1
|
Liu K, Wang Y, Li Q, Wang Y, Liu J, Zhou J, Song F, Cong Z, Wang Z, Kong N. Hypoxia LUAD H1975 cell-derived exosomal miR-671-3p promotes angiogenesis via regulating KLF2-VEGFR2 axis. Sci Rep 2025; 15:13148. [PMID: 40240492 PMCID: PMC12003721 DOI: 10.1038/s41598-025-97488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
For solid tumors, hypoxia is associated with disease aggressiveness and poor outcomes. In addition to undergoing broad intracellular molecular and metabolic adaptations, hypoxic tumor cells extensively communicate with their microenvironments to facilitate conditions favorable for their survival, growth, and metastasis. This communication is mediated by diverse secretory factors, including exosomes (extracellular vesicles of endosomal origin). Exosomal cargo is altered considerably by hypoxia, with significant impacts on tumor-cell communication with both local and distant microenvironments. Exosomes released by cancer cells influence the tumor environment to accelerate metastasis. While tumor-derived exosomes have been identified as a major driver of premetastatic niche formation at distant sites, this mechanism in lung adenocarcinoma (LUAD) remains unclear. We found that miR-671-3p in exosomes derived from H1975 under hypoxic conditions target Krüppel-like factor 2 (KLF2) to regulate VEGFR2 expression in endothelial cells to promote angiogenesis. In addition, miR-671-3p is expressed at high levels in circulating exosomes isolated from patients with LUAD. Our study suggests that exosome miR-671-3p is involved in the formation of premetastatic niche and may serve as a blood-based biomarker for LUAD metastasis.
Collapse
Affiliation(s)
- Kun Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China.
| | - Qisen Li
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Yujue Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Jinrui Liu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Jintao Zhou
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Feiyu Song
- Jilin Connell Pharmaceutical Company, Changchun, China
| | - Zhongyi Cong
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China
| | - Zhe Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Ning Kong
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, ChangChun, China.
| |
Collapse
|
2
|
Bai L, Yu L, Ran M, Zhong X, Sun M, Xu M, Wang Y, Yan X, Lee RJ, Tang Y, Xie J. Harnessing the Potential of Exosomes in Therapeutic Interventions for Brain Disorders. Int J Mol Sci 2025; 26:2491. [PMID: 40141135 PMCID: PMC11942545 DOI: 10.3390/ijms26062491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Exosomes, which are nano-sized natural vesicles secreted by cells, are crucial for intercellular communication and interactions, playing a significant role in various physiological and pathological processes. Their characteristics, such as low toxicity and immunogenicity, high biocompatibility, and remarkable drug delivery capabilities-particularly their capacity to traverse the blood-brain barrier-make exosomes highly promising vehicles for drug administration in the treatment of brain disorders. This review provides a comprehensive overview of exosome biogenesis and isolation techniques, strategies for the drug loading and functionalization of exosomes, and exosome-mediated blood-brain barrier penetration mechanisms, with a particular emphasis on recent advances in exosome-based drug delivery for brain disorders. Finally, we address the opportunities and challenges associated with utilizing exosomes as a drug delivery system for the brain, summarizing the barriers to clinical translation and proposing future research directions.
Collapse
Affiliation(s)
- Lu Bai
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Leijie Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Mengqiong Ran
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Xing Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Meng Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Minhao Xu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Yu Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Xinlei Yan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Robert J. Lee
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Yaqin Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| | - Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
- Center for Nanomedicine and Gene Therapy, Chongqing University of Technology, 69 Hongguang Road, Chongqing 400054, China
| |
Collapse
|
3
|
Hao X, Guo Y, Yu X, He L, He Y, Shu M. Exosomes from adipose-derived stem cells overexpressing microRNA-671-3p promote fat graft angiogenesis and adipogenic differentiation. Tissue Cell 2024; 91:102575. [PMID: 39388928 DOI: 10.1016/j.tice.