1
|
Abusharieh E, Aslam N, Zihlif MA, Bustanji Y, Wehaibi S, Abuarqoub D, Shahin D, Saadeh H, Barham R, Awidi AS. In vitro investigation of epigenetic regulators related to chemo-resistance and stemness of CD133 +VE cells sorted from U87MG cell line. Gene 2025; 956:149432. [PMID: 40157620 DOI: 10.1016/j.gene.2025.149432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Glioblastoma (GBM) is the most common and malignant adult primary brain tumor with frequent relapse and resistance to therapies. Glioma stem cells, a rare population, is thought to be the reason behind the treatment's failure. It is imperative to investigate the disease mechanisms and identify the biomarkers by which glioma stem cells would contribute to treatment relapse and resistance to already available chemotherapeutic agents. The CD133+VE cells were isolated from U87MG cell line and characterized by morphological features, cell viability, self-renewal efficiency, migration potential and karyotyping. Doxorubicin Cisplatin, Irinotecan, Etoposide and Temozolomide were used to determine the anti-proliferative effect on CD133+VE cells. Confocal microcopy was used to localize the chemotherapeutic agents in the CD133+VE cells. In quest of epigenetic biomarkers, RNA sequencing was performed to find the role of lncRNAs in stemness and resistance to therapies. U87cell line and CD133-VE cells were kept as controls for all the experiments. It was found that CD133+VEcells were highly proliferative with increased migration potential, elevated IC50 values against chemotherapeutic agents and showed distinct karyotyping related to pluripotency. Chemotherapeutic agent such as Doxorubicin was localized outside the nucleus revealing the drug resistance as evident by confocal microscopy. RNA sequencing revealed 126 differentially expressed lncRNAs (DELs) in CD133+VEcells among which lncRNA LOXL1-AS1 was highly upregulated and lncRNA PAX8-AS1 was significantly downregulated. These lncRNAs has been reported to be related to drug resistance, migration and epithelial- to- mesenchymal transmission (EMT), self-renewal and stemness properties contributing to poor prognosis and disease relapse.
Collapse
Affiliation(s)
- Elham Abusharieh
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-zaytoonah University of Jordan, Amman 11733, Jordan; Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; Department of Clinical Pharmacy and Biopharmaceutics, Faculty of Pharmacy, The University of Jordan, Amman, Jordan.
| | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Malek A Zihlif
- Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Yasser Bustanji
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Clinical Pharmacy and Biopharmaceutics, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra. Amman 11196, Jordan
| | - Diana Shahin
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Heba Saadeh
- Department of Computer Science, KASIT, The University of Jordan, Amman, 11942 Jordan
| | - Raghad Barham
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Abdalla S Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
2
|
Sirek T, Król-Jatręga K, Borawski P, Zmarzły N, Boroń D, Ossowski P, Nowotny-Czupryna O, Boroń K, Janiszewska-Bil D, Mitka-Krysiak E, Grabarek BO. Distinct mRNA expression profiles and miRNA regulators of the PI3K/AKT/mTOR pathway in breast cancer: insights into tumor progression and therapeutic targets. Front Oncol 2025; 14:1515387. [PMID: 39850811 PMCID: PMC11754234 DOI: 10.3389/fonc.2024.1515387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Background Breast cancer remains a leading cause of mortality among women, driven by the molecular complexity of its various subtypes. This study aimed to investigate the differential expression of genes and miRNAs involved in the PI3K/AKT/mTOR signaling pathway, a critical regulator of cancer progression. Methods We analyzed tumor tissues from five breast cancer subtypes-luminal A, luminal B HER2-negative, luminal B HER2-positive, HER2-positive, and triple-negative breast cancer (TNBC)-and compared them with non-cancerous tissues. Microarray and qRT-PCR techniques were employed to profile mRNAs and miRNAs, while bioinformatic tools predicted miRNA-mRNA interactions. Statistical analysis was performed with a statistical significance threshold (p) < 0.05. Results We identified several upregulated genes across all subtypes, with TNBC and HER2-positive cancers showing the most significant changes. Key genes such as COL1A1, COL4A1, PIK3CA, PIK3R1, and mTOR were found to be overexpressed, correlating with increased cancer aggressiveness. miRNA analysis revealed that miR-190a-3p, miR-4729, and miR-19a-3p potentially regulate these genes, influencing the PI3K/AKT/mTOR pathway. For instance, reduced expression of miR-190a-3p may contribute to the overexpression of PIK3CA and other pathway components, enhancing metastatic potential. Conclusion Our findings suggest that the PI3K/AKT/mTOR pathway and its miRNA regulators play crucial roles in breast cancer progression, particularly in aggressive subtypes like TNBC. The identified miRNAs and mRNAs hold potential as biomarkers for diagnosis and treatment, but further validation in functional studies is required. This study provides a foundation for targeted therapies aimed at modulating this critical pathway to improve breast cancer outcomes.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | - Katarzyna Król-Jatręga
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | | | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Dariusz Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
- University of Economics and Humanities in Warsaw, Warszawa, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Olga Nowotny-Czupryna
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Kacper Boroń
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
| | - Dominika Janiszewska-Bil
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Elżbieta Mitka-Krysiak
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
| |
Collapse
|
3
|
Ozdemır C, Celık OI, Zeybek A, Suzek T, Aftabı Y, Karakas Celık S, Edgunlu T. Downregulation of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in non-small cell lung cancer: potential roles in pathogenesis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-17. [PMID: 39673541 DOI: 10.1080/15257770.2024.2439904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
Genes involved in lipid metabolism have been considered potential therapeutic targets in lung cancer because lipid metabolism is severely disrupted in this cancer. Monoglyceride lipase (MGLL) is a lipolytic enzyme that converts monoacylglycerides to fatty acids and glycerol. MicroRNAs (miRNA), one of the most important epigenetic regulators of gene expression, are also considered potential biomarkers in diagnosing, treating, and prognosis lung cancer. This study aimed to investigate the potential effects of MGLL and related miRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in the pathogenesis of non-small cell lung cancer (NSCLC) by examining their expression levels and regulatory mechanisms. We analysed the expression levels of MGLL and miRNAs in 30 NSCLC and 20 non-cancerous tissues by qPCR. We performed in silico analyses to determine the biological functions of MGLL and miRNAs in NSCLC. A protein-protein interaction (PPI) network was constructed for MGLL, and gene ontology (GO) analysis, and the interacting genes were analysed using the TCGAnalyzer tool. Our study showed that the expression levels of MGLL, miR-302b-5p, miR-190a-3p and miR-450a-2-3p were significantly decreased in NSCLC tissues (p < 0.05). Also, according to TCGAnalyzer, MSRB3, HTR4, and FCER1G genes were downregulated genes for NSCLC. We showed that miR-302b-5p, miR-190a-3p, and miR-450a-2-3p significantly regulate the TGF-β signalling pathway. In conclusion, this study provides evidence for the potential role of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in NSCLC. In subsequent studies, it was determined that MSRB3, FCER1G and LTB4R2 genes, especially the HTR4 gene, could be potential target genes for lung cancer.
