1
|
Xia MH, Liu KC, Zhao W, Cheng YZ, Shi LP, Bi LQ, Guo XR, Zhang MX, Lv WF. Efficacy and safety of chemotherapy combined with iodine-125 seed brachytherapy for intermediate and advanced oncogenic driver gene-negative non-small cell lung cancer. Brachytherapy 2025; 24:92-102. [PMID: 39818422 DOI: 10.1016/j.brachy.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/09/2024] [Accepted: 09/06/2024] [Indexed: 01/18/2025]
Abstract
PURPOSE To compare the effectiveness and safety of CT-guided iodine-125 seed brachytherapy in conjunction with chemotherapy against chemotherapy alone for the management of intermediate and advanced non-small cell lung cancer (NSCLC) lacking oncogenic driving genes. METHODS AND MATERIALS Retrospective analysis was conducted on clinical data from 128 patients diagnosed with intermediate and advanced non-small cell lung cancer who received iodine-125 combined with chemotherapy or chemotherapy alone due to the absence of oncogenic driver gene mutations. The patients in two groups were compared at 6-month follow-up for objective remission rate (ORR), Disease control rate (DCR), local progression-free survival (LPFS), overall survival (OS), clinical symptom improvement, and adverse events. RESULTS A median of 47 (range, 16-100) iodine-125 seeds were implanted. The median D90 was 139.4 Gy. In patients with stage III NSCLC, the 6-month ORR were 40.0% and 8.0% in two groups, while those with stage IV NSCLC had rates of 20.9% and 4.0%. No significant issues arose during the 5-58 months follow-up period. OS did not significantly differ between stage III and IV NSCLC patients. The LPFS for stage III patients was 14 months and 9 months, compared to 8 months and 7 months for stage IV patients. Symptom improvement rates, including cough, chest discomfort, hemoptysis, and chest constriction, were 87.2% versus 20.4%, 77.8% versus 33.3%, and 77.8% versus 26.1%, respectively. CONCLUSIONS CT-guided iodine-125 seed implantation with chemotherapy failed to improve OS in stages III and IV NSCLC. However, it did extend the LPFS of stage III NSCLC. Furthermore, the ORR was much higher than that of the chemotherapy-only group, and lung cancer clinical symptoms were significantly reduced, improving patient quality of life.
Collapse
Affiliation(s)
- Meng-Hua Xia
- Department of Nuclear Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei, Anhui, 230031, PR China
| | - Kai-Cai Liu
- Infection Hospital, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei 230000, PR China
| | - Wei Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei, Anhui, 230031, PR China
| | - Yi-Zhuang Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei, Anhui, 230031, PR China
| | - Liang-Ping Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei, Anhui, 230031, PR China
| | - Li-Qin Bi
- Department of Nuclear Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei, Anhui, 230031, PR China
| | - Xue-Ran Guo
- Department of Nuclear Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei, Anhui, 230031, PR China
| | - Meng-Xia Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei, Anhui, 230031, PR China
| | - Wei-Fu Lv
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei, Anhui 230022, PR China.
| |
Collapse
|
2
|
Auberle C, Gao F, Sloan M, Morgensztern D, Winkler L, Ward JP, Devarakonda S, Rearden TP, Govindan R, Waqar SN. A pilot study of nintedanib in molecularly selected patients with advanced non-small cell lung cancer. J Thorac Dis 2024; 16:3782-3793. [PMID: 38983151 PMCID: PMC11228753 DOI: 10.21037/jtd-23-1717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/10/2024] [Indexed: 07/11/2024]
Abstract
Background Nintedanib is a small molecule tyrosine kinase inhibitor (TKI) targeting vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR). The purpose of the study was to evaluate the response rate for patients with advanced non-small cell lung cancer (NSCLC) with mutations in TP53, VEGFR1-3, PDGFR-A, PDGFR-B, and FGFR1-3 treated with nintedanib as part of an open-label, single-arm pilot study. Methods Patients with advanced NSCLC previously treated with platinum-doublet chemotherapy with the above mutations were enrolled. Exclusion criteria included necrotic tumors with invasion of blood vessels, history of recent thromboembolic events, increased risk of bleeding or thrombosis, myocardial infarction, and weight loss >10% within past 6 months. Nintedanib was administered at a dose of 200 mg orally twice daily until disease progression or unacceptable toxicity. The primary endpoint was objective response rate (ORR) by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. Secondary endpoints included progression-free survival (PFS) and correlating outcomes with specific mutations. This study was registered with ClinicalTrials.gov, number NCT02299141. Results Between 2015 and 2019, 20 patients were enrolled with a median age was 66 years, 15 (75%) were females, 15 (75%) had adenocarcinoma, and 17 patients had a TP53 mutation (85%). Seventeen (85%) had received prior immunotherapy and 11 (55%) had received at least three prior lines of systemic therapy. The ORR was 15% with three partial responses (PR), while 12 patients had stable disease (SD), with disease control rate (DCR) consisting of a PR and SD greater than or equal to 16 weeks of 65% (n=13). Median PFS was 4.3 months [95% confidence interval (CI): 1.8-7.9] and median overall survival (OS) was 11.3 months (95% CI: 3.5-44.2). Three patients experienced prolonged clinical benefit from nintedanib, remaining on treatment for over 1 year and all three had a TP53 mutation and received prior immunotherapy. The most common adverse events of any grade included nausea (80%), fatigue (70%), diarrhea (60%), and anorexia (60%). Conclusions In this pilot study in heavily pretreated and molecularly selected patients with metastatic NSCLC, nintedanib showed modest activity.
Collapse
Affiliation(s)
- Christine Auberle
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Feng Gao
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Mark Sloan
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daniel Morgensztern
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Linda Winkler
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jeffrey P Ward
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Timothy P Rearden
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ramaswamy Govindan
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Saiama N Waqar
- Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Pawlik VE, Sonntag SR, Grisanti S, Tura A, Kakkassery V, Ranjbar M. Impact of Nintedanib and Anti-Angiogenic Agents on Uveal Melanoma Cell Behavior. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 38381412 PMCID: PMC10893901 DOI: 10.1167/iovs.65.2.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
Purpose The purpose of this study was to investigate the direct impact of the combined angiokinase inhibitor nintedanib as well as the anti-angiogenic agents ranibizumab, bevacizumab, and aflibercept on the primary uveal melanoma (UM) cell line Mel270 and liver metastasis UM cell line OMM2.5. Methods The metabolic activity, viability, and oxidative stress levels were analyzed by the Thiazolyl Blue Tetrazolium Bromide (MTT), LIVE/DEAD, and reactive oxygen species (ROS) assays. Expression of intracellular VEGF-A165 and VEGF receptor-2 was detected by immunofluorescent staining. The secretion of VEGF-A165 into the cell culture supernatants was evaluated by VEGF-A165 ELISA. Results Nintedanib, at a concentration of 1 µg/mL, resulted in a median reduction of metabolic activity (for Mel270 of approximately 38% and for OMM2.5 of 46% compared to the untreated control) without exerting toxicity in either cell line, whereas the other 3 substances did not result in any changes (which also means that none of the 4 substances led to an increased cell death). Moreover, nintedanib (1 µg/mL) induced oxidative stress in the Mel270 by approximately 1.2 to 1.5-fold compared to the untreated control, but not the OMM2.5 cells. Conclusions Nintedanib could suppress the growth of UM cells in a concentration-dependent manner. The metastatic UM cell line OMM2.5 was not sensitive to the pro-oxidant activity of nintedanib. This study was the first to investigate nintedanib in the context of UM. We propose further investigation of this substance to elucidate its effects on this tumor entity with the hope of identifying advantageous therapeutic options for future adjuvant tumor therapies.
Collapse
Affiliation(s)
- Vera E. Pawlik
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | | | | | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | | | - Mahdy Ranjbar
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Praseetha NG, Divya UK, Nair S. Identifying the potential role of curcumin analogues as anti-breast cancer agents; an in silico approach. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer ranks top among newly reported cancer cases and most of the women suffers from breast cancer. Development of target therapy using phytochemicals with minimal side effects is trending in health care research. Phytochemicals targets complex multiple signalling events in cancer and are pleiotropic in nature. Thus, the present study was conducted to check the effectivity of curcumin analogues (Capsaicin, Chlorogenic acid, Ferulic acid, Zingerone, Gingerol) against the receptors that are expressed in breast cancer cells and prove its ethno-medicinal value by using bioinformatic tools and softwares like PDB, Patch Dock, PubChem, Chimera and My Presto.
Result
Out of the various curcumin analogues studied, Ferulic acid showed best binding affinity with all the breast cancer cell specific receptors (FGF, MMP9, RNRM1, TGF-beta, DHFR, VEGF and aromatase) which was confirmed through the docking studies.
Conclusion
The current work was a preliminary step towards screening suitable drug candidate against breast cancer using in silico methods. This information can be used further to carry out in vivo studies using selected natural analogues of curcumin as a suitable drug candidate against breast cancer saving time and cost.
Collapse
|
5
|
Osimertinib Improves the Immune Microenvironment of Lung Cancer by Downregulating PD-L1 Expression of Vascular Endothelial Cells and Enhances the Antitumor Effect of Bevacizumab. JOURNAL OF ONCOLOGY 2022; 2022:1531353. [PMID: 35783156 PMCID: PMC9246595 DOI: 10.1155/2022/1531353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022]
Abstract
Objective To investigate the effect and mechanism of osimertinib combined with bevacizumab on lung cancer through cell and transplanted tumor animal experiments and to provide theoretical basis for further clinical trials. Methods Immunohistochemistry was used to detect the expression of PD-L1 in tumor vessels of nonmetastatic lung adenocarcinoma and metastatic lung adenocarcinoma. At the same time, the expression of CD8 and FoxP3 in tumor tissue was detected. qRT-PCR was used to detect the effect of osimertinib on PD-L1 expression in HUVECs. The expression levels of p-Akt and p-ERK in HUVECs treated with osimertinib were analyzed by Western blot. AKT was blocked by AKT specific inhibitor Ly294002 to analyze the expression of PD-L1 in HUVECs. An animal model of transplanted tumor was constructed to analyze whether osimertinib could enhance the antitumor effect of bevacizumab. Results PD-L1 was highly expressed in vascular endothelial cells of metastatic lung cancer. FoxP3 was highly expressed in metastatic lung adenocarcinoma, while CD8 expression was low. Osimertinib inhibits PD-L1 expression in endothelial cells. Mechanism studies have shown that osimertinib inhibits PD-L1 expression in endothelial cells through the AKT/ERK pathway. Osimertinib inhibited endothelial cell PD-L1 expression, increased CD8+T cell infiltration, inhibited tumor growth, and enhanced the tumor effect of bevacizumab. Conclusion Osimertinib can significantly increase the killing ability of bevacizumab against tumor. Osimertinib can improve the tumor microenvironment and enhance the antitumor effect of bevacizumab by reducing the expression of PD-L1 in tumor blood vessels.
