1
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Zhang HY, Zhu JJ, Liu ZM, Zhang YX, Chen JJ, Chen KD. A prognostic four-gene signature and a therapeutic strategy for hepatocellular carcinoma: Construction and analysis of a circRNA-mediated competing endogenous RNA network. Hepatobiliary Pancreat Dis Int 2024; 23:272-287. [PMID: 37407412 DOI: 10.1016/j.hbpd.2023.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a poor long-term prognosis. The competition of circular RNAs (circRNAs) with endogenous RNA is a novel tool for predicting HCC prognosis. Based on the alterations of circRNA regulatory networks, the analysis of gene modules related to HCC is feasible. METHODS Multiple expression datasets and RNA element targeting prediction tools were used to construct a circRNA-microRNA-mRNA network in HCC. Gene function, pathway, and protein interaction analyses were performed for the differentially expressed genes (DEGs) in this regulatory network. In the protein-protein interaction network, hub genes were identified and subjected to regression analysis, producing an optimized four-gene signature for prognostic risk stratification in HCC patients. Anti-HCC drugs were excavated by assessing the DEGs between the low- and high-risk groups. A circRNA-microRNA-hub gene subnetwork was constructed, in which three hallmark genes, KIF4A, CCNA2, and PBK, were subjected to functional enrichment analysis. RESULTS A four-gene signature (KIF4A, CCNA2, PBK, and ZWINT) that effectively estimated the overall survival and aided in prognostic risk assessment in the The Cancer Genome Atlas (TCGA) cohort and International Cancer Genome Consortium (ICGC) cohort was developed. CDK inhibitors, PI3K inhibitors, HDAC inhibitors, and EGFR inhibitors were predicted as four potential mechanisms of drug action (MOA) in high-risk HCC patients. Subsequent analysis has revealed that PBK, CCNA2, and KIF4A play a crucial role in regulating the tumor microenvironment by promoting immune cell invasion, regulating microsatellite instability (MSI), and exerting an impact on HCC progression. CONCLUSIONS The present study highlights the role of the circRNA-related regulatory network, identifies a four-gene prognostic signature and biomarkers, and further identifies novel therapy for HCC.
Collapse
Affiliation(s)
- Hai-Yan Zhang
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jia-Jie Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zong-Ming Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu-Xuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jia-Jia Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ke-Da Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
3
|
Chen F, Jiang J, Liu D, Li H, Dong L, Song Y, Zhang Y, Wang J, Qin Y, Zhao G. The lncRNA lnc-TSI antagonizes sorafenib resistance in hepatocellular carcinoma via downregulating miR-4726-5p expression and upregulating KCNMA1 expression. J Mol Histol 2024; 55:83-96. [PMID: 38165571 DOI: 10.1007/s10735-023-10173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/25/2023] [Indexed: 01/04/2024]
Abstract
Acquired drug resistance is a main reason for limiting the application of sorafenib in HCC treatment. This study aimed to explore the role and mechanisms of a novel long non-coding RNA (lncRNA), lnc-TSI, in sorafenib resistance of HCC. The interaction between lnc-TSI and miR-4726-5p, and miR-4726-5p and KCNMA1 were predicted using bioinformatic tools. Expression of the molecules in the lnc-TSI/miR-4726-5p/KCNMA1 axis in clinical samples and cell lines, as well as the sorafenib resistant HCC cell lines, was determined using qRT-PCR or western blotting. Expressions of lnc-TSI, miR-4726-5p, and KCNMA1 were manipulated in HepG2 and Huh7 cells through plasmid transfection or lentivirus infection. The CCK-8, flow cytometry, and Tunel assays were employed to determine the role of this axis on sorafenib resistance of HCC. A xenograft model was established using sorafenib-resistant HepG2 and Huh7 cells followed by in vivo sorafenib treatments to confirm the in vitro findings. Lnc-TSI and KCNMA1 expressions were significantly downregulated in HCC clinical samples and cell lines, especially in sorafenib resistance ones, while mi-4726-5p presented a reversed expression pattern. Lnc-TSI interacted with miR-4726-5p, and Lnc-TSI acts as a ceRNA via sponging miR-4726-5p in HCC cells. Overexpression of lnc-TSI and KCNMA1 promoted apoptosis and decreased cell viability of sorafenib-treated HCC cells, thus alleviated sorafenib resistance. miR-4726-5p mimic reversed the KCNMA1-mediated sorafenib sensitivity-promoting effect, while additional overexpression of lnc-TSI reversed the effect of miR-4726-5p. In vivo analysis also showed that overexpression of ln-TSI diminished sorafenib resistance in mice inoculated with sorafenib-resistant HCC cells via increasing KCNMA1 expression and decreasing miR-4726-5p expression. The lnc-TSI/miR-4726-5p/KCNMA1 axis plays a critical role in regulating the resistance of HCC to sorafenib, and might serve as a therapeutic target to manage sorafenib resistance of HCC in clinic.
Collapse
Affiliation(s)
- Fengrong Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Jiong Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Dong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Yahua Song
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Ying Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Jing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Yun Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Gang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
4
|
Cui W, Bai X, Bai Z, Chen F, Xu J, Bai W, Xi Y. Exploring the expression and clinical significance of the miR-140-3p-HOXA9 axis in colorectal cancer. J Cancer Res Clin Oncol 2024; 150:47. [PMID: 38285101 PMCID: PMC10824855 DOI: 10.1007/s00432-023-05592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE This study aims to investigate the expression patterns and clinical significance of miR-140-3p and homeobox A9 (HOXA9) in colorectal cancer (CRC) selected by bioinformatic study, while elucidating their potential interplay. METHODS The microRNA expression profiles of paired colorectal cancer and matched normal tissues were retrieved from the Gene Expression Omnibus Database. Differentially expressed microRNAs and microRNA candidates were filtered and subjected to further analysis. Clinicopathological data, along with paraffin-embedded samples of colorectal tumor tissues were collected to facilitate comprehensive analysis. Expression levels of miR-140-3p and HOXA9 were quantified using qRT-PCR and immunohistochemistry. Survival rates were determined using the Kaplan-Meier method, and the COX regression model was utilized to identify independent prognostic factors that impact the overall prognosis. RESULTS MiR-140-3p was significantly downregulated in colorectal tumors compared to normal tissue, and HOXA9 was identified as a previously unreported potential downstream target. HOXA9 expression was elevated in tumors compared to normal tissues. Reduced miR-140-3p expression was associated with lymph node metastasis, while high HOXA9 expression correlated with both lymph node metastasis and lympho-vascular invasion. Patients with low miR-140-3p and high HOXA9 expression had a poorer prognosis. HOXA9 was identified as an independent risk factor for CRC patient survival. CONCLUSION The miR-140-3p-HOXA9 signaling disruption is closely linked to lymph node metastasis and unfavorable prognosis in CRC. This axis shows promise as a clinical biomarker for predicting the CRC patient survival and a potential therapeutic target.
Collapse
Affiliation(s)
- Wei Cui
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, People's Republic of China
| | - Xueliang Bai
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zhongyuan Bai
- First Clinical Medical School, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Fengxin Chen
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jing Xu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Wenqi Bai
- Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, People's Republic of China.
| | - Yanfeng Xi
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, People's Republic of China.
| |
Collapse
|
5
|
Li X, Ma Z, Mei L. Comprehensive analysis of UBE2C expression and its potential roles and mechanisms in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:7397-7407. [PMID: 37580802 PMCID: PMC10457065 DOI: 10.18632/aging.204792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/01/2023] [Indexed: 08/16/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks one of the most common and lethal cancers all over the world. Previous studies suggest that ubiquitin-conjugating enzyme E2C (UBE2C) serves as an oncogene in human cancers. However, its expression, diagnosis, prognosis and potential mechanisms in HCC remain largely unknown. In this study, the expression of UBE2C in HCC was first analyzed by comprehensive bioinformatic analysis. ROC curve analysis and survival analysis were employed to assess the diagnostic and prognostic roles of UBE2C in HCC. UBE2C promoter methylation level and upstream regulatory miRNAs of UBE2C in HCC were explored. The present work demonstrated that UBE2C was significantly upregulated in HCC compared with normal controls. We also found significant diagnostic and prognostic values of UBE2C in HCC. Promoter methylation of UBE2C was obviously decreased in HCC and was negatively correlated with UBE2C mRNA expression. 10 miRNAs were predicted to potentially bind to UBE2C. In vitro assay and bioinformatic correlation analysis together revealed that hsa-miR-193b-3p might be another key upstream regulatory mechanism of UBE2C in HCC. In conclusion, UBE2C is overexpressed in HCC and may serve as a key diagnostic/prognostic biomarker for patients with HCC.
Collapse
Affiliation(s)
- Xiao Li
- Department of Emergency, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Zhaosheng Ma
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Linhang Mei
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| |
Collapse
|
6
|
Sugai T, Sugimoto R, Eizuka M, Osakabe M, Yamada S, Yanagawa N, Matsumoto T, Suzuki H. Comprehensive Analysis of microRNA Expression During the Progression of Colorectal Tumors. Dig Dis Sci 2023; 68:813-823. [PMID: 35674995 PMCID: PMC10011343 DOI: 10.1007/s10620-022-07576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/19/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND No effective early diagnostic biomarkers are available for colorectal cancer (CRC). Therefore, we sought to identify new biomarkers that could identify CRC from progression as a pre-cancerous lesion to its invasive form. Recent studies have shown that microRNAs (miRs) are associated with the onset of cancer invasion and progression. AIMS We hypothesized that the identification of miRs associated with CRC might be useful to detect this disease at early stages. METHODS We conducted an integrated analysis of 79 isolated colorectal tumor glands, including adenomas, intramucosal cancers, and invasive CRCs that showed a microsatellite stable phenotype using GeneChip miRNA 4.0 microarray assays. The colorectal tumors we examined were divided into 2 cohorts (42 in the first cohort and 37 in the second cohort). RESULTS First, cluster analysis was performed to stratify expression patterns of multiple miRs that were pooled according to the following criteria: fold change in expression (< -2.0 or > 2.0), p < 0.05, and mature miRs. As a result, the expression patterns of pooled miRs were subdivided into 3 subgroups that were correlated with tumor grade. Each subgroup was characterized by specific miRs. In addition, we found that specific miRs, including miR-140-3p and miR-378i, were closely associated with cancer invasion. Finally, we analyzed paired dysregulated miRs between adenomatous and cancerous components present within the same tumor. DISCUSSION We showed that several miRs were dysregulated during progression from adenoma to intramucosal cancer. Specific miRs may have key roles in progression from intramucosal tumor to invasive CRC.