Collapse
Affiliation(s)
- Cilem Ozdemır
- Graduate School of Natural and Applied Sciences, Department of Bioinformatics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ozgur Ilhan Celık
- Faculty of Medicine, Department of Pathology, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Arife Zeybek
- Faculty of Medicine, Department of Thoracic Surgery, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Tugba Suzek
- Faculty of Engineering, Department of Computer Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Younes Aftabı
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Sevim Karakas Celık
- Faculty of Medicine, Department of Medical Genetics, Bülent Ecevit University, Zonguldak, Turkey
| | - Tuba Edgunlu
- Faculty of Medicine, Department of Medical Biology, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
4
|
Lihua C, Hua S, Wenzhan W, Standard J, Denghui L. Expression and clinical significance of lncRNA PART1 in patients with unexplained recurrent pregnancy loss. Gynecol Endocrinol 2024; 40:2375582. [PMID: 39422994 DOI: 10.1080/09513590.2024.2375582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Previous studies have reported the involvement of long noncoding RNAs (lncRNAs) in reproductive diseases via the regulation of target genes. This study aimed to determine whether lnc-prostate androgen-regulated transcript 1 (lnc-PART1)could be used as a biomarker of unexplained recurrent pregnancy loss (URPL) and a possible predictor of poor pregnancy outcomes in women with URPL. MATERIALS AND METHODS Sixty patients with URPL and 15 healthy women were included in this study. PART1 expression was detected in plasma and endometrial tissues using a quantitative reverse transcription polymerase chain reaction. Logistic regression and receiver operating characteristic curve analyses were performed to analyze the association between PART1 expression and pregnancy outcomes in women with URPL. RESULTS The expression of PART1transcript variant 2 was significantly up-regulated in the endometrial specimens from patients with URPL compared to control tissues. High tissue expression levels of PART1transcript variant 2 were associated with poor pregnancy outcomes in women with URPL, indicating that it could serve as a potential risk factor. Additionally, PART1 could serve as a potential risk factor for adverse pregnancy outcomes in patients with URPL (OR = 4.374; 95% CI = 1.052-18.189; p = .042). CONCLUSION lncRNA PART1 transcript variant 2 was highly expressed in patients with URPL. Therefore, it is important to conduct in-depth studies on the relationship between PART1 expression and URPL.
Collapse
Affiliation(s)
- Chen Lihua
- Department of Reproductive Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, P.R. China
| | - Su Hua
- Department of Reproductive Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, P.R. China
| | - Wang Wenzhan
- Department of Reproductive Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, P.R. China
| | | | - Liang Denghui
- Department of Reproductive Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, P.R. China
| |
Collapse
|
5
|
Doghish AS, Abd-Elmawla MA, Hatawsh A, Zaki MB, Aborehab NM, Radwan AF, Moussa R, Eisa MA, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Elimam H. Unraveling the role of LncRNAs in glioblastoma progression: insights into signaling pathways and therapeutic potential. Metab Brain Dis 2024; 40:42. [PMID: 39589598 DOI: 10.1007/s11011-024-01456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/27/2024] [Indexed: 11/27/2024]
Abstract
Glioblastoma (GBM) is one of the most aggressive types of brain cancer, characterized by its poor prognosis and low survival rate despite current treatment modalities. Because GBM is lethal, clarifying the pathogenesis's underlying mechanisms is important, which are still poorly understood. Recent discoveries in the fields of molecular genetics and cancer biology have demonstrated the critical role that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), play in the molecular pathophysiology of GBM growth. LncRNAs are transcripts longer than 200 nucleotides that do not encode proteins. They are significant epigenetic modulators that control gene e expression at several levels. Their dysregulation and interactions with important signaling pathways play a major role in the malignancy and development of GBM. The increasing role of lncRNAs in GBM pathogenesis is thoroughly examined in this review, with particular attention given to their regulation mechanisms in key signaling pathways such as PI3K/AKT, Wnt/β-catenin, and p53. It also looks into lncRNAs' potential as new biomarkers and treatment targets for GBM. In addition, the study discusses the difficulties in delivering lncRNA-based medicines across the blood-brain barrier and identifies areas that need more research to advance lncRNA-oriented treatments for this deadly cancer.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, 26th of July Corridor, Nile University, Sheikh Zayed City, 12588, Giza, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Mahmoud A Eisa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
6
|
Zhang Z, Xiao Y, Zhao S, Liu J, Zeng J, Xiao F, Liao B, Shan X, Zhu H, Guo H. FAM109B plays a tumorigenic role in low-grade gliomas and is associated with tumor-associated macrophages (TAMs). J Transl Med 2024; 22:833. [PMID: 39256832 PMCID: PMC11389277 DOI: 10.1186/s12967-024-05641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Family with sequence similarity 109, member B (FAM109B) is involved in endocytic transport and affects genetic variation in brain methylation. It is one of the important genes related to immune cell-associated diseases. In the tumor immune system, methylation can regulate tumor immunity and influence the maturation and functional response of immune cells. Whether FAM109B is involved in tumor progression and its correlation with the tumor immune microenvironment has not yet been disclosed. METHODS A comprehensive pan-cancer analysis of FAM109B expression, prognosis, immunity, and TMB was conducted. The expression, clinical features, and prognostic value of FAM109B in low-grade gliomas (LGG) were evaluated using TCGA, CGGA, and Gravendeel databases. The expression of FAM109B was validated by qRT-PCR, immunohistochemistry (IHC), and Western blotting (WB). The relationship between FAM109B and methylation, Copy Number Variation (CNV), prognosis, immune checkpoints (ICs), and common chemotherapy drug sensitivity in LGG was explored through Cox regression, Kaplan-Meier curves, and Spearman correlation analysis. FAM109B levels and their distribution were studied using the TIMER database and single-cell analysis. The potential role of FAM109B in gliomas was further investigated through in vitro and in vivo experiments. RESULTS FAM109B was significantly elevated in various tumor types and was associated with poor prognosis. Its expression was related to aggressive progression and poor prognosis in low-grade glioma patients, serving as an independent prognostic marker for LGG. Glioma grade was negatively correlated with FAM109B DNA promoter methylation. Immune infiltration and single-cell analysis showed significant expression of FAM109B in tumor-associated macrophages (TAMs). The expression of FAM109B was closely related to gene mutations, immune checkpoints (ICs), and chemotherapy drugs in LGG. In vitro studies showed increased FAM109B expression in LGG, closely related to cell proliferation. In vivo studies showed that mice in the sh-FAM109B group had slower tumor growth, slower weight loss, and longer survival times. CONCLUSIONS FAM109B, as a novel prognostic biomarker for low-grade gliomas, exhibits specific overexpression in TAMs and may be a potential therapeutic target for LGG patients.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Yao Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Siyi Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Jun Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Jie Zeng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Bin Liao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Xuesong Shan
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China.