Collapse
|
6
|
Tsai YM, Wu KL, Liu YW, Chang WA, Huang YC, Chang CY, Tsai PH, Liao SH, Hung JY, Hsu YL. Cooperation Between Cancer and Fibroblasts in Vascular Mimicry and N2-Type Neutrophil Recruitment via Notch2-Jagged1 Interaction in Lung Cancer. Front Oncol 2021; 11:696931. [PMID: 34485133 PMCID: PMC8415962 DOI: 10.3389/fonc.2021.696931] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023] Open
Abstract
Background Angiogenesis is required for tumor development and metastasis, which is a major part in a pro-tumor microenvironment. Vascular mimicry (VM) is a process in which cancer cells, rather than endothelia, create an alternative perfusion system to support the tumor progression. Objectives To validate the role of VM and to develop a strategy to inhibit angiogenesis in lung cancer. Methods In this study, we utilized lung cancer samples to verify the existence of VM and conducted several experimental methods to elucidate the molecular pathways. Results H1299 and CL1-0 lung cancer cells were unable to form capillary-like structures. VM formation was induced by cancer-associated fibroblast (CAFs) in both in vitro and in vivo experiments. Notch2–Jagged1 cell–cell contact between cancer cells and CAFs contributes to the formation of VM networks, supported by Notch intracellular domain (NICD) 2 nuclear translocation and N2ICD target gene upregulated in lung cancer cells mixed with CAFs. The polarization of tumor-promoting N2-type neutrophil was increased by VM networks consisting of CAF and cancer cells. The intravasation of cancer cells and N2-type neutrophils were increased because of the loose junctions of VM. Disruption of cancer cell–CAF connections by a γ‐secretase inhibitor enforced the anticancer effect of anti‐vascular endothelial growth factor antibodies in a mouse model. Conclusion This study provides the first evidence that CAFs induce lung cancer to create vascular-like networks. These findings suggest a therapeutic opportunity for improving antiangiogenesis therapy in lung cancer.
Collapse
Affiliation(s)
- Ying-Ming Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuan-Li Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Wei Liu
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szi-Hui Liao
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Yue TH, Xing W. 125I Seed Brachytherapy Combined with Single-Agent Chemotherapy in the Treatment of Non-Small-Cell Lung Cancer in the Elderly: A Valuable Solution. Onco Targets Ther 2020; 13:10581-10591. [PMID: 33116636 PMCID: PMC7584506 DOI: 10.2147/ott.s272898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose The aim of this study was to compare the effectiveness and safety of CT-guided 125I seed brachytherapy combined with single-agent chemotherapy versus combined chemotherapy in the treatment of elderly NSCLC. Materials and Methods We retrospectively analyzed 110 patients (64 men and 46 women; mean age=71.25±7.14 years) who were diagnosed with NSCLC without distant metastases between January 2015 and May 2020. A total of 50 patients received 125I brachytherapy combined with single-agent chemotherapy (group A), whereas 60 patients received combined chemotherapy (group B). The response to therapy and adverse effect were compared between groups. The local response rate was evaluated by CT. Progression-free survival (PFS) and overall survival (OS) data were obtained through clinical follow-up. Results All patients had been treated and were followed-up for 3-60 months. The median OS and PFS were 23.71±1.41 months (95% CI=20.95-26.47) vs 16.12±0.93 months (95% CI=14.31-17.93) (P<0.05) and 15.08±0.85 months (95% CI=13.42-16.74) vs 10.03±0.53 months (95% CI=9.01-11.06) (P<0.05) in group A and group B, respectively. The local response rate and clinical symptoms of patients in group A were significantly relieved when compared with group B. Severe complications were not observed in either group. Conclusion CT-guided 125I seed brachytherapy combined with single-agent chemotherapy is an effective and safe therapy and shows promising results compared to combined chemotherapy alone for NSCLC in the elderly. A randomized study will be needed to assess the superiority of this combined modality treatment.
Collapse
Affiliation(s)
- Tian-Hua Yue
- Medical Imaging Department, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, People's Republic of China.,Department of Interventional Radiology, The Affiliated Jianhu Hospital of Nantong University, Jiangsu, Jianhu 224700, People's Republic of China
| | - Wei Xing
- Medical Imaging Department, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, People's Republic of China
| |
Collapse
|
8
|
Nkembo AT, Amissah F, Ntantie E, Poku RA, Salako OO, Ikpatt OF, Lamango NS. Polyisoprenylated Cysteinyl Amide Inhibitors Deplete K-Ras and Induce Caspase-dependent Apoptosis in Lung Cancer Cells. Curr Cancer Drug Targets 2020; 19:838-851. [PMID: 30914025 DOI: 10.2174/1568009619666190325144636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Non-small cell lung cancers (NSCLC) harboring mutation-induced dysregulation of Ras signaling present some of the most difficult-to-manage cases, since directly targeting the constitutively active mutant Ras proteins has not resulted in clinically useful drugs. Therefore, modulating Ras activity for targeted treatment of cancer remains an urgent healthcare need. OBJECTIVE In the current study, we investigated a novel class of compounds, the polyisoprenylated cysteinyl amide inhibitors (PCAIs), for their anticancer molecular mechanisms using the NSCLC cell panel with K-Ras and/or other mutant genes. METHODS The effect of the PCAIs on intracellular K-Ras levels, cell viability, apoptosis, spheroid and colony formation were determined. RESULTS Treatment of the lung cancer cells with the PCAIs, NSL-RD-035, NSL-BA-036, NSL-BA- 040 and NSL-BA-055 resulted in concentration-dependent cell death in both K-Ras mutant (A549, NCI-H460, and NCI-H1573), N-Ras mutant (NCI-H1299) and other (NCI-H661, NCI-H1975, NCIH1563) NSCLC cells. The PCAIs at 1.0 -10 μM induced the degeneration of 3D spheroid cultures, inhibited clonogenic cell growth and induced marked apoptosis via the extrinsic pathway. The most potent of the PCAIs, NSL-BA-055, at 5 μM induced a seven-fold increase in the activity of caspase- 3/7 and a 75% selective depletion of K-Ras protein levels relative to GAPDH in A549 cells that correlated with PCAIs-induced apoptosis. NSL-BA-040 and NSL-BA-055 also induced the phosphorylation of MAP kinase (ERK 1/2). CONCLUSION Taken together, PCAIs may be potentially useful as targeted therapies that suppress NSCLC progression through disruption of Ras-mediated growth signaling.
Collapse
Affiliation(s)
- Augustine T Nkembo
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Felix Amissah
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Elizabeth Ntantie
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Rosemary A Poku
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Olufisayo O Salako
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Offiong Francis Ikpatt
- Department of Pathology, School of Medicine, University of Miami, Miami, FL, 33136, United States
| | - Nazarius S Lamango
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| |
Collapse
|
9
|
Di Paolo V, Colletti M, Ferruzzi V, Russo I, Galardi A, Alessi I, Milano GM, Di Giannatale A. Circulating Biomarkers for Tumor Angiogenesis: Where Are We? Curr Med Chem 2020; 27:2361-2380. [PMID: 30129403 DOI: 10.2174/0929867325666180821151409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND In recent years, several anti-angiogenic drugs have been developed and their addition to standard treatment has been associated with clinical benefits. However, the response to anti-angiogenic therapy is characterized by considerable variability. In this context, the development of dynamic non-invasive biomarkers would be helpful to elucidate the emergence of anti-angiogenic resistance as well as to correctly address the treatment. OBJECTIVES The purpose of this review is to describe current reports on circulating diagnostic and prognostic biomarkers related to angiogenesis. We further discuss how this non-invasive strategy could improve the monitoring of tumor treatment and help clinical strategy. RESULTS We discuss the latest evidence in the literature regarding circulating anti-angiogenic markers. Besides growth factor proteins, different circulating miRNAs could exert a pro- or anti-angiogenic activity so as to represent suitable candidates for a non-invasive strategy. Recent reports indicate that tumor-derived exosomes, which are small membrane vesicles abundant in biological fluids, also have an impact on vascular remodeling. CONCLUSION Numerous circulating biomarkers related to angiogenesis have been recently identified. Their use will allow identifying patients who are more likely to benefit from a specific anti-angiogenic treatment, as well as detecting those who will develop resistance and/or adverse effects. Nonetheless, further studies are required to elucidate the role of these biomarkers in clinical settings.
