell populations in developing retina. During sprouting, βIV-spectrin expresses in stalk cells to inhibit their tip cell potential by enhancing VEGFR2 turnover in a manner independent of most cell-fate determining mechanisms. Rather, βIV-spectrin recruits CaMKII to the plasma membrane to directly phosphorylate VEGFR2 at Ser984, a previously undefined phosphoregulatory site that strongly induces VEGFR2 internalization and degradation. These findings support a distinct spectrin-based mechanism of tip-stalk cell specification during vascular development. Defective angiogenesis remains a high source of morbidity in multiple disorders. Here they show that βIV-spectrin, a membrane-associated cytoskeletal protein, is essential for regulation of endothelial tip cell populations and VEGF signaling during sprouting angiogenesis.
Collapse
|
37
|
Lin GS, Wang WW, Lin H, Lin RS. Bevacizumab Combined with Intensity-Modulated Radiation Therapy on Cognitive and Coagulation Function in Postoperative Glioma Patients. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9367919. [PMID: 35313514 PMCID: PMC8934211 DOI: 10.1155/2022/9367919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022]
Abstract
To examine the influences of bevacizumab combined with intensity-modulated radiation therapy (IMRT) on postoperative brain glioma, particularly its impact on coagulation function and cognitive function, the complete clinical data of 156 patients undergoing glioma surgery in the neurosurgery department of our hospital between March 2015 and October 2018 were retrospectively analyzed. All patients underwent glioma surgery and were then assigned to the observation group (Obs group, n = 79, received bevacizumab combined with IMRT) or the control group (Con group, n = 77, received IMRT without bevacizumab) for analysis during postoperative treatment. The patients' short-term efficacy was evaluated, and their serum markers and coagulation function were compared, as well as the cognitive function, the occurrence of adverse reactions during treatment, the Karnofsky performance status (KPS) score, and quality of life after treatment. Patients' survival was followed up within 2 years after surgery. The Obs group showed a notably higher clinical remission rate and clinical control rate (DCR) than the Con group after treatment. The Obs group showed notably lower levels of interleukin-2 (IL-2), vascular endothelial growth factor (VEGF), IL-6, and epidermal growth factor (EGF), experienced notably shorter prothrombin time (PT) and activated partial thromboplastin time (APTT), and showed higher fibrinogen (FIB) and D-dimer (D-D) levels than Con group. The Obs group showed notably better cognitive function, KPS score, and quality of life than the Con group, but no notable difference was observed between them in the incidence of adverse reactions (P > 0.0500). The survival rates in the Obs group were higher than in the Con group. For patients with glioma, postoperative bevacizumab combined with IMRT delivers substantially higher clinical efficacy by lowering serum marker levels and improving cognitive function without significantly affecting coagulation function.
Collapse
Affiliation(s)
- Guo-Shi Lin
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| | - Wei-Wei Wang
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| | - Hong Lin
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| | - Rui-Sheng Lin
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| |
Collapse
|
38
|
Is Sphingosine-1-Phosphate a Regulator of Tumor Vascular Functionality? Cancers (Basel) 2022; 14:cancers14051302. [PMID: 35267610 PMCID: PMC8909747 DOI: 10.3390/cancers14051302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite substantial theoretical and experimental support for using vascular normalization as cancer therapy, effectively achieving this strategy in the clinic remains complex. In the present paper, we propose a novel potential approach for the induction of tumor vascular normalization, reduction of hypoxia, and improvement of conventional treatment in cancer patients. This approach consists of the pharmacological modulation of a patient’s plasma S1P levels which through a PDGF signaling can enhance tumor vasculature functionality and reduce hypoxia. This approach is proposed following a clinical observation in pancreatic adenocarcinoma patients and pre-clinical data in different in vivo tumor models, and is supported by a review of the literature describing the biological role of S1P in vascular functionality regulation. Abstract Increasing evidence indicates that tumor vasculature normalization could be an appropriate strategy to increase therapies’ efficacy in solid tumors by decreasing hypoxia and improving drug delivery. We searched for a novel approach that reduces hypoxia and enhances chemotherapy efficacy in pancreatic adenocarcinoma which is characterized by disrupted blood vasculature associated with poor patient survival. Clinical significance of plasma levels of the angiogenic lipid sphingosine-1-phosphate (S1P) was assessed at baseline in 175 patients. High plasma S1P concentration was found to be a favorable prognostic/predictive marker in advanced/metastatic pancreatic adenocarcinoma patients treated by gemcitabine alone but not in patients receiving a combination gemcitabine and PDGFR-inhibitor. In pancreatic adenocarcinoma PDX models, oral administration of an S1P lyase inhibitor (LX2931) significantly increased plasma S1P levels, decreased tumor expression of the hypoxia marker (CA IX), and enhanced chemotherapy efficacy when combined with gemcitabine treatment. The direct effect of S1P on tumor oxygenation was assessed by administration of S1P onto tumor-grafted CAM model and measuring intra-tumoral pO2 using a tissue oxygen monitor. S1P increased pO2 in a tumor-CAM model. Thus, increasing plasma S1P is a promising strategy to decrease tumor hypoxia and enhance therapy efficacy in solid tumors. S1P may act as a tumor vasculature normalizer.