- Institute of Neuroscience, Nanchang University, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China.
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China.
- Institute of Neuroscience, Nanchang University, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China.
| |
Collapse
|
7
|
Li D, Wan M, Liu X, Ojha SC, Sheng Y, Li Y, Sun C, Deng C. PART1 facilitates tumorigenesis and inhibits ferroptosis by regulating the miR-490-3p/SLC7A11 axis in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:11339-11358. [PMID: 39029955 PMCID: PMC11315397 DOI: 10.18632/aging.206009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/10/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Ferroptosis is associated with cancer progression and has a promising application for treating hepatocellular carcinoma (HCC). Long non-coding RNA (lncRNA) participates widely in the regulation of ferroptosis, but the key lncRNA regulators implicated in ferroptosis and their molecular mechanisms remain to be identified. METHODS Bioinformatic analysis was performed in R based on The Cancer Genome Atlas Program (TCGA) public database. The relative expression of genes was detected by real-time quantitative PCR. Cell viability was assessed by the CCK8 assay. The cell cycle and apoptosis were detected by flow cytometry. Migration and invasion of HCC cells were detected by Transwell assay and wound healing assay. Expression of relevant proteins was detected by Western blotting. A dual-luciferase reporter assay was used to detect interactions between PART1 (or SLC7A11) and miR-490-3p. RESULTS The PART1/miR-490-3p/SLC7A11 axis was identified as a potential regulatory pathway of ferroptosis in HCC. PART1 silencing reduced HCC cell proliferation, migration, and metastasis and promoted apoptosis and erastin-reduced ferroptosis. Further investigation revealed that PART1 acted as a competitive endogenous RNA (ceRNA) for miR-490-3p to enhance SLC7A11 expression. Overexpression of miR-490-3p downregulated the expression of SLC7A11, inhibiting the proliferation, invasion, and metastasis of HCC cells while promoting apoptosis and erastin-induced ferroptosis. Knockdown of PART1 in HCC cells significantly improved the sensitivity of HCC cells to sorafenib. CONCLUSION Our results revealed that the PART1/miR-490-3p/SLC7A11 axis enhances HCC cell malignancy and suppresses ferroptosis, which provides a new perspective for understanding of the function of long chain non-coding RNAs in HCC. The PART1/miR-490-3p/SLC7A11 axis may be target for improving sorafenib sensitivity in HCC.
Collapse
Affiliation(s)
- Decheng Li
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Meiling Wan
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoling Liu
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Cunliang Deng
- Department of Infectious Diseases, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
- Laboratory of Infection and Immunity, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
8
|
Pokorná M, Černá M, Boussios S, Ovsepian SV, O’Leary VB. lncRNA Biomarkers of Glioblastoma Multiforme. Biomedicines 2024; 12:932. [PMID: 38790894 PMCID: PMC11117901 DOI: 10.3390/biomedicines12050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14-16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients' blood.
Collapse
Affiliation(s)
- Markéta Pokorná
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| | - Saak V. Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK;
- Faculty of Medicine, Tbilisi State University, Tbilisi 0177, Georgia
| | - Valerie Bríd O’Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| |
Collapse
|
9
|
Gu J, Ye Y, Sunil R, Zhan W, Yu R. Downregulation of lncRNA SATB2‑AS1 facilitates glioma cell proliferation by sponging miR‑671‑5p. Exp Ther Med 2023; 26:503. [PMID: 37822583 PMCID: PMC10562957 DOI: 10.3892/etm.2023.12202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/28/2023] [Indexed: 10/13/2023] Open
Abstract
The antisense transcript of SATB2 protein (SATB2-AS1) is a novel long non-coding RNA (lncRNA) which is involved in the development of colorectal cancer, breast cancer and hepatocellular carcinoma. In the present study, it was aimed to investigate the consequent situation of SATB2-AS1 in tissue and cell lines of glioma. The expression of SATB2-AS1 in glioma cases was analyzed in The Cancer Genome Atlas datasets. The glycolytic metabolism was determined in glioma cells by detection of extracellular glucose level, oxygen consumption rate and extracellular acidification rate. Cell Counting Kit-8 assay and flow cytometry were used to assess cell proliferation and apoptosis in glioma cells. The interaction between SATB2-AS1 and microRNA (miR)-671-5p was verified by bioinformatic analysis, reverse transcription-quantitative PCR, dual luciferase reporter assay and RNA immunoprecipitation assay. The expression levels of the downstream targets of SATB2-AS1 were studied by western blotting. Results demonstrated that SATB2-AS1 was a downregulated lncRNA in low grade glioma and glioblastoma. Gain-of-function assay demonstrated that SATB2-AS1 inhibited cell proliferation, and glycolytic metabolism, while induced cell apoptosis in glioma cells. SATB2-AS1 sponged and suppressed the expression of an oncogenic miRNA miR-671-5p. By regulation of miR-671-5p, SATB2-AS1 upregulated cerebellar degeneration related protein 1 (CDR1) and Visinin-like 1 (VSNL1) expression in glioma cells. miR-671-5p overexpression partially reversed the antitumor effect of SATB2-AS1 in glioma. In conclusion, the current study demonstrated that there was a downregulation of SATB2-AS1 in glioma, and SATB2-AS1 regulated miR-671-5p/CDR1 axis and miR-671-5p/VSNL1 axis in glioma.