Collapse
Affiliation(s)
- Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun, Yahabachou, 028-3695, Japan.
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun, Yahabachou, 028-3695, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun, Yahabachou, 028-3695, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun, Yahabachou, 028-3695, Japan
| | - Shun Yamada
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun, Yahabachou, 028-3695, Japan
- Division of Gastroenterology, Department of Internal Medicine, 2-1-1, Shiwagun, Yahabachou, 028-3695, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun, Yahabachou, 028-3695, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, 2-1-1, Shiwagun, Yahabachou, 028-3695, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, School of Medicine, Sapporo Medical University, Cyuuouku, Sapporo, 060-0061, Japan
| |
Collapse
|
7
|
Wang H, Chu F, Zhang XF, Zhang P, Li LX, Zhuang YL, Niu XF, He X, Li ZJ, Bai Y, Mao D, Liu ZW, Zhang DL, Li BA. TPX2 enhances the transcription factor activation of PXR and enhances the resistance of hepatocellular carcinoma cells to antitumor drugs. Cell Death Dis 2023; 14:64. [PMID: 36707511 PMCID: PMC9883482 DOI: 10.1038/s41419-022-05537-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/29/2023]
Abstract
The pregnane X receptor (PXR) is an important regulator of hepatocellular carcinoma cellular resistance to antitumor drugs. Activation of PXR was modulated by the co-regulators. The target protein for the Xenopus plus end-directed kinesin-like protein (Xklp2) known as TPX2 that was previously considered as a tubulin regulator, also functions as the regulator of some transcription factors and pro-oncogenes in human malignances. However, the actions of TPX2 on PXR and HCC cells are still unclear. In the present study, our results demonstrate that the high expression of endogenous mRNA level of TPX2 not only correlated with the poor prognosis of advanced HCC patients who received sorafenib treatment but also with expression of PXR's downstream genes, cyp3a4 and/or mdr-1. Results from luciferase and real-time polymerase chain reaction (qPCR) showed that TPX2 leads to enhancement of the transcription factor activation of PXR. Protein-protein interactions between PXR and TPX2 were identified using co-immunoprecipitation. Mechanically, overexpression of TPX2 led to enhancement of PXR recruitment to its downstream gene cyp3a4's promoter region (the PXRE region) or enhancer region (the XREM region). Treatment of HCC cells with paclitaxel, a microtubule promoter, led to enhancement of the effects of TPX2, whereas vincristine, a microtubule depolymerizing agent caused a decrease in TPX2-associated effects. TPX2 was found to cause acceleration of the metabolism or clearance of sorafenib, a typical tyrosine kinase inhibitor (TKI) in HCC cells and in turn led to the resistance to sorafenib by HCC cells. By establishing novel actions of TXP2 on PXR in HCC cells, the results indicate that TPX2 could be considered a promising therapeutic target to enhance HCC cells sensitivity to antitumor drugs.
Collapse
Affiliation(s)
- Hongbo Wang
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Fang Chu
- Department of Emergency, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Xiao-Feng Zhang
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Peng Zhang
- Department of Urology, Chinese People's Liberation Army (PLA) General Hospital/Chinese PLA Medical Academy, Beijing, 100853, China
| | - Li-Xin Li
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Yun-Long Zhuang
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Xiao-Feng Niu
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Xi He
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Zhi-Jie Li
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Ying Bai
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China
| | - Da Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100191, China
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, China
| | - Zhen-Wen Liu
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China.
| | - Da-Li Zhang
- Senior Department of Hepatology, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China.
| | - Bo-An Li
- Clinical Laboratory, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100039, China.
| |
Collapse
|
8
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
9
|
Wei D, Zeng J, Rong F, Xu Y, Wei R, Zou C. Circ_0020123 enhances the cisplatin resistance in non-small cell lung cancer cells partly by sponging miR-140-3p to regulate homeobox B5 (HOXB5). Bioengineered 2022; 13:5126-5140. [PMID: 35170372 PMCID: PMC8974048 DOI: 10.1080/21655979.2022.2036910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Cisplatin (DDP) therapy is widely used for the treatment of non-small cell lung cancer (NSCLC), but the curative effect is limited by chemoresistance. This study was designed to explore circ_0020123 function in DDP resistance of NSCLCDDP. Expression detection for circ_0020123, microRNA-140-3p (miR-140-3p) and homeobox B5 (HOXB5) was performed by real-time polymerase chain reaction (qRT-PCR). Half inhibitory concentration (IC50) of DDP and cell proliferation was detected by Cell Counting Kit-8 (CCK-8) assay. Colony formation ability was assessed using colony formation assay. Cell migration and invasion were evaluated via transwell assay. Cell apoptosis was examined by flow cytometry. Protein analysis was conducted by Western blot. Dual-luciferase reporter assay was used to affirm target interaction. Circ_0020123 expression was upregulated in DDP-resistant NSCLC cells. DDP resistance was reduced by downregulation of circ_0020123 in NSCLC cells. Circ_0020123 was identified as a miR-140-3p sponge. The effect of si-circ_0020123 on DDP resistance was partly associated with miR-140-3p upregulation. HOXB5 was a downstream target for miR-140-3p. Overexpression of HOXB5 mitigated miR-140-3p-induced inhibition of DDP resistance in NSCLC cells. Circ_0020123 upregulated the level of HOXB5 partly via sponging miR-140-3p. Also, circ_0020123 promoted tumor growth in NSCLC/DDP xenografts by regulating miR-140-3p and HOXB5 levels at least in part. These results revealed that circ_0020123 promoted DDP resistance in NSCLC cells partly by targeting miR-140-3p/HOXB5 axis, indicating that circ_0020123 might be used as a molecular target in DDP treatment for NSCLC.
Collapse
Affiliation(s)
- Dong Wei
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Jing Zeng
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Feng Rong
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Yasheng Xu
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Rong Wei
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| | - Can Zou
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao City, Hubei Province, China
| |
Collapse
|
10
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
11
|
Liu J, Yang C, Huang XM, Lv PP, Yang YK, Zhao JN, Zhao SY, Sun WJ. Knockdown of FBI-1 Inhibits the Warburg Effect and Enhances the Sensitivity of Hepatocellular Carcinoma Cells to Molecular Targeted Agents via miR-3692/HIF-1α. Front Oncol 2021; 11:796839. [PMID: 34869045 PMCID: PMC8633402 DOI: 10.3389/fonc.2021.796839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023] Open
Abstract
The transcription suppressor factor FBI-1 (the factor that binds to inducer of short transcripts-1) is an important regulator of hepatocellular carcinoma (HCC). In this work, the results showed that FBI-1 promoted the Warburg effect and enhances the resistance of hepatocellular carcinoma cells to molecular targeted agents. Knockdown of FBI-1 via its small-interfering RNA (siRNA) inhibited the ATP level, lactate productions, glucose uptake or lactate dehydrogenase (LDH) activation of HCC cells. Transfection of siFBI-1 also decreased the expression of the Warburg-effect-related factors: hypoxia-inducible factor-1 alpha (HIF-1α), lactate dehydrogenase A (LDHA), or GLUT1, and the epithelial-mesenchymal transition-related factors, Vimentin or N-cadherin. The positive correlation between the expression of FBI-1 with HIF-1α, LDHA, or GLUT1 was confirmed in HCC tissues. Mechanistically, the miR-30c repressed the expression of HIF-1α by binding to the 3'-untranslated region (3'-UTR) of HIF-1α in a sequence-specific manner, and FBI-1 enhanced the expression of HIF-1α and HIF-1α pathway's activation by repressing the expression of miR. By modulating the miR-30c/HIF-1α, FBI-1 promoted the Warburg effect or the epithelial-mesenchymal transition of HCC cells and promoted the resistance of HCC cells to molecular targeted agents.
Collapse
Affiliation(s)
- Juan Liu
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chao Yang
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xiao-Mei Huang
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Pan-Pan Lv
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ya-Kun Yang
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jin-Na Zhao
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Si-Yuan Zhao
- Department of Neurosurgery, Beijing Huicheng Medical Research Institute, Beijing, China
| | - Wan-Jun Sun
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
12
|
Moldogazieva NT, Zavadskiy SP, Sologova SS, Mokhosoev IM, Terentiev AA. Predictive biomarkers for systemic therapy of hepatocellular carcinoma. Expert Rev Mol Diagn 2021; 21:1147-1164. [PMID: 34582293 DOI: 10.1080/14737159.2021.1987217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third cancer-related cause of death worldwide. In recent years, several systemic therapy drugs including sorafenib, lenvatinib, regorafenib, cabozantinib, ramucicurab, nivilumab, and pembrolizumab have been approved by FDA for advanced HCC. However, their insufficient efficacy, toxicity, and drug resistance require clinically applicable and validated predictive biomarkers.Areas covered: Our review covers the recent advancements in the identification of proteomic/genomic/epigenomic/transcriptomic biomarkers for predicting HCC treatment efficacy with the use of multi-kinase inhibitors (MKIs), CDK4/6 inhibitors, and immune checkpoint inhibitors (ICIs). Alpha-fetoprotein, des-carboxyprothrombin, vascular endothelial growth factor, angiopoietin-2, and dysregulated MTOR, VEGFR2, c-KIT, RAF1, PDGFRβ have the potential of proteomic/genomic biomarkers for sorafenib treatment. Alanine aminotransferase, aspartate aminotransferase, and albumin-bilirubin grade can predict the efficacy of other MKIs. Rb, p16, and Ki-67, and genes involved in cell cycle regulation, CDK1-4, CCND1, CDKN1A, and CDKN2A have been proposed for CD4/6 inhibitors, while dysregulated TERT, CTNNB1, TP53 FGF19, and TP53 are found to be predictors for ICI efficacy.Expert opinion: There are still limited clinically applicable and validated predictive biomarkers to identify HCC patients who benefit from systemic therapy. Further prospective biomarker validation studies for HCC personalized systemic therapy are required.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- Laboratory of Bioinformatics, Institute of Translational Medicine and Biotechnology, I.m. Sechenov First Moscow State Medical University (Sechenov University);, Moscow, Russia
| | - Sergey P Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Susanna S Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.m. Sechenov First Moscow State Medical University (Sechenov University), Russia, Russia
| | - Innokenty M Mokhosoev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.i. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
13
|
Skandalaki A, Sarantis P, Theocharis S. Pregnane X Receptor (PXR) Polymorphisms and Cancer Treatment. Biomolecules 2021; 11:1142. [PMID: 34439808 PMCID: PMC8394562 DOI: 10.3390/biom11081142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
Pregnane X Receptor (PXR) belongs to the nuclear receptors' superfamily and mainly functions as a xenobiotic sensor activated by a variety of ligands. PXR is widely expressed in normal and malignant tissues. Drug metabolizing enzymes and transporters are also under PXR's regulation. Antineoplastic agents are of particular interest since cancer patients are characterized by significant intra-variability to treatment response and severe toxicities. Various PXR polymorphisms may alter the function of the protein and are linked with significant effects on the pharmacokinetics of chemotherapeutic agents and clinical outcome variability. The purpose of this review is to summarize the roles of PXR polymorphisms in the metabolism and pharmacokinetics of chemotherapeutic drugs. It is also expected that this review will highlight the importance of PXR polymorphisms in selection of chemotherapy, prediction of adverse effects and personalized medicine.