Collapse
|
39
|
Joy R, George J, John F. Brief Outlook on Polymeric Nanoparticles, Micelles, Niosomes, Hydrogels and Liposomes: Preparative Methods and Action. ChemistrySelect 2022. [DOI: 10.1002/slct.202104045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reshma Joy
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| | - Jinu George
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| | - Franklin John
- Bioorganic Chemistry Laboratory Sacred Heart college (Autonomous), Thevara Kochi Kerala 682013 India
| |
Collapse
|
40
|
Peralta S, Duhamel GE, Katt WP, Heikinheimo K, Miller AD, Ahmed F, McCleary-Wheeler AL, Grenier JK. Comparative transcriptional profiling of canine acanthomatous ameloblastoma and homology with human ameloblastoma. Sci Rep 2021; 11:17792. [PMID: 34493785 PMCID: PMC8423744 DOI: 10.1038/s41598-021-97430-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Ameloblastomas are odontogenic tumors that are rare in people but have a relatively high prevalence in dogs. Because canine acanthomatous ameloblastomas (CAA) have clinicopathologic and molecular features in common with human ameloblastomas (AM), spontaneous CAA can serve as a useful translational model of disease. However, the molecular basis of CAA and how it compares to AM are incompletely understood. In this study, we compared the global genomic expression profile of CAA with AM and evaluated its dental origin by using a bulk RNA-seq approach. For these studies, healthy gingiva and canine oral squamous cell carcinoma served as controls. We found that aberrant RAS signaling, and activation of the epithelial-to-mesenchymal transition cellular program are involved in the pathogenesis of CAA, and that CAA is enriched with genes known to be upregulated in AM including those expressed during the early stages of tooth development, suggesting a high level of molecular homology. These results support the model that domestic dogs with spontaneous CAA have potential for pre-clinical assessment of targeted therapeutic modalities against AM.
Collapse
Affiliation(s)
- Santiago Peralta
- Department of Clinical Sciences, Clinical Programs Center, College of Veterinary Medicine, Cornell University, Box 31, Ithaca, NY, 14853, USA.
| | - Gerald E Duhamel
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - William P Katt
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Kristiina Heikinheimo
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku and Turku University Hospital, Turku, Finland
| | - Andrew D Miller
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Faraz Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Angela L McCleary-Wheeler
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Jennifer K Grenier
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
41
|
Rodriguez D, Watts D, Gaete D, Sormendi S, Wielockx B. Hypoxia Pathway Proteins and Their Impact on the Blood Vasculature. Int J Mol Sci 2021; 22:ijms22179191. [PMID: 34502102 PMCID: PMC8431527 DOI: 10.3390/ijms22179191] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
Every cell in the body requires oxygen for its functioning, in virtually every animal, and a tightly regulated system that balances oxygen supply and demand is therefore fundamental. The vascular network is one of the first systems to sense oxygen, and deprived oxygen (hypoxia) conditions automatically lead to a cascade of cellular signals that serve to circumvent the negative effects of hypoxia, such as angiogenesis associated with inflammation, tumor development, or vascular disorders. This vascular signaling is driven by central transcription factors, namely the hypoxia inducible factors (HIFs), which determine the expression of a growing number of genes in endothelial cells and pericytes. HIF functions are tightly regulated by oxygen sensors known as the HIF-prolyl hydroxylase domain proteins (PHDs), which are enzymes that hydroxylate HIFs for eventual proteasomal degradation. HIFs, as well as PHDs, represent attractive therapeutic targets under various pathological settings, including those involving vascular (dys)function. We focus on the characteristics and mechanisms by which vascular cells respond to hypoxia under a variety of conditions.
