1
|
Greene G, Zonfa I, Ravasz Regan E. A Boolean network model of hypoxia, mechanosensing and TGF-β signaling captures the role of phenotypic plasticity and mutations in tumor metastasis. PLoS Comput Biol 2025; 21:e1012735. [PMID: 40238833 PMCID: PMC12061430 DOI: 10.1371/journal.pcbi.1012735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 05/08/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The tumor microenvironment aids cancer progression by promoting several cancer hallmarks, independent of cancer-related mutations. Biophysical properties of this environment, such as the stiffness of the matrix cells adhere to and local cell density, impact proliferation, apoptosis, and the epithelial to mesenchymal transition (EMT). The latter is a rate-limiting step for invasion and metastasis, enhanced in hypoxic tumor environments but hindered by soft matrices and/or high cell densities. As these influences are often studied in isolation, the crosstalk between hypoxia, biomechanical signals, and the classic EMT driver TGF-β is not well mapped, limiting our ability to predict and anticipate cancer cell behaviors in changing tumor environments. To address this, we built a Boolean regulatory network model that integrates hypoxic signaling with a mechanosensitive model of EMT, which includes the EMT-promoting crosstalk of mitogens and biomechanical signals, cell cycle control, and apoptosis. Our model reproduces the requirement of Hif-1α for proliferation, the anti-proliferative effects of strong Hif-1α stabilization during hypoxia, hypoxic protection from anoikis, and hypoxia-driven mechanosensitive EMT. We offer experimentally testable predictions about the effect of VHL loss on cancer hallmarks, with or without secondary oncogene activation. Taken together, our model serves as a predictive framework to synthesize the signaling responses associated with tumor progression and metastasis in healthy vs. mutant cells. Our single-cell model is a key step towards more extensive regulatory network models that cover damage-response and senescence, integrating most cell-autonomous cancer hallmarks into a single model that can, in turn, control the behavior of in silico cells within a tissue model of epithelial homeostasis and carcinoma.
Collapse
Affiliation(s)
- Grant Greene
- Biochemistry and Molecular Biology, College of Wooster, Wooster, Ohio, United States of America
| | - Ian Zonfa
- Biochemistry and Molecular Biology, College of Wooster, Wooster, Ohio, United States of America
| | - Erzsébet Ravasz Regan
- Biochemistry and Molecular Biology, College of Wooster, Wooster, Ohio, United States of America
| |
Collapse
|
2
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Chang HA, Ou Yang RZ, Su JM, Nguyen TMH, Sung JM, Tang MJ, Chiu WT. YAP nuclear translocation induced by HIF-1α prevents DNA damage under hypoxic conditions. Cell Death Discov 2023; 9:385. [PMID: 37863897 PMCID: PMC10589224 DOI: 10.1038/s41420-023-01687-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Maladaptive repair of acute kidney injury (AKI) is associated with a high risk of developing chronic kidney disease deemed irremediable even in present days. When AKI arises from ischemia-reperfusion injury, hypoxia usually plays a major role. Although both hypoxia-inducible factor-1α (HIF-1α) and yes-associated protein (YAP) have been proven to promote renal cell survival under hypoxia, there is a lack of research that studies the crosstalk of the two and its effect on kidney repair. In studying the crosstalk, CoCl2 was used to create a mimetic hypoxic environment. Immunoprecipitation and proximity ligation assays were performed to verify protein interactions. The results show that HIF-1α interacts with YAP and promotes nuclear translocation of YAP at a high cell density under hypoxic conditions, suggesting HIF-1α serves as a direct carrier that enables YAP nuclear translocation. This is the first study to identify HIF-1α as a crucial pathway for YAP nuclear translocation under hypoxic conditions. Once translocated into a nucleus, YAP protects cells from DNA damage and apoptosis under hypoxic conditions. Since it is unlikely for YAP to translocate into a nucleus without HIF-1α, any treatment that fosters the crosstalk between the two holds the potential to improve cell recovery from hypoxic insults.