Collapse
Affiliation(s)
- Jia Gu
- Department of Neurosurgery, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yongqing Ye
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Rauniyar Sunil
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wenjian Zhan
- Department of Neurosurgery, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Rutong Yu
- Department of Neurosurgery, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
10
|
Xu M, Xu L. Up-Regulation of miR-26a-5p Promoted Cell Growth and Tumor Metastasis of Intracranial Malignancy Through Phosphatase and Tensin Homolog Deleted on Chromosome Ten/Phosphatidylinositol3-Kinase/Protein Kinase B Signaling Pathway. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective: Intracranial malignancy has ranked the 6th and 3rd in terms of global tumor morbidity and mortality, respectively. MicroRNA (miRNA) can regulate the cell physiological process. Methods: In previous study, we explored the anti-cancer effects and mechanism of
miR-26a-5p in human glioma. MiR-26a-5p expression was increased in patient with glioma. Up-regulation of miR-26a-5p promoted cell growth and tumor metastasis of human glioma through inactivation of PTEN/PI3K/Akt. Results: Down-regulation of miR-26a-5p reduced cell growth and tumor metastasis
of human glioma. Downregulation of miR-26a-5p induced PTEN protein expression, and reduced PI3K and p-Akt protein expression in human glioma. PTEN or PI3K inhibitor reduced the effects of miR-26a-5p on cell growth and tumor metastasis of human glioma. Conclusion: Our findings proved
that the cancer effect of MiR-26a-5p regulates PTEN expression and promoted cell growth of human glioma through PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Mingtao Xu
- Department of Neurosurgery, Huhhot First Hospital, Hohhot, 010030, China
| | - Li Xu
- Department of Cardiovascular Medicine, The Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, 010010, China
| |
Collapse
|
11
|
Ghafouri-Fard S, Harsij A, Hussen BM, Abdullah SR, Baniahmad A, Taheri M, Sharifi G. A review on the role of long non-coding RNA prostate androgen-regulated transcript 1 (PART1) in the etiology of different disorders. Front Cell Dev Biol 2023; 11:1124615. [PMID: 36875771 PMCID: PMC9974648 DOI: 10.3389/fcell.2023.1124615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
LncRNA prostate androgen-regulated transcript 1 (PART1) is an important lncRNA in the carcinogenesis whose role has been firstly unraveled in prostate cancer. Expression of this lncRNA is activated by androgen in prostate cancer cells. In addition, this lncRNA has a role in the pathogenesis intervertebral disc degeneration, myocardial ischemia-reperfusion injury, osteoarthritis, osteoporosis and Parkinson's disease. Diagnostic role of PART1 has been assessed in some types of cancers. Moreover, dysregulation of PART1 expression is regarded as a prognostic factor in a variety of cancers. The current review provides a concise but comprehensive summary of the role of PART1 in different cancers and non-malignant disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Mukherjee S, Kundu U, Desai D, Pillai PP. Particulate Matters Affecting lncRNA Dysregulation and Glioblastoma Invasiveness: In Silico Applications and Current Insights. J Mol Neurosci 2022; 72:2188-2206. [PMID: 36370303 DOI: 10.1007/s12031-022-02069-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation-a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression-in the case of GBM-can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression.
Collapse
Affiliation(s)
- Swagatama Mukherjee
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Uma Kundu
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Dhwani Desai
- Integrated Microbiome Resource, Department of Pharmacology and Marine Microbial Genomics and Biogeochemistry lab, Department of Biology, Dalhousie University, Halifix, Canada
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
13
|
Ran R, Gong CY, Wang ZQ, Zhou WM, Zhang SB, Shi YQ, Ma CW, Zhang HH. Long non‑coding RNA PART1: dual role in cancer. Hum Cell 2022; 35:1364-1374. [PMID: 35864416 DOI: 10.1007/s13577-022-00752-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Increasing evidence has shown that long non-coding RNAs (lncRNAs), which are non-coding endogenous single-stranded RNAs, play an essential role in various physiological and pathological processes through transcriptional interference, post-transcriptional regulation, and epigenetic modification. Moreover, lncRNAs, as oncogenes or tumor suppressor genes, play an important role in the occurrence and development of human cancers. Prostate androgen-regulated transcript 1 (PART1) was initially identified as a carcinogenic lncRNA in prostate adenomas. The upregulated expression of PART1 plays a tumor-promoting role in liver, prostate, lung cancers, and other tumors. In contrast, the expression of PART1 is downregulated in esophageal squamous cell carcinoma, glioma, and other tumors, which may inhibit the tumor. PART1 plays a dual role in cancer and regulates cell proliferation, apoptosis, invasion, and metastasis through a variety of potential mechanisms. These findings suggest that PART1 is a promising tumor biomarker and therapeutic target. This article reviews the biological functions, related mechanisms, and potential clinical significance of PART1 in a variety of human cancers.
Collapse
Affiliation(s)
- Rui Ran
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Chao-Yang Gong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Zhi-Qiang Wang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Wen-Ming Zhou
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Shun-Bai Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Yong-Qiang Shi
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Chun-Wei Ma
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
14
|
Li Y, Xu S, Xu D, Pan T, Guo J, Gu S, Lin Q, Li X, Li K, Xiang W. Pediatric Pan-Central Nervous System Tumor Methylome Analyses Reveal Immune-Related LncRNAs. Front Immunol 2022; 13:853904. [PMID: 35603200 PMCID: PMC9114481 DOI: 10.3389/fimmu.2022.853904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/11/2022] [Indexed: 01/10/2023] Open
Abstract
Pediatric central nervous system (CNS) tumors are the second most common cancer diagnosis among children. Long noncoding RNAs (lncRNAs) emerge as critical regulators of gene expression, and they play fundamental roles in immune regulation. However, knowledge on epigenetic changes in lncRNAs in diverse types of pediatric CNS tumors is lacking. Here, we integrated the DNA methylation profiles of 2,257 pediatric CNS tumors across 61 subtypes with lncRNA annotations and presented the epigenetically regulated landscape of lncRNAs. We revealed the prevalent lncRNA methylation heterogeneity across pediatric pan-CNS tumors. Based on lncRNA methylation profiles, we refined 14 lncRNA methylation clusters with distinct immune microenvironment patterns. Moreover, we found that lncRNA methylations were significantly correlated with immune cell infiltrations in diverse tumor subtypes. Immune-related lncRNAs were further identified by investigating their correlation with immune cell infiltrations and potentially regulated target genes. LncRNA with methylation perturbations potentially regulate the genes in immune-related pathways. We finally identified several candidate immune-related lncRNA biomarkers (i.e., SSTR5-AS1, CNTN4-AS1, and OSTM1-AS1) in pediatric cancer for further functional validation. In summary, our study represents a comprehensive repertoire of epigenetically regulated immune-related lncRNAs in pediatric pan-CNS tumors, and will facilitate the development of immunotherapeutic targets.
Collapse
Affiliation(s)
- Yongsheng Li
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Sicong Xu
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Dahua Xu
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Tao Pan
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Jing Guo
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Shuo Gu
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Qiuyu Lin
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Xia Li
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kongning Li
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Wei Xiang
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| |
Collapse
|
15
|
LncRNA PART1 Stimulates the Development of Ovarian Cancer by Up-regulating RACGAP1 and RRM2. Reprod Sci 2022; 29:2224-2235. [PMID: 35553409 DOI: 10.1007/s43032-022-00905-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
Ovarian cancer (OC) is a kind of gynecologic malignancy with a high mortality rate. Long non-coding RNAs (lncRNAs) have been reported to exert regulatory roles in multiple diseases. However, the role of lncRNA prostate androgen-regulated transcript 1 (PART1) has not been investigated in the development of OC. In this study, from RT-qPCR analysis, we discovered that PART1 demonstrated high expression in OC cells. Moreover, data from functional assays manifested that PART1 reduction hindered the proliferative, migratory, and invasive capabilities of OC cells. In vivo uncovered that PART1 knockdown impeded OC tumor growth. Furthermore, from the experimental results of RNA pull down, RIP, and luciferase reporter assays, we discovered that PART1 served as a sponge for microRNA-6884-5p (miR-6884-5p) to modulate the expression of Rac GTPase activating protein 1 (RACGAP1) and ribonucleotide reductase regulatory subunit M2 (RRM2). Finally, rescue assays proved that overexpression of RACGAP1 or RRM2 abrogated the suppressive role of PART1 knockdown on OC cell malignant behaviors. RACGAP1 and RRM2 were also revealed to act as oncogenes in OC cells. In summary, our research verified the PART1/miR-6884-5p/RACGAP1/RRM2 axis in OC cells, which signified that PART1 might act as a novel biomarker in OC.
