1
|
Liu F, Lu X, Tang M, Chen Y, Zheng X. Gut Microbiome and Metabolite Characteristics Associated With Different Clinical Stages in Non-Small Cell Lung Cancer Patients. Cancer Manag Res 2025; 17:45-56. [PMID: 39816490 PMCID: PMC11734503 DOI: 10.2147/cmar.s499003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/04/2025] [Indexed: 01/18/2025] Open
Abstract
Objective Our research has pinpointed the gut microbiome's role in the progression of various pathological types of non-small cell lung cancer (NSCLC). Nonetheless, the characteristics of the gut microbiome and its metabolites across different clinical stages of NSCLC are yet to be fully understood. The current study seeks to explore the distinctive gut flora and metabolite profiles of NSCLC patients across varying TNM stages. Methods The research team gathered stool samples from 52 patients diagnosed with non-small cell lung cancer (NSCLC) and 29 healthy individuals. Subsequently, they performed 16S rRNA gene amplification sequencing and untargeted gas/liquid chromatography-mass spectrometry metabolomics analysis. Results The study revealed that the alpha-diversity of the gut microbiome in NSCLC patients at different stages did not exhibit statistically significant differences. Notably, Lachnospira and Blautia were more abundant in healthy controls. The distribution of gut microbial species in patients with varying stages of NSCLC was uneven, with Bacteroides and Bacteroidaceae being most prevalent in stage T2, and Prevotella dominating in stage T4. Levels of Ruminococcus gnavus were notably elevated in stages N3 and M. The genus levels of Klebsiella, Parabacteroides, and Tannerellaceae were higher in stage II patients. Rodentibacter was the bacterium with increased levels in stage III NSCLC patients. Further metabolomics studies revealed significantly elevated levels of quinic acid and 3-hydroxybenzoic acid in the healthy control group. In contrast, Stage I+II non-small cell lung cancer (NSCLC) patients exhibited reduced levels of L-cystathionine. Notably, quinic acid, phthalic acid, and L-lactic acid were observed to be increased in Stage III+IV NSCLC patients. Conclusion Compared to the analysis of a single microbial dataset, this study provides deeper functional insights by incorporating comprehensive metabolomic profiling. This approach demonstrates that both the gut microbiome and associated metabolites are altered in NSCLC patients across different clinical stages. Our findings may offer novel perspectives on the pathogenesis of NSCLC at various TNM stages. Further research is warranted to validate and clinically apply these potential biomarkers.
Collapse
Affiliation(s)
- Fan Liu
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xingbing Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Mengli Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuzuo Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xi Zheng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
2
|
Zhao L, Fang Y, Zhang J, Wei C, Ji H, Zhao J, Wang D, Tang D. Changes in Intestinal Microbiota and Their Relationship With Patient Characteristics in Colorectal Cancer. Clin Med Insights Oncol 2024; 18:11795549241307632. [PMID: 39734513 PMCID: PMC11672582 DOI: 10.1177/11795549241307632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Gut microbiota are associated with the pathological features and development of colorectal cancer (CRC); however, how gut microbiota changes in patients with CRC is unknown. This study investigated the role of gut microbiota in the development and progression of CRC by retrospectively comparing the structural differences between the gut microbiota of patients with CRC and healthy individuals. METHODS Together with clinical data, we collected fecal samples from patients with CRC (n = 18) and healthy controls (n = 18) and performed 16S rRNA gene sequencing and alpha and beta diversity analysis to compare microbiota richness and diversity. Based on the differences in microbiota between the CRC and control groups, we identified disease-specific microbial communities after relevant factors. PICRUSt2 software was used to predict the differential microbial functions. RESULTS The CRC and control groups differed in both composition and abundance of intestinal microbiota. Firmicutes and Bacteroidetes were the most abundant phyla in both groups, while Verrucomicrobi was significantly more abundant in the CRC group. Megamonas, Lachnospira, and Romboutsia were more abundant in the control group; 18 genera differed significantly in abundance between the groups, which were found to involve 21 metabolic pathways. The distribution and abundance of gut microbiota differed significantly between patients with CRC with and without lymph node metastasis; at the genus level, the abundance of Rothia and Streptococcus was significantly higher and that of Bacteroides, Parabacteroides, and Oscillibacter was significantly lower in patients with lymph node metastasis. CONCLUSIONS The gut microbiota is altered in CRC patients compared with healthy individuals, with specific changes in the microbiota associated with clinical and pathological features such as tumor stage, lymph node involvement, and tumor differentiation. Our findings elaborate to some extent on the link between the gut microbiota and CRC.