Collapse
|
42
|
Prebble AR, Weishaar KM, Thamm DH, Leary D, LaRue SM, Martin T, Boss MK. Increased incidence of gastrointestinal toxicity in canine cancer patients treated with concurrent abdominal radiation therapy and toceranib phosphate. Vet Comp Oncol 2021; 20:142-153. [PMID: 34310002 DOI: 10.1111/vco.12756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/23/2021] [Indexed: 12/29/2022]
Abstract
Receptor tyrosine kinase inhibitors (TKIs) are used to treat human and canine cancers and may be combined with radiation therapy (RT) to enhance tumor control due their anticancer and antiangiogenic effects; however, recent case reports have emerged describing incidences of gastrointestinal toxicity when antiangiogenic therapies are combined with hypofractionated radiotherapy in human cancer patients. We evaluated the incidence of gastrointestinal (GI) toxicity in dogs receiving concurrent hypofractionated abdominal RT and the TKI toceranib (TOC) compared to those receiving abdominal RT alone, TOC alone, or concurrent non-abdominal RT and TOC. Medical records of canine cancer patients were retrospectively reviewed and identified dogs were included in the following treatment categories: dogs which received RT to a portion of the abdomen and concurrent TOC (n = 19), abdominal RT alone (n-29), TOC alone (n = 20), or non-abdominal RT plus TOC (n = 9). Toxicities were graded using the Veterinary Cooperative Oncology Group - Common Terminology Criteria for Adverse Events criteria and compared to published data on TOC-associated GI toxicity. Patients receiving TOC while undergoing abdominal RT had significantly increased rates of any grade of diarrhea (p = 0.002), hyporexia (p = 0.0045), and vomiting (p = 0.003), as well as severe hyporexia (p = 0.003) when compared across the treatment groups. This retrospective study reveals significantly increased incidences of GI toxicity when abdominal RT is combined with TOC in canine patients. These findings are in-line with the clinical concerns reported for increased normal tissue toxicity in human patients when antiangiogenics are combined with RT.
Collapse
Affiliation(s)
- Amber R Prebble
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kristen M Weishaar
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Douglas H Thamm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Del Leary
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Susan M LaRue
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Tiffany Martin
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
43
|
Gatina DZ, Garanina EE, Zhuravleva MN, Synbulatova GE, Mullakhmetova AF, Solovyeva VV, Kiyasov AP, Rutland CS, Rizvanov AA, Salafutdinov II. Proangiogenic Effect of 2A-Peptide Based Multicistronic Recombinant Constructs Encoding VEGF and FGF2 Growth Factors. Int J Mol Sci 2021; 22:ijms22115922. [PMID: 34072943 PMCID: PMC8198600 DOI: 10.3390/ijms22115922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Coronary artery disease remains one of the primary healthcare problems due to the high cost of treatment, increased number of patients, poor clinical outcomes, and lack of effective therapy. Though pharmacological and surgical treatments positively affect symptoms and arrest the disease progression, they generally exhibit a limited effect on the disease outcome. The development of alternative therapeutic approaches towards ischemic disease treatment, especially of decompensated forms, is therefore relevant. Therapeutic angiogenesis, stimulated by various cytokines, chemokines, and growth factors, provides the possibility of restoring functional blood flow in ischemic tissues, thereby ensuring the regeneration of the damaged area. In the current study, based on the clinically approved plasmid vector pVax1, multigenic constructs were developed encoding vascular endothelial growth factor (VEGF), fibroblast growth factors (FGF2), and the DsRed fluorescent protein, integrated via picornaviruses' furin-2A peptide sequences. In vitro experiments demonstrated that genetically modified cells with engineered plasmid constructs expressed the target proteins. Overexpression of VEGF and FGF2 resulted in increased levels of the recombinant proteins. Concomitantly, these did not lead to a significant shift in the general secretory profile of modified HEK293T cells. Simultaneously, the secretome of genetically modified cells showed significant stimulating effects on the formation of capillary-like structures by HUVEC (endothelial cells) in vitro. Our results revealed that when the multicistronic multigene vectors encoding 2A peptide sequences are created, transient transgene co-expression is ensured. The results obtained indicated the mutual synergistic effects of the growth factors VEGF and FGF2 on the proliferation of endothelial cells in vitro. Thus, recombinant multicistronic multigenic constructs might serve as a promising approach for establishing safe and effective systems to treat ischemic diseases.