Collapse
|
16
|
Chen MJ, Fei JG, Song ZW, Chen F. Long non-coding RNA PART1 in cancer: Friend or foe? Dig Liver Dis 2022; 54:709. [PMID: 35016858 DOI: 10.1016/j.dld.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Min-Jie Chen
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China
| | - Jian-Guo Fei
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China
| | - Zheng-Wei Song
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China.
| | - Fei Chen
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China.
| |
Collapse
|
17
|
LncRNA PART1 inhibits glioma proliferation and migration via miR-374b/SALL1 axis. Neurochem Int 2022; 157:105347. [DOI: 10.1016/j.neuint.2022.105347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/22/2022] [Accepted: 04/25/2022] [Indexed: 01/03/2023]
|
18
|
Ghaemi S, Fekrirad Z, Zamani N, Rahmani R, Arefian E. Non-coding RNAs Enhance the Apoptosis Efficacy of Therapeutic Agents Used for the Treatment of Glioblastoma Multiform. J Drug Target 2022; 30:589-602. [DOI: 10.1080/1061186x.2022.2047191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Fekrirad
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nina Zamani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Rana Rahmani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Dong Y, Wang Q, Sun J, Liu H, Wang H. Long non-coding RNA TPTEP1 exerts inhibitory effects on hepatocellular carcinoma by impairing microRNA-454-3p-mediated DLG5 downregulation. Dig Liver Dis 2022; 54:268-279. [PMID: 34238665 DOI: 10.1016/j.dld.2021.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is usually diagnosed at late stages, making it the second cause of malignancy-related death across the world. Long noncoding RNAs (lncRNAs) are of significance to tumorigenesis, highly suggestive of their functional roles as novel biomarkers for cancer therapy. The current study investigated the specific role of lncRNA TPTE pseudogene 1 (TPTEP1) in HCC. METHODS Expression of lncRNA TPTEP1, microRNA-454-3p (miR-454-3p) and discs large homolog 5 (DLG5) was determined in tissues samples from the recruited patients with HCC. Cell proliferation, migration and invasion assays were performed to determine effects of lncRNA TPTEP1, miR-454-3p and DLG5 on the malignant phenotype of tumor cells. Finally, the mouse HCC model was also established to disclose the tumor suppressor effects of lncRNA TPTEP1 in vivo. RESULTS LncRNA TPTEP1 was downregulated both in HCC cells and tissues, and played a negative regulatory role in HCC cell proliferation, migration and invasion. Mechanistically, lncRNA TPTEP1 competitively bound to miR-454-3p, thereby upregulating its endogenous target DLG5. Moreover, lncRNA TPTEP1 hindered activation of the protein kinase B signaling pathway, causing inhibited malignant phenotypes of HCC cells. Also, lncRNA TPTEP1 suppressed tumor growth and extrahepatic metastasis (lung) via miR-454-3p/DLG5 axis. CONCLUSION Taken together, this research revealed a concrete mechanism of lncRNA TPTEP1 in HCC.
Collapse
Affiliation(s)
- Yuandi Dong
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150000, PR China; Department of Interventional Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150000, PR China
| | - Qingshan Wang
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150000, PR China; Department of Vascular Surgery, Heilongjiang Provincial Hospital, Harbin 150000, PR China
| | - Jianmin Sun
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150000, PR China
| | - Haishi Liu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150000, PR China
| | - Haiyang Wang
- Department of Interventional Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150000, PR China.
| |
Collapse
|
20
|
Tamtaji OR, Derakhshan M, Rashidi Noshabad FZ, Razaviyan J, Hadavi R, Jafarpour H, Jafari A, Rajabi A, Hamblin MR, Mahabady MK, Taghizadieh M, Mirzaei H. Non-Coding RNAs and Brain Tumors: Insights Into Their Roles in Apoptosis. Front Cell Dev Biol 2022; 9:792185. [PMID: 35111757 PMCID: PMC8801811 DOI: 10.3389/fcell.2021.792185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022] Open
Abstract
A major terrifying ailment afflicting the humans throughout the world is brain tumor, which causes a lot of mortality among pediatric and adult solid tumors. Several major barriers to the treatment and diagnosis of the brain tumors are the specific micro-environmental and cell-intrinsic features of neural tissues. Absence of the nutrients and hypoxia trigger the cells' mortality in the core of the tumors of humans' brains: however, type of the cells' mortality, including apoptosis or necrosis, has been not found obviously. Current studies have emphasized the non-coding RNAs (ncRNAs) since their crucial impacts on carcinogenesis have been discovered. Several investigations suggest the essential contribution of such molecules in the development of brain tumors and the respective roles in apoptosis. Herein, we summarize the apoptosis-related non-coding RNAs in brain tumors.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Javad Razaviyan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razie Hadavi
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Jafarpour
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Rajabi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Li Q, Zhang Z, Chen S, Huang Z, Wang M, Zhou M, Yu C, Wang X, Chen Y, Jiang D, Du D, Huang Y, Tu X, Chen Z, Zhao Y. miR-190a-5p Partially Represses the Abnormal Electrical Activity of SCN3B in Cardiac Arrhythmias by Downregulation of IL-2. Front Cardiovasc Med 2022; 8:795675. [PMID: 35083300 PMCID: PMC8784662 DOI: 10.3389/fcvm.2021.795675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrhythmias (CAs) are generally caused by disruption of the cardiac conduction system; interleukin-2 (IL-2) is a key player in the pathological process of CAs. This study aimed to investigate the molecular mechanism underlying the regulation of IL-2 and the sodium channel current of sodium voltage-gated channel beta subunit 3 (SCN3B) by miR-190a-5p in the progression of CAs. ELISA results suggested the concentration of peripheral blood serum IL-2 in patients with atrial fibrillation (AF) to be increased compared to that in normal controls; fluorescence in situ hybridization indicated that the expression of IL-2 in the cardiac tissues of patients with AF to be upregulated and that miR-190a-5p to be downregulated. Luciferase reporter assay, quantitative real-time-PCR, and whole-cell patch-clamp experiments confirmed the downregulation of IL-2 by miR-190a-5p and influence of the latter on the sodium current of SCN3B. Overall, miR-190a-5p suppressed the increase in SCN3B sodium current caused by endogenous IL-2, whereas miR-190a-5p inhibitor significantly reversed this effect. IL-2 was demonstrated to be directly regulated by miR-190a-5p. We, therefore, concluded that the miR-190a-5p/IL-2/SCN3B pathway could be involved in the pathogenesis of CAs and miR-190a-5p might acts as a potential protective factor in pathogenesis of CAs.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Obstetrics and Gynecology, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ziguan Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengrong Huang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mengru Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Mengchen Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chenguang Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyi Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yufeng Huang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
- Xin Tu
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Zhishui Chen
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- *Correspondence: Yuanyuan Zhao
| |
Collapse
|
22
|
Mohammadzadeh A, Dastmalchi N, Hussen BM, Shadbad MA, Safaralizadeh R. An updated review on the therapeutic, diagnostic, and prognostic value of long non-coding RNAs in gastric cancer. Curr Med Chem 2021; 29:3471-3482. [PMID: 34781858 DOI: 10.2174/0929867328666211115121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/22/2022]
Abstract
As a novel group of non-coding RNAs, long non-coding RNA (lncRNAs) can substantially regulate various biological processes. Downregulated tumor-suppressive lncRNAs and upregulated oncogenic lncRNAs (onco-lncRNAs) have been implicated in gastric cancer (GC) development. These dysregulations have been associated with decreased chemosensitivity, inhibited apoptosis, and increased tumor migration in GC. Besides, growing evidence indicates that lncRNAs can be a valuable diagnostic and prognostic biomarker, and their expression levels are substantially associated with the clinicopathological features of affected patients. The current study aims to review the recent findings of the tumor-suppressive lncRNAs and onco-lncRNAs in GC development and highlight their therapeutic, diagnostic, and prognostic values in treating GC cells. Besides, it intends to highlight the future direction of lncRNAs in treating GC.