Collapse
Affiliation(s)
- Lu Zhao
- The Yangzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Yangzhou, China
| | - Yongkun Fang
- Northern Jiangsu People’s Hospital, Yangzhou, China
| | | | - Chen Wei
- Northern Jiangsu People’s Hospital Affiliate to Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hao Ji
- Northern Jiangsu People’s Hospital Affiliate to Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jiahao Zhao
- Northern Jiangsu People’s Hospital Affiliate to Yangzhou University, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, China
| | - Dong Tang
- The Yangzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliate to Yangzhou University, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, China
- The Yangzhou School of Clinical Medicine, Dalian Medical University, Dalian, China
- The Yangzhou School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- Northern Jiangsu People’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
| |
Collapse
|
3
|
González A, Fullaondo A, Navarro D, Rodríguez J, Tirnauca C, Odriozola A. New Insights into Mucosa-Associated Microbiota in Paired Tumor and Non-Tumor Adjacent Mucosal Tissues in Colorectal Cancer Patients. Cancers (Basel) 2024; 16:4008. [PMID: 39682194 DOI: 10.3390/cancers16234008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVE Colorectal cancer (CRC) is one of the most common cancers worldwide. Increasing scientific evidence supports the idea that gut microbiota dysbiosis accompanies colorectal tumorigenesis, and these changes could be causative. Implementing gut microbiota analysis in clinical practice is limited by sample type, sequencing platform and taxonomic classification. This article aims to address these limitations, providing new insights into the microbiota associated with CRC pathogenesis and implementing its analyses in personalized medicine. METHODS To that aim, we evaluate differences in the bacterial composition of 130 paired tumor and non-tumor adjacent tissues from a cohort of CRC patients from the Biobank of the University of Navarra, Spain. The V3-V4 region of the 16S rRNA gene was amplified, sequenced using the MinION platform, and taxonomically classified using the NCBI database. RESULTS To our knowledge, this is the first study to report an increased relative abundance of Streptococcus periodonticum and a decreased relative abundance of Corynebacterium associated with CRC. Genera such as Fusobacterium, Leptotrichia and Streptococcus showed higher relative abundances in tumor than in non-tumor tissues, as previously described in the literature. Specifically, we identified higher levels of Fusobacterium animalis, Fusobacterium nucleatum, Fusobacterium polymorphum and S. periodonticum in tumor tissues. In contrast, genera such as Bacteroides and Corynebacterium showed lower relative abundances in tumor tissues. There were also differences at the taxonomic level between tumor locations. CONCLUSIONS These results, consistent with previous studies, further support the hypothesis that Leptotrichia and Fusobacterium contribute to CRC progression, with F. nucleatum and F. animalis proposed as key CRC pathogenic taxa. Overall, these results contribute to a better understanding of the CRC-associated microbiota, addressing critical barriers to its implementation in personalized medicine.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain
| | | | - Javier Rodríguez
- Department of Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Cristina Tirnauca
- Department of Mathematics, Statistics and Computer Science, University of Cantabria, 39005 Santander, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain
| |
Collapse
|
4
|
García Menéndez G, Sichel L, López MDC, Hernández Y, Arteaga E, Rodríguez M, Fleites V, Fernández LT, Cano RDJ. From colon wall to tumor niche: Unraveling the microbiome's role in colorectal cancer progression. PLoS One 2024; 19:e0311233. [PMID: 39436937 PMCID: PMC11495602 DOI: 10.1371/journal.pone.0311233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Colorectal cancer (CRC) is influenced by perturbations in the colonic microbiota, characterized by an imbalance favoring pathogenic bacteria over beneficial ones. This dysbiosis contributes to CRC initiation and progression through mechanisms such as carcinogenic metabolite production, inflammation induction, DNA damage, and oncogenic signaling activation. Understanding the role of external factors in shaping the colonic microbiota is crucial for mitigating CRC progression. This study aims to elucidate the gut microbiome's role in CRC progression by analyzing paired tumor and mucosal tissue samples obtained from the colon walls of 17 patients. Through sequencing of the V3-V4 region of the 16S rRNA gene, we characterized the tumor microbiome and assessed its association with clinical variables. Our findings revealed a significant reduction in alpha diversity within tumor samples compared to paired colon biopsy samples, indicating a less diverse microbial environment within the tumor microenvironment. While both tissues exhibited dominance of similar bacterial phyla, their relative abundances varied, suggesting potential colon-specific effects. Fusobacteriota enrichment, notably in the right colon, may be linked to MLH1 deficiency. Taxonomy analysis identified diverse bacterial genera, with some primarily associated with the colon wall and others unique to this region. Conversely, several genera were exclusively expressed in tumor tissue. Functional biomarker analysis identified three key genes with differential abundance between tumor microenvironment and colon tissue, indicating distinct metabolic activities. Functional biomarker analysis revealed three key genes with differential abundance: K11076 (putrescine transport system) and K10535 (nitrification) were enriched in the tumor microenvironment, while K11329 (SasA-RpaAB circadian timing mediator) dominated colon tissue. Metabolic pathway analysis linked seven metabolic pathways to the microbiome. Collectively, these findings highlight significant gut microbiome alterations in CRC and strongly suggest that long-term dysbiosis profoundly impacts CRC progression.
Collapse
Affiliation(s)
- Gissel García Menéndez
- Pathology Department, Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Liubov Sichel
- Stellar Biotics, LLC, Rockleigh, New Jersey, United States of America
| | | | - Yasel Hernández
- Pathology Department, Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Ernesto Arteaga
- Pathology Department, Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Marisol Rodríguez
- Pathology Department, Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Vilma Fleites
- Oncology Department Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Lipsy Teresa Fernández
- Surgery Department Clinical Hospital Hermanos Ameijeiras, Centro Habana, La Habana, Cuba
| | - Raúl De Jesus Cano
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, United States of America
| |
Collapse
|
5
|
Fan S, Zhang W, Zhou L, Wang D, Tang D. Potential role of the intratumoral microbiota in colorectal cancer immunotherapy. Int Immunopharmacol 2024; 137:112537. [PMID: 38909493 DOI: 10.1016/j.intimp.2024.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Colorectal cancer (CRC) has been one of the most common malignancies worldwide. Despite the advances in current therapies, the mortality rate of CRC remains high. Among them, immunotherapy has achieved satisfactory results in some CRC patients, however, how to expand the use of immunotherapy in CRC patients remains an urgent challenge. Surprisingly, the intratumoral microbiota has been found in multiple tumor tissues, including CRC. It has been demonstrated that the intratumoral microbiota is associated with the progression and treatment of CRC, and is able to enhance or decrease anti-tumor immune responses via different mechanisms as well as influence the immunotherapy efficacy, providing new potential therapeutic targets for CRC immunotherapy. In this review, we focus on the characteristics of the intratumoral microbiota, its roles in the genesis and development of CRC, its modulation of anti-tumor immune responses and immunotherapy, and propose potential applications of the intratumoral microbiota in CRC immunotherapy. Additionally, we propose possible directions for future research on the intratumoral microbiota related to CRC immunotherapy.