Collapse
Affiliation(s)
- Dilara Z. Gatina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Margarita N. Zhuravleva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Gulnaz E. Synbulatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Adelya F. Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Andrey P. Kiyasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
| | - Catrin S. Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
- Correspondence: (A.A.R.); (I.I.S.)
| | - Ilnur I. Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.Z.G.); (E.E.G.); (M.N.Z.); (G.E.S.); (A.F.M.); (V.V.S.); (A.P.K.)
- Correspondence: (A.A.R.); (I.I.S.)
| |
Collapse
|
44
|
Crowley FJ, O'Cearbhaill RE, Collins DC. Exploiting somatic alterations as therapeutic targets in advanced and metastatic cervical cancer. Cancer Treat Rev 2021; 98:102225. [PMID: 34082256 DOI: 10.1016/j.ctrv.2021.102225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 01/05/2023]
Abstract
It is estimated that 604,127 patients were diagnosed with cervical cancer worldwide in 2020. While a small percentage of patients will have metastatic disease at diagnosis, a large percentage (15-61%) later develop advanced disease. For this cohort, treatment with systemic chemotherapy remains the standard of care, with a static 5-year survival rate over the last thirty years. Data on targetable molecular alterations in cervical cancer have lagged behind other more common tumor types thus stunting the development of targeted agents. In recent years, tumor genomic testing has been increasingly incorporated into our clinical practice, opening the door for a potential new era of personalized treatment for advanced cervical cancer. The interim results from the NCI-MATCH study reported an actionability rate of 28.4% for the cervical cancer cohort, suggesting a subset of patients may harbor mutations which that are targetable. This review sets out to summarize the key targeted agents currently under exploration either alone or in combination with existing treatments for cervical cancer.
Collapse
Affiliation(s)
- F J Crowley
- Department of Internal Medicine, Mount Sinai Morningside and Mount Sinai West, NY, USA.
| | - R E O'Cearbhaill
- Department of Medicine, Memorial Sloan Kettering Cancer Centre and Weill Cornell Medical College, NY, USA.
| | - D C Collins
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland; Cancer Research @UCC, College of Medicine and Health, University College Cork, Cork, Ireland.
| |
Collapse
|
45
|
Liang Q, Zhou L, Li Y, Liu J, Liu Y. Nano drug delivery system reconstruct tumour vasculature for the tumour vascular normalisation. J Drug Target 2021; 30:119-130. [PMID: 33960252 DOI: 10.1080/1061186x.2021.1927056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The abnormal structure and function of blood vessels in the TME are obvious characteristics of the tumour. Abnormal blood vessels with high leakage support the occurrence of malignant tumours and increase the possibility of tumour cell invasion and metastasis. The formation of abnormal vascular also enhances immunosuppression and prevents the delivery of chemotherapy drugs to deeper tumours. Therefore, the normalisation of tumour blood vessels is a very promising approach to improve anti-tumour efficacy, aiming to restore the structural integrity of vessels and improve drug delivery efficiency and anti-tumour immunity. In this review, we have summarised strategies to improve cancer treatment that via nano drug delivery technology regulates the normalisation of tumour blood vessels. The treatment strategies related to the structure and function of tumour blood vessels such as angiogenesis factors, tumour-associated macrophages, tumour vascular endothelial cells, tumour-associated fibroblasts and immune checkpoints in the TME were mainly discussed. The normalisation of tumour blood vessels presents new opportunities and challenges for the more efficient delivery of nanoparticles to tumour tissues and cells and an innovative combination of treatments for cancer.