Collapse
Affiliation(s)
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.S.); (P.S.)
| |
Collapse
|
14
|
He X, Sun H, Jiang Q, Chai Y, Li X, Wang Z, Zhu B, You S, Li B, Hao J, Xin S. Hsa-miR-4277 Decelerates the Metabolism or Clearance of Sorafenib in HCC Cells and Enhances the Sensitivity of HCC Cells to Sorafenib by Targeting cyp3a4. Front Oncol 2021; 11:735447. [PMID: 34381736 PMCID: PMC8350395 DOI: 10.3389/fonc.2021.735447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence has shown that the metabolism and clearance of molecular targeted agents, such as sorafenib, plays an important role in mediating the resistance of HCC cells to these agents. Metabolism of sorafenib is performed by oxidative metabolism, which is initially mediated by CYP3A4. Thus, targeting CYP3A4 is a promising approach to enhance the sensitivity of HCC cells to chemotherapeutic agents. In the present work, we examined the association between CYP3A4 and the prognosis of HCC patients receiving sorafenib. Using the online tool miRDB, we predicted that has-microRNA-4277 (miR-4277), an online miRNA targets the 3’UTR of the transcript of cyp3a4. Furthermore, overexpression of miR-4277 in HCC cells repressed the expression of CYP3A4 and reduced the elimination of sorafenib in HCC cells. Moreover, miR-4277 enhanced the sensitivity of HCC cells to sorafenib in vitro and in vivo. Therefore, our results not only expand our understanding of CYP3A4 regulation in HCC, but also provide evidence for the use of miR-4277 as a potential therapeutic in advanced HCC.
Collapse
Affiliation(s)
- Xi He
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiyu Jiang
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Chai
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhijie Wang
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bing Zhu
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli You
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Boan Li
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junfeng Hao
- Department of Nephrology, Jin Qiu Hospital of Liaoning Province/Geriatric Hospital of Liaoning Province, Shenyang, China
| | - Shaojie Xin
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Zeng Z, Lu Q, Liu Y, Zhao J, Zhang Q, Hu L, Shi Z, Tu Y, Xiao Z, Xu Q, Huang D. Effect of the Hypoxia Inducible Factor on Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11:641522. [PMID: 34307125 PMCID: PMC8292964 DOI: 10.3389/fonc.2021.641522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Sorafenib a multi-target tyrosine kinase inhibitor, is the first-line drug for treating advanced hepatocellular carcinoma (HCC). Mechanistically, it suppresses tumor angiogenesis, cell proliferation and promotes apoptosis. Although sorafenib effectively prolongs median survival rates of patients with advanced HCC, its efficacy is limited by drug resistance in some patients. In HCC, this resistance is attributed to multiple complex mechanisms. Previous clinical data has shown that HIFs expression is a predictor of poor prognosis, with further evidence demonstrating that a combination of sorafenib and HIFs-targeted therapy or HIFs inhibitors can overcome HCC sorafenib resistance. Here, we describe the molecular mechanism underlying sorafenib resistance in HCC patients, and highlight the impact of hypoxia microenvironment on sorafenib resistance.
Collapse
Affiliation(s)
- Zhi Zeng
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Junjun Zhao
- Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,Graduate Department, Bengbu Medical College, Bengbu, China
| | - Qian Zhang
- The Medical College of Qingdao University, Qingdao, China
| | - Linjun Hu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Zhan Shi
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifeng Tu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zunqiang Xiao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
16
|
Cai X, Li B, Wei W, Guan Y, Bai X, Huang M, Huang Y, Rong L, Song X, Zhong G. Circulating microRNA-30a-5p, microRNA-101-3p, microRNA-140-3p and microRNA-141-3p as potential biomarkers for dexmedetomidine response in pediatric patients. Eur J Clin Pharmacol 2021; 77:1853-1859. [PMID: 34216249 DOI: 10.1007/s00228-021-03178-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The aim of this study was to investigate the expression levels of plasma miR-30a-5p, miR-101-3p, miR-140-3p and miR-141-3p and their relationship to dexmedetomidine efficacy and adverse effects in pediatric patients. METHODS The expression levels of miR-30a-5p, miR-101-3p, miR-140-3p and miR-141-3p were measured by qRT-PCR in plasma of 133 pediatric patients receiving dexmedetomidine for preoperative sedation. We analyzed the relationship between miRNA abundance and dexmedetomidine response, including sedative effect and adverse effects, and assessed the predictive power of miRNAs for drug response. RESULTS Among 133 pediatric patients, 111 patients were dexmedetomidine responders (UMSS ≥ 2) and 22 patients were non-responders (UMSS < 2). We observed higher expression levels of miR-101-3p and miR-140-3p in dexmedetomidine responders compared with non-responders (P < 0.05, P < 0.0001). In contrast, there was no significant difference in the expression levels of miR-30a-5p and miR-141-3p between responders and non-responders (P > 0.05). The plasma levels of miR-101-3p and miR-30a-5p were markedly downregulated in patients who experienced hypotension and bradycardia, respectively (P < 0.05). MiR-101-3p and miR-140-3p demonstrated a potential discriminatory ability between dexmedetomidine responders and non-responders, with AUC of 0.64 (P < 0.05) and 0.77 (P < 0.0001), respectively. The AUC of miR-101-3p in distinguishing patients without hypotension was 0.63 (P < 0.05). The AUC of miR-30a-5p in distinguishing patients without bradycardia was 0.74 (P < 0.05). CONCLUSION Our study demonstrated that circulating miR-101-3p, miR-140-3p and miR-30a-5p might be used as a blood-based marker for dexmedetomidine efficacy and safety in pediatric patients.
Collapse
Affiliation(s)
- Xinmei Cai
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bilian Li
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Wei
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanping Guan
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xue Bai
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yaying Huang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lili Rong
- Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Jiang Q, Ma Y, Han J, Chu J, Ma X, Shen L, Liu B, Li BA, Hou J, Bi Q. MDM2 Binding Protein Induces the Resistance of Hepatocellular Carcinoma Cells to Molecular Targeting Agents via Enhancing the Transcription Factor Activity of the Pregnane X Receptor. Front Oncol 2021; 11:715193. [PMID: 34249768 PMCID: PMC8264664 DOI: 10.3389/fonc.2021.715193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
The MDM2 binding protein (MTBP) has been considered an important regulator of human malignancies. In this study, we demonstrate that the high level of MTBP’s endogenous expression is correlated with poor prognosis of advanced hepatocellular carcinoma (HCC) patients who received sorafenib. MTBP interacted with the Pregnane X receptor (PXR) and enhanced the transcription factor activity of PXR. Moreover, MTBP enhanced the accumulation of PXR in HCC cells’ nuclear and the recruitment of PXR to its downstream gene’s (cyp3a4’s) promoter region. Mechanically, the knockdown of MTBP in MHCC97-H cells with high levels of MTBP decelerated the clearance or metabolism of sorafenib in HCC cells and led to the resistance of HCC cells to sorafenib. Whereas overexpression of MTBP in in MHCC97-L cells with low levels of MTBP showed the opposite trend. By establishing the interaction between MTBP and PXR, our results indicate that MTBP could function as a co-activator of PXR and could be a promising therapeutic target to enhance the sensitivity of HCC cells to molecular targeting agents.
Collapse
Affiliation(s)
- Qiyu Jiang
- Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Ma
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingjing Han
- Department of Gastroenterology, Sangzhi County National Hospital, Zhangjiajie City, China
| | - Jingdong Chu
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuemei Ma
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lijun Shen
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo Liu
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo-An Li
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Hou
- Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Bi
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Gao C, Wen Y, Jiang F, Gu X, Zhu X. Circular RNA circ_0008274 upregulates granulin to promote the progression of hepatocellular carcinoma via sponging microRNA -140-3p. Bioengineered 2021; 12:1890-1901. [PMID: 34002672 PMCID: PMC8806606 DOI: 10.1080/21655979.2021.1926195] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Circular RNA (circRNA) features prominently in the progression of hepatocellular carcinoma (HCC), of which the biological function and potential mechanism of circ_0008274 in HCC are obscure. The present study aims to explore circ_ 0008274's biological functions and underlying mechanisms in HCC. The expressions of circ_0008274, miR-140-3p and Granulin (GRN) mRNA in HCC tissues and cells were investigated by quantitative real-time polymerase chain reaction. Besides, GRN protein expression was measured by Western blot. Furthermore, chi-square test was used to probe the interrelation between circ_0008274 expression and clinicopathological parameters. In addition, cell counting kit-8 (CCK-8) and EdU assays were applied to detect cell proliferation. Moreover, transwell assay was used to detect cell migration and invasion. What's more, bioinformatics prediction, dual-luciferase reporter gene assay and RNA Immunoprecipitation experiments were used to corroborate the targeting interrelations among circ_0008274, miR-140-3p and GRN. Herein we reported that circ_0008274 was highly expressed in HCC, and its high expression enhanced the proliferation, migration, and invasion of HCC cells, while depleting circ_0008274 inhibited the malignant biological behaviors of HCC cells. Mechanistically, circ_0008274 upregulates GRN expressions via adsorbing miR-140-3p to expedite the progression of HCC.