Collapse
Affiliation(s)
- Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou 225000, PR China.
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing 400030, PR China.
| | - Lujia Zhou
- Clinical Medical College, Yangzhou University, Yangzhou 225000, PR China.
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225000, PR China.
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225000, PR China.
| |
Collapse
|
6
|
Herlo LF, Salcudean A, Sirli R, Iurciuc S, Herlo A, Nelson-Twakor A, Alexandrescu L, Dumache R. Gut Microbiota Signatures in Colorectal Cancer as a Potential Diagnostic Biomarker in the Future: A Systematic Review. Int J Mol Sci 2024; 25:7937. [PMID: 39063179 PMCID: PMC11276678 DOI: 10.3390/ijms25147937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota has acquired significant attention in recent years for its potential as a diagnostic biomarker for colorectal cancer (CRC). In this literature review, we looked at the studies exploring alterations in gut microbiota composition associated with CRC, the potential mechanisms linking gut dysbiosis to CRC development, and the diagnostic approaches utilizing gut microbiota analysis. Our research has led to the conclusion that individuals with CRC often display alterations in their gut microbiota composition compared to healthy individuals. These alterations can include changes in the diversity, abundance, and type of bacteria present in the gut. While the use of gut microbiota as a diagnostic biomarker for CRC holds promise, further research is needed to validate its effectiveness and standardize testing protocols. Additionally, considerations such as variability in the microbiota composition among individuals and potential factors must be addressed before microbiota-based tests can be widely implemented in clinical practice.
Collapse
Affiliation(s)
- Lucian-Flavius Herlo
- Doctoral School, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Andreea Salcudean
- Discipline of Sociobiology, Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania;
| | - Roxana Sirli
- Advanced Regional Research Center in Gastroenterology and Hepatology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Stela Iurciuc
- Cardiology Department, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Alexandra Herlo
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Andreea Nelson-Twakor
- Department of Internal Medicine, County Clinical Emergency Hospital of Constanta, 900647 Constanta, Romania;
| | - Luana Alexandrescu
- Department of Gastroenterology, County Clinical Emergency Hospital of Constanta, 900647 Constanta, Romania;
| | - Raluca Dumache
- Department of Forensic Medicine, Bioethics, Medical ethics and Medical Law, Victor Babes University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Liang Y, Zhang Q, Yu J, Hu W, Xu S, Xiao Y, Ding H, Zhou J, Chen H. Tumour-associated and non-tumour-associated bacteria co-abundance groups in colorectal cancer. BMC Microbiol 2024; 24:242. [PMID: 38961349 PMCID: PMC11223424 DOI: 10.1186/s12866-024-03402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND & AIMS Gut microbiota is closely related to the occurrence and development of colorectal cancer (CRC). However, the differences in bacterial co-abundance groups (CAGs) between tumor tissue (TT) and normal tissue (NT), as well as their associations with clinical features, are needed to be clarified. METHODS Bacterial 16 S rRNA sequencing was performed by using TT samples and NT samples of 251 patients with colorectal cancer. Microbial diversity, taxonomic characteristics, microbial composition, and functional pathways were compared between TT and NT. Hierarchical clustering was used to construct CAGs. RESULTS Four CAGs were grouped in the hierarchical cluster analysis. CAG 2, which was mainly comprised of pathogenic bacteria, was significantly enriched in TT samples (2.27% in TT vs. 0.78% in NT, p < 0.0001). CAG 4, which was mainly comprised of non-pathogenic bacteria, was significantly enriched in NT samples (0.62% in TT vs. 0.79% in NT, p = 0.0004). In addition, CAG 2 was also significantly associated with tumor microsatellite instability (13.2% in unstable vs. 2.0% in stable, p = 0.016), and CAG 4 was positively correlated with the level of CA199 (r = 0.17, p = 0.009). CONCLUSIONS Our research will deepen our understanding of the interactions among multiple bacteria and offer insights into the potential mechanism of NT to TT transition.
Collapse
Affiliation(s)
- Yuxuan Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qingrong Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jing Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenyan Hu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Sihua Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yiyuan Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Hui Ding
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jiaming Zhou
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
8
|
Abstract
Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.