Collapse
Affiliation(s)
- Alemeh Mohammadzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Kurdistan Region. Iraq
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| |
Collapse
|
23
|
Lv J, Zhang S, Liu Y, Li C, Guo T, Zhang S, Li Z, Jiao Z, Sun H, Zhang Y, Xu L. NR2F1-AS1/miR-190a/PHLDB2 Induces the Epithelial-Mesenchymal Transformation Process in Gastric Cancer by Promoting Phosphorylation of AKT3. Front Cell Dev Biol 2021; 9:688949. [PMID: 34746118 PMCID: PMC8569557 DOI: 10.3389/fcell.2021.688949] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023] Open
Abstract
The median survival time of patients with advanced gastric cancer (GC) who received radiotherapy and chemotherapy was <1 year. Epithelial-mesenchymal transformation (EMT) gives GC cells the ability to invade, which is an essential biological mechanism in the progression of GC. The long non-coding RNA (lncRNA)-based competitive endogenous RNA (ceRNA) system has been shown to play a key role in the GC-related EMT process. Although the AKT pathway is essential for EMT in GC, the relationship between AKT3 subtypes and EMT in GC is unclear. Here, we evaluated the underlying mechanism of ceRNA involving NR2F1-AS1/miR-190a/PHLDB2 in inducing EMT by promoting the expression and phosphorylation of AKT3. The results of bioinformatics analysis showed that the expression of NR2F1-AS1/miR-190a/PHLDB2 in GC was positively associated with the pathological features, staging, poor prognosis, and EMT process. We performed cell transfection, qRT-PCR, western blot, cell viability assay, TUNEL assay, Transwell assay, cell morphology observation, and double luciferase assay to confirm the regulation of NR2F1-AS1/miR-190a/PHLDB2 and its effect on EMT transformation. Finally, GSEA and GO/KEGG enrichment analysis identified that PI3K/AKT pathway was positively correlated to NR2F1-AS1/miR-190a/PHLDB2 expression. AKT3 knockout cells were co-transfected with PHLDB2-OE, and the findings revealed that AKT3 expression and phosphorylation were essential for the PHLDB2-mediated EMT process. Thus, our results showed that NR2F1-AS1/miR-190a/PHLDB2 promoted the phosphorylation of AKT3 to induce EMT in GC cells. This study provides a comprehensive understanding of the underlying mechanism involved in the EMT process as well as the identification of new EMT markers.
Collapse
Affiliation(s)
- Jinqi Lv
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Simeng Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Tianshu Guo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Shuairan Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Zenan Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Zihan Jiao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Haina Sun
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| |
Collapse
|
24
|
Yang Z, Gong W, Zhang T, Gao H. Molecular Features of Glioma Determined and Validated Using Combined TCGA and GTEx Data Analyses. Front Oncol 2021; 11:729137. [PMID: 34660294 PMCID: PMC8516354 DOI: 10.3389/fonc.2021.729137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Gliomas are among the most common intracranial tumors which originated from neuroepithelial cells. Increasing evidence has revealed that long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA module regulation and tumor-infiltrating immune cells play important regulatory roles in the occurrence and progression of gliomas. However, the precise underlying molecular mechanisms remain largely unknown. Data on gliomas in The Cancer Genome Atlas lack normal control samples; to overcome this limitation, we combined 665 The Cancer Genome Atlas glioma RNA sequence datasets with 188 Genotype-Tissue Expression normal brain RNA sequences to construct an expression matrix profile after normalization. We systematically analyzed the expression of mRNAs, lncRNAs, and miRNAs between gliomas and normal brain tissues. Kaplan–Meier survival analyses were conducted to screen differentially expressed mRNAs, lncRNAs, and miRNAs. A prognostic miRNA-related competitive endogenous RNA network was constructed, and the core subnetworks were filtered using 6 miRNAs, 3 lncRNAs, and 11 mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to investigate the biological functions of significantly dysregulated mRNAs. Co-expression network analysis was performed to analyze and screen the core genes. Furthermore, single-sample Gene Set Enrichment Analysis and immune checkpoint gene expression analysis were performed, as co-expression analysis indicated immune gene dysregulation in glioma. Finally, the expression of representative dysregulated genes was validated in U87 cells at the transcriptional level, establishing a foundation for further research. We identified 7017 mRNAs, 437 lncRNAs, and 9 miRNAs that were differentially expressed in gliomas. Kaplan–Meier survival analysis revealed 5684 mRNAs, 61 lncRNAs, and 7 miRNAs with potential as prognostic signatures in patients with glioma. The hub subnetwork of the competing endogenous RNA network between PART1-hsa-mir-25-SLC12A5/TACC2/BSN/TLN2/ZDHHC8 was screened out. Gene co-expression network, single-sample Gene Set Enrichment Analysis, and immune checkpoint expression analysis demonstrated that tumor-infiltrating immune cells are closely related to gliomas. We identified novel potential biomarkers to predict survival and therapeutic targets for patients with gliomas based on a large-scale sample. Importantly, we filtered pivotal genes that provide valuable information for further exploration of the molecular mechanisms underlying glioma tumorigenesis and progression.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Weiyi Gong
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Ting Zhang
- Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical College, Jiangyin, China
| | - Heng Gao
- Department of Neurosurgery, Jiangyin Clinical College of Xuzhou Medical College, Jiangyin, China
| |
Collapse
|
25
|
Downregulation of PART1 Inhibits Proliferation and Differentiation of Hep3B Cells by Targeting hsa-miR-3529-3p/FOXC2 Axis. JOURNAL OF ONCOLOGY 2021; 2021:7792223. [PMID: 34484336 PMCID: PMC8410447 DOI: 10.1155/2021/7792223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) are an important subtype of noncoding RNAs (ncRNAs) and microRNA sponges regulate protein-coding gene expression. The lncRNA prostate androgen-regulated transcript 1 (PART1) was implicated in the process of several cancer pathogeneses. However, studies on the regulation of PART1 expression and its mechanism in liver cancer are lacking. Methods qRT-PCR and western blot were used to detect PART1 levels in liver cancer serums and cell lines. Cell proliferation, migration, and invasion were detected using CCK8 assays, cell clones, and transwell assays. Interaction between PART1 and miR-3529-3p and forkhead box protein C2 (FOXC2) was confirmed using dual-luciferase reporter assays. Results We revealed that expression levels of PART1 and FOXC2 are significantly upregulated and the miR-3529-3p expression level significantly decreases in the serum while high expression level of PART1 is positively associated with tumour size, BCLC stage, and TNM stage. shRNA of PART1 can significantly reduce the ability of cell migration and invasion by regulating AKT signalling associated with the reduction of MMP-2 and MMP-9 protein expression. Dual-luciferase reporter assays showed that PART1 can sponge miR-3529-3p, which targets FOXC2 in liver cancer cells. The promoting or suppressing effect of PART1 for Hep3B cell proliferation, invasion, and migration is revised by miR-3529-3p mimics and inhibitors. Conclusion Results showed that downregulation of PART1 can partially inhibit proliferation and differentiation by targeting hsa-miR-3529-3p/FOXC2 axis.