Collapse
Affiliation(s)
- Heng-Ai Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Rui-Zhi Ou Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Jing-Ming Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Thi My Hang Nguyen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Junne-Ming Sung
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, 701, Taiwan, ROC
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Ming-Jer Tang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan, ROC
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Wen-Tai Chiu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
- Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
4
|
Zhu M, He Q, Wang Y, Duan L, Rong K, Wu Y, Ding Y, Mi Y, Ge X, Yang X, Yu Y. Exploring the mechanism of aloe-emodin in the treatment of liver cancer through network pharmacology and cell experiments. Front Pharmacol 2023; 14:1238841. [PMID: 37900162 PMCID: PMC10600456 DOI: 10.3389/fphar.2023.1238841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Objective: Aloe-emodin (AE) is an anthraquinone compound extracted from the rhizome of the natural plant rhubarb. Initially, it was shown that AE exerts an anti-inflammatory effect. Further studies revealed its antitumor activity against various types of cancer. However, the mechanisms underlying these properties remain unclear. Based on network pharmacology and molecular docking, this study investigated the molecular mechanism of AE in the treatment of hepatocellular carcinoma (HCC), and evaluated its therapeutic effect through in vitro experiments. Methods: CTD, Pharmmapper, SuperPred and TargetNet were the databases to obtain potential drug-related targets. DisGenet, GeneCards, OMIM and TTD were used to identify potential disease-related targets. Intersection genes for drugs and diseases were obtained through the Venn diagram. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of intersecting genes were conducted by the website of Bioinformatics. Intersection genes were introduced into STRING to construct a protein-protein interaction network, while the Cytoscape3.9.1 software was used to visualize and analyze the core targets. AutoDock4.2.6 was utilized to achieve molecular docking between drug and core targets. In vitro experiments investigated the therapeutic effects and related mechanisms of AE. Results: 63 overlapped genes were obtained and GO analysis generated 3,646 entries by these 63 intersecting genes. KEGG analysis mainly involved apoptosis, proteoglycans in cancer, TNF signaling pathway, TP53 signaling pathway, PI3K-AKT signaling pathway, etc. AKT1, EGFR, ESR1, TP53, and SRC have been identified as core targets because the binding energies of them between aloe-emodin were less than -5 kcal/Mol.The mRNA and protein expression, prognosis, mutation status, and immune infiltration related to core targets were further revealed. The involvement of AKT1 and EGFR, as well as the key target of the PI3K-AKT signaling pathway, indicated the importance of this signaling pathway in the treatment of HCC using AE. The results of the Cell Counting Kit-8 assay and flow analysis demonstrated the therapeutic effect of AE. The downregulation of EGFR, PI3KR1, AKT1, and BCL2 in mRNA expression and PI3KR1, AKT,p-AKT in protein expression confirmed our hypothesis. Conclusion: Based on network pharmacology and molecular docking, our study initially showed that AE exerted a therapeutic effect on HCC by modulating multiple signaling pathways. Various analyses confirmed the antiproliferative activity and pro-apoptotic effect of AE on HCC through the PI3K-AKT signaling pathway. This study revealed the therapeutic mechanism of AE in the treatment of HCC through a novel approach, providing a theoretical basis for the clinical application of AE.