Collapse
Affiliation(s)
- Giselle McCallum
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
10
|
Zhan L, Su F, Li Q, Wen Y, Wei F, He Z, Chen X, Yin X, Wang J, Cai Y, Gong Y, Chen Y, Ma X, Zeng J. Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action. Front Pharmacol 2023; 14:1257450. [PMID: 37693915 PMCID: PMC10484417 DOI: 10.3389/fphar.2023.1257450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world, and it is prone to recurrence and metastasis during treatment. Aerobic glycolysis is one of the main characteristics of tumor cell metabolism in CRC. Tumor cells rely on glycolysis to rapidly consume glucose and to obtain more lactate and intermediate macromolecular products so as to maintain growth and proliferation. The regulation of the CRC glycolysis pathway is closely associated with several signal transduction pathways and transcription factors including phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), myc, and p53. Targeting the glycolytic pathway has become one of the key research aspects in CRC therapy. Many phytochemicals were shown to exert anti-CRC activity by targeting the glycolytic pathway. Here, we review the effects and mechanisms of phytochemicals on CRC glycolytic pathways, providing a new method of drug development.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiaoyan Chen
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiang Yin
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jian Wang
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxia Gong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Li X, Feng J, Wang Z, Liu G, Wang F. Features of combined gut bacteria and fungi from a Chinese cohort of colorectal cancer, colorectal adenoma, and post-operative patients. Front Microbiol 2023; 14:1236583. [PMID: 37614602 PMCID: PMC10443710 DOI: 10.3389/fmicb.2023.1236583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer (CRC) accounts for the third highest morbidity burden among malignant tumors worldwide. Previous studies investigated gut microbiome changes that occur during colorectal adenomas (CRA) progression to overt CRC, thus highlighting the importance of the gut microbiome in carcinogenesis. However, few studies have examined gut microbiome characteristics across the entire spectrum, from CRC development to treatment. The study used 16S ribosomal ribonucleic acid and internal transcribed spacer amplicon sequencing to compare the composition of gut bacteria and fungi in a Chinese cohort of healthy controls (HC), CRC patients, CRA patients, and CRC postoperative patients (PP). Our analysis showed that beta diversity was significantly different among the four groups based on the gut bacterial and fungal data. A total of 51 species of bacteria and 8 species of fungi were identified in the HC, CRA, CRC, and PP groups. Correlation networks for both the gut bacteria and fungi in HC vs. CRA, HC vs. CRC, and HC vs. PP indicated some hub bacterial and fungal genera in each model, and the correlation between bacterial and fungal data indicated that a highly significant negative correlation exists among groups. Quantitative polymerase chain reaction (qPCR) analysis in a large cohort of HC, CRC, CRA, and PP patients demonstrated a significantly increasing trend of Fusobacterium nucleatum, Bifidobacterium bifidum, Candida albicans, and Saccharomyces cerevisiae in the feces of CRC patients than that of HC patients (p < 0.01). However, the abundance levels of CRA and PP were significantly lower in HC patients than those in CRC patients. Further studies are required to identify the functional consequences of the altered bacterial/fungal composition on metabolism and CRC tumorigenesis in the host.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Jiahui Feng
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Zhanggui Wang
- Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Gang Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Fan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Fukuoka H, Tourlousse DM, Ohashi A, Suzuki S, Nakagawa K, Ozawa M, Ishibe A, Endo I, Sekiguchi Y. Elucidating colorectal cancer-associated bacteria through profiling of minimally perturbed tissue-associated microbiota. Front Cell Infect Microbiol 2023; 13:1216024. [PMID: 37593761 PMCID: PMC10432157 DOI: 10.3389/fcimb.2023.1216024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023] Open
Abstract
Sequencing-based interrogation of gut microbiota is a valuable approach for detecting microbes associated with colorectal cancer (CRC); however, such studies are often confounded by the effect of bowel preparation. In this study, we evaluated the viability of identifying CRC-associated mucosal bacteria through centimeter-scale profiling of the microbiota in tumors and adjacent noncancerous tissue from eleven patients who underwent colonic resection without preoperative bowel preparation. High-throughput 16S rRNA gene sequencing revealed that differences between on- and off-tumor microbiota varied considerably among patients. For some patients, phylotypes affiliated with genera previously implicated in colorectal carcinogenesis, as well as genera with less well-understood roles in CRC, were enriched in tumor tissue, whereas for other patients, on- and off-tumor microbiota were very similar. Notably, the enrichment of phylotypes in tumor-associated mucosa was highly localized and no longer apparent even a few centimeters away from the tumor. Through short-term liquid culturing and metagenomics, we further generated more than one-hundred metagenome-assembled genomes, several representing bacteria that were enriched in on-tumor samples. This is one of the first studies to analyze largely unperturbed mucosal microbiota in tissue samples from the resected colons of unprepped CRC patients. Future studies with larger cohorts are expected to clarify the causes and consequences of the observed variability in the emergence of tumor-localized microbiota among patients.
Collapse
Affiliation(s)
- Hironori Fukuoka
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Dieter M. Tourlousse
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Akiko Ohashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Shinsuke Suzuki
- Department of Surgery, Fujisawa Shonandai Hospital, Fujisawa, Japan
| | - Kazuya Nakagawa
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Mayumi Ozawa
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Ishibe
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Hospital, Yokohama, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
13
|
Debelius JW, Engstrand L, Matussek A, Brusselaers N, Morton JT, Stenmarker M, Olsen RS. The Local Tumor Microbiome Is Associated with Survival in Late-Stage Colorectal Cancer Patients. Microbiol Spectr 2023; 11:e0506622. [PMID: 37042765 PMCID: PMC10269740 DOI: 10.1128/spectrum.05066-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
The gut microbiome is associated with survival in colorectal cancer. Single organisms have been identified as markers of poor prognosis. However, in situ imaging of tumors demonstrate a polymicrobial tumor-associated community. To understand the role of these polymicrobial communities in survival, we conducted a nested case-control study in late-stage cancer patients undergoing resection for primary adenocarcinoma. The microbiome of paired tumor and adjacent normal tissue samples was profiled using 16S rRNA sequencing. We found a consistent difference in the microbiome between paired tumor and adjacent tissue, despite strong individual microbial identities. Furthermore, a larger difference between normal and tumor tissue was associated with prognosis: patients with shorter survival had a larger difference between normal and tumor tissue. Within the tumor tissue, we identified a 39-member community statistic associated with survival; for every log2-fold increase in this value, an individual's odds of survival increased by 20% (odds ratio survival 1.20; 95% confidence interval = 1.04 to 1.33). Our results suggest that a polymicrobial tumor-specific microbiome is associated with survival in late-stage colorectal cancer patients. IMPORTANCE Microbiome studies in colorectal cancer (CRC) have primarily focused on the role of single organisms in cancer progression. Recent work has identified specific organisms throughout the intestinal tract, which may affect survival; however, the results are inconsistent. We found differences between the tumor microbiome and the microbiome of the rest of the intestine in patients, and the magnitude of this difference was associated with survival, or, the more like a healthy gut a tumor looked, the better a patient's prognosis. Our results suggest that future microbiome-based interventions to affect survival in CRC will need to target the tumor community.