Collapse
Affiliation(s)
- Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
46
|
Geindreau M, Ghiringhelli F, Bruchard M. Vascular Endothelial Growth Factor, a Key Modulator of the Anti-Tumor Immune Response. Int J Mol Sci 2021; 22:4871. [PMID: 34064508 PMCID: PMC8124522 DOI: 10.3390/ijms22094871] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
During tumor growth, angiogenesis is required to ensure oxygen and nutrient transport to the tumor. Vascular endothelial growth factor (VEGF) is the major inducer of angiogenesis and appears to be a key modulator of the anti-tumor immune response. Indeed, VEGF modulates innate and adaptive immune responses through direct interactions and indirectly by modulating protein expressions on endothelial cells or vascular permeability. The inhibition of the VEGF signaling pathway is clinically approved for the treatment of several cancers. Therapies targeting VEGF can modulate the tumor vasculature and the immune response. In this review, we discuss the roles of VEGF in the anti-tumor immune response. In addition, we summarize therapeutic strategies based on its inhibition, and their clinical approval.
Collapse
Affiliation(s)
- Mannon Geindreau
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, 21000 Dijon, France;
- Team “CAdIR”, CRI INSERM UMR1231 “Lipids, Nutrition and Cancer”, 21000 Dijon, France
- LipSTIC LabEx, 21000 Dijon, France;
| | - François Ghiringhelli
- LipSTIC LabEx, 21000 Dijon, France;
- Centre Georges François Leclerc, 21000 Dijon, France
| | - Mélanie Bruchard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, 21000 Dijon, France;
- Team “CAdIR”, CRI INSERM UMR1231 “Lipids, Nutrition and Cancer”, 21000 Dijon, France
- LipSTIC LabEx, 21000 Dijon, France;
- Centre Georges François Leclerc, 21000 Dijon, France
| |
Collapse
|
47
|
Liu Y, Zhou J, Li Q, Li L, Jia Y, Geng F, Zhou J, Yin T. Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma. Adv Drug Deliv Rev 2021; 172:80-103. [PMID: 33705874 DOI: 10.1016/j.addr.2021.02.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Remarkable advances in nano delivery systems have provided new hope for tumor prevention, diagnosis and treatment. However, only limited clinical therapeutic effects against solid tumors were achieved. One of the main reasons is the presence of abundant physiological and pathological barriers in vivo that impair tumoral penetration and distribution of the nanodrugs. These barriers are related to the components of tumor microenvironment (TME) including abnormal tumor vasculature, rich composition of the extracellular matrix (ECM), and abundant stroma cells. Herein, we review the advanced strategies of TME remodeling to overcome these biological obstacles against nanodrug delivery. This review aims to offer a perspective guideline for the implementation of promising approaches to facilitate intratumoral permeation of nanodrugs through alleviation of biological barriers. At the same time, we analyze the advantages and disadvantages of the corresponding methods and put forward possible directions for the future researches.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jiyuan Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Qiang Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lingchao Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yue Jia
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Feiyang Geng
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
48
|
The complexity of tumour angiogenesis based on recently described molecules. Contemp Oncol (Pozn) 2021; 25:33-44. [PMID: 33911980 PMCID: PMC8063899 DOI: 10.5114/wo.2021.105075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tumour angiogenesis is a crucial factor associated with tumour growth, progression, and metastasis. The whole process is the result of an interaction between a wide range of different molecules, influencing each other. Herein we summarize novel discoveries related to the less known angiogenic molecules such as galectins, pentraxin-3, Ral-interacting protein of 76 kDa (RLIP76), long non-coding RNAs (lncRNAs), B7-H3, and delta-like ligand-4 (DLL-4) and their role in the process of tumour angiogenesis. These molecules influence the most important molecular pathways involved in the formation of blood vessels in cancer, including the vascular endothelial growth factor (VEGF)-vascular endothelial growth factor receptor interaction (VEGFR), HIF1-a activation, or PI3K/Akt/mTOR and JAK-STAT signalling pathways. Increased expression of galectins, RLIP76, and B7H3 has been proven in several malignancies. Pentraxin-3, which appears to inhibit tumour angiogenesis, shows reduced expression in tumour tissues. Anti-angiogenic treatment based mainly on VEGF inhibition has proved to be of limited effectiveness, leading to the development of drug resistance. The newly discovered molecules are of great interest as a potential source of new anti-cancer therapies. Their role as targets for new drugs and as prognostic markers in neoplasms is discussed in this review.