Collapse
Affiliation(s)
- Mingyang Zhu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingmin He
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Yanan Wang
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Liying Duan
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kang Rong
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Wu
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Ye Ding
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyang Ge
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaocui Yang
- Department of Gastroenterology, Ankang Central Hospital, Ankang, Shaanxi, China
| | - Yong Yu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center of Zhengzhou University, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Poh AR, Ernst M. Functional roles of SRC signaling in pancreatic cancer: Recent insights provide novel therapeutic opportunities. Oncogene 2023:10.1038/s41388-023-02701-x. [PMID: 37120696 DOI: 10.1038/s41388-023-02701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis, and drug resistance. Strategies to inhibit SRC signaling include suppressing its catalytic activity, inhibiting protein stability, or by interfering with signaling components of the SRC signaling pathway including suppressing protein interactions of SRC. In this review, we discuss the molecular and immunological mechanisms by which aberrant SRC activity promotes PDAC tumorigenesis. We also provide a comprehensive update of SRC inhibitors in the clinic, and discuss the clinical challenges associated with targeting SRC in pancreatic cancer.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| |
Collapse
|
6
|
Kumari S, Kumar P. Design and Computational Analysis of an MMP9 Inhibitor in Hypoxia-Induced Glioblastoma Multiforme. ACS OMEGA 2023; 8:10565-10590. [PMID: 36969457 PMCID: PMC10035023 DOI: 10.1021/acsomega.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The main therapeutic difficulties in treating hypoxia-induced glioblastoma multiforme (GBM) are toxicity of current treatments and the resistance brought on by the microenvironment. More effective therapeutic alternatives are urgently needed to reduce tumor lethality. Hence, we screened plant-based natural product panels intending to identify novel drugs without elevating drug resistance. We explored GEO for the hypoxia GBM model and compared hypoxic genes to non-neoplastic brain cells. A total of 2429 differentially expressed genes expressed exclusively in hypoxia were identified. The functional enrichment analysis demonstrated genes associated with GBM, further PPI network was constructed, and biological pathways associated with them were explored. Seven webtools, including GEPIA2.0, TIMER2.0, TCGA-GBM, and GlioVis, were used to validate 32 hub genes discovered using Cytoscape tool in GBM patient samples. Four GBM-specific hypoxic hub genes, LYN, MMP9, PSMB9, and TIMP1, were connected to the tumor microenvironment using TIMER analysis. 11 promising hits demonstrated positive drug-likeness with nontoxic characteristics and successfully crossed blood-brain barrier and ADMET analyses. Top-ranking hits have stable intermolecular interactions with the MMP9 protein according to molecular docking, MD simulation, MM-PBSA, PCA, and DCCM analyses. Herein, we have reported flavonoids, 7,4'-dihydroxyflavan, (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran, and 4'-hydroxy-7-methoxyflavan, to inhibit MMP9, a novel hypoxia gene signature that could serve as a promising predictor in various clinical applications, including GBM diagnosis, prognosis, and targeted therapy.
Collapse
|
7
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Papanikolaou S, Vourda A, Syggelos S, Gyftopoulos K. Cell Plasticity and Prostate Cancer: The Role of Epithelial-Mesenchymal Transition in Tumor Progression, Invasion, Metastasis and Cancer Therapy Resistance. Cancers (Basel) 2021; 13:cancers13112795. [PMID: 34199763 PMCID: PMC8199975 DOI: 10.3390/cancers13112795] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Although epithelial-to-mesenchymal transition (EMT) is a well-known cellular process involved during normal embryogenesis and wound healing, it also has a dark side; it is a complex process that provides tumor cells with a more aggressive phenotype, facilitating tumor metastasis and even resistance to therapy. This review focuses on the key pathways of EMT in the pathogenesis of prostate cancer and the development of metastases and evasion of currently available treatments. Abstract Prostate cancer, the second most common malignancy in men, is characterized by high heterogeneity that poses several therapeutic challenges. Epithelial–mesenchymal transition (EMT) is a dynamic, reversible cellular process which is essential in normal embryonic morphogenesis and wound healing. However, the cellular changes that are induced by EMT suggest that it may also play a central role in tumor progression, invasion, metastasis, and resistance to current therapeutic options. These changes include enhanced motility and loss of cell–cell adhesion that form a more aggressive cellular phenotype. Moreover, the reverse process (MET) is a necessary element of the metastatic tumor process. It is highly probable that this cell plasticity reflects a hybrid state between epithelial and mesenchymal status. In this review, we describe the underlying key mechanisms of the EMT-induced phenotype modulation that contribute to prostate tumor aggressiveness and cancer therapy resistance, in an effort to provide a framework of this complex cellular process.