Collapse
Affiliation(s)
- Justine W. Debelius
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Andreas Matussek
- Laboratory Medicine, Jönköping Region County, Department of Clinical and Experimental Medicine, Linköping University, Jönköping, Sweden
- Division of Laboratory Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Nele Brusselaers
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden
- Global Health Institute, Antwerp University, Antwerp, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - James T. Morton
- Biostatistics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaretha Stenmarker
- Futurum/Department of Pediatrics, Jönköping Region County, Jönköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Institute of Clinical Sciences, Department of Paediatrics, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Renate S. Olsen
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Solna, Sweden
- Pathology Laboratory, Department of Laboratory Medicine, Jönköping Region County, Jönköping, Sweden
- Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
14
|
Liu J, Huang X, Chen C, Wang Z, Huang Z, Qin M, He F, Tang B, Long C, Hu H, Pan S, Wu J, Tang W. Identification of colorectal cancer progression-associated intestinal microbiome and predictive signature construction. J Transl Med 2023; 21:373. [PMID: 37291572 PMCID: PMC10249256 DOI: 10.1186/s12967-023-04119-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/09/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVE The relationship between intestinal microbiome and colorectal cancer (CRC) progression is unclear. This study aims to identify the intestinal microbiome associated with CRC progression and construct predictive labels to support the accurate assessment and treatment of CRC. METHOD The 192 patients included in the study were divided into stage I-II and stage III-IV CRC patients according to the pathological stages, and preoperative stools were collected from both groups for 16S rDNA sequencing of the intestinal microbiota. Pearson correlation and Spearman correlation coefficient analysis were used to analyze the differential intestinal microbiome and the correlation with tumor microenvironment and to predict the functional pathway. XGBoost model (XGB) and Random Forest model (RF) were used to construct the microbiome-based signature. The total RNA extraction from 17 CRC tumor simples was used for transcriptome sequencing. RESULT The Simpson index of intestinal microbiome in stage III-IV CRC were significantly lower than those in stage I-II CRC. Proteus, Parabacteroides, Alistipes and Ruminococcus etc. are significantly enriched genus in feces of CRC patients with stage III-IV. ko00514: Other types of O - glycan biosynthesis pathway is relevant with CRC progression. Alistipes indistinctus was positively correlated with mast cells, immune activators IL-6 and IL6R, and GOBP_PROTEIN_FOLDING_IN_ENDOPLASMIC_RETICULUM dominantly. The Random Forest (RF) model and eXtreme Gradient Boosting (XGBoost) model constructed with 42 CRC progression-associated differential bacteria were effective in distinguishing CRC patients between stage I-II and stage III-IV. CONCLUSIONS The abundance and diversity of intestinal microbiome may increase gradually with the occurrence and progression of CRC. Elevated fetal abundance of Proteus, Parabacteroides, Alistipes and Ruminococcus may contribute to CRC progression. Enhanced synthesis of O - glycans may result in CRC progression. Alistipes indistinctus may play a facilitated role in mast cell maturation by boosting IL-6 production. Alistipes indistinctus may work in the correct folding of endoplasmic reticulum proteins in CRC, reducing ER stress and prompting the survival and deterioration of CRC, which may owe to the enhanced PERK expression and activation of downstream UPR by Alistipes indistinctus. The CRC progression-associated differential intestinal microbiome identified in our study can be served as potential microbial markers for CRC staging prediction.
Collapse
Affiliation(s)
- Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chuanbin Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zhen Wang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zigui Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Mingjian Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Fuhai He
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Binzhe Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Hong Hu
- School of Public Health, Guangxi Medical University, Nanning, The People's Republic of China
| | - Shuibo Pan
- School of Public Health, Guangxi Medical University, Nanning, The People's Republic of China
| | - Junduan Wu
- School of Public Health, Guangxi Medical University, Nanning, The People's Republic of China.
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| |
Collapse
|
15
|
Khannous-Lleiffe O, Willis JR, Saus E, Moreno V, Castellví-Bel S, Gabaldón T. Microbiome Profiling from Fecal Immunochemical Test Reveals Microbial Signatures with Potential for Colorectal Cancer Screening. Cancers (Basel) 2022; 15:cancers15010120. [PMID: 36612118 PMCID: PMC9817783 DOI: 10.3390/cancers15010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer deaths worldwide. Early diagnosis of CRC, which saves lives and enables better outcomes, is generally implemented through a two-step population screening approach based on the use of Fecal Immunochemical Test (FIT) followed by colonoscopy if the test is positive. However, the FIT step has a high false positive rate, and there is a need for new predictive biomarkers to better prioritize cases for colonoscopy. Here we used 16S rRNA metabarcoding from FIT positive samples to uncover microbial taxa, taxon co-occurrence and metabolic features significantly associated with different colonoscopy outcomes, underscoring a predictive potential and revealing changes along the path from healthy tissue to carcinoma. Finally, we used machine learning to develop a two-phase classifier which reduces the current false positive rate while maximizing the inclusion of CRC and clinically relevant samples.