Collapse
Affiliation(s)
- Virginia Di Paolo
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Marta Colletti
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Valentina Ferruzzi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Ida Russo
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Angela Galardi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Iside Alessi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| | - Angela Di Giannatale
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio, 4-00165 Rome, Italy
| |
Collapse
|
10
|
Antiangiogenesis Roles of Exosomes with Fei-Liu-Ping Ointment Treatment are Involved in the Lung Carcinoma with the Lewis Xenograft Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9418593. [PMID: 32308722 PMCID: PMC7142396 DOI: 10.1155/2020/9418593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022]
Abstract
Exosomes display efficient biocompatibility and represent valuable vehicles for drug or effective material delivery in a tumour-therapeutic approach. Following treatment with Fei-Liu-Ping (FLP) ointment, a traditional Chinese herbal formula, which is used for treating lung cancer patients, could inhibit lung carcinoma growth in clinical and animal studies. In the present study, the values of VEGF and PDGF, which were closely related to angiogenesis, were estimated in serum and carcinoma tissue exosomes to unveil the FLP effects on angiogenesis. The common inflammatory factors of IL-6, IL-1β, TNF-α, and TGF-β in serum exosomes were also detected with the Lewis xenograft model. Methods. Male C57BL/6 mice were randomly divided into four groups, namely, normal, model, cyclophosphamide (CTX), and FLP treatment groups. Histological structures were observed and imaged by H&E. CD31 expressions in tumour tissues were detected by immunofluorescence (IF) and western blot (WB). VEGF, PDGF, and PDGFR levels in exosomes, serum, tumour, and lung tissues were detected by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and WB, respectively. IL-6, IL-1β, TNF-α, and TGF-β levels in exosomes were measured by multiplex immunoassay panels. Results. The results showed that FLP had tumour growth inhibition rate (39.31%). CD31 protein expression was obviously decreased in tumour tissues of CTX- and FLP-treated MO mice, compared to that of MO mice (P < 0.05 or P < 0.001). VEGF, PDGF, and PDGFR expression levels with FLP treatment were downregulated in exosomes, serum, tumour, and lung tissues compared to model group (P < 0.05 or P < 0.01). The expressions of IL-6, IL-1β, and TNF-α were downregulated in exosomes compared to the model group (P < 0.05 or P < 0.01). Conclusions. This study suggested that FLP had the ability of inhibiting tumourigenesis in a Lewis lung xenograft mouse model, whose therapeutic mechanisms might relate with the downregulation of angiogenesis factor and tumour inflammatory cytokines levels.
Collapse
|
11
|
Rodríguez-Cid JR, Campos-Gomez S, García-Montes V, Magallanes-Maciel M, Flores-Mariñelarena RR, Fernández-Garibay VM, González-Espinoza IR, Ceja-García JP, Cázarez-Price JC, Martínez-Barrera L, Barriguete-Parra L, Zuloaga-Fernandez CJ, Kuri-Exsome R, Suárez-García D, Gonzalez-Villanueva JI, Flores-Anaya N, Acevedo-Delgado JA, Astorga-Ramos AM, Gerson-Cwilich R, Villalobos-Prieto A, Rodríguez-Silva C, Noriega-Iriondo MF, Vázquez-Cortés L, Perales-Rodríguez E, Acosta-Espinoza A, Perez-Lozano Y, Capdeville-García D, Alatorre-Alexander JA. Real-World Evidence: Multicenter Efficacy and Toxicity Analysis of Nintedanib With Docetaxel as Second-Line Treatment in Mexican Patients With Advanced Lung Adenocarcinoma. JCO Glob Oncol 2020; 6:462-470. [PMID: 32196388 PMCID: PMC7113104 DOI: 10.1200/jgo.19.00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The LUME-Lung 1 study has brought consistent evidence of the effective use of nintedanib in lung adenocarcinoma as a second line of treatment; however, differences among ethnicities have been found in some studies. METHODS This was a retrospective review among 21 medical centers of 150 patients with a confirmed diagnosis of lung adenocarcinoma, included in a compassionate use program of nintedanib from March 2014 to September 2015. The current study aimed to analyze the effectiveness of nintedanib in combination with docetaxel in the Mexican population, using progression-free survival rate and the best objective response to treatment by RECIST 1.1 as a surrogate of effectiveness. In addition, we examined the toxicity profile of our study population as a secondary end point. RESULTS After exclusion criteria, only 99 patients met the criteria for enrollment in the current study. From the total study population, 53 patients (53.5%) were male and 46 (46.5%) were female, with an average age of 60 years and stage IV as the most prevalent clinical stage at the beginning of the compassionate use program. A total of 48 patients (48.5%) had partial response; 26 (26.3%), stable disease; 4 (4%), complete response; and 16 (16.2%), progression; and 5 (5%) were nonevaluable. We found a median progression-free survival of 5 months (95% CI, 4.3 to 5.7 months). The most common grade 3 or 4 adverse reactions were fatigue (14%) and diarrhea (13%). CONCLUSION Nintedanib, as part of a chemotherapy regimen, is an effective option with an acceptable toxicity profile for advanced lung adenocarcinoma after first-line treatment progression.
Collapse
Affiliation(s)
| | - Saul Campos-Gomez
- Department of Oncology, Centro Oncológico Estatal ISSEMYM, State of Mexico, Toluca de Lerdo, Mexico
| | | | | | | | | | | | | | | | - Luis Martínez-Barrera
- Department of Oncology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | - Raquel Gerson-Cwilich
- Department of Oncology, American British Cowdray Medical Center, Mexico City, Mexico
| | | | - Claudia Rodríguez-Silva
- Department of Oncology, Hospital Universitario Dr. José Eleuterio González, Monterrey, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang L, He Z, Yang S, Tang H, Wu Y, Li S, Han B, Li K, Zhang L, Shi J, Wang Z, Cheng Y, He J, Shi Y, Chen W, Luo Y, Wu L, Wang X, Nan K, Jin F, Dong J, Li B, Sun Y, Wang Q. The impact of previous therapy strategy on the efficiency of anlotinib hydrochloride as a third-line treatment on patients with advanced non-small cell lung cancer (NSCLC): a subgroup analysis of ALTER0303 trial. Transl Lung Cancer Res 2019; 8:575-583. [PMID: 31737494 DOI: 10.21037/tlcr.2019.09.21] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Lung cancer remains one of the deadliest cancers worldwide. The ALTER0303 trial revealed that anlotinib might be used as a third-line or further treatment in non-small cell lung cancer (NSCLC) patients. Meanwhile, the impact of previous therapy strategies on the efficiency of anlotinib still remains unknown. Methods The subgroup of patients in ALTER0303 were analyzed by using Kaplan-Meier estimates, Pearson χ2, or Fisher's exact test. Results There was no statistical significance on progression-free survival (PFS) and overall survival (OS) among patients in different previous antiangiogenic treatments groups. Patients in the chest radiotherapy (CRT) group had longer median PFS than the non-CRT group (5.93 vs. 4.63 m, P=0.027). Regardless of what kind of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKI) and chemotherapy regimens were used previously, all patients gained longer PFS in the anlotinib group, while only patients treated with vinorelbine/platinum in the EGFR wild type group, pemetrexed/platinum, vinorelbine/platinum, and gefitinib in the EGFR mutation group, and EGFR TKI used as the first line group could benefit from anlotinib on OS. When the OS was calculated from the time of diagnosis to the death, anlotinib could have increased median OS about 6 months (33.8 vs. 27.8 m, P<0.001) compared to the placebo with a hazard ratio (HR) (95% CI): 0.77 (0.60, 1.00). Conclusions This study indicated that previous bevacizumab or endostatin treatments had no impact on the efficiency of anlotinib. Patients with CRT history benefited more from anlotinib on PFS. EGFR TKI and chemotherapy treatment history had more impact on OS than PFS in patients treated with anlotinib compared to placebo.
Collapse
Affiliation(s)
- Lili Wang
- Oncology Department, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou 450008, China.,Oncology Department, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Zhen He
- Oncology Department, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou 450008, China.,Oncology Department, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Sen Yang
- Oncology Department, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou 450008, China.,Oncology Department, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hong Tang
- Oncology Department, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou 450008, China.,Oncology Department, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yufeng Wu
- Oncology Department, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou 450008, China.,Oncology Department, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shaomei Li
- Oncology Department, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou 450008, China.,Oncology Department, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Kai Li
- Department of Thoracic Oncology, Tianjin Medical University Cancer Hospital, Tianjin 300060, China
| | - Li Zhang
- Department of Respiratory Diseases, Peking Union Medical College Hospital, Beijing 100032, China
| | - Jianhua Shi
- Department of Oncology, Linyi Cancer Hospital, Linyi 276001, China
| | - Zhehai Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital, Jinan 250117, China
| | - Ying Cheng
- Department of Thoracic Oncology, Jilin Cancer Hospital, Changchun 130012, China
| | - Jianxing He
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuankai Shi
- Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Weiqiang Chen
- Department of Pulmonary Medicine, Lanzhou Military General Hospital, Lanzhou 730050, China
| | - Yi Luo
- Department of Medical Oncology, Hunan Cancer Hospital, Changsha 410006, China
| | - Lin Wu
- Department of Medical Oncology, Hunan Cancer Hospital, Changsha 410006, China
| | - Xiuwen Wang
- Department of Chemotherapy, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Kejun Nan
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Faguang Jin
- Department of Respiratory Diseases, Tang Du Hospital, Xi'an 710038, China
| | - Jian Dong
- First Department of Medical Oncology, Yunnan Cancer Hospital, Kunming 650118, China
| | - Baolan Li
- Department of General Medicine, Capital Medical University, Beijing Chest Hospital, Beijing 101149, China
| | - Yan Sun
- Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Qiming Wang
- Oncology Department, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou 450008, China.,Oncology Department, Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
13
|
Zhang Z, Zhao Y, Lu F, Hou X, Ma Y, Luo F, Zeng K, Zhao S, Zhang Y, Zhou T, Yang Y, Fang W, Huang Y, Zhang L, Zhao H. Multi-targeted tyrosine kinase inhibitors as third-line regimen in advanced non-small cell lung cancer: a network meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:452. [PMID: 31700888 DOI: 10.21037/atm.2019.08.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Four multi-targeted tyrosine kinase inhibitors (TKIs) including apatinib, anlotinib, fruquintinib and lenvatinib are currently available as third-line regimen for advanced non-small cell lung cancer (NSCLC) patients who failed at least two lines of systemic therapy. Limited evidence was provided to demonstrate the general efficacy and safety profile of these drugs as third-line treatment approach for NSCLC. Methods Eligible literature was searched from electronic database. Data of objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), treatment related adverse event (TRAE), treatment related adverse event grade 3-5 (TRAE3-5), hypertension, proteinuria, hand-foot skin reaction (HFSR), elevated ALT/AST, nausea and vomiting, diarrhea were synthetically extracted. Multiple-treatments comparisons (MTCs) based on a Bayesian consistency model integrated the efficacy and toxicity outcomes. Rank probabilities of each regimen were assessed and clustered by the surface under the cumulative ranking curve. Results Five phase II/III randomized trials involving 915 advanced NSCLC patients were enrolled. MTCs showed that four multi-targeted TKIs shared equivalent efficacy in terms of outcome measures, of which anlotinib stood out in ORR (OR =39.26; 95% CI: 2.36-2,748.06), DCR (OR =8.69; 95% CI: 1.70-50.18) and PFS (HR =0.27; 95% CI: 0.10-0.78) when compared with placebo plus BSC. No significantly differences were observed among these TKIs and placebo with respect to OS, TRAE and TRAE 3-5. Fruquintinib and lenvatinib may relate to high rate of HFSR while anlotinib may relate to hypertension. Conclusions Multi-targeted TKIs (apatinib, anlotinib, fruquintinib and lenvatinib) with acceptable efficacy and safety profile were options for advanced NSCLC in third-line setting.