Collapse
|
26
|
Shen Y, Cui X, Xu N, Hu Y, Zhang Z. lncRNA PART1 mitigates MPP +-induced neuronal injury in SH-SY5Y cells via micRNA-106b-5p/MCL1 axis. Am J Transl Res 2021; 13:8897-8908. [PMID: 34540003 PMCID: PMC8430160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons. Here, we aimed to explore the function of LncRNA PART1 in PD and its underlying mechanisms. METHODS An in vivo MPTP-induced mouse model of PD was generated and the SH-SY5Y cells were treated with MPP+ to induce neuronal damage in vitro. The expressions of LncRNA PART1 and microRNA-106b-5p were assessed by RT-qPCR. The level of caspase 3 protein was detected by western blot. CCK8 assay and Annexin V/PI staining were used for detecting cell viability and survival rate, respectively. The interactions between microRNA-106b-5p and LncRNA PART1 or MCL1 were determined by RNA pull-down assay, RIP assay and DLR assay. The levels of inflammatory cytokines were assessed by ELISA, and the levels of LDH, ROS or SOD were verified using the appropriate assay kits. RESULTS The expression of LncRNA PART1 was decreased in PD model in vivo and in vitro (all P<0.05). In SH-SY5Y cells treated with MPP+, the overexpression of LncRNA PART1 increased cell viability and reduced cell apoptosis, the secretion of inflammatory cytokines and oxidative stress reaction (all P<0.05). Furthermore, LncRNA PART1 sponged microRNA-106b-5p which directly targeted MCL1 and thus regulated the expression of MCL1. LncRNA PART1 attenuated the injury of SH-SY5Y cells induced by MPP+ via targeting microRNA-106b-5p and enhancing MCL1 expression. CONCLUSION LncRNA PART1 could alleviate the damage effects of MPP+ on SH-SY5Y cells by regulating microRNA-106b-5p/MCL1 axis, suggesting the potential therapeutic value of LncRNA PART1 as a target in PD.
Collapse
Affiliation(s)
- Yue’e Shen
- Department of Neurology, The First Affiliated Hospital, Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Xintao Cui
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Nan Xu
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Yuhang Hu
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical UniversityHarbin, Heilongjiang Province, China
| | - Zhenyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Harbin Medical UniversityHarbin, Heilongjiang Province, China
| |
Collapse
|
27
|
Chen J, Meng E, Lin Y, Shen Y, Hu C, Zhou G, Yuan C. The Role of Tumor-related LncRNA PART1 in cancer. Curr Pharm Des 2021; 27:4152-4159. [PMID: 34225608 DOI: 10.2174/1381612827666210705161955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND As we all know, long non-coding RNA (lncRNA) affects tumor progression, which has caused a great upsurge in recent years. It can also affect the growth, migration, and invasion of tumors. When we refer to the abnormal expression of lncRNA, we will find it associated with malignant tumors. In addition, lncRNA has been proved to be a key targeted gene for the treatment of some diseases. PART1, a member of lncRNA, has been reported as a regulator in the process of tumor occurrence and development. This study aims to reveal the biological functions, specific mechanisms, and clinical significance of PART1 in various tumor cells. METHODS Through the careful search of PUBMED, the mechanisms of the effect of PART1 on tumorigenesis and development are summarized. RESULTS On the one hand, the up-regulated expression of PART1 plays a tumor-promoting role in tumors, including lung cancer, prostate cancer, bladder cancer and so on. On the other hand, PART1 is down-regulated in gastric cancer, glioma and other tumors to play a tumor inhibitory role. In addition, PART1 regulates tumor growth mainly by targeting microRNA such as miR-635, directly regulating the expression of proteins such as FUS/EZH2, affecting signal pathways such as the Toll-like receptor pathway, or regulating immune cells. CONCLUSION PART1 is closely related to tumors by regulating a variety of molecular mechanisms. In addition, PART1 can be used as a clinical marker for the early diagnosis of tumors and plays an important role in tumor-targeted therapy.
Collapse
Affiliation(s)
- Jinlan Chen
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Enqing Meng
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yexiang Lin
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yujie Shen
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chengyu Hu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
28
|
Chae Y, Roh J, Kim W. The Roles Played by Long Non-Coding RNAs in Glioma Resistance. Int J Mol Sci 2021; 22:ijms22136834. [PMID: 34202078 PMCID: PMC8268860 DOI: 10.3390/ijms22136834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma originates in the central nervous system and is classified based on both histological features and molecular genetic characteristics. Long non-coding RNAs (lncRNAs) are longer than 200 nucleotides and are known to regulate tumorigenesis and tumor progression, and even confer therapeutic resistance to glioma cells. Since oncogenic lncRNAs have been frequently upregulated to promote cell proliferation, migration, and invasion in glioma cells, while tumor-suppressive lncRNAs responsible for the inhibition of apoptosis and decrease in therapeutic sensitivity in glioma cells have been generally downregulated, the dysregulation of lncRNAs affects many features of glioma patients, and the expression profiles associated with these lncRNAs are needed to diagnose the disease stage and to determine suitable therapeutic strategies. Accumulating studies show that the orchestrations of oncogenic lncRNAs and tumor-suppressive lncRNAs in glioma cells result in signaling pathways that influence the pathogenesis and progression of glioma. Furthermore, several lncRNAs are related to the regulation of therapeutic sensitivity in existing anticancer therapies, including radiotherapy, chemotherapy and immunotherapy. Consequently, we undertook this review to improve the understanding of signaling pathways influenced by lncRNAs in glioma and how lncRNAs affect therapeutic resistance.