Collapse
Affiliation(s)
- Olfat Khannous-Lleiffe
- Barcelona Supercomputing Center (BSC-CNS), Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jesse R. Willis
- Barcelona Supercomputing Center (BSC-CNS), Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Center (BSC-CNS), Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Victor Moreno
- Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Av. de Monforte de Lemos, 3–5, 28029 Madrid, Spain
- Gastroenterology Department, University of Barcelona, 08036 Barcelona, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, University of Barcelona, 08036 Barcelona, Spain
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, 08036 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Center (BSC-CNS), Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Centro Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), 08028 Barcelona, Spain
- Correspondence:
| | | |
Collapse
|
16
|
Moreno-Jiménez M, Rocha-Guzmán N, Larrosa M, Bressa C, Segura-Sánchez C, Macías-Salas A, Díaz-Rivas J, Flores-Rodríguez P. Constituents of Quercus eduardii leaf infusion: Their interaction with gut microbiota communities and therapeutic role in colorectal cancer. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
17
|
Characteristics of gastric cancer gut microbiome according to tumor stage and age segmentation. Appl Microbiol Biotechnol 2022; 106:6671-6687. [PMID: 36083304 DOI: 10.1007/s00253-022-12156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
With the development of 16S rRNA technology, gut microbiome evaluation has been performed in many diseases, including gastrointestinal tumors. Among these cancers, gastric cancer (GC) exhibits high morbidity and mortality and has been extensively studied in its pathogenesis and diagnosis techniques. The current researches have proved that the gut microbiome may have the potential to distinguish GC patients from healthy patients. However, the change of the gut microbiome according to tumor node metastasis classification (TNM) has not been clarified. Besides, the characteristics of gut microbiome in GC patients and their ages of onset are also ambiguous. To address the above shortcomings, we investigated 226 fecal samples and divided them according to their tumor stage and onset age. The findings revealed that surgery and tumor stage can change the characteristic of GC patients' gut microbiota. In specific, the effect of surgery on early gastric cancer (EGC) was greater than that on advanced gastric cancer (AGC), and the comparison of postoperative microflora with healthy people indicated that EGC has more differential bacteria than AGC. Besides, we found that Collinsella, Blautia, Anaerostipes, Dorea, and Lachnospiraceae_ND3007_group expressed differently between EGC and AGC. More importantly, it is the first time revealed that the composition of gut microbiota in GC is different between different onset ages. KEY POINTS: •Gut microbiota of gastric cancer (GC) patients are either highly associated with TNM stage and surgery or not. It shows surgery has more significant changes in early gastric cancer (EGC) than advanced gastric cancer (AGC). •There existed specific gut microbiota between EGC and AGC which may have potential to distinguish the early or advanced GC. •Onset age of GC may influence the gut microbiota: the composition of gut microbiota of early-onset gastric cancer (EOGC) and late-onset gastric cancer (LOGC) is significantly different.
Collapse
|
18
|
The Tissue-Associated Microbiota in Colorectal Cancer: A Systematic Review. Cancers (Basel) 2022; 14:cancers14143385. [PMID: 35884445 PMCID: PMC9317273 DOI: 10.3390/cancers14143385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Growing evidence shows a close relationship between the microbiome and colorectal cancer, but most studies analyze fecal samples. However, solid information on the microbial community that is present locally in the intestinal tumor tissues is lacking. Therefore, the aim of this systematic review was to compile evidence on the relationship between tissue-associated microbiota and colorectal cancer. Among 5080 screened publications, 39 were eligible and included in the analysis. Despite the heterogeneity in methodologies and reporting between studies, 12 groups of bacteria with strong positive and 18 groups of bacteria with strong negative associations with colorectal cancer were identified. Such knowledge may ultimately be used in novel strategies that aim to prevent, detect, and treat colorectal cancer in the upcoming years. Abstract The intestinal microbiome is associated with colorectal cancer. Although the mucosal microbiota better represents an individual’s local microbiome, studies on the colorectal cancer microbiota mainly reflect knowledge obtained from fecal samples. This systematic review aimed to summarize the current evidence on the relationship between the mucosal-associated bacterial microbiota and colorectal cancer. Searches were conducted in PubMed and Web of Science databases for publications comparing the mucosal microbiome of colorectal cancer patients with that of healthy controls, or with that of non-cancerous mucosal tissues. The primary outcomes were differences in microbial diversity and taxonomy. The Newcastle-Ottawa Scale was used to assess the quality of the included studies. Of the 5080 studies identified, 39 were eligible and included in the systematic review. No consistent results were identified for the α- and β-diversity, due to high heterogeneity in reporting and to differences in metrics and statistical approaches, limiting study comparability. Qualitative synthesis of microbial taxonomy identified 12 taxa with strong positive and 18 taxa with strong negative associations with colorectal cancer. Fusobacterium, Campylobacter, Parvimonas, Peptostreptococcus, Streptococcus, and Granulicatella were defined as enriched in colorectal cancer. Despite the methodological limitations of the studies, consistent evidence on bacterial taxa associated with colorectal cancer was identified. Prospective studies in large and well-characterized patient populations will be crucial to validate these findings.