Collapse
|
9
|
Tong D. Unravelling the molecular mechanisms of prostate cancer evolution from genotype to phenotype. Crit Rev Oncol Hematol 2021; 163:103370. [PMID: 34051300 DOI: 10.1016/j.critrevonc.2021.103370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed cancer and the second leading cause of cancer-related death in men in the Western society. Unfortunately, although the vast majority of patients are initially responsive to androgen-deprivation therapy (ADT), most cases eventually develop from hormone-sensitive prostate cancer (HSPC) to castration-resistant prostate cancer (CRPC). The main reason is PC heterogeneity and evolution during therapy. PC evolution is a continuously progressive process with combination of genomic alterations including canonical AR, TMPRSS2-ERG fusion, SPOP/FOXA1, TP53/RB1/PTEN, BRCA2. Meanwhile, signaling pathways including PI3K, WNT/β-catenin, SRC, IL-6/STAT3 are activated, to promote epithelial mesenchymal transition (EMT), cancer stem cell (CSC)-like features/stemness and neuroendocrine differentiation (NED) of PC. These improve our understanding of the genotype-phenotype relationships. The identification of canonical genetic alterations and signaling pathway activation in PC has shed more insight into genetic background, molecular subtype and disease landscape of PC evolution, resulting in a more flexible role of individual therapies targeting diverse genotype and phenotype presentation.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
10
|
Links between the unfolded protein response and the DNA damage response in hypoxia: a systematic review. Biochem Soc Trans 2021; 49:1251-1263. [PMID: 34003246 PMCID: PMC8286837 DOI: 10.1042/bst20200861] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Hypoxia is a feature of most solid tumours and predicts for poor prognosis. In radiobiological hypoxia (<0.1% O2) cells become up to three times more resistant to radiation. The biological response to radiobiological hypoxia is one of few physiologically relevant stresses that activates both the unfolded protein and DNA damage responses (UPR and DDR). Links between these pathways have been identified in studies carried out in normoxia. Based in part on these previous studies and recent work from our laboratory, we hypothesised that the biological response to hypoxia likely includes overlap between the DDR and UPR. While inhibition of the DDR is a recognised strategy for improving radiation response, the possibility of achieving this through targeting the UPR has not been realised. We carried out a systematic review to identify links between the DDR and UPR, in human cell lines exposed to <2% O2. Following PRISMA guidance, literature from January 2010 to October 2020 were retrieved via Ovid MEDLINE and evaluated. A total of 202 studies were included. LAMP3, ULK1, TRIB3, CHOP, NOXA, NORAD, SIAH1/2, DYRK2, HIPK2, CREB, NUPR1, JMJD2B, NRF2, GSK-3B, GADD45a, GADD45b, STAU1, C-SRC, HK2, CAV1, CypB, CLU, IGFBP-3 and SP1 were highlighted as potential links between the hypoxic DDR and UPR. Overall, we identified very few studies which demonstrate a molecular link between the DDR and UPR in hypoxia, however, it is clear that many of the molecules highlighted warrant further investigation under radiobiological hypoxia as these may include novel therapeutic targets to improve radiotherapy response.
Collapse
|
11
|
Saydé T, El Hamoui O, Alies B, Gaudin K, Lespes G, Battu S. Biomaterials for Three-Dimensional Cell Culture: From Applications in Oncology to Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:481. [PMID: 33668665 PMCID: PMC7917665 DOI: 10.3390/nano11020481] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Three-dimensional cell culture has revolutionized cellular biology research and opened the door to novel discoveries in terms of cellular behavior and response to microenvironment stimuli. Different types of 3D culture exist today, including hydrogel scaffold-based models, which possess a complex structure mimicking the extracellular matrix. These hydrogels can be made of polymers (natural or synthetic) or low-molecular weight gelators that, via the supramolecular assembly of molecules, allow the production of a reproducible hydrogel with tunable mechanical properties. When cancer cells are grown in this type of hydrogel, they develop into multicellular tumor spheroids (MCTS). Three-dimensional (3D) cancer culture combined with a complex microenvironment that consists of a platform to study tumor development and also to assess the toxicity of physico-chemical entities such as ions, molecules or particles. With the emergence of nanoparticles of different origins and natures, implementing a reproducible in vitro model that consists of a bio-indicator for nano-toxicity assays is inevitable. However, the maneuver process of such a bio-indicator requires the implementation of a repeatable system that undergoes an exhaustive follow-up. Hence, the biggest challenge in this matter is the reproducibility of the MCTS and the associated full-scale characterization of this system's components.