Collapse
|
49
|
MiR-628-5p Inhibits Cervical Carcinoma Proliferation and Promotes Apoptosis by Targeting VEGF. Am J Med Sci 2021; 361:499-508. [PMID: 33775424 DOI: 10.1016/j.amjms.2020.11.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/29/2020] [Accepted: 11/07/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND It has been reported that the dysregulation of microRNAs (miRNAs) is implicated in the biological processes of diverse diseases, including the tumorigenesis of human cancers. MicroRNA-628-5p (miR-628-5p) is differentially expressed and plays a critical role in several cancers, but the role of miR-628-5p in cervical cancer has not been well studied. METHODS The TCGA database and RT-qPCR were used to evaluate the expression profile of miR-628-5p in cervical cancer tissues. Transfection efficiency of synthetic miRNAs was detected using RT-qPCR. The biological effects of miR-628-5p on cervical cancer cells were assessed by the CCK-8 assay, flow cytometry, western blot analysis, and the tube formation assay. The expression levels of key proteins involved in cell apoptosis, the cell cycle and the PI3K pathway were analyzed by western blot analysis. Bioinformatic analysis and the luciferase reporter assay were performed to investigate the targeted relationship between miR-628-5p and vascular endothelial growth factor (VEGF). RESULTS MiR-628-5p was downregulated and negatively correlated with Ki-67 expression in cervical cancer tissues, and its low level predicted poor survival of patients. Functional assays indicated that miR-628-5p inhibited cell proliferation and promoted cell apoptosis. Mechanically, VEGF was verified to be a downstream target of miR-628-5p. Moreover, overexpression of VEGF could reverse the effects of miR-628-5p on VEGF/PI3K/AKT signaling, cell proliferation, apoptosis, the cell cycle and angiogenesis in cervical cancer. CONCLUSIONS MiR-628-5p inhibited cervical cancer cell proliferation and promoted apoptosis by targeting VEGF.
Collapse
|
50
|
Shahik SM, Salauddin A, Hossain MS, Noyon SH, Moin AT, Mizan S, Raza MT. Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: an integrated computational approach. Genomics Inform 2021; 19:e6. [PMID: 33840170 PMCID: PMC8042301 DOI: 10.5808/gi.20068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/11/2021] [Indexed: 12/26/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is expressed at elevated levels by most cancer cells, which can stimulate vascular endothelial cell growth, survival, proliferation as well as trigger angiogenesis modulated by VEGF and VEGFR (a tyrosine kinase receptor) signaling. The angiogenic effects of the VEGF family are thought to be primarily mediated through the interaction of VEGF with VEGFR-2. Targeting this signaling molecule and its receptor is a novel approach for blocking angiogenesis. In recent years virtual high throughput screening has emerged as a widely accepted powerful technique in the identification of novel and diverse leads. The high-resolution X-ray structure of VEGF has paved the way to introduce new small molecular inhibitors by structure-based virtual screening. In this study using different alkaloid molecules as potential novel inhibitors of VEGF, we proposed three alkaloid candidates for inhibiting VEGF and VEGFR mediated angiogenesis. As these three alkaloid compounds exhibited high scoring functions, which also highlights their high binding ability, it is evident that these alkaloids can be taken to further drug development pipelines for use as novel lead compounds to design new and effective drugs against cancer.
Collapse
Affiliation(s)
- Shah Md Shahik
- Molecular Biology Department, AFC Agro Biotech Ltd., Dhaka 1212, Bangladesh.,Bioinformatics Division, Disease Biology and Molecular Epidemiology Research Group (dBme), Chattogram 4202, Bangladesh
| | - Asma Salauddin
- Bioinformatics Division, Disease Biology and Molecular Epidemiology Research Group (dBme), Chattogram 4202, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md Shakhawat Hossain
- Bioinformatics Division, Disease Biology and Molecular Epidemiology Research Group (dBme), Chattogram 4202, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sajjad Hossain Noyon
- Bioinformatics Division, Disease Biology and Molecular Epidemiology Research Group (dBme), Chattogram 4202, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Shagufta Mizan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Md Thosif Raza
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| |
Collapse
|