Collapse
Affiliation(s)
- Chanchan Gao
- Department of Oncology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Yazhou Wen
- Department of Oncology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Feng Jiang
- Department of Oncology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Xuyu Gu
- Department of Oncology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Xinhua Zhu
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
19
|
Du Y, Shi X, Ma W, Wen P, Yu P, Wang X, Fang P, Chen A, Gao Z, Cui K. Phthalates promote the invasion of hepatocellular carcinoma cells by enhancing the interaction between Pregnane X receptor and E26 transformation specific sequence 1. Pharmacol Res 2021; 169:105648. [PMID: 33965509 DOI: 10.1016/j.phrs.2021.105648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Phthalates (PAEs) are considered endocrine-disrupting chemicals (EDCs), a series of compounds able to disrupt the normal regulation of the human endocrine-system. In the present study, we investigated the roles of four PAEs, butyl benzyl phthalate (BBP), dibutyl phthalate (DBP), dimethyl phthalate (DMP), and diethyl phthalate (DEP), in hepatocellular carcinoma (HCC) cells. We define novel roles for the PAEs on the migration of HCC cells via their enhancing of the interaction between the pregnane X receptor (PXR) and E26 transformation specific sequence 1 (ETS-1). Our results indicate that PAEs induced the transcriptional activation of ETS-1 and PXR. PXR activated by PAEs could bind to ETS-1 directly and enhanced the activity of ETS-1, which resulted in the induction of invasion-related ETS-1 target genes. The "LXXLL" motif in the ETS-1C-terminal was essential for the interaction between PXR and ETS-1 induced by PAEs. Treatment of PAEs promoted the nuclear accumulation of ETS-1 or the recruitment of ETS-1, but not in cells expressing ETS-1 with a mutated LXXLL motif in its downstream gene promoter region, or following transfection of PXR siRNA. Treatment with the PXR antagonist ketoconazole almost completely inhibited the effects of PAEs. Moreover, PAEs enhanced the in vitro or in vivo invasion of HCC cells via PXR/ETS-1. Therefore, our results not only contribute to a better understanding of HCC, but also extended the roles of EDCs regulating human malignancies.
Collapse
Affiliation(s)
- Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery/Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities/ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Peihao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Pu Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Xin Wang
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi Province, PR China.
| | - Pengli Fang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Aixia Chen
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Zhiqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| |
Collapse
|
20
|
Upregulation of miR-138 Increases Sensitivity to Cisplatin in Hepatocellular Carcinoma by Regulating EZH2. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6665918. [PMID: 33748276 PMCID: PMC7960019 DOI: 10.1155/2021/6665918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/30/2022]
Abstract
Chemotherapeutic insensitivity is a major obstacle for effective treatment of hepatocellular carcinoma (HCC). Recently, new evidence showed that microRNAs (miRNAs) are closely related to drug sensitivity. This study aimed to investigate the relationship between miR-138 expression and cisplatin sensitivity of HCC cells by regulation of EZH2. CCK-8, EdU, and western blotting are determining the cell viability, proliferation, EZH2, and EMT-related protein expression. It was found that compared with normal samples, miR-138 expression was lower in cancer tissue; it was also downregulated in HCC cells. Transfected with miR-138 mimic increased sensitivity of HCC cells to cisplatin. Mechanistically, Luciferase Reporter analysis verified the interaction between miR-138 and target gene EZH2. Inhibition of EZH2 enhanced cisplatin sensitivity and transfection with EZH2 mimic mirrored the function of miR-138 in cisplatin sensitivity. Furthermore, the role of miR-138 on reversed cisplatin-induced epithelial–mesenchymal transition (EMT) was attenuated when combined with EZH2 plasmid. In conclusion, all data from this study illustrate that miR-138 may as a tumor suppressor provides a potential treatment method to treating HCC.
Collapse
|
21
|
Zhang J, Song Q, Wu M, Zheng W. The Emerging Roles of Exosomes in the Chemoresistance of Hepatocellular Carcinoma. Curr Med Chem 2021; 28:93-109. [PMID: 32000636 DOI: 10.2174/0929867327666200130103206] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common gastrointestinal malignancy with a leading incidence of cancer-related mortality worldwide. Despite the progress of treatment options, there remains low efficacy for patients with intermediate-advanced HCC, due to tumor metastasis, recurrence and chemoresistance. Increasing evidence suggests that exosomes in the tumor microenvironment (TME), along with other extracellular vesicles (EVs) and cytokines, contribute to the drug chemosensitivity of cancer cells. Exosomes, the intercellular communicators in various biological activities, have shown to play important roles in HCC progression. This review summarizes the underlying associations between exosomes and chemoresistance of HCC cells. The exosomes derived from distinct cell types mediate the drug resistance by regulating drug efflux, epithelial-mesenchymal transition (EMT), cancer stem cell (CSC) properties, autophagic phenotypes, as well as the immune response. In summary, TME-related exosomes can be a potential target to reverse chemoresistance and a candidate biomarker of drug efficacy in HCC patients.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemotherapy, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Qianqian Song
- Department of Radiology, Wake Forest School of Medicine, One Medical Center Boulevard, Winston-Salem, 27157 NC, United States
| | - Mengna Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, 226001 Nantong, Jiangsu, China
| |
Collapse
|
22
|
Ghafouri-Fard S, Bahroudi Z, Shoorei H, Abak A, Ahin M, Taheri M. microRNA-140: A miRNA with diverse roles in human diseases. Biomed Pharmacother 2021; 135:111256. [PMID: 33434855 DOI: 10.1016/j.biopha.2021.111256] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-140 (miR-140) has been shown to be associated with the pathogenesis of a wide range of pathologies including osteoarthritis, osteoporosis, renal fibrosis, ischemic conditions, and most importantly neoplasia. This miRNA has been shown to be down-regulated in a diversity of cancers namely breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. miR-140 has a lot of immune-related targets. Moreover, several miR-140 targets regulate cell proliferation, cell cycle transition, and apoptosis. This miRNA has been shown to be sponged by a number of lncRNAs and circ-RNAs. miR-140 has essential roles in the determination of the sensitivity of neoplastic cells to chemotherapeutic agents such as temozolomide, doxorubicin, and cisplatin. Besides, expression quantities of miR-140 in cancer tissues can be used for the prediction of clinical outcomes of patients with neoplasia. In the present paper, we describe the impact of miR-140 in neoplastic and non-neoplastic disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maliheh Ahin
- Taleghani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Smutny T, Hyrsova L, Braeuning A, Ingelman-Sundberg M, Pavek P. Transcriptional and post-transcriptional regulation of the pregnane X receptor: a rationale for interindividual variability in drug metabolism. Arch Toxicol 2020; 95:11-25. [PMID: 33164107 DOI: 10.1007/s00204-020-02916-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
The pregnane X receptor (PXR, encoded by the NR1I2 gene) is a ligand-regulated transcription factor originally described as a master regulator of xenobiotic detoxification. Later, however, PXR was also shown to interact with endogenous metabolism and to be further associated with various pathological states. This review focuses predominantly on such aspects, currently less covered in literature, as the control of PXR expression per se in the context of inter-individual differences in drug metabolism. There is growing evidence that non-coding RNAs post-transcriptionally regulate PXR. Effects on PXR have especially been reported for microRNAs (miRNAs), which include miR-148a, miR-18a-5p, miR-140-3p, miR-30c-1-3p and miR-877-5p. Likewise, miRNAs control the expression of both transcription factors involved in PXR expression and regulators of PXR function. The impact of NR1I2 genetic polymorphisms on miRNA-mediated PXR regulation is also discussed. As revealed recently, long non-coding RNAs (lncRNAs) appear to interfere with PXR expression. Reciprocally, PXR activation regulates non-coding RNA expression, thus comprising another level of PXR action in addition to the direct transactivation of protein-coding genes. PXR expression is further controlled by several transcription factors (cross-regulation) giving rise to different PXR transcript variants. Controversies remain regarding the suggested role of feedback regulation (auto-regulation) of PXR expression. In this review, we comprehensively summarize the miRNA-mediated, lncRNA-mediated and transcriptional regulation of PXR expression, and we propose that deciphering the precise mechanisms of PXR expression may bridge our knowledge gap in inter-individual differences in drug metabolism and toxicity.
Collapse
Affiliation(s)
- Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic.
| | - Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Solna vägen 9, 17165, Stockholm, Sweden
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
24
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
25
|
Yang H, Ren L, Wang Y, Bi X, Li X, Wen M, Zhang Q, Yang Y, Jia Y, Li Y, Zang A, Wei Y, Dai G. FBI-1 enhanced the resistance of triple-negative breast cancer cells to chemotherapeutic agents via the miR-30c/PXR axis. Cell Death Dis 2020; 11:851. [PMID: 33051436 PMCID: PMC7554048 DOI: 10.1038/s41419-020-03053-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
The factor that binds to the inducer of short transcripts-1 (FBI-1) is a transcription suppressor and an important proto-oncogene that plays multiple roles in carcinogenesis and therapeutic resistance. In the present work, our results indicated that FBI-1 enhanced the resistance of triple-negative breast cancer (TNBC) cells to chemotherapeutic agents by repressing the expression of micoRNA-30c targeting the pregnane X receptor (PXR). The expression of FBI-1 was positively related to PXR and its downstream drug resistance-related genes in TNBC tissues. FBI-1 enhanced the expression of PXR and enhanced the activation of the PXR pathway. The miR-30c decreased the expression of PXR by targeting the 3'-UTR of PXR, and FBI-1 increased the expression of PXR by repressing miR-30c's expression. Through the miR-30c/PXR axis, FBI-1 accelerated the clearance or elimination of antitumor agents in TNBC cells (the TNBC cell lines or the patients derived cells [PDCs]) and induced the resistance of cells to antitumor agents. Therefore, the results indicated that the miR-30c/PXR axis participates in the FBI-1-mediated drug-resistance of TNBC cells.
Collapse
Affiliation(s)
- Hua Yang
- Department of the Medical Oncology, the PLA General Hospital, Beijing, 100853, China.,Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Lili Ren
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Yanan Wang
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Xuebing Bi
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Xiaoli Li
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Ming Wen
- Department of the Gastrointestinal Surgery, the Affiliated Hospital of Hebei University, Baoding City, 071000, Hebei province, P.R. China
| | - Qian Zhang
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Yang Yang
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Youchao Jia
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Yumiao Li
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Aimin Zang
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Yaning Wei
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China.
| | - Guanghai Dai
- Department of the Medical Oncology, the PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
26
|
Wang C, Ding S, Sun B, Shen L, Xiao L, Han Z, Huang H. Hsa-miR-4271 downregulates the expression of constitutive androstane receptor and enhances in vivo the sensitivity of non-small cell lung cancer to gefitinib. Pharmacol Res 2020; 161:105110. [PMID: 32755614 DOI: 10.1016/j.phrs.2020.105110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
The efficacy of molecular targeting agents is dependent on the metabolism or nuclear receptor-mediated clearance of chemotherapy resistance-related factors such as cytochrome P450 (CYP) or ATP binding cassette subfamily B member 1 (ABCB1). In this study, we revealed the roles of the microRNA-4271/CAR (constitutive androstane receptor) axis in the regulation of the resistance to molecular anticancer targeting agents in non-small cell lung cancer (NSCLC) cells including two main categories of NSCLC: lung adenocarcinoma (AC) and large cell lung cancer (LCC). The expression of miR-4271 was negatively correlated with CAR expression in NSCLC tissues. MiR-4271 targeted CAR and inhibited the activation of the CAR signaling pathway. Overexpression of CAR in NSCLC enhanced the resistance of NSCLC cells to molecular targeting agents and miR-4271-infected NSCLC cells enhanced their sensitivity to molecular targeting agents such as Gefitinib. The mechanism-data showed that overexpression of miR-4271 decelerated the mechanism or the clearance of molecular targeting agents by targeting the 3'UTR (3' un-translation region). These results suggest that miR-4271 may contribute to the development of more effective strategies for the treatment of advanced NSCLC.