Collapse
Affiliation(s)
- Tarek Saydé
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges, France;
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Omar El Hamoui
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l’Adour (E2S/UPPA), 2 Avenue Pierre Angot, 64053 Pau, France
| | - Bruno Alies
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Karen Gaudin
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Gaëtane Lespes
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l’Adour (E2S/UPPA), 2 Avenue Pierre Angot, 64053 Pau, France
| | - Serge Battu
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges, France;
| |
Collapse
|
12
|
SRC Signaling in Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:57-71. [PMID: 33123993 DOI: 10.1007/978-3-030-47189-7_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering experiments performed by Harold Varmus and Mike Bishop in 1976 led to one of the most influential discoveries in cancer research and identified the first cancer-causing oncogene called Src. Later experimental and clinical evidence suggested that Src kinase plays a significant role in promoting tumor growth and progression and its activity is associated with poor patient survival. Thus, several Src inhibitors were developed and approved by FDA for treatment of cancer patients. Tumor microenvironment (TME) is a highly complex and dynamic milieu where significant cross-talk occurs between cancer cells and TME components, which consist of tumor-associated macrophages, fibroblasts, and other immune and vascular cells. Growth factors and chemokines activate multiple signaling cascades in TME and induce multiple kinases and pathways, including Src, leading to tumor growth, invasion/metastasis, angiogenesis, drug resistance, and progression. Here, we will systemically evaluate recent findings regarding regulation of Src and significance of targeting Src in cancer therapy.
Collapse
|
13
|
Yang J, Zhang X, Liu L, Yang X, Qian Q, Du B. c-Src promotes the growth and tumorigenesis of hepatocellular carcinoma via the Hippo signaling pathway. Life Sci 2021; 264:118711. [PMID: 33186566 DOI: 10.1016/j.lfs.2020.118711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023]
Abstract
We investigated the association between c-Src and the progression of hepatocellular carcinoma (HCC) and its underlying mechanisms. The relationship between c-Src expression and the occurrence and development of HCC was explored using GEPIA and further confirmed by western blotting analysis and real-time quantitative PCR. CCK-8, flow cytometry, Transwell, and wound-healing assays were conducted to analyze the effects of c-Src on the growth, cell cycle, apoptosis, migration, and infiltration of HCC cells. Mouse models of transplanted xenogeneic human tumors were constructed to explore the effects of c-Src on HCC tumor growth. Compared with that in adjacent normal liver tissues, the expression level of c-Src in HCC tissues was significantly increased and was negatively correlated with patient survival. These findings are consistent with those in the GEPIA database. Downregulation of c-Src expression can inhibit the growth, infiltration, and migration of HCC cells. c-Src impeded the translocation of YAP from the nucleus to the cytoplasm and promoted Yes-associated protein transcriptional activity. In vivo experiments showed that c-Src inhibition suppressed tumor growth in mice. We found that c-Src can promote the growth and tumorigenesis of HCC cells by activating the Hippo signaling pathway.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Hippo Signaling Pathway
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Nude
- Neoplasm Invasiveness
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins pp60(c-src)/antagonists & inhibitors
- Proto-Oncogene Proteins pp60(c-src)/genetics
- Proto-Oncogene Proteins pp60(c-src)/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Up-Regulation/drug effects
- YAP-Signaling Proteins
- Mice
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Xiujuan Zhang
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China.