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Exosomes from adipose-derived stem cells (ADSCs) have been demonstrated to benefit angiogenesis, wound healing, and fat grafting. Small noncoding RNAs such as microRNA (miRNA) and circular RNA play critical roles in mediating the function of ADSCs-derived exosomes. However, the underlying mechanisms have not been fully elucidated. In this study, we investigated the function and mechanism of human ADSCs-derived exosomes (hADSCs-Exo) in promoting fat graft angiogenesis and adipogenic differentiation. hADSCs-Exo were isolated and identified, and treatment with hADSCs-Exo enhanced fat graft angiogenesis and adipogenic differentiation in a mouse fat graft implantation model. We found that hADSCs-Exo overexpressed miR-671-3p and promoted human umbilical vein endothelial cell (HUVEC) proliferation, migration, and invasion. Bioinformatics analysis and luciferase reporter assay validated that TMEM127 is a direct target of miR-671-3p. Rescue experiments demonstrated that TMEM127 overexpression partially antagonized the function of hADSCs-Exo in vitro, such as suppressing HUVEC cell proliferation, migration, and invasion. Moreover, TMEM127 overexpression abrogated the function of hADSCs-Exo on fat graft angiogenesis and adipogenic differentiation. Taken together, our findings demonstrate that miR-671-3p-overexpressing exosomes from ADSC promote fat graft angiogenesis and adipogenic differentiation, which highlights the potential of targeting the ADSC-Exosomes-miR-671-3p/TMEM127 axis to improve outcome of fat graft and tissue engineering regenerative medicine.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - Yuan Guo
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - Xueyuan Yu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - Lin He
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - Youcheng He
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi 710061, PR China
| | - Maoguo Shu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
4
|
Aravindraja C, Jeepipalli S, Duncan WD, Vekariya KM, Rahaman SO, Chan EKL, Kesavalu L. Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics. Int J Mol Sci 2024; 25:6217. [PMID: 38892405 PMCID: PMC11172800 DOI: 10.3390/ijms25116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Streptococcus gordonii (S. gordonii, Sg) is one of the early colonizing, supragingival commensal bacterium normally associated with oral health in human dental plaque. MicroRNAs (miRNAs) play an important role in the inflammation-mediated pathways and are involved in periodontal disease (PD) pathogenesis. PD is a polymicrobial dysbiotic immune-inflammatory disease initiated by microbes in the gingival sulcus/pockets. The objective of this study is to determine the global miRNA expression kinetics in S. gordonii DL1-infected C57BL/6J mice. All mice were randomly divided into four groups (n = 10 mice/group; 5 males and 5 females). Bacterial infection was performed in mice at 8 weeks and 16 weeks, mice were euthanized, and tissues harvested for analysis. We analyzed differentially expressed (DE) miRNAs in the mandibles of S. gordonii-infected mice. Gingival colonization/infection by S. gordonii and alveolar bone resorption (ABR) was confirmed. All the S. gordonii-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, and a significant increase in mandible and maxilla ABR (p < 0.0001). miRNA profiling revealed 191 upregulated miRNAs (miR-375, miR-34b-5p) and 22 downregulated miRNAs (miR-133, miR-1224) in the mandibles of S. gordonii-infected mice at the 8-week mark. Conversely, at 16 weeks post-infection, 10 miRNAs (miR-1902, miR-203) were upregulated and 32 miRNAs (miR-1937c, miR-720) were downregulated. Two miRNAs, miR-210 and miR-423-5p, were commonly upregulated, and miR-2135 and miR-145 were commonly downregulated in both 8- and 16-week-infected mice mandibles. Furthermore, we employed five machine learning (ML) algorithms to assess how the number of miRNA copies correlates with S. gordonii infections in mice. In the ML analyses, miR-22 and miR-30c (8-week), miR-720 and miR-339-5p (16-week), and miR-720, miR-22, and miR-339-5p (combined 8- and 16-week) emerged as the most influential miRNAs.
Collapse
Affiliation(s)
- Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Syam Jeepipalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - William D. Duncan
- Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Krishna Mukesh Vekariya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Edward K. L. Chan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
5
|
Tang J, Yan B, Tang Y, Zhou X, Ji Z, Xu F. Baicalein ameliorates oxidative stress and brain injury after intracerebral hemorrhage by activating the Nrf2/ARE pathway via miR-106a-5p/PHLPP2 axis. Int J Neurosci 2023; 133:1380-1393. [PMID: 35612366 DOI: 10.1080/00207454.2022.2080676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating stroke subtype. Baicalein (BAI) has been reported to be effective in ischemic stroke. The aim of the present study was to investigate the mechanism of BAI on brain injury after ICH. Firstly, ICH mouse models were established by injecting collagenase into the right of basal ganglia, followed by detection of neurobehavioral scores, brain edema, oxidative stress (OS) level, neuronal apoptosis and pathological changes. Average neurologic scores, brain water content, and blood-brain barrier permeability and MDA level in ICH mice were reduced after BAI treatment, while serum SOD and GSH-Px levels were increased and neuronal apoptosis and pathological injury of the brain tissues were mitigated. miR-106a-5p downregulation averted the effect of BAI on ICH mice. miR-106a-5p targeted PHLPP2 and PHLPP2 overexpression reversed the effect of BAI on ICH mice. BAI activated the Nrf2/ARE pathway by inhibiting PHLPP2 expression. In conclusion, BAI inhibited OS and protected against brain injury after ICH by activating the Nrf2/ARE pathway through the miR-106a-5p/PHLPP2 axis.