Collapse
|
19
|
Mahoney DE, Chalise P, Rahman F, Pierce JD. Influences of Gastrointestinal Microbiota Dysbiosis on Serum Proinflammatory Markers in Epithelial Ovarian Cancer Development and Progression. Cancers (Basel) 2022; 14:3022. [PMID: 35740687 PMCID: PMC9220985 DOI: 10.3390/cancers14123022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
GI microbiota has been implicated in producing the inflammatory tumor microenvironment of several cancers. Women with ovarian cancer often report GI-related symptoms at diagnosis although minimal is known about the possible GI bacteria that may trigger pro-tumorigenic immune responses in early EOC. The purpose of this study was to investigate the influences of GI microbiota dysbiosis on serum inflammatory markers during EOC utilizing a rodent model. This experimental design consisted of C57BL/6 mice randomly assigned to either the microbiota dysbiosis group (n = 6) or control group (n = 5). The CD7BL/6 mice assigned to the microbiota dysbiosis group were administered a mixture of broad-spectrum antibiotics (bacitracin and neomycin) for 2 weeks. Both groups were injected intraperitoneally with mouse ovarian epithelial cells that induce ovarian tumorigenesis. Levels of C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were assessed in the serum, and the composition of the GI microbiota in fecal samples was measured using 16S rRNA gene sequencing. Overall CRP serum levels were significantly lower and TNFα levels were significantly higher in the microbiota dysbiosis group compared to the control group. The abundances of microbiota that correlated with CRP serum levels in the combined groups were genus Parabacteroides, Roseburia, and Emergencia and species Ruminococcus faecis, Parabacteroides distasonis, Roseburia Faecis, and Emergencia timonensis. This study provides evidence to support for further investigation of the GI microbial profiles in patients at risk of EOC.
Collapse
Affiliation(s)
- Diane E. Mahoney
- School of Nursing, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Faith Rahman
- Clinical Trials Clinical Operations, University of Kansas Cancer Center, Kansas City, KS 66160, USA;
| | - Janet D. Pierce
- School of Nursing, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
20
|
Kabwe M, Dashper S, Bachrach G, Tucci J. Bacteriophage manipulation of the microbiome associated with tumour microenvironments-can this improve cancer therapeutic response? FEMS Microbiol Rev 2021; 45:6188389. [PMID: 33765142 DOI: 10.1093/femsre/fuab017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Some cancer treatment failures have been attributed to the tumour microbiota, with implications that microbiota manipulation may improve treatment efficacy. While antibiotics have been used to control bacterial growth, their dysbiotic effects on the microbiome, failure to penetrate biofilms and decreased efficacy due to increasing antimicrobial resistance by bacteria, suggest alternatives are needed. Bacteriophages may provide a precise means for targeting oncobacteria whose relative abundance is increased in tumour tissue microbiomes. Fusobacterium, Streptococcus, Peptostreptococcus, Prevotella, Parvimonas, and Treponema species are prevalent in tumour tissue microbiomes of some cancers. They may promote cancer growth by dampening immunity, stimulating release of proinflammatory cytokines, and directly interacting with cancer cells to stimulate proliferation. Lytic bacteriophages against some of these oncobacteria have been isolated and characterised. The search continues for others. The possibility exists for their testing as adjuncts to complement existing therapies. In this review, we highlight the role of oncobacteria, specifically those whose relative abundance in the intra-tumour microbiome is increased, and discuss the potential for bacteriophages against these micro-organisms to augment existing cancer therapies. The capacity for bacteriophages to modulate immunity and kill specific bacteria makes them suitable candidates to manipulate the tumour microbiome and negate the effects of these oncobacteria.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, 720 Swanston St, Parkville, Victoria 3010, Australia
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, PO Box 12272, Jerusalem 9112102, Israel
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Sharon St. Bendigo, Victoria 3550, Australia
| |
Collapse
|
21
|
Zong Y, Zhou Y, Liao B, Liao M, Shi Y, Wei Y, Huang Y, Zhou X, Cheng L, Ren B. The Interaction Between the Microbiome and Tumors. Front Cell Infect Microbiol 2021; 11:673724. [PMID: 34532297 PMCID: PMC8438519 DOI: 10.3389/fcimb.2021.673724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a significant global health problem and is characterized by a consistent increase in incidence and mortality rate. Deciphering the etiology and risk factors are essential parts of cancer research. Recently, the altered microbiome has been identified within the tumor microenvironment, tumor tissue, and even nonadjacent environments, which indicates a strong correlation between the microbiome and tumor development. However, the causation and mechanisms of this correlation remain unclear. Herein, we summarized and discussed the interaction between the microbiome and tumor progression. Firstly, the microbiome, which can be located in the tumor microenvironment, inside tumor tissues and in the nonadjacent environment, is different between cancer patients and healthy individuals. Secondly, the tumor can remodel microbial profiles by creating a more beneficial condition for the shifted microbiome. Third, the microbiome can promote tumorigenesis through a direct pathogenic process, including the establishment of an inflammatory environment and its effect on host immunity. The interactions between the microbiome and tumors can promote an understanding of the carcinogenesis and provide novel therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yawen Zong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yu Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Promising Diagnostic Markers of Colon Cancer. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. The incidence of colon cancer over the past decade has been growing markedly in the Russian Federation, with about 50 % cases detected at stagesIII–IV of the disease, when a clear clinical picture of the disease appears. In this regard, the search for new methods for early diagnosis of RTK is undoubtedly relevant.Objective. To determine the standard composition of the aerobic parietal colon microbiota and the level of cytokines (chemokines and growth factors) in patients with cancer of the left half of the colon and to assess the possibility of using these data in the diagnosis of the tumor process.Materials and methods. Blood tests were performed on the day of the study using two test systems (BioLegend): multiplex kit for determining growth factors, chemokine multiplex kit. The composition of the intestinal microbiota was determined in colon biopsy specimens by the bacteriological method using the standard test systems StaphyTest, StreptoTest, and EnteroTest.Results. There is an increase in the number of Clostridiumspp. and a decrease in Bifidobacteriumspp., E. coli in the colon during the transformation of a healthy person’s mucosa into a malignant tumor (p < 0.05); a clear tendency was revealed for both an increase (EGF, HGF, M-CSF, PDGF-AA, PDGF-BB, IP-10) and a decrease (MCP-1, RANTES) of the level of chemokines and growth factors under colon cancer conditions. In addition to general quantitative changes in the intestinal microbiota, the level of the investigated substances, a statistically significant dependence was established on the sex, age of the patient, as well as the degree of differentiation and form of tumor growth.Conclusion. It was established that changes in the quantitative composition of the intestinal microbiota, the level of some biologically active substances that occur precisely in the conditions of colon cancer, can be interconnected and interdependent, and also serve as an additional diagnostic marker in the detection of a malignant tumor.