| | - Leilei Liu
- Department of Ultrasound, The Second People's Hospital of Fujian Province, Fuzhou 350001, Fujian, China
| | - Xin Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Qingfu Qian
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Bin Du
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| |
Collapse
|
14
|
Bahreyni A, Luo H. Advances in Targeting Cancer-Associated Genes by Designed siRNA in Prostate Cancer. Cancers (Basel) 2020; 12:E3619. [PMID: 33287240 PMCID: PMC7761674 DOI: 10.3390/cancers12123619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Short interfering RNAs (siRNAs) have provided novel insights into the field of cancer treatment in light of their ability to specifically target and silence cancer-associated genes. In recent years, numerous studies focus on determining genes that actively participate in tumor formation, invasion, and metastasis in order to establish new targets for cancer treatment. In spite of great advances in designing various siRNAs with diverse targets, efficient delivery of siRNAs to cancer cells is still the main challenge in siRNA-mediated cancer treatment. Recent advancements in the field of nanotechnology and nanomedicine hold great promise to meet this challenge. This review focuses on recent findings in cancer-associated genes and the application of siRNAs to successfully silence them in prostate cancer, as well as recent progress for effectual delivery of siRNAs to cancer cells.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
15
|
Yu J, Zhou Z, Wei Z, Wu J, OuYang J, Huang W, He Y, Zhang C. FYN promotes gastric cancer metastasis by activating STAT3-mediated epithelial-mesenchymal transition. Transl Oncol 2020; 13:100841. [PMID: 32763503 PMCID: PMC7408597 DOI: 10.1016/j.tranon.2020.100841] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/19/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is one of the most lethal cancers worldwide. FYN, a gene that is differentially expressed in gastric cancer, is considered a critical metastasis regulator in several solid tumors, but its role in gastric cancer is still unclear. This study aimed to evaluate the role of FYN and test whether FYN promotes migration and invasion of gastric cancer cells in vitro and in vivo via STAT3 signaling. FYN was overexpressed in gastric cancer and positively correlated with metastasis. FYN knockdown significantly decreased cancer cell migration and invasion, whereas FYN overexpression increased cancer migration and invasion. Genetic inhibition of FYN decreased the number of metastatic lung nodules in vivo. Several epithelial-mesenchymal transition markers were positively correlated with FYN expression, indicative of FYN involvement in this transition. Furthermore, gene set enrichment analysis of a Cancer Genome Atlas dataset revealed that the STAT3 signaling pathway was positively correlated with FYN expression. STAT3 inhibition reversed the FYN-mediated epithelial-mesenchymal transition and suppressed metastasis. In conclusion, FYN promotes gastric cancer metastasis possibly by activating STAT3-mediated epithelial mesenchymal transition and may be a novel therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jie Yu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2(nd) Road, Guangzhou, Guangdong 510080, China
| | - ZhiJun Zhou
- Department of Gastrointestinal Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, Guangdong 518000, China
| | - ZheWei Wei
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2(nd) Road, Guangzhou, Guangdong 510080, China
| | - Jing Wu
- Department of Gastrointestinal Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, Guangdong 518000, China
| | - Jun OuYang
- Department of Gastrointestinal Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, Guangdong 518000, China
| | - WeiBin Huang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2(nd) Road, Guangzhou, Guangdong 510080, China
| | - YuLong He
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan 2(nd) Road, Guangzhou, Guangdong 510080, China; Department of Gastrointestinal Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, Guangdong 518000, China.