Collapse
Affiliation(s)
- Jilei Tang
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Bingchao Yan
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Yangyang Tang
- Department of Nursing Basic Medicine Teaching and Research Section, Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou, Jiangsu, China
| | - Xin Zhou
- Xuzhou College of Industrial Technolog, Xuzhou, Jiangsu, China
| | - Ziteng Ji
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Feng Xu
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Suchitha GP, Balaya RDA, Raju R, Keshava Prasad TS, Dagamajalu S. A network map of cytoskeleton-associated protein 4 (CKAP4) mediated signaling pathway in cancer. J Cell Commun Signal 2023; 17:1097-1104. [PMID: 36944905 PMCID: PMC10409693 DOI: 10.1007/s12079-023-00739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) is a non-glycosylated type II transmembrane protein that serves as a cell surface-activated receptor. It is expressed primarily in the plasma membranes of bladder epithelial cells, type II alveolar pneumocytes, and vascular smooth muscle cells. CKAP4 is involved in various biological activities including cell proliferation, cell migration, keratinocyte differentiation, glycogenesis, fibrosis, thymic development, cardiogenesis, neuronal apoptosis, and cancer. CKAP4 has been described as a pro-tumor molecule that regulates the progression of various cancers, including lung cancer, breast cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, cervical cancer, oral cancer, bladder cancer, cholangiocarcinoma, pancreatic cancer, myeloma, renal cell carcinoma, melanoma, squamous cell carcinoma, colorectal cancer, and osteosarcoma. CKAP4 and its isoform bind to DKK1 or DKK3 (Dickkopf proteins) or antiproliferative factor (APF) and regulates several downstream signaling cascades. The CKAP4 complex plays a crucial role in regulating the signaling pathways including PI3K/AKT and MAPK1/3. Recently, CKAP4 has been recognized as a potential target for cancer therapy. Due to its biomedical importance, we integrated a network map of CKAP4. The available literature on CKAP4 signaling was manually curated according to the NetPath annotation criteria. The consolidated pathway map comprises 41 activation/inhibition events, 21 catalysis events, 35 molecular associations, 134 gene regulation events, 83 types of protein expression, and six protein translocation events. CKAP4 signaling pathway map data is freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5322 ). Generation of CKAP4 signaling pathway map.
Collapse
Affiliation(s)
- G. P. Suchitha
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka 575018 India
| |
Collapse
|
7
|
Cai M, Wu W, Deng S, Yang Q, Wu H, Wang H, Zhang J, Feng Q, Shao J, Zeng Y, Li J. Expression of cytoskeleton-associated protein 4 is associated with poor prognosis and metastasis in nasopharyngeal carcinoma. Exp Biol Med (Maywood) 2023; 248:1085-1094. [PMID: 37208923 PMCID: PMC10581166 DOI: 10.1177/15353702231167940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/18/2022] [Indexed: 05/21/2023] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) acts as a key transmembrane protein that connects the endoplasmic reticulum (ER) to microtubule dynamics. Researchers have not examined the roles of CKAP4 in nasopharyngeal carcinoma (NPC). The study aimed at evaluating the prognostic value and metastasis-regulating effect of CKAP4 in NPC. CKAP4 protein could be observed in 86.36% of 557 NPC specimens but not in normal nasopharyngeal epithelial tissue. According to immunoblot assays, NPC cell lines presented high CKAP4 expression relative to NP69 immortalized nasopharyngeal epithelial cells. Moreover, CKAP4 was highly expressed at the NPC tumor front and in matched liver, lung, and lymph node metastasis samples. Furthermore, high CKAP4 expression reported poor overall survival (OS) and presented a positive relevance to tumor (T) classification, recurrence, and metastasis. According to multivariate analysis, CKAP4 could independently and negatively predict patients' prognosis. Stable knockdown of CKAP4 expression in NPC cells inhibited cell migration, invasion and metastasis in vitro and in vivo. Moreover, CKAP4 promoted epithelial-mesenchymal transition (EMT) in NPC cells. CKAP4 knockdown was followed by the downregulation of the interstitial marker vimentin, and upregulation of the epithelial marker E-cadherin. In NPC tissues, high CKAP4 expression exhibited a positive relevance to vimentin expression and a negative relevance to E-cadherin expression. In conclusion, CKAP4 is an independent predictor of NPC, and CKAP4 might contribute NPC progression and metastasis, which may be involved in EMT with vimentin and E-cadherin.