Collapse
Affiliation(s)
- Chunzhan Wang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong City 226001, Jiangsu Province, PR China; Pulmonary and Crical Care Medecine Department, The 6thMedical Center of PLA General Hospital, Beijing 100048, PR China.
| | - Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong City 226001, Jiangsu Province, PR China.
| | - Baisheng Sun
- Emergency Department, The Fifth Medical Center of the General Hospital of the Chinese People's Liberation Army, Beijing 100071, PR China.
| | - Liang Shen
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong City 226001, Jiangsu Province, PR China.
| | - Ling Xiao
- Department of Internal Medicine, Minhai Hospital, Xiamen City 361100, Fujian Province, PR China.
| | - Zhihai Han
- Pulmonary and Crical Care Medecine Department, The 6thMedical Center of PLA General Hospital, Beijing 100048, PR China.
| | - Haitao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong City 226001, Jiangsu Province, PR China.
| |
Collapse
|
27
|
Wu S, Wang H, Pan Y, Yang X, Wu D. miR-140-3p enhances cisplatin sensitivity and attenuates stem cell-like properties through repressing Wnt/β-catenin signaling in lung adenocarcinoma cells. Exp Ther Med 2020; 20:1664-1674. [PMID: 32765679 PMCID: PMC7388557 DOI: 10.3892/etm.2020.8847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most predominant subtype of non-small cell lung cancer (NSCLC) that is experiencing the fastest growth rate in incidence. Chemoresistance and the presence of cancer stem cells are considered to be the main obstacles preventing the successful treatment of patients with NSCLC, the molecular mechanism of which remains poorly understood. The present study aimed to investigate the effects of microRNA (miR)-140-3p on cisplatin sensitivity and stem cell-like properties of LUAD cells. Analysis of publicly available data demonstrated that miR-140-3p expression was downregulated in LUAD, and positively associated with the overall survival rate of patients. In addition, transfection with the miR-140-3p mimic reduced LUAD cell viability and induced apoptosis following treatment with cisplatin whilst decreasing stem cell-like properties. miR-140-3p overexpression was also found to attenuate cisplatin resistance and reduce stem cell-like properties in LUAD cells by suppressing Wnt/β-catenin signaling, all of which were reversed by the overexpression of β-catenin. Taken together, results of the present study suggest miR-140-3p to be an effective therapeutic strategy for patients with LUAD.
Collapse
Affiliation(s)
- Shuoming Wu
- Department of Thoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Haoran Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Yinpeng Pan
- Department of Thoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Xiangbao Yang
- Department of Thoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Duoguang Wu
- Department of Thoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
28
|
Shao QP, Wei C, Yang J, Zhang WZ. miR-3609 Decelerates the Clearance of Sorafenib in Hepatocellular Carcinoma Cells by Targeting EPAS-1 and Reducing the Activation of the Pregnane X Receptor Pathway. Onco Targets Ther 2020; 13:7213-7227. [PMID: 32801751 PMCID: PMC7394586 DOI: 10.2147/ott.s246471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background The pregnane X receptor (PXR) not only plays an important role in cellular metabolism processes but also induces the resistance of hepatocellular carcinoma (HCC) cells to molecularly targeted drugs by mediating their metabolism and clearance by these cells. Endothelial PAS domain-containing protein 1 (EPAS-1) acts as a coactivator to regulate the transcription factor activity of PXR. In the present study, a microRNA that potentially targets EPAS-1, namely miR-3609, was identified using the miRDB tool. Methods The expression of miR-3609 and EPAS-1 was examined by qPCR. Lentiviral particles containing the full-length sequences of miR-3609 (pri-miR-3609) were prepared. The antitumor effect of antitumor agents was examined by the in vitro and in vivo assays. Results The expression of miR-3609 was negatively correlated with that of EPAS-1 in both HCC clinical specimens and paired non-tumor specimens, and the effect of miR-3609 on the expression of EPAS-1 was confirmed by Western blot experiments. Overexpression of miR-3609 decreased the expression of EPAS-1 and, in turn, repressed the activation of the PXR pathway. miR-3609 decreased the transcription factor activation of PXR, repressed its recruitment to its target gene promoter regions, and decreased the expression of its target genes CYP3A4 and P-GP. In addition, miR-3609 decelerated the metabolism and clearance of sorafenib in HCC cells and enhanced the antitumor effect of sorafenib in HCC cells. Conclusion Therefore, the results indicate that miR-3609 decreases the expression of EPAS-1 and enhances the sensitivity of HCC cells to sorafenib.
Collapse
Affiliation(s)
- Qing-Ping Shao
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, People's Republic of China
| | - Chen Wei
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Jie Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, People's Republic of China
| | - Wen-Zhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, People's Republic of China
| |
Collapse
|
29
|
Xu A, Jiang M, Li S, Fei Q. Down-regulation of circ_0061140 attenuates ectopic endometrial cell proliferation, migration and invasion in endometriosis via inactivating Notch2. Gene 2020; 757:144926. [PMID: 32621951 DOI: 10.1016/j.gene.2020.144926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 06/27/2020] [Indexed: 01/08/2023]
Abstract
Endometriosis is a frequent gynecologic disease in the world. CircRNAs can exert a crucial role in various diseases. Nevertheless, little is known about its roles in endometriosis. We investigated the involvement of circ_0061140 in endometriosis. Tissues from endometriosis women displayed an increased expression of circ_0061140. Then, we found loss of circ_0061140 significantly repressed ectopic endometrial cell proliferation, migration and invasion. Meanwhile,miR-140-3pcan demonstrate an important role in several cancers.Here, we reported miR-140-3p was reduced in ectopic endometrial cells and it acted as a target of circ_0061140. Moreover, miR-140-3p was able to reverse the effect of circ_0061140 on ectopic endometrial cells. Furthermore, Notch2 was predicted as a putative target of miR-140-3p. A positive correlation between circ_0061140 and Notch2 was indicated. miR-140-3p and Notch2 were operated as downstream effectors in the circ_0061140 mediated signaling in endometriosis. Decrease of circ_0061140 could depress endometriosis progression through modulating miR-140-3p and Notch2.
Collapse
Affiliation(s)
- Anchun Xu
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengxi Jiang
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanshan Li
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qunkao Fei
- Outpatient Department, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China.
| |
Collapse
|
30
|
Cheng Z, Wei-Qi J, Jin D. New insights on sorafenib resistance in liver cancer with correlation of individualized therapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188382. [PMID: 32522600 DOI: 10.1016/j.bbcan.2020.188382] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Liver cancer is highly malignant and insensitive to cytotoxic chemotherapy and is associated with very poor patient prognosis. In 2007, the small-molecule targeted drug sorafenib was approved for the treatment of advanced liver cancer. In the subsequent ten years, sorafenib has been the only first-line therapeutic targeted drug for advanced hepatocellular carcinoma (HCC). However, a number of clinical studies show that a considerable percentage of patients with liver cancer are insensitive to sorafenib. The number of patients who actually benefit significantly from sorafenib treatment is very limited, and the overall efficacy of sorafenib is far from satisfactory, which has attracted the attention of researchers. Based on previous studies and reports, this article reviews the potential mechanisms of sorafenib resistance (SR) and summarizes the biomarkers and clinicopathological indicators that might be used for predicting sorafenib response and developing personalized therapy.
Collapse
Affiliation(s)
- Zhang Cheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China
| | - Jiang Wei-Qi
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China
| | - Ding Jin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| |
Collapse
|
31
|
Wang SS, Huang ZG, Wu HY, He RQ, Yang LH, Feng ZB, Dang YW, Lu HP, Fang YY, Chen G. Downregulation of miR-193a-3p is involved in the pathogenesis of hepatocellular carcinoma by targeting CCND1. PeerJ 2020; 8:e8409. [PMID: 32095323 PMCID: PMC7017797 DOI: 10.7717/peerj.8409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second-highest cause of malignancy-related death worldwide, and many physiological and pathological processes, including cancer, are regulated by microRNAs (miRNAs). miR-193a-3p is an anti-oncogene that plays an important part in health and disease biology by interacting with specific targets and signals. Methods In vitro assays were performed to explore the influences of miR-193a-3p on the propagation and apoptosis of HCC cells. The sequencing data for HCC were obtained from The Cancer Genome Atlas (TCGA), and the expression levels of miR-193a-3p in HCC and non-HCC tissues were calculated. The differential expression of miR-193a-3p in HCC was presented as standardized mean difference (SMD) with 95% confidence intervals (CIs) in Stata SE. The impact of miR-193a-3p on the prognoses of HCC patients was determined by survival analysis. The potential targets of miR-193a-3p were then predicted using miRWalk 2.0 and subjected to enrichment analyses, including Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Protein-Protein Interaction (PPI) network analysis. The interaction between miR-193a-3p and one predicted target, Cyclin D1 (CCND1), was verified by dual luciferase reporter assays and Pearson correlation analysis. Results MiR-193a-3p inhibited the propagation and facilitated the apoptosis of HCC cells in vitro. The pooled SMD indicated that miR-193a-3p had a low level of expression in HCC (SMD: −0.88, 95% CI [−2.36 −0.59]). Also, HCC patients with a higher level of miR-193a-3p expression tended to have a favorable overall survival (OS: HR = 0.7, 95% CI [0.43–1.13], P = 0.14). For the KEGG pathway analysis, the most related pathway was “proteoglycans in cancer”, while the most enriched GO term was “protein binding”. The dual luciferase reporter assays demonstrated the direct interaction between miR-193a-3p and CCND1, and the Pearson correlation analysis suggested that miR-193a-3p was negatively correlated with CCND1 in HCC tissues (R = − 0.154, P = 0.002). Conclusion miR-193a-3p could suppress proliferation and promote apoptosis by targeting CCND1 in HCC cells. Further, miR-193a-3p can be used as a promising biomarker for the diagnosis and treatment of HCC in the future.