Collapse
Affiliation(s)
- Zhonghan Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Feiteng Lu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xue Hou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yuxiang Ma
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Fan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Kangmei Zeng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shen Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yaxiong Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ting Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hongyun Zhao
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
14
|
Li F, Wang Y, Chen WL, Wang DD, Zhou YJ, You BG, Liu Y, Qu CX, Yang SD, Chen MT, Zhang XN. Co-delivery of VEGF siRNA and Etoposide for Enhanced Anti-angiogenesis and Anti-proliferation Effect via Multi-functional Nanoparticles for Orthotopic Non-Small Cell Lung Cancer Treatment. Am J Cancer Res 2019; 9:5886-5898. [PMID: 31534526 PMCID: PMC6735374 DOI: 10.7150/thno.32416] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Targeting tumor angiogenesis pathway via VEGF siRNA (siVEGF) has shown great potential in treating highly malignant and metastatic non-small cell lung cancer (NSCLC). However, anti-angiogenic monotherapy lacked sufficient antitumor efficacy which suffered from malignant tumor proliferation. Therefore, the combined application of siVEGF and chemotherapeutic agents for simultaneous targeting of tumor proliferation and angiogenesis has been a research hotspot to explore a promising NSCLC therapy regimen. Methods: We designed, for the first time, a rational therapy strategy via intelligently co-delivering siVEGF and chemotherapeutics etoposide (ETO) by multi-functional nanoparticles (NPs) directed against the orthotopic NSCLC. These NPs consisted of cationic liposomes loaded with siVEGF and ETO and then coated with versatile polymer PEGylated histidine-grafted chitosan-lipoic acid (PHCL). We then comprehensively evaluated the anti-angiogenic and anti-proliferation efficiency in the in vitro tumor cell model and in bioluminescent orthotopic lung tumor bearing mice model. Results: The NPs co-delivering siVEGF and ETO exhibited tailor-made surface charge reversal features in mimicking tumor extracellular environment with improved internal tumor penetration capacity and higher cellular internalization. Furthermore, these NPs with flexible particles size triggered by intracellular acidic environment and redox environment showed pinpointed and sharp intracellular cargo release guaranteeing adequate active drug concentration in tumor cells. Enhanced VEGF gene expression silencing efficacy and improved tumor cell anti-proliferation effect were demonstrated in vitro. In addition, the PHCL layer improved the stability of these NPs in neutral environment allowing enhanced orthotopic lung tumor targeting efficiency in vivo. The combined therapy by siVEGF and ETO co-delivered NPs for orthotopic NSCLC simultaneously inhibited tumor proliferation and tumor angiogenesis resulting in more significant suppression of tumor growth and metastasis than monotherapy. Conclusion: Combined application of siVEGF and ETO by the multi-functional NPs with excellent and on-demand properties exhibited the desired antitumor effect on the orthotopic lung tumor. Our work has significant potential in promoting combined anti-angiogenesis therapy and chemotherapy regimen for clinical NSCLC treatment.
Collapse
|
15
|
Choudhury H, Gorain B, Pandey M, Khurana RK, Kesharwani P. Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. Int J Pharm 2019; 565:509-522. [PMID: 31102804 DOI: 10.1016/j.ijpharm.2019.05.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
The biological barriers in the body have been fabricated by nature to protect the body from foreign molecules. The successful delivery of drugs is limited and being challenged by these biological barriers including the gastrointestinal tract, brain, skin, lungs, nose, mouth mucosa, and immune system. In this review article, we envisage to understand the functionalities of these barriers and revealing various drug-loaded biodegradable polymeric nanoparticles to overcome these barriers and deliver the entrapped drugs to cancer targeted site. Apart from it, tissue-specific multifunctional ligands, linkers and transporters when employed imparts an effective active delivery strategy by receptor-mediated transcytosis. Together, these strategies enable to deliver various drugs across the biological membranes for the treatment of solid tumors and malignant cancer.
Collapse
Affiliation(s)
- Hira Choudhury
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500 Selangor, Malaysia.
| | - Manisha Pandey
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Rajneet Kaur Khurana
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Prashant Kesharwani
- School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
16
|
Wang Y, Han D, Pan L, Sun J. The positive feedback between lncRNA TNK2-AS1 and STAT3 enhances angiogenesis in non-small cell lung cancer. Biochem Biophys Res Commun 2018; 507:185-192. [PMID: 30454892 DOI: 10.1016/j.bbrc.2018.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 01/31/2023]
Abstract
Evidence has shown the importance of long non-coding RNAs (lncRNAs) during angiogenesis and lung cancer progression. However, the potential functions of TNK2-AS1 in non-small cell lung cancer (NSCLC) remain elusive. By lncRNA profiling, we identified TNK2-AS1 as a novel oncogenic lncRNA in NSCLC. TNK2-AS1 was significantly upregulated in NSCLC and correlated with poor prognosis. We found that TNK2-AS1 could increase viability and migration of NSCLC cells in vitro. TNK2-AS1 also promoted NSCLC xenograft tumor growth and metastasis in vivo. TNK2-AS1 could interact with STAT3 to increase its protein stability by protecting it from proteasome-mediated degradation. STAT3 could also bind TNK2-AS1 promoter to trigger its transcription. The positive feedback loop between STAT3 and TNK2-AS1 therefore augmented STAT3 signaling by elevating VEGFA expression to facilitate angiogenesis. Collectively, our work has elucidated a novel mechanism of TNK2-AS1-mediated angiogenesis by enforcing STAT3/VEGFA signaling and may provide a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Yue Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, China
| | - Dongmei Han
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, PR China
| | - Liming Pan
- The First Hospital of Jilin University, Changchun, Jilin Province, 130021, China
| | - Jing Sun
- Health Examination Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, China.
| |
Collapse
|
17
|
Yang N, Yao S, Liu D. Tumor necrosis factor-related apoptosis-inducing ligand additive with Iodine-131 of inhibits non-small cell lung cancer cells through promoting apoptosis. Oncol Lett 2018; 16:276-284. [PMID: 29928412 PMCID: PMC6006446 DOI: 10.3892/ol.2018.8635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 01/12/2018] [Indexed: 11/26/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for ~80% of human lung cancer cases and is the most common cause of cancer-associated mortality worldwide. Reports have indicated that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Iodine-131 (I-131) can induce tumor cell apoptosis. The purpose of the present study was to investigate the additive efficacy of TRAIL and I-131 on NSCLC cells. The present study demonstrated that additive treatment of TRAIL and I-131 (TRAIL-I-131) significantly inhibited the growth and aggressiveness of NSCLC cells compared with single TRAIL or I-131 treatment. Results demonstrated that TRAIL-I-131 treatment induced apoptosis of NSCLC cells, with western blot analysis confirming that TRAIL-I-131 treatment increased proapoptotic Bad and Bax expression levels, while antiapoptotic Bcl-2 and Bcl-w protein levels were decreased in NSCLC cells. The present study demonstrated that TRAIL-I-131 treatment inhibited vascular endothelial growth factor (VEGF) and activator protein-1 (AP-1) in NSCLC cells. Potential mechanism analyses identified that TRAIL-I-131 treatment induced apoptosis of NSCLC cells through caspase-9 activation. In vivo assays revealed that TRAIL-I-131 treatment significantly inhibited NSCLC tumor growth and increased apoptotic bodies in tumor tissues. Immunohistology demonstrated that caspase-9 was upregulated and VEGF was downregulated in tumor tissues in TRAIL-I-131-treated tumors. In conclusion, these results indicate that TRAIL combined with I-131 promoted apoptosis of NSCLC through caspase-9 activation, which may be a promising anticancer therapeutic schedule for the treatment of NSCLC.