Collapse
Affiliation(s)
- Manbo Cai
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Weijun Wu
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shengling Deng
- Department of Anesthesia, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Qiao Yang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Haibiao Wu
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Haiyun Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jiaxing Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Qisheng Feng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianyong Shao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yixin Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianjun Li
- Department of Urological Surgical, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001,China
| |
Collapse
|
8
|
Xu K, Zhang K, Ma J, Yang Q, Yang G, Zong T, Wang G, Yan B, Shengxia J, Chen C, Wang L, Wang H. CKAP4-mediated activation of FOXM1 via phosphorylation pathways regulates malignant behavior of glioblastoma cells. Transl Oncol 2023; 29:101628. [PMID: 36701930 PMCID: PMC9883288 DOI: 10.1016/j.tranon.2023.101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/27/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE CKAP4 (Cytoskeleton Associated Protein 4) has been reported as an important regulator of carcinogenesis. A great deal of uncertainty still surrounds the possible molecular mechanism of CKAP4 involvement in GBM. We aimed to specifically elucidate the putative role of CKAP4 in the development of GBM. METHODS We identified divergent proteomics landscapes of GBM and adjacent normal tissues using mass spectrometry-based label-free quantification. Bioinformatics analysis of differentially expressed proteins (DEPs) led to the identification of CKAP4 as a hub gene. Based on the Chinese Glioma Genome Atlas data, we characterized the elevated expression of CKAP4 in GBM and developed a prognostic model. The influence of CKAP4 on malignant behavior of GBM was detected in vitro and vivo, as well as its downstream target and signaling pathways. RESULTS The prognosis model displayed accuracy and reliability for the probability of survival of patients with gliomas. CKAP4 knockdown remarkably reduced the malignant potential of GBM cells, whereas its overexpression reversed these effects in GBM cells and xenograft mice. Moreover, we demonstrated that overexpression of CKAP4 leads to increased FOXM1 (Forkhead Box M1) expression in conjunction with an increased level of AKT and ERK phosphorylation. Inhibition of both pathways had synergistic effects, resulting in greater effectiveness of inhibition. CKAP4 could reverse the deregulation of FOXM1 triggered by inhibition of AKT and ERK signaling. CONCLUSIONS This is the first study to reveal a CKAP4-FOXM1 signaling cascade that contributes to the malignant phenotype of GBMs. The CKAP4-based prognostic model would facilitate individualized treatment decisions for glioma patients.
Collapse
Affiliation(s)
- Kaiyue Xu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Kaiqian Zhang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi, China
| | - Jiying Ma
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Qianqian Yang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Ge Yang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Tingting Zong
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Guowei Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China,Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, Shaanxi, China
| | - Bo Yan
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Jule Shengxia
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Chao Chen
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi, China,Corresponding authors.
| | - Huijuan Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China,Corresponding authors.
| |
Collapse
|
9
|
Wang S, Hu M, Song D, Tang L, Jiang H. Research progress on the role and mechanism of miR-671 in bone metabolism and bone-related diseases. Front Oncol 2023; 12:1018308. [PMID: 36713572 PMCID: PMC9876598 DOI: 10.3389/fonc.2022.1018308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Bone metabolism consists of bone formation and resorption and maintains a dynamic balance in vivo. When bone homeostasis is broken, it can manifest as osteoarthritis (OA), rheumatoid arthritis (RA), osteosarcoma (OS), etc. MiR-671, an important class of non-coding nucleotide sequences in vivo, is regulated by lncRNA and regulates bone metabolism balance by regulating downstream target proteins and activating various signaling pathways. Based on the structure and primary function of miR-671, this paper summarizes the effect and mechanism of miR-671 in bone-related inflammation and cancer diseases, and prospects the application possibility of miR-671, providing reference information for targeted therapy of bone-related disorders.
Collapse
Affiliation(s)
- Shaotai Wang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China,*Correspondence: Min Hu, ; Huan Jiang,
| | - Dongsheng Song
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Linjun Tang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huan Jiang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China,*Correspondence: Min Hu, ; Huan Jiang,
| |
Collapse
|
10
|
Ghafouri-Fard S, Askari A, Hussen BM, Rasul MF, Hatamian S, Taheri M, Kiani A. A review on the role of miR-671 in human disorders. Front Mol Biosci 2022; 9:1077968. [PMID: 36545507 PMCID: PMC9760869 DOI: 10.3389/fmolb.2022.1077968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
miR-671 is encoded by a gene on 7q36.1 and contributes to the pathogenesis of a variety of disorders, including diverse types of cancers, atherosclerosis, ischemic stroke, liver fibrosis, osteoarthritis, Parkinson's disease, rheumatoid arthritis, acute myocardial infarction and Crohn's disease. In the context of cancer, different studies have revealed opposite roles for this miRNA. In brief, it has been shown to be down-regulated in pancreatic ductal carcinoma, ovarian cancer, gastric cancer, osteosarcoma, esophageal squamous cell carcinoma and myelodysplastic syndromes. Yet, miR-671 has been up-regulated in glioma, colorectal cancer, prostate cancer and hepatocellular carcinoma. Studies in breast, lung and renal cell carcinoma have reported inconsistent results. The current review aims at summarization of the role of miR-671 in these disorders focusing on its target mRNA in each context and dysregulated signaling pathways. We also provide a summary of the role of this miRNA as a prognostic factor in malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Iraq,Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Sevak Hatamian
- Department of Anesthesia, Shahid Madani Hospital, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany,*Correspondence: Mohammad Taheri, ; Arda Kiani,
| | - Arda Kiani
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Mohammad Taheri, ; Arda Kiani,
| |
Collapse
|
11
|
Tomczyk-Socha M, Kręcicka J, Misiuk-Hojło M, Turno-Kręcicka A. MicroRNA Expression in Pseudoexfoliation Syndrome with the Use of Next-Generation Sequencing. Genes (Basel) 2022; 13:genes13040582. [PMID: 35456388 PMCID: PMC9031982 DOI: 10.3390/genes13040582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Pseudoexfoliation syndrome (PEX) is a clinically important and biologically intriguing systemic disorder of the extracellular matrix. PEX etiopathogenesis was proved to be connected to multiple genes and other factors. However, the exact etiopathogenesis remains unknown. The aim of this study was to analyze miR expression in PEX using next-generation sequencing. An attempt was made to find the most commonly occurring miR in PEX, to evaluate miR that may have an essential role in the etiology of PEX syndrome. In addition, the correlation between the selected miRs’ expressions and age was investigated. Anterior lens capsules were obtained during cataract surgery. Next-generation sequencing was conducted on Illumina MiSeq. The average age was 68.2 years (with standard deviation +/− 6.92 years). Ten miRs with the highest level of expression represent approx. 95% of all readings. Four miRs with statistically significant differences in expression between groups have been distinguished: miR-671-3p, miR374a-5p, miR-1307-5p and miR-708-5p. The relationship between the most frequent miRs’ expressions and age has been evaluated and no correlation has been detected. In view of the above, it seems reasonable to examine the influence of miR on the biogenesis of PEX. Further studies on miR-671-3p, miR-374a-5p, miR-1307-5p and miR-708-5p expression in PEX are needed.