Collapse
|
23
|
Volkov SV, Lobanov SL. Characterization of the parietal intestinal microbiota in colon cancer. СИБИРСКИЙ НАУЧНЫЙ МЕДИЦИНСКИЙ ЖУРНАЛ 2021; 41:74-78. [DOI: 10.18699/ssmj20210210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Introduction. Colon cancer (RCC) clinically manifests itself in the late stages, therefore, early diagnosis presents significant difficulties. There are many types of microorganisms in the human colon that form symbiosis with intestinal cells to maintain normal function. Аim of the study was to determine the composition of the parietal microflora of the colon under conditions of a tumor process and to assess the possibility of using these data in the diagnosis of colon cancer. Material and methods. The main group included 63 patients operated on for cancer (adenocarcinoma) of the left half of the colon (descending, sigmoid, rectosigmoid regions) with I T1-2N0M0, II T3-4aN0M0, III T1-2N1M0 stages of the tumor process. Among them are 32 men and 31 women aged 20 to 75 years (57.7 ± 3.8 years). In all patients, before hospitalization, the tumor was confirmed by colonoscopy followed by histological examination. The group of clinical comparison in the amount of 25 people consisted of patients with chronic hemorrhoids without exacerbation, who underwent colonoscopy. Material from the main group, biopsies of tumor tissue and visually unchanged colon mucosa, were taken intraoperatively during tumor removal. In patients of the clinical comparison group, the material was taken during the colonoscopy process. The composition of the intestinal microbiota was determined by a bacteriological method. Results and discussion. As a result of comparing the colon microbiota of cancer patients and the clinical comparison group, statistically significant differences in the quantitative composition of Lactobacillus spp., Bifidobacterium spp., Bacteroides spp., Clostridium spp., Enterococcus spp., Escherichia coli (typical), Escherichia coli (lactose-negative), Enterobacteriaceae, Staphylococcus spp. (CNS), Candida spp. It was established for the first time that Bifidobacterium spp., Enterococcus spp. and the age of the patient can be further used in the diagnosis of a malignant process. Conclusion. The created additive model can be used as an additional screening criterion in the early diagnosis of colon cancer.
Collapse
Affiliation(s)
- S. V. Volkov
- Chita State Medical Academy of Minzdrav of Russia
| | | |
Collapse
|
24
|
Perillo F, Amoroso C, Strati F, Giuffrè MR, Díaz-Basabe A, Lattanzi G, Facciotti F. Gut Microbiota Manipulation as a Tool for Colorectal Cancer Management: Recent Advances in Its Use for Therapeutic Purposes. Int J Mol Sci 2020; 21:E5389. [PMID: 32751239 PMCID: PMC7432108 DOI: 10.3390/ijms21155389] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by both environmental and genetic factors. A large body of literature has demonstrated the role of gut microbes in promoting inflammatory responses, creating a suitable microenvironment for the development of skewed interactions between the host and the gut microbiota and cancer initiation. Even if surgery is the primary therapeutic strategy, patients with advanced disease or cancer recurrence after surgery remain difficult to cure. Therefore, the gut microbiota has been proposed as a novel therapeutic target in light of recent promising data in which it seems to modulate the response to cancer immunotherapy. The use of microbe-targeted therapies, including antibiotics, prebiotics, live biotherapeutics, and fecal microbiota transplantation, is therefore considered to support current therapies in CRC management. In this review, we will discuss the importance of host-microbe interactions in CRC and how promoting homeostatic immune responses through microbe-targeted therapies may be useful in preventing/treating CRC development.
Collapse
Affiliation(s)
- Federica Perillo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Chiara Amoroso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Francesco Strati
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Maria Rita Giuffrè
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| | - Angélica Díaz-Basabe
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20135 Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20135 Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy; (F.P.); (C.A.); (M.R.G.); (A.D.-B.); (G.L.)
| |
Collapse
|
25
|
Aindelis G, Chlichlia K. Modulation of Anti-Tumour Immune Responses by Probiotic Bacteria. Vaccines (Basel) 2020; 8:vaccines8020329. [PMID: 32575876 PMCID: PMC7350223 DOI: 10.3390/vaccines8020329] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing amount of evidence to support the beneficial role of a balanced intestinal microbiota, or distinct members thereof, in the manifestation and progression of malignant tumours, not only in the gastrointestinal tract but also in distant tissues as well. Intriguingly, bacterial species have been demonstrated to be indispensable modulatory agents of widely-used immunotherapeutic or chemotherapeutic regiments. However, the exact contribution of commensal bacteria to immunity, as well as to neoplasia formation and response to treatment, has not been fully elucidated, and most of the current knowledge acquired from animal models has yet to be translated to human subjects. Here, recent advances in understanding the interaction of gut microbes with the immune system and the modulation of protective immune responses to cancer, either naturally or in the context of widely-used treatments, are reviewed, along with the implications of these observations for future therapeutic approaches. In this regard, bacterial species capable of facilitating optimal immune responses against cancer have been surveyed. According to the findings summarized here, we suggest that strategies incorporating probiotic bacteria and/or modulation of the intestinal microbiota can be used as immune adjuvants, aiming to optimize the efficacy of cancer immunotherapies and conventional anti-tumour treatments.
Collapse
|