| | - ChangHua Zhang
- Department of Gastrointestinal Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
16
|
Src Family Kinases as Therapeutic Targets in Advanced Solid Tumors: What We Have Learned so Far. Cancers (Basel) 2020; 12:cancers12061448. [PMID: 32498343 PMCID: PMC7352436 DOI: 10.3390/cancers12061448] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Src is the prototypal member of Src Family tyrosine Kinases (SFKs), a large non-receptor kinase class that controls multiple signaling pathways in animal cells. SFKs activation is necessary for the mitogenic signal from many growth factors, but also for the acquisition of migratory and invasive phenotype. Indeed, oncogenic activation of SFKs has been demonstrated to play an important role in solid cancers; promoting tumor growth and formation of distant metastases. Several drugs targeting SFKs have been developed and tested in preclinical models and many of them have successfully reached clinical use in hematologic cancers. Although in solid tumors SFKs inhibitors have consistently confirmed their ability in blocking cancer cell progression in several experimental models; their utilization in clinical trials has unveiled unexpected complications against an effective utilization in patients. In this review, we summarize basic molecular mechanisms involving SFKs in cancer spreading and metastasization; and discuss preclinical and clinical data highlighting the main challenges for their future application as therapeutic targets in solid cancer progression
Collapse
|
17
|
Ancuceanu R, Tamba B, Stoicescu CS, Dinu M. Use of QSAR Global Models and Molecular Docking for Developing New Inhibitors of c-src Tyrosine Kinase. Int J Mol Sci 2019; 21:ijms21010019. [PMID: 31861445 PMCID: PMC6981969 DOI: 10.3390/ijms21010019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
A prototype of a family of at least nine members, cellular Src tyrosine kinase is a therapeutically interesting target because its inhibition might be of interest not only in a number of malignancies, but also in a diverse array of conditions, from neurodegenerative pathologies to certain viral infections. Computational methods in drug discovery are considerably cheaper than conventional methods and offer opportunities of screening very large numbers of compounds in conditions that would be simply impossible within the wet lab experimental settings. We explored the use of global quantitative structure-activity relationship (QSAR) models and molecular ligand docking in the discovery of new c-src tyrosine kinase inhibitors. Using a dataset of 1038 compounds from ChEMBL database, we developed over 350 QSAR classification models. A total of 49 models with reasonably good performance were selected and the models were assembled by stacking with a simple majority vote and used for the virtual screening of over 100,000 compounds. A total of 744 compounds were predicted by at least 50% of the QSAR models as active, 147 compounds were within the applicability domain and predicted by at least 75% of the models to be active. The latter 147 compounds were submitted to molecular ligand docking using AutoDock Vina and LeDock, and 89 were predicted to be active based on the energy of binding.
Collapse
Affiliation(s)
- Robert Ancuceanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (R.A.); (M.D.)
| | - Bogdan Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa, University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
- Correspondence:
| | - Cristina Silvia Stoicescu
- Department of Chemical Thermodynamics, Institute of Physical Chemistry “Ilie Murgulescu”, 060021 Bucharest, Romania;
| | - Mihaela Dinu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (R.A.); (M.D.)
| |
Collapse
|
18
|
Chen M, Cao Y, Dong D, Zhang Z, Zhang Y, Chen J, Luo Y, Chen Q, Xiao X, Zhou J, Xie W, Li D, Xie S, Liu M. Regulation of mitotic spindle orientation by phosphorylation of end binding protein 1. Exp Cell Res 2019; 384:111618. [PMID: 31505167 DOI: 10.1016/j.yexcr.2019.111618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
Abstract
End binding protein 1 (EB1) is a key regulator of microtubule dynamics that orchestrates hierarchical interaction networks at microtubule plus ends to control proper cell division. EB1 activity is known to be regulated by serine/threonine phosphorylation; however, how tyrosine phosphorylation affects EB1 activity remains poorly understood. In this study, we mapped the tyrosine phosphorylation pattern of EB1 in synchronized cells and identified two tyrosine phosphorylation sites (Y217 and Y247) in mitotic cells. Using phospho-deficient (Y/F) and phospho-mimic (Y/D) mutants, we revealed that Y247, but not Y217, is critical for astral microtubule stability. The Y247D mutant contributed to increased spindle angle, indicative of defects in spindle orientation. Time-lapse microscopy revealed that the Y247D mutant significantly delayed mitotic progression by increasing the duration times of prometaphase and metaphase. Structural analysis suggests that Y247 mutants lead to instability of the hydrophobic cavity in the EB homology (EBH) domain, thereby affecting its interactions with p150glued, a protein essential for Gαi/LGN/NuMA complex capture. These findings uncover a crucial role for EB1 phosphorylation in the regulation of mitotic spindle orientation and cell division.
Collapse
Affiliation(s)
- Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yu Cao
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dan Dong
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zhenhua Zhang
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yijun Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Youguang Luo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiang Chen
- Department of Emergency, Shanxian Dongda Hospital, Shandong, 274300, China
| | - Xin Xiao
- Department of Pathology, Zaozhuang Central District People's Hospital, Shandong, 277011, China
| | - Jun Zhou
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|