Collapse
Affiliation(s)
- Ning Yang
- Department of Nuclear Medicine, Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| | - Shuzhan Yao
- Positron Emission Tomography/Computed Tomography Center, Shandong Provincial Hospital, Jinan, Shandong 250012, P.R. China
| | - Dong Liu
- Department of Nuclear Medicine, Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| |
Collapse
|
18
|
Nintedanib in advanced NSCLC of adenocarcinoma histology: a profile of its use. DRUGS & THERAPY PERSPECTIVES 2018. [DOI: 10.1007/s40267-018-0481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Wang X, Zhang W, Du W, Zhang X, Ren X, Cao S. [Efficacy and Survival Analysis of Apatinib in Patients with Advanced Nonsquamous Non-small Cell Lung Cancer after Failure of First-line Treatment]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 20:761-768. [PMID: 29167006 PMCID: PMC5973272 DOI: 10.3779/j.issn.1009-3419.2017.11.07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
背景与目的 晚期非小细胞肺癌(non-small cell lung cancer, NSCLC)的二线、三线化疗有效率较低,靶向药物的应用为部分患者带来生存获益。阿帕替尼是一种新型小分子抗血管生成药物,在多种恶性肿瘤治疗中展现出令人满意的抗癌活性。本研究旨在评价阿帕替尼用于一线治疗进展后晚期非鳞NSCLC的安全性和疗效。 方法 回顾性分析128例晚期非鳞NSCLC不同治疗组患者的疗效和生存情况,用Kaplan-Meier法和Cox模型进行分析。 结果 以单纯化疗组为对照,阿帕替尼单药组、单纯化疗组和阿帕替尼联合化疗组的中位无进展生存期(progression free survival, PFS)分别为3.0个月(P=0.381)、3.7个月和6.0个月(P < 0.001),中位总生存期(overall survival, OS)分别为6.0个月(P=0.494)、6.5个月和9.0个月(P=0.001)。3级-4级不良反应发生率分别为18.5%、15.8%和16.0%(P=0.947)。治疗方案(P=0.018)及体能状态(performance status, PS)(P < 0.001)是PFS的独立影响因素,吸烟史(P=0.014)、治疗方案(P=0.002)和PS(P < 0.001)是OS的独立影响因素。 结论 阿帕替尼安全性高,肺癌一线治疗失败后,二线或三线化疗联合阿帕替尼,与单纯化疗相比,患者有PFS和OS获益,阿帕替尼单药与单纯化疗组间PFS和OS无明显差异;无吸烟史、PS 0分-1分和联合治疗的患者预后更好。
Collapse
Affiliation(s)
- Xuemin Wang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy; Tianjin Clinical Research Center for Cancer; Key Laboratory of Cancer Immunology and Biotherapy; Department of Biotherapy, Tianjin 300060, China
| | - Weihong Zhang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy; Tianjin Clinical Research Center for Cancer; Key Laboratory of Cancer Immunology and Biotherapy; Department of Biotherapy, Tianjin 300060, China
| | - Weijiao Du
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy; Tianjin Clinical Research Center for Cancer; Key Laboratory of Cancer Immunology and Biotherapy; Department of Biotherapy, Tianjin 300060, China
| | - Xinwei Zhang
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy; Tianjin Clinical Research Center for Cancer; Key Laboratory of Cancer Immunology and Biotherapy; Department of Biotherapy, Tianjin 300060, China
| | - Xiubao Ren
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy; Tianjin Clinical Research Center for Cancer; Key Laboratory of Cancer Immunology and Biotherapy; Department of Biotherapy, Tianjin 300060, China
| | - Shui Cao
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy; Tianjin Clinical Research Center for Cancer; Key Laboratory of Cancer Immunology and Biotherapy; Department of Biotherapy, Tianjin 300060, China
| |
Collapse
|
20
|
Treprostinil inhibits proliferation and extracellular matrix deposition by fibroblasts through cAMP activation. Sci Rep 2018; 8:1087. [PMID: 29348469 PMCID: PMC5773699 DOI: 10.1038/s41598-018-19294-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by peripheral lung fibrosis and increased interstitial extracellular matrix (ECM) deposition. In IPF, tumor growth factor (TGF)-β1 which is the major stimulus of ECM deposition, and platelet derived growth factor (PDGF)-BB is a potent stimulus of fibrosis. Thus, the effect of Treprostinil on TGF-ß1 and PDGF-induced fibroblast proliferation and ECM deposition was investigated. Human peripheral lung fibroblasts of seven IPF patients and five lung donors were stimulated by PDGF, or TGF-β1, or the combination. Cells were pre-incubated (30 min) with either Treprostinil, forskolin, di-deoxyadenosine (DDA), or vehicle. Treprostinil time dependently activated cAMP thereby preventing PDGF-BB induced proliferation and TGF-β1 secretion. Cell counts indicated proliferation; α-smooth muscle actin (α-SMA) indicted differentiation, and collagen type-1 or fibronectin deposition remodeling. Myo-fibroblast indicating α-SMA expression was significantly reduced and its formation was altered by Treprostinil. Collagen type-I and fibronectin deposition were also reduced by Treprostinil. The effect of Treprostinil on collagen type-I deposition was cAMP sensitive as it was counteracted by DDA, while the effect on fibronectin was not cAMP mediated. Treprostinil antagonized the pro-fibrotic effects of both PDGF-BB and TGF-β1 in primary human lung fibroblasts. The data presented propose a therapeutic relevant anti-fibrotic effect of Treprostinil in IPF.
Collapse
|
21
|
Zhong Z, Gu H, Peng J, Wang W, Johnstone BH, March KL, Farlow MR, Du Y. GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis. Oncotarget 2018; 7:36829-36841. [PMID: 27167204 PMCID: PMC5095042 DOI: 10.18632/oncotarget.9208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/16/2016] [Indexed: 01/08/2023] Open
Abstract
Adipose tissue stroma contains a population of mesenchymal stem cells (MSC) promote new blood vessel formation and stabilization. These adipose-derived stem cells (ASC) promote de novo formation of vascular structures in vitro. We investigated the angiogenic factors secreted by ASC and discovered that glial-derived neurotrophic factor (GDNF) is a key mediator for endothelial cell network formation. It was found that both GDNF alone or present in ASC-conditioned medium (ASC-CM) stimulated capillary network formation by using human umbilical vein endothelial cells (HUVECs) and such an effect was totally independent of vascular endothelial growth factor (VEGF) activity. Additionally, we showed stimulation of capillary network formation by GDNF, but not VEGF, could be blocked by the Ret (rearranged during transfection) receptor antagonist RPI-1, a GDNF signaling inhibitor. Furthermore, GDNF were found to be overexpressed in cancer cells that were resistant to the anti-angiogenic treatment using the VEGF antibody. Cancer cells in the liver hepatocellular carcinoma (HCC), a non-nervous related cancer, highly overexpressed GDNF as compared to normal liver cells. Our data strongly suggest that, in addition to VEGF, GDNF secreted by ASC and HCC cells, may be another important factor promoting pathological neovascularization. Thus, GDNF may be a potential therapeutic target for HCC and obesity treatments.
Collapse
Affiliation(s)
- Zhaohui Zhong
- Department of General Surgery, Peking University People's Hospital, Beijing 100044, PR China.,Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China.,Ninth Clinical Medical College of Peking University, Beijing 100038, PR China
| | - Wenzheng Wang
- Department of General Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Brian H Johnstone
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Keith L March
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Krannert Institute of Cardiology, Indianapolis, IN 46202, USA.,VA Center for Regenerative Medicine, Indina University School of Medicine, Indianapolis, IN 46202, USA
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
Azad AKM, Lawen A, Keith JM. Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer. PLoS One 2017; 12:e0173331. [PMID: 28288164 PMCID: PMC5348014 DOI: 10.1371/journal.pone.0173331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/20/2017] [Indexed: 11/24/2022] Open
Abstract
Small molecule inhibitors, such as lapatinib, are effective against breast cancer in clinical trials, but tumor cells ultimately acquire resistance to the drug. Maintaining sensitization to drug action is essential for durable growth inhibition. Recently, adaptive reprogramming of signaling circuitry has been identified as a major cause of acquired resistance. We developed a computational framework using a Bayesian statistical approach to model signal rewiring in acquired resistance. We used the p1-model to infer potential aberrant gene-pairs with differential posterior probabilities of appearing in resistant-vs-parental networks. Results were obtained using matched gene expression profiles under resistant and parental conditions. Using two lapatinib-treated ErbB2-positive breast cancer cell-lines: SKBR3 and BT474, our method identified similar dysregulated signaling pathways including EGFR-related pathways as well as other receptor-related pathways, many of which were reported previously as compensatory pathways of EGFR-inhibition via signaling cross-talk. A manual literature survey provided strong evidence that aberrant signaling activities in dysregulated pathways are closely related to acquired resistance in EGFR tyrosine kinase inhibitors. Our approach predicted literature-supported dysregulated pathways complementary to both node-centric (SPIA, DAVID, and GATHER) and edge-centric (ESEA and PAGI) methods. Moreover, by proposing a novel pattern of aberrant signaling called V-structures, we observed that genes were dysregulated in resistant-vs-sensitive conditions when they were involved in the switch of dependencies from targeted to bypass signaling events. A literature survey of some important V-structures suggested they play a role in breast cancer metastasis and/or acquired resistance to EGFR-TKIs, where the mRNA changes of TGFBR2, LEF1 and TP53 in resistant-vs-sensitive conditions were related to the dependency switch from targeted to bypass signaling links. Our results suggest many signaling pathway structures are compromised in acquired resistance, and V-structures of aberrant signaling within/among those pathways may provide further insights into the bypass mechanism of targeted inhibition.
Collapse
Affiliation(s)
- A. K. M. Azad
- School of Mathematical Sciences, Monash University, Clayton, VIC, Australia
- * E-mail:
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Jonathan M. Keith
- School of Mathematical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
23
|
Manegold C, Adjei A, Bussolino F, Cappuzzo F, Crino L, Dziadziuszko R, Ettinger D, Fennell D, Kerr K, Le Chevalier T, Leighl N, Papotti M, Paz-Ares L, Pérol M, Peters S, Pirker R, Quoix E, Reck M, Smit E, Vokes E, van Zandwijk N, Zhou C. Novel active agents in patients with advanced NSCLC without driver mutations who have progressed after first-line chemotherapy. ESMO Open 2017; 1:e000118. [PMID: 29435365 PMCID: PMC5729303 DOI: 10.1136/esmoopen-2016-000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 12/26/2022] Open
Abstract
Despite the efficacy of a number of first-line treatments, most patients with advanced-stage non-small cell lung cancer (NSCLC) experience disease progression that warrants further treatment. In this review, we examine the role of novel active agents for patients who progress after first-line therapy and who are not candidates for targeted therapies. More therapeutic options are needed for the management of patients with NSCLC after failure of first-line chemotherapy. A PubMed search was performed for articles from January 2012 to May 2015 using the keywords NSCLC, antiangiogenic, immunotherapy, second-line, novel therapies and English language articles only. Relevant papers were reviewed; papers outside that period were considered on a case-by-case basis. A search of oncology congresses was performed to identify relevant abstracts over this period. In recent years, antiangiogenic agents and immune checkpoint inhibitors have been added to our armamentarium to treat patients with advanced NSCLC who have progressed on first-line chemotherapy. These include nintedanib, a triple angiokinase inhibitor; ramucirumab, a vascular endothelial growth factor receptor-2 antibody; and nivolumab, pembrolizumab and atezolizumab, just three of a growing list of antibodies targeting the programmed death receptor-1 (PD-1)/PD ligand-1 pathway. Predictive and prognostic factors in NSCLC treatment will help to optimise treatment with these novel agents. The approval of new treatments for patients with NSCLC after the failure of first-line chemotherapy has increased options after a decade of few advances, and holds promise for future evolution of the management of NSCLC.