Collapse
Affiliation(s)
- Shi-Shuo Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hua-Yu Wu
- Department of Cell Biology & Genetics, Guangxi Medical University, Nanning, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Hua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ye-Ying Fang
- Department of Radiation Oncology, Radiation Oncology Clinical Medical Research Center of Guangxi, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
32
|
Xing Y, Yan J, Niu Y. PXR: a center of transcriptional regulation in cancer. Acta Pharm Sin B 2020; 10:197-206. [PMID: 32082968 PMCID: PMC7016272 DOI: 10.1016/j.apsb.2019.06.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 02/05/2023] Open
Abstract
Pregnane X receptor (PXR, NR1I2) is a prototypical member of the nuclear receptor superfamily. PXR can be activated by both endobiotics and xenobiotics. As a key xenobiotic receptor, the cellular function of PXR is mostly exerted by its binding to the regulatory gene sequences in a ligand-dependent manner. Classical downstream target genes of PXR participate in xenobiotic responses, such as detoxification, metabolism and inflammation. Emerging evidence also implicates PXR signaling in the processes of apoptosis, cell cycle arrest, proliferation, angiogenesis and oxidative stress, which are closely related to cancer. Here, we discussed, in addition to the characterization of PXR per se, the biological function and regulatory mechanism of PXR signaling in cancer, and its potential for the targeted prevention and therapeutics.
Collapse
Affiliation(s)
- Yaqi Xing
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Jiong Yan
- Center for Pharmacogenetics, University of Pittsburgh, PA 15261, USA
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Corresponding author.
| |
Collapse
|
33
|
Liu Y, Zhang J, Chen Y, Sohel H, Ke X, Chen J, Li YX. The correlation and role analysis of COL4A1 and COL4A2 in hepatocarcinogenesis. Aging (Albany NY) 2020; 12:204-223. [PMID: 31905170 PMCID: PMC6977693 DOI: 10.18632/aging.102610] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Liver fibrosis biomarker, Type IV collagen, may function as hepatocarcinogenesis niche. However, among the six isoforms, the isoforms providing tumor microenvironment and their regulatory network are still unclarified. Based on bioinformatics analysis of hundreds of HCC transcriptome datasets from public databases, we found that COL4A1/2 expressions were significantly correlated with hepatocarcinogenesis, progression, and prognosis. The expressions of COL4A1/2 were significantly upregulated in the preneoplastic and HCC tissues compared with normal tissues. Moreover, the overexpression of COL4A2 was highly correlated with shorter progression-free survival in HCC patients. Bioinformatics analysis also generates an interactive regulatory network in which COL4A1/2 directly binding to integrin alpha-2/beta-1 initiates a sequentially and complicated signaling transduction, to accelerate cell cycle and promote tumorigenesis. Among those pathways, the PI3K-Akt pathway is significantly enriched in cooperative mutations and correlation analysis. This suggests that the key activated signaling is PI3K-Akt pathway which severing as the centerline linked with other pathways (Wnt and MAPK signaling) and cell behaviors signaling (cell cycle control and cytoskeleton change). Switching extracellular matrix collagen isoform may establish pro-tumorigenic and metastatic niches. The findings of COL4A1/2 and related signaling networks are valuable to be further investigated that may provide druggable targets for HCC intervention.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Stem Cell Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiaye Zhang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hasan Sohel
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinrong Ke
- Stem Cell Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Stem Cell Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingqi Chen
- Stem Cell Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Stem Cell Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Medical Oncology, Guangzhou Medical University, Guangzhou, China
| | - Yin-Xiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Smutny T, Dusek J, Hyrsova L, Nekvindova J, Horvatova A, Micuda S, Gerbal-Chaloin S, Pavek P. The 3'-untranslated region contributes to the pregnane X receptor (PXR) expression down-regulation by PXR ligands and up-regulation by glucocorticoids. Acta Pharm Sin B 2020; 10:136-152. [PMID: 31998607 PMCID: PMC6976988 DOI: 10.1016/j.apsb.2019.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
Pregnane X receptor (PXR) is the major regulator of xenobiotic metabolism. PXR itself is controlled by various signaling molecules including glucocorticoids. Moreover, negative feed-back regulation has been proposed at the transcriptional level. We examined the involvement of the 3'-untranslated region (3'-UTR) of NR1I2 mRNA and microRNAs in PXR- and glucocorticoid receptor (GR)-mediated regulation of NR1I2 gene expression. PXR ligands were found to significantly downregulate NR1I2 mRNA expression in a set of 14 human hepatocyte cultures. Similarly, PXR was downregulated by PCN in the C57/BL6 mice liver. In mechanistic studies with the full-length 3'-UTR cloned into luciferase reporter or expression vectors, we showed that the 3'-UTR reduces PXR expression. From the miRNAs tested, miR-18a-5p inhibited both NR1I2 expression and CYP3A4 gene induction. Importantly, we observed significant upregulation of miR-18a-5p expression 6 h after treatment with the PXR ligand rifampicin, which indicates a putative mechanism underlying NR1I2 negative feed-back regulation in hepatic cells. Additionally, glucocorticoids upregulated NR1I2 expression not only through the promoter region but also via 3'-UTR regulation, which likely involves downregulation of miR-18a-5p. We conclude that miR-18a-5p is involved in the down-regulation of NR1I2 expression by its ligands and in the upregulation of NR1I2 mRNA expression by glucocorticoids in hepatic cells.
Collapse
Key Words
- 3′-UTR, 3′-untranslated region
- CAR, constitutive androstane receptor
- CYP3A4, cytochrome P450 3A4
- Cytochrome P450 3A4
- DEX, dexamethasone
- DMEs, drug metabolizing enzymes
- DMSO, dimethyl sulfoxide
- ER, estrogen receptor
- GRα, glucocorticoid receptor α
- Gene expression
- Gluc, Gaussia luciferase
- Glucocorticoid
- LBD, ligand binding domain
- MRE, miRNA-response element
- MicroRNA
- NR, nuclear receptor
- PB, phenobarbital
- PCN, pregnenolone 16α-carbonitrile
- PHHs, primary human hepatocytes
- PPARα, peroxisome proliferator-activated receptor α
- PXR, pregnane X receptor
- Pregnane X receptor
- RXRα, retinoid X receptor α
- Regulation
- Rif, rifampicin
- SEAP, secreted alkaline phosphatase
- miRNA, microRNA
Collapse
Affiliation(s)
- Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove CZ-500 05, Czech Republic
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove CZ-500 05, Czech Republic
| | - Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove CZ-500 05, Czech Republic
| | - Jana Nekvindova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove CZ-500 05, Czech Republic
| | - Alzbeta Horvatova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove CZ-500 05, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove CZ-500 03, Czech Republic
| | | | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove CZ-500 05, Czech Republic
| |
Collapse
|
35
|
Jiang W, Li T, Wang J, Jiao R, Shi X, Huang X, Ji G. miR-140-3p Suppresses Cell Growth And Induces Apoptosis In Colorectal Cancer By Targeting PD-L1. Onco Targets Ther 2019; 12:10275-10285. [PMID: 31819512 PMCID: PMC6885546 DOI: 10.2147/ott.s226465] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background A variety of miRNAs have been recently reported to be abnormally expressed in colorectal cancer (CRC). A growing number of studies have demonstrated that aberrantly expressed miRNAs are closely related to the development and progression of CRC. It has been found that miR-140-3p plays a vital role in several cancers. However, its expression, roles and mechanisms in CRC are remain unknown. Materials and methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to determine miR-140-3p expression in CRC tissues and cell lines. CCK8, migration, invasion and flow cytometric assays were used to determine the influence of miR-140-3p upregulation on cell proliferation, migration, invasion and apoptosis of CRC cells. Luciferase reporter assays and Western blots were utilized to identify the target genes of miR-140-3p. In addition, the potential mechanism of miR-140-3p action in CRC cells was elucidated. Results In our study, miR-140-3p expression was significantly decreased in CRC tissues and cell lines. Overexpression of miR-140-3p attenuated proliferation, migration, and invasion and induced the apoptosis of CRC cells. Bioinformatics analyse and luciferase reporter analysis identified PD-L1 as a putative target gene of miR-140-3p. PD-L1 was overexpressed in CRC tissues and inversely correlated with miR-140-3p expression. Suppression of PD-L1 expression in CRC cells generated biological behaviours in CRC cells that were similar to those observed after treated with miR-140-3p mimics. Restoration of PD-L1 expression partially attenuated the inhibitory effect of miR-140-3p on CRC cells. Western blot were used to verify the effect of PD-L1 expression on PI3K/AKT pathway. In addition, overexpression of miR-140-3p could inhibit CRC tumor growth in vivo. Conclusion In general, these data demonstrate that miR-140-3p acts as a tumour suppressor in CRC by directly targeting PD-L1 and inactivating PI3K/AKT pathway, suggesting that miR-140-3p might be a novel target for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention And Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Tao Li
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention And Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jingjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention And Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Ruonan Jiao
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention And Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Xiao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention And Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Xiaodan Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention And Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Guozhong Ji
- Department of Gastroenterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention And Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
36
|
Lai Y, Feng B, Abudoureyimu M, Zhi Y, Zhou H, Wang T, Chu X, Chen P, Wang R. Non-coding RNAs: Emerging Regulators of Sorafenib Resistance in Hepatocellular Carcinoma. Front Oncol 2019; 9:1156. [PMID: 31750247 PMCID: PMC6848262 DOI: 10.3389/fonc.2019.01156] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
As the first oral multi-target anti-tumor drug proved for the treatment of patients with advanced liver cancer in 2007, sorafenib has changed the landscape of advanced hepatocellular carcinoma (HCC) treatment. However, drug resistance largely hinders its clinical application. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), and long non-coding (lncRNAs), have recently been demonstrated playing critical roles in a variety of cancers including HCC, while the mechanisms of ncRNAs in HCC sorafenib resistance have not been extensively characterized yet. Herein, we summarize the mechanisms of recently reported ncRNAs involved in sorafenib resistance and discuss the potential strategies for their application in the battle against HCC.