Collapse
Affiliation(s)
- Martyna Tomczyk-Socha
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.M.-H.); (A.T.-K.)
- Correspondence: ; Tel.: +48-71-736-43-00; Fax: +48-71-736-43-09
| | - Julia Kręcicka
- Department and Clinic of Ophthalmology, Wroclaw University Hospital, Borowska 213, 50-556 Wrocław, Poland;
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.M.-H.); (A.T.-K.)
| | - Anna Turno-Kręcicka
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (M.M.-H.); (A.T.-K.)
| |
Collapse
|
12
|
Wu X, Wang X, Wang J, Hao Y, Liu F, Wang X, Yang L, Lu Z. The Roles of Exosomes as Future Therapeutic Agents and Diagnostic Tools for Glioma. Front Oncol 2021; 11:733529. [PMID: 34722277 PMCID: PMC8548662 DOI: 10.3389/fonc.2021.733529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Glioma is a common type of tumor originating in the brain. Glioma develops in the gluey supporting cells (glial cells) that surround and support nerve cells. Exosomes are extracellular vesicles that contain microRNAs, messenger RNA, and proteins. Exosomes are the most prominent mediators of intercellular communication, regulating, instructing, and re-educating their surrounding milieu targeting different organs. As exosomes' diameter is in the nano range, the ability to cross the blood-brain barrier, a crucial obstacle in developing therapeutics against brain diseases, including glioma, makes the exosomes a potential candidate for delivering therapeutic agents for targeting malignant glioma. This review communicates the current knowledge of exosomes' significant roles that make them crucial future therapeutic agents and diagnostic tools for glioma.
Collapse
Affiliation(s)
- Xiaoben Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xingbang Wang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Jing Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fang Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Yang
- Department of Medical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
13
|
Fukuda S, Akiyama M, Niki Y, Kawatsura R, Harada H, Nakahama KI. Inhibitory effects of miRNAs in astrocytes on C6 glioma progression via connexin 43. Mol Cell Biochem 2021; 476:2623-2632. [PMID: 33660186 DOI: 10.1007/s11010-021-04118-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/20/2021] [Indexed: 12/20/2022]
Abstract
In many types of tumor cells, cell communication via gap junction is decreased or missing. Therefore, cancer cells acquire unique cytosolic environments that differ from those of normal cells. This study assessed the differences in microRNA (miRNA) expression between cancer and normal cells. MicroRNA microarray analysis revealed five miRNAs that were highly expressed in normal astrocytes compared with that in C6 gliomas. To determine whether these miRNAs could pass through gap junctions, connexin 43 was expressed in C6 glioma cells and co-cultured with normal astrocytes. The co-culture experiment showed the possibility that miR-152-3p and miR-143-3p propagate from normal astrocytes to C6 glioma in connexin 43-dependent and -independent manners, respectively. Moreover, we established C6 glioma cells that expressed miR-152-3p or miR-143-3p. Although the proliferation of these miRNA-expressing C6 glioma cells did not differ from that of empty vectors introduced in C6 glioma cells, cell migration and invasion were significantly decreased in C6 glioma cells expressing miR-152-3p or miR-143-3p. These results suggest the possibility that miRNA produced by normal cells attenuates tumor progression through connexin 43-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Shuhei Fukuda
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masako Akiyama
- Research Administration Division, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yuki Niki
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Risa Kawatsura
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
14
|
Li SX, Li J, Dong LW, Guo ZY. Cytoskeleton-Associated Protein 4, a Promising Biomarker for Tumor Diagnosis and Therapy. Front Mol Biosci 2021; 7:552056. [PMID: 33614703 PMCID: PMC7892448 DOI: 10.3389/fmolb.2020.552056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) is located in the rough endoplasmic reticulum (ER) and plays an important role in stabilizing the structure of ER. Meanwhile, CKAP4 is also found to act as an activated receptor at the cell surface. The multifunction of CKAP4 was gradually discovered with growing research evidence. In addition to the involvement in various physiological events including cell proliferation, cell migration, and stabilizing the structure of ER, CKAP4 has been implicated in tumorigenesis. However, the role of CKAP4 is still controversial in tumor biology, which may be related to different signal transduction pathways mediated by binding to different ligands in various microenvironments. Interestingly, CKAP4 has been recently recognized as a serological marker of several tumors and CKAP4 is expected to be a tumor therapeutic target. Therefore, deciphering the gene status, expression regulation, functions of CKAP4 in different diseases may shed new light on CKAP4-based cancer diagnosis and therapeutic strategy. This review discusses the publications that describe CKAP4 in various diseases, especially on tumor promotion and suppression, and provides a detailed discussion on the discrepancy.