Collapse
Affiliation(s)
- Christian Manegold
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Alex Adjei
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Federico Bussolino
- Department of Oncology, University of Turin, Turin and Candiolo Cancer Institute, Candiolo, Italy
| | - Federico Cappuzzo
- Medical Oncology Department, Istituto Toscano Tumori, Livorno, Italy
| | - Lucio Crino
- Medical Oncology Department, Perugia University Medical School, Perugia, Italy
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - David Ettinger
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Dean Fennell
- Department of Oncology, University of Leicester & Leicester University Hospitals, Leicester, UK
| | - Keith Kerr
- Department of Pathology, Aberdeen University Medical School, Aberdeen, UK
| | | | - Natasha Leighl
- Cancer Clinical Research Unit (CCRU), Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Luis Paz-Ares
- Servicio de Oncología Médica, Doce de Octubre University Hospital, Madrid, Spain
| | - Maurice Pérol
- Département de Cancérologie Médicale, Centre Léon Bérard, Lyon, France
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Robert Pirker
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Quoix
- Pulmonology Department, University Hospital, Strasbourg, France
| | - Martin Reck
- Department of Thoracic Oncology, Airway Research Center North (ARCN), member of the German Center for Lung Research (DZL), Lung Clinic Grosshansdorf, Grosshansdorf, Germany
| | - Egbert Smit
- Department of Pulmonary Diseases, VU University Medical Centre, Amsterdam, The Netherlands; Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Everett Vokes
- Department of Medicine, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Nico van Zandwijk
- Asbestos Diseases Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Shanghai, China
| |
Collapse
|
24
|
Incorporation of Antiangiogenic Therapy Into the Non-Small-Cell Lung Cancer Paradigm. Clin Lung Cancer 2016; 17:493-506. [PMID: 27381269 DOI: 10.1016/j.cllc.2016.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/29/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022]
Abstract
Although molecular targeted agents have improved the treatment of lung cancer, their use has largely been restricted to limited subsets of the overall population that carry specific mutations. Angiogenesis, the formation of new blood vessels from existing networks, is an attractive, more general process for the development of targeted anticancer therapies, because it is critical for the growth of solid tumors, including non-small-cell lung cancer. Growing tissues require a vascular supply within a few millimeters. Therefore, solid tumors create a proangiogenic microenvironment to facilitate the development of new tumor-associated blood vessels, thus providing an adequate vascular supply for continued tumor growth. Antiangiogenic agents can specifically target the vascular endothelial growth factor (VEGF) signaling pathways, broadly inhibit multiple tyrosine kinases, or interfere with other angiogenic processes, such as disruption of existing tumor vasculature. The present report provides an overview of antiangiogenic therapy for non-small-cell lung cancer, including both currently approved antiangiogenic therapies (bevacizumab [anti-VEGF] and ramucirumab [anti-VEGF receptor 2] monoclonal antibodies), and a variety of promising novel agents in development. Although recent data have demonstrated promising efficacy for some novel agents, the overall development of antiangiogenic therapy has been hampered by redundancy in signaling pathways and the highly heterogeneous nature of tumors. An improved understanding of the molecular basis of angiogenesis will guide the development of new antiangiogenic therapies and the identification of biomarkers to predict which patients with lung cancer are most likely to benefit from antiangiogenic therapy.
Collapse
|
25
|
de Braud F, Cascinu S, Spitaleri G, Pilz K, Clementi L, Liu D, Sikken P, De Pas T. A phase I, dose-escalation study of volasertib combined with nintedanib in advanced solid tumors. Ann Oncol 2015; 26:2341-6. [DOI: 10.1093/annonc/mdv354] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/05/2015] [Indexed: 01/22/2023] Open
|
26
|
Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B 2015; 5:390-401. [PMID: 26579470 PMCID: PMC4629442 DOI: 10.1016/j.apsb.2015.07.001] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 12/30/2022] Open
Abstract
Since the discovery that non-small cell lung cancer (NSCLC) is driven by epidermal growth factor receptor (EGFR) mutations, the EGFR tyrosine kinase inhibitors (EGFR-TKIs, e.g., gefitinib and elrotinib) have been effectively used for clinical treatment. However, patients eventually develop drug resistance. Resistance to EGFR-TKIs is inevitable due to various mechanisms, such as the secondary mutation (T790M), activation of alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism), histologic transformation, ATP binding cassette (ABC) transporter effusion, etc. Here we review and summarize the known resistant mechanisms to EGFR-TKIs and provide potential targets for development of new therapeutic strategies.
Collapse
Key Words
- ABC, ATP binding cassette
- ABCB1, ATP binding cassette, sub-family B, member 1
- ABCC1, ATP binding cassette, sub-family C, member 1
- ABCC10, ATP binding cassette, sub-family C, member 10
- ABCG2, ATP binding cassette, sub-family G, member 2
- AKT, protein kinase B
- ALK, anaplastic lymphoma kinase
- AXL, Anexelekto
- BCL-2, B-cell CLL/lymphoma-2
- BCL2L11/BIM, BCL2-like 11
- BH3, BCL2-homology domain 3
- BRAF, v-RAF murine sarcoma viral oncogene homolog B1
- CML, chronic myelogenous leukemia
- CRKL, Crk-like protein
- EGFR
- EGFR, epidermal growth factor receptor
- EGFR-TKIs, epidermal growth factor receptor tyrosine kinase inhibitors
- EGFRvIII, EGFR variant III
- EML4, echinoderm microtubule-associated protein-like 4
- EMT, epithelial mesenchymal transition
- ERK1/2, extracellular signal-regulated kinases
- FGFRs, fibroblast growth factor receptors
- FGFs, fibroblast growth factors
- GAS6, growth-arrest-specific protein 6
- HER, human epidermal receptor
- HGF, hepatocyte growth factor
- IGF, insulin growth factor
- IGF-1R, IGF-1 receptor
- IGFBPs, IGF-binding proteins
- IL, interleukin
- IL-6R, IL-6 receptor
- JAK, janus kinase
- MAPK, mitogen-activated protein kinase
- MEK, mitogen-activated protein kinase
- Mechanisms
- NSCLC, non-small cell lung cancer
- PDGFRs, platelet-derived growth factor receptors
- PDGFs, platelet-derived growth factors
- PI3K, phosphatidylinositol-3-kinase
- PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase,catalytic subunit alpha
- PTEN, phosphatase and tensin homolog
- RAF, rapidly accelerated fibrosarcoma
- RAS, rat sarcoma
- RTK, tyrosine kinase receptor
- Resistance
- SF, scatter factor
- SOCS3, suppressor of cytokine signaling 3
- STAT, signal transducers and activators of transcription
- TKIs
- TKIs, tyrosine kinase inhibitors
- TKs, tyrosine kinases
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
Collapse
Affiliation(s)
| | - Liwu Fu
- Corresponding author. Tel.: +86 20 87343163; fax: +86 20 87343170.
| |
Collapse
|
27
|
Das M, Padda SK, Frymoyer A, Zhou L, Riess JW, Neal JW, Wakelee HA. Dovitinib and erlotinib in patients with metastatic non-small cell lung cancer: A drug-drug interaction. Lung Cancer 2015; 89:280-6. [PMID: 26149476 PMCID: PMC4613811 DOI: 10.1016/j.lungcan.2015.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Erlotinib is a FDA approved small molecule inhibitor of epidermal growth factor receptor and dovitinib is a novel small molecule inhibitor of fibroblast growth factor and vascular endothelial growth factor receptor. This phase 1 trial was conducted to characterize the safety and determine the maximum tolerated dose of erlotinib plus dovitinib in patients with previously treated metastatic non-small cell lung cancer. METHODS Escalating dose cohorts of daily erlotinib and dovitinib dosed 5 days on/2 days off, starting after a 2-week lead-in of erlotinib alone, were planned. A potential pharmacokinetic interaction was hypothesized as dovitinib induces CYP1A1/1A2. Only cohort 1 (150 mg erlotinib+300 mg dovitinib) and cohort -1 (150 mg erlotinib+200mg dovitinib) enrolled. Plasma concentrations of erlotinib were measured pre- and post-dovitinib exposure. RESULTS Two of three patients in cohort 1 had a DLT (grade 3 transaminitis and grade 3 syncope). Two of 6 patients in cohort -1 had a DLT (grade 3 pulmonary embolism and grade 3 fatigue); thus, the study was terminated. Erlotinib exposure (average Cmax 2308±698 ng/ml and AUC 0-24 41,030±15,577 ng×h/ml) approximated previous reports in the six patients with pharmacokinetic analysis. However, erlotinib Cmax and AUC0-24 decreased significantly by 93% (p=0.02) and 97% (p<0.01), respectively, during dovitinib co-administration. CONCLUSIONS This small study demonstrated considerable toxicity and a significant pharmacokinetic interaction with a marked decrease in erlotinib exposure in the presence of dovitinib, likely mediated through CYP1A1/1A2 induction. Given the toxicity and the pharmacokinetic interaction, further investigation with this drug combination will not be pursued.
Collapse
Affiliation(s)
- Millie Das
- Department of Medicine, Division of Medical Oncology, Stanford University, Stanford, CA
- VA Palo Alto Health Care System, Palo Alto, CA
| | - Sukhmani K. Padda
- Department of Medicine, Division of Medical Oncology, Stanford University, Stanford, CA
| | - Adam Frymoyer
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Lisa Zhou
- Department of Medicine, Division of Medical Oncology, Stanford University, Stanford, CA
| | - Jonathan W. Riess
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis School of Medicine, Sacramento, CA
| | - Joel W. Neal
- Department of Medicine, Division of Medical Oncology, Stanford University, Stanford, CA
| | - Heather A. Wakelee
- Department of Medicine, Division of Medical Oncology, Stanford University, Stanford, CA
| |
Collapse
|
28
|
Dahle-Smith A, Petty RD. Biomarkers and novel agents in esophago-gastric cancer: are we making progress? Expert Rev Anticancer Ther 2015; 15:1103-19. [DOI: 10.1586/14737140.2015.1071669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Wen J, Li HZ, Ji ZG, Jin J. Effects of sunitinib malate on growth of human bladder transitional cell line T24 in vitro. ACTA ACUST UNITED AC 2015; 30:51-5. [PMID: 25837361 DOI: 10.1016/s1001-9294(15)30009-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the growth-inhibitory effect of sunitinib malate on human bladder transitional cell carcinoma (TCC) in vitro. METHODS Human bladder TCC cell line T24 was cultured and exposed to graded concentrations of sunitinib malate for 72 hours in vitro to determine the sensitivities to drug. Cell viability was measured by MTT assay. Cell apoptotic morphology was observed by fluorescence microscope following DAPI staining. Band expressions of Fas, Fas ligand, poly (ADP-ribose) polymerase (PARP) and β-actin were analyzed by Western blot. Wound healing process of T24 cells exposed to sunitinib malate was assayed. RESULTS Sunitinib malate exerted a concentration-dependent and time-dependent inhibitory effect on the T24 cell lines. Fluorescence microscopy showed that small vacuoles appeared in the nuclei of T24 cells and the vacuoles were bigger with higher drug concentrations. The expressions of Fas ligand and PARP in T24 cells treated with sunitinib malate exhibited a concentration-dependent increase. Moreover sunitinib malate suppressed the wound healing process in a concentration-dependent manner. CONCLUSION Sunitinib malate exerted marked inhibitory activity against bladder cancer cell line T24.