Collapse
Affiliation(s)
- Yongting Lai
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Bing Feng
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yingru Zhi
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Ping Chen
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Rui Wang
- Department of Medical Oncology, Nanjing School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China.,Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
37
|
Yang B, Wang C, Xie H, Wang Y, Huang J, Rong Y, Zhang H, Kong H, Yang Y, Lu Y. MicroRNA-3163 targets ADAM-17 and enhances the sensitivity of hepatocellular carcinoma cells to molecular targeted agents. Cell Death Dis 2019; 10:784. [PMID: 31611551 PMCID: PMC6791891 DOI: 10.1038/s41419-019-2023-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Molecular targeted agents, such as sorafenib, remain the only choice of an antitumor drug for the treatment of advanced hepatocellular carcinoma (HCC). The Notch signaling pathway plays central roles in regulating the cellular injury/stress response, anti-apoptosis, or epithelial–mesenchymal transition process in HCC cells, and is a promising target for enhancing the sensitivity of HCC cells to antitumor agents. The ADAM metalloprotease domain-17 (ADAM-17) mediates the cleavage and activation of Notch protein. In the present study, microRNA-3163 (miR-3163), which binds to the 3′-untranslated region of ADAM-17, was screened using online methods. miRDB and pre-miR-3163 sequences were prepared into lentivirus particles to infect HCC cells. miR-3163 targeted ADAM-17 and inhibited the activation of the Notch signaling pathway. Infection of HCC cells with miR-3163 enhanced their sensitivity to molecular targeted agents, such as sorafenib. Therefore, miR-3163 may contribute to the development of more effective strategies for the treatment of advanced HCC.
Collapse
Affiliation(s)
- Bin Yang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Chunping Wang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Hui Xie
- Department of Interventional Therapy, The Fifth Medical Center, Chinese PLA General Hospital, Chinese PLA, Beijing, 100039, China
| | - Yiwu Wang
- Department of Disease Control and Prevention, Chinese PLA The 532nd Hospital, Huangshan, 242700, Anhui Province, China
| | - Jiagan Huang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yihui Rong
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Huixin Zhang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Huifang Kong
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yongping Yang
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yinying Lu
- Comprehensive liver cancer Department, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
38
|
Yin F, Feng F, Wang L, Wang X, Li Z, Cao Y. SREBP-1 inhibitor Betulin enhances the antitumor effect of Sorafenib on hepatocellular carcinoma via restricting cellular glycolytic activity. Cell Death Dis 2019; 10:672. [PMID: 31511501 PMCID: PMC6739379 DOI: 10.1038/s41419-019-1884-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Lipid metabolism that correlates tightly to the glucose metabolic regulation in malignant cells includes hepatocellular carcinoma (HCC) cells. The transcription factor Sterol Regulatory Element Binding Protein 1 (SREBP-1), a regulator of fatty acid synthesis, has been shown to pivotally regulate the proliferation and metastasis of HCC cells. However, the intrinsic mechanism by which SREBP-1 regulates the survival of HCC cells remains unclear. In this study, among HCC patients who had dismal responses to Sorafenib, a high SREBP-1 level was found in the tumors and correlated to poor survival. This observation suggested the negative role of SREBP-1 in clinical HCC prognosis. Our mechanistical studies reveal that the inhibition of SREBP-1 via its inhibitor Betulin suppresses cellular glucose metabolism. In addition to the reduced glycolytic activity, a thwarted metastatic potential was observed in HCC cells upon Betulin administration. Moreover, our data show that SREBP-1 inhibition facilitated the antitumor effects of Sorafenib on HCC cells and xenograft tumors.
Collapse
Affiliation(s)
- Fan Yin
- Department of Oncology, the Second Medical Centre & National Clinical Research Center of Geriatric Disease, Chinese PLA General Hospital, 100853, Beijing, People's Republic of China.
| | - Fan Feng
- Center for Clinical Laboratory, the Fifth Medical Centre, Chinese PLA General Hospital, 100039, Beijing, People's Republic of China
| | - Lei Wang
- Department of Gastroenterology, the First Medical Centre, Chinese PLA General Hospital, 100843, Beijing, People's Republic of China
| | - Xiaoning Wang
- Department of Blood Transfusion, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, People's Republic of China
| | - Zongwei Li
- Department of Gastroenterology, the First Medical Centre, Chinese PLA General Hospital, 100843, Beijing, People's Republic of China
| | - Yu Cao
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 33612, Tampa, FL, USA.
| |
Collapse
|
39
|
Wang L, En H, Yang L, Zhang Y, Sun B, Gao J. miR-596 suppresses the expression of Survivin and enhances the sensitivity of osteosarcoma cells to the molecular targeting agent anlotinib. Onco Targets Ther 2019; 12:6825-6838. [PMID: 31686840 PMCID: PMC6709039 DOI: 10.2147/ott.s215145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Background Osteosarcoma (OSA), the most common primary bone malignancy, is characterized by a wide spectrum of complicated pathologies and frequent distal metastasis and causes death in adolescents and young adults worldwide. Antitumor drug treatment strategies include various cytotoxic chemotherapy drugs, while molecular targeted therapy for OSA is currently less used. The present work revealed the role played by the miR-596/Survivin axis in affecting the sensitivity of OSA cells to anlotinib, a novel molecular targeting agent. Methods By virtual screening, we found that miR-596 might target Survivin by using an online tool (miRDB). RNA levels of miR-596 and Survivin in clinical specimens were examined with qPCR. The effect of miR-596 on anlotinib’s antitumor effect was examined with MTT experiments, the subcutaneous tumor model, or the intramuscular tumor model. Results Overexpression of miR-596 via lentiviral particles repressed the protein level of Survivin in U2OS cells. Transfection of miR-596 enhanced the antitumor effect of anlotinib on U2OS cells or five cell lines derived from OSA patients. Conclusion miR-596 targets Survivin and enhances the antitumor effect of anlotinib on OSA cells.
Collapse
Affiliation(s)
- Leisheng Wang
- Department of Orthopedics, Yantaishan Hospital, Yantai, Shandong Province 264000, People's Republic of China
| | - He En
- Department of Outpatient, The 81st Group Army Hospital of Chinese People's Liberation Army, Zhangjiakou City, Hebei Province, People's Republic of China
| | - Lei Yang
- Department of Outpatient, The 80th Group Army Hospital of Chinese People's Liberation Army (formerly the 89th Hospital of the People's Liberation Army), Weifang City, Shandong Province, People's Republic of China
| | - Yanbing Zhang
- Department of Outpatient, The 81st Group Army Hospital of Chinese People's Liberation Army, Zhangjiakou City, Hebei Province, People's Republic of China
| | - Baisheng Sun
- Department of Emergency, The Fifth Medical Center of the General Hospital of the Chinese People's Liberation Army (formerly the 307th Hospital of the People's Liberation Army), Beijing 100071, People's Republic of China
| | - Jianjiang Gao
- Department of Emergency, Haiyang People's Hospital, Haiyang, Shandong 265100, People's Republic of China
| |
Collapse
|
40
|
Hou FJ, Guo LX, Zheng KY, Song JN, Wang Q, Zheng YG. Chelidonine enhances the antitumor effect of lenvatinib on hepatocellular carcinoma cells. Onco Targets Ther 2019; 12:6685-6697. [PMID: 31695406 PMCID: PMC6707434 DOI: 10.2147/ott.s215103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background Lenvatinib is a newly approved molecular targeted drug for the treatment of advanced hepatocellular carcinoma (HCC). However, the high cost associated with this treatment poses a huge financial burden on patients and the entire public health system. Therefore, there is an urgent need to develop novel strategies that enhance the antitumor effect of lenvatinib. Methods The antitumor effects of chelidonine or/and lenvatinib on HCC cell lines MHCC97-H and LM-3 were examined using the 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2- H-tetrazolium bromide (MTT) assay. For the in-vivo investigation, the effect on subcutaneous or intrahepatic tumor growth in nude mice was also determined. The mRNA levels of epithelial mesenchymal transition (EMT)-related factors were examined through quantitative polymerase chain reaction or Western blot. Results In the present study, we found that treatment with chelidonine enhanced the apoptotic effect of lenvatinib on HCC cells and the in-vivo growth of HCC tumors in nude mice. Mechanistically, treatment with chelidonine increased the expression of epithelial indicator E-cadherin, whereas it decreased the expression of mesenchymal indicators N-cadherin and Vimentin. These findings suggest that chelidonine restricted the EMT in HCC cells. Conclusion Chelidonine inhibits the process of EMT and enhances the antitumor effect of lenvatinib on HCC cells.
Collapse
Affiliation(s)
- Fang-Jie Hou
- Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, People's Republic of China
| | - Li-Xiao Guo
- Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, People's Republic of China
| | - Kai-Yan Zheng
- Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, People's Republic of China
| | - Jun-Na Song
- Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, People's Republic of China
| | - Qian Wang
- Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, People's Republic of China
| | - Yu-Guang Zheng
- Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, People's Republic of China
| |
Collapse
|
41
|
Zhu L, Liu Z, Dong R, Wang X, Zhang M, Guo X, Yu N, Zeng A. MicroRNA-3662 targets ZEB1 and attenuates the invasion of the highly aggressive melanoma cell line A375. Cancer Manag Res 2019; 11:5845-5856. [PMID: 31388313 PMCID: PMC6607987 DOI: 10.2147/cmar.s200540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Cutaneous melanoma is the most aggressive form of skin cancer. It accounts for approximately 5% of all cutaneous malignancies and is currently responsible for the majority of skin cancer-related deaths. However, the exact mechanisms responsible for the occurrence of melanoma, in particular the invasive growth in normal skin or muscle tissue, remain unknown. Materials and methods miR-3662, a microRNA is a potential tumor suppressor targeting zinc finger E-box binding homeobox 1 (ZEB1), which functions as a key regulator of the epithelial-mesenchymal transition (EMT) process. This microRNA was identified using an online database (miRDB) and expression was confirmed by Western blot analysis. Quantitative polymerase chain reaction (qPCR) was used to examine whether miR-3662 inhibits the EMT process in the aggressive melanoma cell line, A375, through the modification of the expression of invasion-related genes in A375 cells. The effects of miR-3662 on the in vivo growth of A375 cells were examined in a nude mouse model. Results Using virtual screening of the miRDB database, miR-3662 was shown to target the 3ʹ untranslated region (UTR) of the ZEB1 gene. Expression of miR-3662 via a lentivirus vector significantly decreased protein levels of ZEB1 and inhibited the growth of A375 cells in vitro and in vivo. The reduction in ZEB1 expression induced by miR-3662 resulted in EMT inhibition in A375 cells and decreased the relative expression of metastasis genes. Conclusion Down-regulation of ZEB1’s expression via miR-3662 lentivirus vectors significantly decreased the in vitro and in vivo growth of the highly aggressive melanoma cell line A375.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Zhifei Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Ruijia Dong
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xiaojun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xiao Guo
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Ang Zeng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, People's Republic of China
| |
Collapse
|
42
|
Meng D, Lei H, Zheng X, Han Y, Sun R, Zhao D, Liu R. A temperature-sensitive phase-change hydrogel of tamoxifen achieves the long-acting antitumor activation on breast cancer cells. Onco Targets Ther 2019; 12:3919-3931. [PMID: 31213826 PMCID: PMC6538837 DOI: 10.2147/ott.s201421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Breast cancer is one of the foremost threats to female health nowadays. Tamoxifen, an antagonist of estrogen receptor-α (ERα), is the first choice for endocrine-dependent breast cancer (ERα-positive breast cancer) treatment. However, ERα has an important function in the normal physical regulation of estrogen, and current oral administration of tamoxifen has potential side effects on normal endocrine secretion. In the present work, we aim to develop novel approaches to increase the antitumor effect of tamoxifen on breast cancer cells and decrease the potential side effects in the human body during treatment. Methods: A temperature-sensitive phase-change hydrogel for tamoxifen (Tam-Gel) was generated. After establishing subcutaneous tumors formed by MCF-7, an ERα-positive breast cancer cell line, in nude mice, an intratumoral injection of Tam-Gel was performed to examine whether Tam-Gel facilitated the slow-release or antitumor effect of tamoxifen. A metastatic breast cancer model was established using the intrahepatic growth of MCF-7 cells in immunodeficient rats. Results: Tam-Gel can transform from liquid to hydrogel at room temperature. An intratumoral injection of Tam-Gel facilitated the slow-release or antitumor effect of tamoxifen. Once Tam-Gel, but not Tam-Sol, was administered by intratumoral injection, it significantly decreased the uptake of radionuclide probes (18F-fluoroestradiol or 18F-fluorodeoxyglucose) by cells in rats' livers and the intrahepatic growth of MCF-7 cells in rats' livers. Conclusion: A novel slow-release system was successfully prepared to facilitate the long-term release of tamoxifen in breast cancer tissues, and achieved an antitumor effect in the long term.