Collapse
Affiliation(s)
- Shuang-Xi Li
- Department of Nephrology, Changhai Hospital, The Navy Military Medical University, Shanghai, China
| | - Juan Li
- Department of Nephrology, Changhai Hospital, The Navy Military Medical University, Shanghai, China
| | - Li-Wei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Navy Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Zhi-Yong Guo
- Department of Nephrology, Changhai Hospital, The Navy Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Morales-Martinez M, Lichtenstein A, Vega MI. Function of Deptor and its roles in hematological malignancies. Aging (Albany NY) 2021; 13:1528-1564. [PMID: 33412518 PMCID: PMC7834987 DOI: 10.18632/aging.202462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Deptor is a protein that interacts with mTOR and that belongs to the mTORC1 and mTORC2 complexes. Deptor is capable of inhibiting the kinase activity of mTOR. It is well known that the mTOR pathway is involved in various signaling pathways that are involved with various biological processes such as cell growth, apoptosis, autophagy, and the ER stress response. Therefore, Deptor, being a natural inhibitor of mTOR, has become very important in its study. Because of this, it is important to research its role regarding the development and progression of human malignancies, especially in hematologic malignancies. Due to its variation in expression in cancer, it has been suggested that Deptor can act as an oncogene or tumor suppressor depending on the cellular or tissue context. This review discusses recent advances in its transcriptional and post-transcriptional regulation of Deptor. As well as the advances regarding the activities of Deptor in hematological malignancies, its possible role as a biomarker, and its possible clinical relevance in these malignancies.
Collapse
Affiliation(s)
- Mario Morales-Martinez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
| | - Alan Lichtenstein
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| |
Collapse
|
16
|
Zhu Q, Zhang X, Zai HY, Jiang W, Zhang KJ, He YQ, Hu Y. circSLC8A1 sponges miR-671 to regulate breast cancer tumorigenesis via PTEN/PI3k/Akt pathway. Genomics 2020; 113:398-410. [PMID: 33301895 DOI: 10.1016/j.ygeno.2020.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/11/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most frequently diagnosed and the leading cause of cancer-related deaths in women worldwide. However, the role of circSLC8A1 in breast cancer remains elusive. Herein, a cohort of 77 breast tumors and paired adjacent normal mammary tissues were collected. We demonstrated that circSLC8A1 was significantly down-regulated in breast cancer tissues and cell lines, of which expression was negatively correlated with clinical severity and dismal prognosis. Overexpression of circSLC8A1 suppressed cell proliferation, migration and invasion in vitro, and inhibited tumor growth in vivo. CircSLC8A1 directly targeted miR-671 to execute tumor suppressive activities via regulating PI3k/Akt signaling. Krüppel-like factor 16 (KLF16), a transcriptional activator of PTEN, was identified as a target of miR-671. Furthermore, circSLC8A1 could sponge miR-671 to suppress breast tumor growth via PTEN/PI3k/Akt signaling in vivo. In summary, circSLC8A1/miR-671 regulates breast cancer progression through PTEN/PI3k/Akt signaling, which may provide efficient therapeutic target for this devastating cancer.
Collapse
Affiliation(s)
- Qin Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Hong-Yan Zai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Wei Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Ke-Jing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China; Clinical Research Center For Breast Cancer In Hunan Province, Changsha 410008, Hunan Province, PR China
| | - Yu-Qiong He
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China; Clinical Research Center For Breast Cancer In Hunan Province, Changsha 410008, Hunan Province, PR China.