Collapse
Affiliation(s)
- Jin Wen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Han-zhong Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhi-gang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jing Jin
- Department of Pharmacy, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
30
|
Bulk E, Ay AS, Hammadi M, Ouadid-Ahidouch H, Schelhaas S, Hascher A, Rohde C, Thoennissen NH, Wiewrodt R, Schmidt E, Marra A, Hillejan L, Jacobs AH, Klein HU, Dugas M, Berdel WE, Müller-Tidow C, Schwab A. Epigenetic dysregulation of KCa 3.1 channels induces poor prognosis in lung cancer. Int J Cancer 2015; 137:1306-17. [PMID: 25704182 DOI: 10.1002/ijc.29490] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 01/31/2023]
Abstract
Epigenomic changes are an important feature of malignant tumors. How tumor aggressiveness is affected by DNA methylation of specific loci is largely unexplored. In genome-wide DNA methylation analyses, we identified the KCa 3.1 channel gene (KCNN4) promoter to be hypomethylated in an aggressive non-small-cell lung carcinoma (NSCLC) cell line and in patient samples. Accordingly, KCa 3.1 expression was increased in more aggressive NSCLC cells. Both findings were strong predictors for poor prognosis in lung adenocarcinoma. Increased KCa 3.1 expression was associated with aggressive features of NSCLC cells. Proliferation and migration of pro-metastatic NSCLC cells depended on KCa 3.1 activity. Mechanistically, elevated KCa 3.1 expression hyperpolarized the membrane potential, thereby augmenting the driving force for Ca(2+) influx. KCa 3.1 blockade strongly reduced the growth of xenografted NSCLC cells in mice as measured by positron emission tomography-computed tomography. Thus, loss of DNA methylation of the KCNN4 promoter and increased KCa 3.1 channel expression and function are mechanistically linked to poor survival of NSCLC patients.
Collapse
Affiliation(s)
- Etmar Bulk
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Anne-Sophie Ay
- Laboratory of Cellular Physiology, EA 4667, SFR CAP-SANTE (FED4231), UFR Sciences, University of Picardie Jules Verne, Amiens, 80039, France
| | - Mehdi Hammadi
- Laboratory of Cellular Physiology, EA 4667, SFR CAP-SANTE (FED4231), UFR Sciences, University of Picardie Jules Verne, Amiens, 80039, France.,Inserm U916, Institut Bergonié, Bordeaux, 33076, France
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular Physiology, EA 4667, SFR CAP-SANTE (FED4231), UFR Sciences, University of Picardie Jules Verne, Amiens, 80039, France
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Antje Hascher
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Christian Rohde
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany.,Department of Medicine, Hematology and Oncology, University Hospital of Halle (Saale), Halle (Saale), Germany
| | - Nils H Thoennissen
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany.,Department of Internal Medicine II and Clinic (Oncology Center), University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Wiewrodt
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Eva Schmidt
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Alessandro Marra
- Department of Thoracic Surgery, Niels-Stensen Clinics, Ostercappeln, Germany
| | - Ludger Hillejan
- Department of Thoracic Surgery, Niels-Stensen Clinics, Ostercappeln, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany
| | - Hans-Ulrich Klein
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology, Oncology and Pneumology, University of Münster, Münster, Germany.,Department of Medicine, Hematology and Oncology, University Hospital of Halle (Saale), Halle (Saale), Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
31
|
Zhao Y, Adjei AA. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist 2015; 20:660-73. [PMID: 26001391 DOI: 10.1634/theoncologist.2014-0465] [Citation(s) in RCA: 425] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/06/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Angiogenesis, or the formation of new capillary blood vessels, occurs primarily during human development and reproduction; however, aberrant regulation of angiogenesis is also a fundamental process found in several pathologic conditions, including cancer. As a process required for invasion and metastasis, tumor angiogenesis constitutes an important point of control of cancer progression. Although not yet completely understood, the complex process of tumor angiogenesis involves highly regulated orchestration of multiple signaling pathways. The proangiogenic signaling molecule vascular endothelial growth factor (VEGF) and its cognate receptor (VEGF receptor 2 [VEGFR-2]) play a central role in angiogenesis and often are highly expressed in human cancers, and initial clinical efforts to develop antiangiogenic treatments focused largely on inhibiting VEGF/VEGFR signaling. Such approaches, however, often lead to transient responses and further disease progression because angiogenesis is regulated by multiple pathways that are able to compensate for each other when single pathways are inhibited. The platelet-derived growth factor (PDGF) and PDGF receptor (PDGFR) and fibroblast growth factor (FGF) and FGF receptor (FGFR) pathways, for example, provide potential escape mechanisms from anti-VEGF/VEGFR therapy that could facilitate resumption of tumor growth. Accordingly, more recent treatments have focused on inhibiting multiple signaling pathways simultaneously. This comprehensive review discusses the limitations of inhibiting VEGF signaling alone as an antiangiogenic strategy, the importance of other angiogenic pathways including PDGF/PDGFR and FGF/FGFR, and the novel current and emerging agents that target multiple angiogenic pathways for the treatment of advanced solid tumors. IMPLICATIONS FOR PRACTICE Significant advances in cancer treatment have been achieved with the development of antiangiogenic agents, the majority of which have focused on inhibition of the vascular endothelial growth factor (VEGF) pathway. VEGF targeting alone, however, has not proven to be as efficacious as originally hoped, and it is increasingly clear that there are many interconnected and compensatory pathways that can overcome VEGF-targeted inhibition of angiogenesis. Maximizing the potential of antiangiogenic therapy is likely to require a broader therapeutic approach using a new generation of multitargeted antiangiogenic agents.
Collapse
Affiliation(s)
- Yujie Zhao
- Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Alex A Adjei
- Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
32
|
Nintedanib: A Review of Its Use as Second-Line Treatment in Adults with Advanced Non-Small Cell Lung Cancer of Adenocarcinoma Histology. Target Oncol 2015; 10:303-10. [DOI: 10.1007/s11523-015-0367-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Reck M. Nintedanib: examining the development and mechanism of action of a novel triple angiokinase inhibitor. Expert Rev Anticancer Ther 2015; 15:579-94. [PMID: 25831142 DOI: 10.1586/14737140.2015.1031218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antiangiogenic agents are effective standard-of-care options in several malignancies, but are generally associated with only modest improvements in survival, as well as leading to additional toxicities. Furthermore, almost all patients develop acquired resistance to therapy, possibly due to the activation of alternative proangiogenic pathways. Here we discuss: the rationale for developing nintedanib, an agent that simultaneously inhibits signaling pathways activated by platelet-derived growth factor, FGF, as well as VEGF; how its distinctive inhibitory and pharmacokinetic profile could underlie promising efficacy and tolerability observed in Phase II trials in patients with relapsed/refractory non-small cell lung cancer, advanced ovarian cancer and metastatic colorectal cancer; the ongoing Phase III program that is assessing nintedanib in these areas of major unmet medical need; and recent progress in the development of biomarkers that may predict response to nintedanib.
Collapse
Affiliation(s)
- Martin Reck
- Department of Thoracic Oncology, Lung Clinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| |
Collapse
|
34
|
DU H, Shi H, Chen D, Zhou Y, Che G. Cross-talk between endothelial and tumor cells via basic fibroblast growth factor and vascular endothelial growth factor signaling promotes lung cancer growth and angiogenesis. Oncol Lett 2015; 9:1089-1094. [PMID: 25663861 PMCID: PMC4315052 DOI: 10.3892/ol.2015.2881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 12/12/2014] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to investigate the origin and potential mechanisms of angiogenesis in lung cancer cells. Normal endothelial cells (ECs) were isolated from human umbilical vein ECs (HUVECs) and cultured. The human lung cancer A549 cell line was also used. The cross-talk model between the HUVECs and the A549 cell line was constructed in vitro using a Millicell co-culture system. Cluster of differentiation (CD)31 and CD146 were selected as markers of the HUVECs. CD105 was used as a marker of activated blood vessel ECs in the tumor microenvironment and glucose-regulated protein-78 (GRP-78) was used as a biomarker of the A549 cells. The four markers were detected by immunofluorescence, and the mean optical density was calculated. The growth curves were constructed using the cell proliferation reagent, WST-1. The expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in the media was measured using an ELISA. The average proliferation rates of the co-cultured HUVECs and A549 cells were significantly higher than those observed in the control groups. The fluorescence intensity of CD105 expression in the co-cultured HUVECs was higher than that in the control group. The fluorescence intensity of GRP-78 in the co-cultured A549 cells was higher than that in the A549 cells cultured alone. The average expression levels of VEGF and bFGF in the co-cultured model were higher than in the control groups. Therefore, it was hypothesized that cancer cells may induce the differentiation of normal ECs into vascular ECs via the secretion of VEGF and bFGF. Furthermore, vascular ECs can affect the proliferation and differentiation of cancer cells.