Collapse
Affiliation(s)
- Du Meng
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Hongwei Lei
- Department of Radio Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, People's Republic of China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Yaxuan Han
- Department of Oncology, The Xi'an Chest Hospital, Xi'an, Shaanxi Province, 710000, People's Republic of China
| | - Ronggang Sun
- Department of Radio Oncology, The People's Hospital of YangZhong City, YangZhong, Jiangsu Province, 212200, People's Republic of China
| | - Dongli Zhao
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, 710061, People's Republic of China
| | - Rui Liu
- Department of Radio Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, 710061, People's Republic of China
| |
Collapse
|
43
|
Zhao K, Li X, Chen X, Zhu Q, Yin F, Ruan Q, Xia J, Niu Z. RETRACTED: Inhibition of miR-140-3p or miR-155-5p by antagomir treatment sensitize chordoma cells to chemotherapy drug treatment by increasing PTEN expression. Eur J Pharmacol 2019; 854:298-306. [PMID: 30980798 DOI: 10.1016/j.ejphar.2019.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).
This article has been retracted at the request of the authors and the Editor-in-Chief as the validity of the data cannot be guaranteed. The journal was initially contacted by the corresponding author to report that, when the authors verified post publication PTEN as their former target of miR-140-3p, they found that treatment with miR-140-3p or miR-155-5p antagomir increased PTEN protein levels in patient-derived chordoma cells without having a significant effect on the malignancy of the tumor cells.
The journal further requested the author to provide more information about their post publication findings with regard to this article. However, the author was not able to fulfil this request.
Collapse
Affiliation(s)
- Kunchi Zhao
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| | - Xuefeng Li
- Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| | - Xinxin Chen
- Department of Nursing, Changchun Obstetrics-Gynecology Hospital, Changchun, 130042, PR China
| | - Qingsan Zhu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China.
| | - Fei Yin
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| | - Qing Ruan
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| | - Jidong Xia
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| | - Zefeng Niu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| |
Collapse
|
44
|
Wei L, Lun Y, Zhou X, He S, Gao L, Liu Y, He Z, Li B, Wang C. Novel urokinase-plasminogen activator inhibitor SPINK13 inhibits growth and metastasis of hepatocellular carcinoma in vivo. Pharmacol Res 2019; 143:73-85. [PMID: 30862605 DOI: 10.1016/j.phrs.2019.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/07/2019] [Accepted: 03/08/2019] [Indexed: 12/25/2022]
Abstract
Advanced hepatocellular carcinoma (HCC) is a highly aggressive malignancy that is a serious threat to the public health system of China. Urokinase-plasminogen activator (uPA) can promote the invasive growth and metastasis of HCC cells by activating matrix metalloproteinases (MMPs), leading to the breakage of the extra-cellular matrix. uPA is a promising target for advanced HCC treatment. In this stuy the expression of uPA was examined by quantitative polymerase chain reaction in hepatic cell lines. Protein interaction between uPA and SPINK13 was identified by immunoprecipitation. In vitro biochemical assay was used to examine the inhibitory effect of the SPINK13 on the direct cleaving of the recombinant pro-MMP9 by uPA. The antitumor effect of SPINK13 was examined by transwell assay or the nude mice tumor model.The expression of uPA was much higher in highly aggressive HCC cell lines than in lowly aggressive HCC cell lines or non-tumor hepatic cell lines. SPINK13 interacted with uPA in HCC cells and directly inhibited the cleaving of MMP9 by uPA. Treatment of the recombinant SPINK13 protein inhibited the invasion of HCC cells in several experiments, such as transwell experiments or the intrahepatic growth model. The results of the study indicated that SPINK13 could function as a promising therapeutic approach for patients with advanced HCC.
Collapse
Affiliation(s)
- Ling Wei
- Medical School of Chinese PLA & Department of Clinical Laboratory, Medical Laboratory Center, Chinese PLA General Hospital, Beijing 100853, PR China; Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Yongzhi Lun
- Department of Laboratory Medicine, School of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian Province, PR China
| | - Xiaoping Zhou
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Shang He
- Medical School of Chinese PLA & Department of Clinical Laboratory, Medical Laboratory Center, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Lijuan Gao
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Yan Liu
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Zheng He
- Medical School of Chinese PLA & Department of Clinical Laboratory, Medical Laboratory Center, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Baoming Li
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China.
| | - Chengbin Wang
- Medical School of Chinese PLA & Department of Clinical Laboratory, Medical Laboratory Center, Chinese PLA General Hospital, Beijing 100853, PR China.
| |
Collapse
|
45
|
Wang Y, Tang Z. A novel long-sustaining system of apatinib for long-term inhibition of the proliferation of hepatocellular carcinoma cells. Onco Targets Ther 2018; 11:8529-8541. [PMID: 30555243 PMCID: PMC6278711 DOI: 10.2147/ott.s188209] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Apatinib is a newly approved antitumor drug (molecular targeted agent/small molecular
kinase inhibitor) for advanced hepatocellular carcinoma (HCC) treatment. However,
current oral administration of apatinib could induce the even distribution of drugs in
the body and cause the concentration of apatinib in the HCC location to be limited or
insufficient. Therefore, it is urgent to develop novel formulations of apatinib to
improve its efficiency. Materials and methods Apatinib was prepared to form a stable and even dispersion with cyclodextrin (a
clathrate complex/inclusion complex named Apa-Cyc). A temperature-sensitive phase-change
hydrogel of apatinib (named Apa-Gel) was prepared using apatinib–cyclodextrin
and poloxamer 407. Apa-Gel was injected into HCC tissues in nude mice to examine the
long-term antitumor effect. Results Apa-Gel can transform from liquid to hydrogel at near body temperature and maintain
slow release of apatinib in HCC tumor tissues. When injected subcutaneously, one-time
administration of Apa-Gel has a long-acting antitumor effect on the subcutaneous growth
or epithelial–mesenchymal transition process of HCC cells. Conclusion This novel slow-releasing system allows apatinib to be released effectively on the long
term and facilitates tissue attachment, thereby preserving the efficiency of apatinib
over the long term.
Collapse
Affiliation(s)
- Yanli Wang
- Recruitment and Employment Office, Henan Medical College, Zhengzhou 451191, Henan Province, People's Republic of China,
| | - Zigui Tang
- Recruitment and Employment Office, Henan Medical College, Zhengzhou 451191, Henan Province, People's Republic of China, .,Department of Pharmacy, Henan Medical College, Zhengzhou 451191, Henan Province, People's Republic of China
| |
Collapse
|
46
|
Effects of VEGFR1 + hematopoietic progenitor cells on pre-metastatic niche formation and in vivo metastasis of breast cancer cells. J Cancer Res Clin Oncol 2018; 145:411-427. [PMID: 30483898 PMCID: PMC6373264 DOI: 10.1007/s00432-018-2802-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The pre-metastatic niche has been shown to play a critical role in tumor metastasis, and its formation is closely related to the tumor microenvironment. However, the underlying molecular mechanisms remain unclear. In the present study, we successfully established a mouse model of lung metastasis using luciferase-expressing MDA-MB-435s cells. In this model, recruitment of vascular endothelial growth factor receptor-1 (VEGFR1)+CD133+ hematopoietic progenitor cells (HPCs) was gradually increased in lung but gradually decreased after the formation of tumor colonies in lung. We also established a highly metastatic MDA-MB-435s (MDA-MB-435s-HM) cell line from the mouse model. Changes in protein profiles in different culture conditions were investigated by protein microarray analysis. The levels of CXC chemokine ligand 16, interleukin (IL)-2Rα, IL-2Rγ, matrix metalloproteinase (MMP)-1, MMP-9, platelet-derived growth factor receptor (PDGFR)-α, stromal cell-derived factor (SDF)-1α, transforming growth factor (TGF)-β, platelet endothelial cell adhesion molecule (PECAM)-1 and vascular endothelial (VE)-cadherin were significantly greater (> fivefold) in the culture medium from MDA-MB-435s-HM cells than in that from MDA-MB-435s cells. Moreover, the levels of MMP-9, PDGFR-α, and PECAM-1 were significantly greater in the co-culture medium of MDA-MB-435s-HM cells and CD133+ HPCs than in that from MDA-MB-435s-HM cells. Differentially expressed proteins were validated by enzyme-linked immunosorbent assay, and expression of their transcripts was confirmed by quantitative real-time polymerase chain reaction. Moreover, inhibition of MMP-9, PDGFR-α, and PECAM-1 by their specific inhibitors or antibodies significantly decreased cell migration, delayed lung metastasis, and decreased recruitment of VEGFR1+CD133+ HPCs into lung. Intra-hepatic growth of HPCs enhanced the invasive growth of MDA-MB-435s-HM cells in the liver. Our data indicate that VEGFR1+CD133+ HPCs contribute to lung metastasis.
Collapse
|