| |
Collapse
|
17
|
Zhou W, Huang G, Ye J, Jiang J, Xu Q. Protective Effect of miR-340-5p against Brain Injury after Intracerebral Hemorrhage by Targeting PDCD4. Cerebrovasc Dis 2020; 49:593-600. [PMID: 33176298 DOI: 10.1159/000508210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/25/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Intracerebral hemorrhage (ICH) is a common cerebrovascular disease. Increasing evidence has documented the crucial role of microRNAs in ICH. The present study aimed to investigate the role and underlying mechanism of miR-340-5p in ICH. METHODS The collagenase-induced ICH rat model was established. The neurological function of rats and the cerebral water content of rat brain tissue were measured to assess the brain injury. BV-2 cells were recruited and treated by LPS to mimic ICH-induced inflammatory response. qRT-PCR was used for the measurement of miR-340-5p. The protein levels of TNF-α, IL-6, and IL-1β were detected using ELISA. Luciferase reporter gene assay was performed to confirm the target gene. RESULTS Downregulation of miR-340-5p was detected in the serum of ICH patients and the brain tissues of ICH rats. Overexpression of miR-340-5p reversed the influence of ICH on the neurological function score and cerebral water content and inhibited the production of proinflammatory cytokines (TNF-α, IL-6, and IL-1β), which were induced by ICH in vivo. In in vitro study, levels of TNF-α, IL-6, and IL-1β were significantly enhanced in cells after LPS treatment, but these increases were eliminated by overexpression of miR-340-5p. PDCD4 was a direct target gene of miR-340-5p. CONCLUSION miR-340-5p protects against brain injury after ICH. miR-340-5p might exert an anti-inflammatory effect during the occurrence of ICH via targeting PDCD4.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Guandong Huang
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Jueming Ye
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| | - Jiamei Jiang
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China,
| | - Qing Xu
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, Shanghai, China
| |
Collapse
|
18
|
Moussa Agha D, Rouas R, Najar M, Bouhtit F, Naamane N, Fayyad-Kazan H, Bron D, Meuleman N, Lewalle P, Merimi M. Identification of Acute Myeloid Leukemia Bone Marrow Circulating MicroRNAs. Int J Mol Sci 2020; 21:7065. [PMID: 32992819 PMCID: PMC7583041 DOI: 10.3390/ijms21197065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In addition to their roles in different biological processes, microRNAs in the tumor microenvironment appear to be potential diagnostic and prognostic biomarkers for various malignant diseases, including acute myeloid leukemia (AML). To date, no screening of circulating miRNAs has been carried out in the bone marrow compartment of AML. Accordingly, we investigated the circulating miRNA profile in AML bone marrow at diagnosis (AMLD) and first complete remission post treatment (AMLPT) in comparison to healthy donors (HD). METHODS Circulating miRNAs were isolated from AML bone marrow aspirations, and a low-density TaqMan miRNA array was performed to identify deregulated miRNAs followed by quantitative RT-PCR to validate the results. Bioinformatic analysis was conducted to evaluate the diagnostic and prognostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS We found several deregulated miRNAs between the AMLD vs. HD vs. AMLPT groups, which were involved in tumor progression and immune suppression pathways. We also identified significant diagnostic and prognostic signatures with the ability to predict AML patient treatment response. CONCLUSIONS This study provides a possible role of enriched circulating bone marrow miRNAs in the initiation and progression of AML and highlights new markers for prognosis and treatment monitoring.
Collapse
Affiliation(s)
- Douâa Moussa Agha
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada;
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Najib Naamane
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Hussein Fayyad-Kazan
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Dominique Bron
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Makram Merimi
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
19
|
Xia W, Gong D, Qin X, Cai Z. [MicroRNA-671-3p suppresses proliferation and invasion of breast cancer cells by targeting DEPTOR]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:42-48. [PMID: 32376551 DOI: 10.12122/j.issn.1673-4254.2020.01.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effects of miR-671-3p on the proliferation and invasion of breast cancer cells and explore the possible mechanism. METHODS We examined the expressions of miR-671-3p in human normal epithelial cells (MCF-10A) and breast cancer cell lines (MCF-7, MDA-MB-231, and SK-BR3) using RT-PCR. The effects of transfection with a miR-671-3p mimic or inhibitor on the proliferation, migration and invasion of MCF-7 cells were evaluated using CCK-8 assay and Transwell chamber assay. The target gene of miR-671-3p was predicated with Targetscan and validated by a dual luciferase reporter system and Western blotting. RESULTS The expression of miR-671-3p was significantly lower in breast cancer cells than in normal breast epithelial cells. Compared with negative control group, MCF-7 cells with miR-671-3p overexpression exhibited significantly reduced proliferation and invasion, whereas inhibition of miR-671-3p obviously promoted the cell proliferation and invasion. Luciferase reporter assay demonstrated that DEPTOR was the target gene of miR-671-3p, and miR-671-3p overexpression caused significant down-regulation of the protein expression of DEPTOR. CONCLUSIONS MiR-671-3p suppresses the proliferation and invasion of breast cancer cell line MCF-7 by directly targeting DEPTOR protein.