Collapse
Affiliation(s)
- Heng DU
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hui Shi
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dali Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yubin Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
35
|
Kim S, Ding W, Zhang L, Tian W, Chen S. Clinical response to sunitinib as a multitargeted tyrosine-kinase inhibitor (TKI) in solid cancers: a review of clinical trials. Onco Targets Ther 2014; 7:719-28. [PMID: 24872713 PMCID: PMC4026584 DOI: 10.2147/ott.s61388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis is an integral process in carcinogenesis, and molecular inhibitors of angiogenic factors are currently being tested as treatments for cancer. Sunitinib is an oral multitargeted tyrosine-kinase inhibitor that blocks activation through the stem cell-factor receptor (Kit) and platelet-derived growth-factor receptor. Sunitinib has shown potent antitumor activity against several solid tumors, including renal cell carcinoma, gastrointestinal stromal tumors, and neuroendocrine tumors in several Phase II/III trials. Recently, sunitinib has been used to treat other solid cancers, such as lung cancer, pancreatic cancer, chondrosarcoma, esophageal cancer, bladder cancer, glioma, and aggressive fibromatosis, and also showed potential efficacy in progression-free survival and overall survival. In this review, we examine the efficacy of sunitinib as a molecular-targeted therapy in patients with different types of solid cancers.
Collapse
Affiliation(s)
- Sungkyoung Kim
- Department of Oncology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Wenping Ding
- Department of Oncology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Lian Zhang
- Department of Oncology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Wei Tian
- Department of Oncology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
36
|
Durm G, Hanna N. Targeting multiple angiogenic pathways simultaneously: experience with nintedanib in non-small-cell lung cancer. Future Oncol 2014; 10:1167-73. [DOI: 10.2217/fon.14.74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT: Angiogenesis plays a major role in the growth and progression of non-small-cell lung cancer (NSCLC), and there is increasing interest in the development of therapies that block this particular aspect of tumorigenesis. Bevacizumab was the first US FDA-approved inhibitor of angiogenesis after demonstrating improved progression-free survival and overall survival in combination with chemotherapy in treating NSCLC. However, the benefit of bevacizumab is only modest and transient as the tumors inevitably develop resistance to this particular treatment. Therefore, new therapies are being developed that attempt to inhibit angiogenesis through several different pathways. One promising new drug, nintedanib, is an oral triple angiokinase inhibitor that acts by blocking not only VEGFR, but also FGFR and PDGFR, which are involved in the development of resistance to bevacizumab. This article discusses the rationale for this approach and summarizes the clinical trial data on nintedanib, including the two most recent Phase III trials.
Collapse
Affiliation(s)
- Greg Durm
- IU School of Medicine, 535 Barnhill Drive, RT 473 Indianapolis, IN 46202, USA
| | - Nasser Hanna
- IU School of Medicine, 535 Barnhill Drive, RT 473 Indianapolis, IN 46202, USA
| |
Collapse
|
37
|
Langer CJ, Mok T, Postmus PE. Targeted agents in the third-/fourth-line treatment of patients with advanced (stage III/IV) non-small cell lung cancer (NSCLC). Cancer Treat Rev 2013; 39:252-60. [DOI: 10.1016/j.ctrv.2012.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 12/22/2022]
|
38
|
The role of endosomal signaling triggered by metastatic growth factors in tumor progression. Cell Signal 2013; 25:1539-45. [PMID: 23571269 DOI: 10.1016/j.cellsig.2013.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/28/2013] [Indexed: 01/12/2023]
Abstract
Within tumor microenvironment, a lot of growth factors such as hepatocyte growth factor and epidermal growth factor may induce similar signal cascade downstream of receptor tyrosine kinase (RTK) and trigger tumor metastasis synergistically. In the past decades, the intimate relationship of RTK-mediated receptor endocytosis with signal transduction was well established. In general, most RTK undergoes clathrin-dependent endocytosis and/or clathrin-independent endocytosis. The internalized receptors may sustain the signaling within early endosome, recycling to plasma membrane for subsequent ligand engagement or sorting to late endosomes/lysosome for receptor degradation. Moreover, receptor endocytosis influences signal transduction in a temporal and spatial manner for periodical and polarized cellular processes such as cell migration. The endosomal signalings triggered by various metastatic factors are quite similar in some critical points, which are essential for triggering cell migration and tumor progression. There are common regulators for receptor endocytosis including dynamin, Rab4, Rab5, Rab11 and Cbl. Moreover, many critical regulators within the RTK signal pathway such as Grb2, p38, PKC and Src were also modulators of endocytosis. In the future, these may constitute a new category of targets for prevention of tumor metastasis.
Collapse
|
39
|
Campbell TM, Main MJ, Fitzgerald EM. Functional expression of the voltage-gated sodium channel, Nav1.7, underlies epidermal growth factor-mediated invasion in human [R1.S1] non-small cell lung cancer cells. J Cell Sci 2013; 126:4939-49. [DOI: 10.1242/jcs.130013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Various ion channels are expressed in human cancers where they are intimately involved in proliferation, angiogenesis, invasion and metastasis. Expression of functional voltage-gated sodium channels (Nav) is implicated in the metastatic potential of breast, prostate, lung and colon cancer cells. However, the cellular mechanisms that regulate Nav expression in cancer remain largely unknown. Growth factors are attractive candidates; they not only play crucial roles in cancer progression but are also key regulators of ion channel expression and activity in non-cancerous cells. Here, we examine the role of epidermal growth factor receptor (EGFR) signalling and Nav in non-small cell lung carcinoma (NSCLC) cell lines. We show unequivocally, that functional expression of Nav1.7 promotes invasion in H460 NSCLC cells. Inhibition of Nav1.7 activity (tetrodotoxin), or, expression (small interfering RNA), reduces H460 cell invasion by up to 50%. Crucially, non-invasive wild type A549 cells lack functional Nav whereas exogenous over-expression of Nav1.7 is sufficient to promote TTX-sensitive invasion of these cells. EGF/EGFR signalling enhances proliferation, migration and invasion of H460 cells but we find that EGFR-mediated up-regulation of Nav1.7 specifically, is necessary for invasive behaviour in these cells. Examination of Nav1.7 expression at the mRNA, protein and functional levels further reveals that EGF/EGFR signalling via the ERK1/2 pathway controls transcriptional regulation of channel expression to promote cellular invasion. Immunohistochemistry of patient biopsies confirms the clinical relevance of Nav1.7 expression in NSCLC. Thus, Nav1.7 has significant potential as a novel target for therapeutic intervention and/or as a diagnostic/prognostic marker in NSCLC.
Collapse
|
40
|
Sachdeva R, Bhardwaj N, Huhtaniemi I, Aggrawal U, Jain SK, Zaidi R, Singh O, Pal R. Transgenesis-mediated reproductive dysfunction and tumorigenesis: effects of immunological neutralization. PLoS One 2012; 7:e51125. [PMID: 23226476 PMCID: PMC3511405 DOI: 10.1371/journal.pone.0051125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/31/2012] [Indexed: 02/01/2023] Open
Abstract
Human chorionic gonadotropin (hCG) was initially thought to be made only during pregnancy, but is now known to also be synthesized by a variety of cancers and is associated with poor patient prognosis. Transgenic expression of βhCG in mice causes hyper-luteinized ovaries, a loss in estrous cyclicity and infertility, increased body weight, prolactinomas and mammary gland tumors. Strategies were devised to generate antibody responses against hCG to investigate whether reversal of the molecular processes driving tumorigenesis would follow. hCG-immunized transgenic mice did not exhibit increases in body weight or serum prolactin levels, and gross ovarian and pituitary morphology remained normal. While non-immunized transgenic animals demonstrated heightened levels of transcripts associated with pituitary tumorigenesis (HMG2A, E2F1, CCND1, PRL, GH, GAL, PTTG1, BMP4) and decreased levels of CDK inhibitors CDKN1B (p27), CDKN2A (p16) and CDKN2c (p18), immunization led to a reversal to levels found in non-transgenic animals. Serum derived from transgenic (but not non-transgenic) mice led to enhanced transcription as well as expression of VEGF, IL-8, KC (murine IL-8) and MMP-9 in tumor cells, effects not seen when sera derived from hCG-immunized transgenic mice was employed. As the definitive indication of the restoration of the reproductive axis, immunization led to the resumption of estrous cyclicity as well as fertility in transgenic mice. These results indicate that hCG may influence cancer pathogenesis and progression via several distinct mechanisms. Using a stringent in vivo system in which βhCG acts both a “self” antigen and a tumor-promoting moiety (putatively akin to the situation in humans), the data builds a case for anti-gonadotropin vaccination strategies in the treatment of gonadotropin-dependent or secreting malignancies that frequently acquire resistance to conventional therapy.
Collapse
Affiliation(s)
- Ruchi Sachdeva
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neetu Bhardwaj
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ilpo Huhtaniemi
- Department of Physiology, University of Turku, Turku, Finland
- Department of Reproductive and Developmental Biology, Imperial College, London, Hammersmith Campus, London, United Kingdom
| | - Usha Aggrawal
- Institute of Pathology, Safdarjung Hospital, New Delhi, India
| | | | - Rana Zaidi
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
- * E-mail: (RZ); (OS); (RP)
| | - Om Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (RZ); (OS); (RP)
| | - Rahul Pal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (RZ); (OS); (RP)
| |
Collapse
|
41
|
[Antiangiogenic agents: current limits in thoracic oncology]. Bull Cancer 2012; 99:1083-91. [PMID: 23113985 DOI: 10.1684/bdc.2012.1655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antiangiogenic agents appear as major therapeutic options in renal, colorectal and breast cancer. Their part in thoracic oncology is still limited today except for bevacizumab. We review the current limits of antiangiogenic agents in terms of efficacy, activity, tolerance and therapeutic strategies. Problems about predictive biomarkers and cost-effectiveness of antiangiogenic agents in thoracic oncology are also mentioned.
Collapse
|
42
|
Saint-Jean A, Sainz de la Maza M, Morral M, Torras J, Quintana R, Molina JJ, Molina-Prat N. Ocular Adverse Events of Systemic Inhibitors of the Epidermal Growth Factor Receptor: Report of 5 Cases. Ophthalmology 2012; 119:1798-802. [DOI: 10.1016/j.ophtha.2012.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/31/2012] [Accepted: 03/01/2012] [Indexed: 01/26/2023] Open
|
43
|
Goswami C. Recent advances in the management of Stage III lung cancer. APOLLO MEDICINE 2012. [DOI: 10.1016/j.apme.2012.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|