Collapse
Affiliation(s)
- Wei Xia
- Department of Cell biology, Southern Medical University, Guangzhou 510515, China.,Department of Clinical Laboratory, 74th Army Hospital of PLA, Guangzhou 510310, China
| | - Degui Gong
- Department of Clinical Laboratory, 74th Army Hospital of PLA, Guangzhou 510310, China
| | - Xiaoping Qin
- Department of Clinical Laboratory, 74th Army Hospital of PLA, Guangzhou 510310, China
| | - Zhuo Cai
- Department of Pharmacy, Air Force Hospital of Southern Theater Command of PLA, Guangzhou 510602, China
| |
Collapse
|
20
|
Geng F, Lu GF, Ji MH, Kong DY, Wang SY, Tian H, Xie ZM, Pan M, Gong NL. MicroRNA-26b-3p/ANTXR1 signaling modulates proliferation, migration, and apoptosis of glioma. Am J Transl Res 2019; 11:7568-7578. [PMID: 31934301 PMCID: PMC6943450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Glioma is a common malignant human brain tumor. The progression of glioma is associated with dysregulation of various microRNAs. Previous studies have demonstrated that microRNA-26b-3p (miR-26b-3p) is correlated with the pathogenesis of various tumors, but the functional role of miR-26b-3p and its underlying mechanisms in glioma are not clear. Here, we found that overexpression of miR-26b-3p repressed cell migration and proliferation and promoted apoptosis. In contrast, the opposite effects were observed when miR-26b-3p was inhibited in glioma cells. Anthrax toxin receptor 1 (ANTXR1) was confirmed to be a downstream molecule of miR-26b-3p. Reintroduction of ANTXR1 with an ORF region rescued the suppressive effects of miR-26b-3p on proliferation and migration, and inhibited the apoptosis of glioma cells. Moreover, the downstream target of miR-26b-3p, ANTXR1, was increased in glioma tissues and was inversely correlated with miR-26b-3p. MiR-26b-3p and ANTXR1 were correlated with the severity of glioma. Taken together, these results demonstrate that miR-26b-3p is a critical modulator of glioma via its downstream molecule, ANTXR1. Further, the miR-26b-3p/ANTXR1 axis may serve as a treatment or diagnostic target in glioma.
Collapse
Affiliation(s)
- Fei Geng
- Department of Physiology, Zunyi Medical UniversityZunyi 563000, China
| | - Gui-Feng Lu
- Department of Pathophysiology, Zunyi Medical UniversityZunyi 563000, China
| | - Mei-Hong Ji
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical UniversityZunyi 563000, China
| | - De-Ying Kong
- Department of Physiology, Zunyi Medical UniversityZunyi 563000, China
| | - Si-Yu Wang
- Department of Pathophysiology, Zunyi Medical UniversityZunyi 563000, China
| | - Hong Tian
- Department of Physiology, Zunyi Medical UniversityZunyi 563000, China
| | - Ze-Mei Xie
- Department of Physiology, Zunyi Medical UniversityZunyi 563000, China
| | - Min Pan
- Department of Physiology, Zunyi Medical UniversityZunyi 563000, China
| | - Nan-Ling Gong
- Department of Physiology, Zunyi Medical UniversityZunyi 563000, China
| |
Collapse
|
21
|
Xin C, Lu S, Li Y, Zhang Y, Tian J, Zhang S, Yang S, Gao T, Xu J. miR-671-5p Inhibits Tumor Proliferation by Blocking Cell Cycle in Osteosarcoma. DNA Cell Biol 2019; 38:996-1004. [PMID: 31393166 DOI: 10.1089/dna.2019.4870] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Chaofei Xin
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shitao Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinxiang Tian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shaokun Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shangliang Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tianhao Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Wang G, Li Y, Li J, Zhang D, Luo C, Zhang B, Sun X. microRNA-199a-5p suppresses glioma progression by inhibiting MAGT1. J Cell Biochem 2019; 120:15248-15254. [PMID: 31038761 DOI: 10.1002/jcb.28791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/13/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022]
Abstract
microRNAs (miRNAs) can function as a tumor suppressor or oncogenic genes in human cancers. Alternation expression of miR-199a-5p has been revealed in several human cancers. However, its expression pattern and biological roles in glioma remain unclear. Expression levels of miR-199a-5p in glioma were evaluated at first. The effects of miR-199a-5p expression on cell proliferation, migration, and invasion were investigated using the MTT assay, wound-healing assay, and transwell invasion assay. The expression of miR-199a-5p was found to be reduced in glioma cell lines. Overexpression of miR-199a-5p inhibits glioma cell proliferation, migration, and invasion in vitro. Furthermore, the target of miR-199a-5p was predicted by TargetScan and validated by luciferase activity reporter assay. We found magnesium transporter 1 (MAGT1) was a direct target of miR-199a-5p. Overexpression of MAGT1 reversed the effects of miR-199a-5p on glioma cell behaviors. Taken together, our study revealed that miR-199a-5p and MAGT1 have the potential to be used as a biomarker for glioma.
Collapse
Affiliation(s)
- Guang Wang
- Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, P.R. China.,Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Yong Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital affiliated to Third Military Medical University, Chongqing, P.R. China
| | - Jie Li
- Department of Laparoscope Surgery, The 986st Hospital of People's Liberation Army Air Force, Xi'an, P.R. China
| | - Dongxia Zhang
- National Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital affiliated to Third Military Medical University, Chongqing, P.R. China
| | - Chao Luo
- Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, P.R. China
| | - Bingqian Zhang
- Department of Clinical Medicine, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, P.R. China
| | - Xiaochuan Sun
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|