Collapse
Affiliation(s)
- Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
- Department of Biology Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea
- Correspondence: ; Tel.: +82-43-230-3750
| |
Collapse
|
29
|
Cruickshank BM, Wasson MCD, Brown JM, Fernando W, Venkatesh J, Walker OL, Morales-Quintanilla F, Dahn ML, Vidovic D, Dean CA, VanIderstine C, Dellaire G, Marcato P. LncRNA PART1 Promotes Proliferation and Migration, Is Associated with Cancer Stem Cells, and Alters the miRNA Landscape in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13112644. [PMID: 34072264 PMCID: PMC8198907 DOI: 10.3390/cancers13112644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are aggressive, lack targeted therapies and are enriched in cancer stem cells (CSCs). Novel therapies which target CSCs within these tumors would likely lead to improved outcomes for TNBC patients. Long non-coding RNAs (lncRNAs) are potential therapeutic targets for TNBC and CSCs. We demonstrate that lncRNA prostate androgen regulated transcript 1 (PART1) is enriched in TNBCs and in Aldefluorhigh CSCs, and is associated with worse outcomes among basal-like breast cancer patients. Although PART1 is androgen inducible in breast cancer cells, analysis of patient tumors indicates its androgen regulation has minimal clinical impact. Knockdown of PART1 in TNBC cell lines and a patient-derived xenograft decreased cell proliferation, migration, tumor growth, and mammosphere formation potential. Transcriptome analyses revealed that the lncRNA affects expression of hundreds of genes (e.g., myosin-Va, MYO5A; zinc fingers and homeoboxes protein 2, ZHX2). MiRNA 4.0 GeneChip and TaqMan assays identified multiple miRNAs that are regulated by cytoplasmic PART1, including miR-190a-3p, miR-937-5p, miR-22-5p, miR-30b-3p, and miR-6870-5p. We confirmed the novel interaction between PART1 and miR-937-5p. In general, miRNAs altered by PART1 were less abundant than PART1, potentially leading to cell line-specific effects in terms miRNA-PART1 interactions and gene regulation. Together, the altered miRNA landscape induced by PART1 explains most of the protein-coding gene regulation changes (e.g., MYO5A) induced by PART1 in TNBC.
Collapse
Affiliation(s)
- Brianne M. Cruickshank
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Marie-Claire D. Wasson
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Justin M. Brown
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Jaganathan Venkatesh
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Olivia L. Walker
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | | | - Margaret L. Dahn
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Dejan Vidovic
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Cheryl A. Dean
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Carter VanIderstine
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Paola Marcato
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence: ; Tel.: +1-(902)-494-4239
| |
Collapse
|
30
|
Ebrahimpour A, Sarfi M, Rezatabar S, Tehrani SS. Novel insights into the interaction between long non-coding RNAs and microRNAs in glioma. Mol Cell Biochem 2021; 476:2317-2335. [PMID: 33582947 DOI: 10.1007/s11010-021-04080-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Glioma is the most common brain tumor of the central nervous system. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been identified to play a vital role in the initiation and progression of glioma, including tumor cell proliferation, survival, apoptosis, invasion, and therapy resistance. New documents emerged, which indicated that the interaction between long non-coding RNAs and miRNAs contributes to the tumorigenesis and pathogenesis of glioma. LncRNAs can act as competing for endogenous RNA (ceRNA), and molecular sponge/deregulator in regulating miRNAs. These interactions stimulate different molecular signaling pathways in glioma, including the lncRNAs/miRNAs/Wnt/β-catenin molecular signaling pathway, the lncRNAs/miRNAs/PI3K/AKT/mTOR molecular signaling pathway, the lncRNAs-miRNAs/MAPK kinase molecular signaling pathway, and the lncRNAs/miRNAs/NF-κB molecular signaling pathway. In this paper, the basic roles and molecular interactions of the lncRNAs and miRNAs pathway glioma were summarized to better understand the pathogenesis and tumorigenesis of glioma.
Collapse
Affiliation(s)
- Anahita Ebrahimpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Sarfi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Rezatabar
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Zhao Y, Zhang Q, Liu H, Wang N, Zhang X, Yang S. lncRNA PART1, manipulated by transcriptional factor FOXP2, suppresses proliferation and invasion in ESCC by regulating the miR‑18a‑5p/SOX6 signaling axis. Oncol Rep 2021; 45:1118-1132. [PMID: 33432363 PMCID: PMC7859983 DOI: 10.3892/or.2021.7931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
An increasing number of studies have demonstrated that long non-coding (lnc)RNAs are associated with tumor invasion, metastasis and the prognosis of patients with a variety of different tumors. However, the roles of lncRNA prostate androgen regulated transcript 1 (PART1) in esophageal squamous cell carcinoma (ESCC) remain unknown. In the present study, reverse transcription-quantitative PCR was performed to investigate the levels of PART1, SRY-box transcription factor 6 (SOX6) and miR-18a-5p in ESCC tissues and cells. The functions of PART1 in ESCC were demonstrated using Cell Counting Kit-8 and Matrigel assays. Promoter activity and dual-luciferase reporter assays, RNA immunoprecipitation and western blot analyses were also used to determine the potential mechanisms of PART1 in ESCC cell lines. It was found that PART1 and SOX6 were both downregulated in ESCC tissues and cells, and their low expression levels were associated with TNM stage, lymph node metastasis and poor prognosis in patients with ESCC. Forkhead box protein P2 (FOXP2) exhibited low expression level in ESCC tissues, and its expression was positively correlated with PART1 expression level in ESCC tissues. FOXP2 was found to bind to the promoter region of PART1 to regulate its expression in ESCC cells. Functionally, PART1 overexpression suppressed cell proliferation and invasion, whereas PART1 downregulation promoted cell proliferation and invasion in the ESCC cell lines. Mechanistically, PART1 functions as a competing endogenous (ce)RNA by sponging miR-18a-5p, resulting in the upregulation of the downstream target gene, SOX6, coupled with the inactivation of the β-catenin/c-myc signaling axis, to suppress ESCC cell proliferation and invasion. In conclusion, data from the present study unveil a potential ceRNA regulatory pathway, in which PART1 affects SOX6 expression level by sponging miR-18a-5p, to ultimately suppress ESCC development and progression.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Qing Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Ning Wang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaosan Zhang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Shujun Yang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
32
|
Zhang Z, Huo Y, Zhou Z, Zhang P, Hu J. Role of lncRNA PART1 in intervertebral disc degeneration and associated underlying mechanism. Exp Ther Med 2020; 21:131. [PMID: 33376513 PMCID: PMC7751492 DOI: 10.3892/etm.2020.9563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/08/2020] [Indexed: 01/20/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a chronic skeletal muscle degeneration disease. Previous studies have demonstrated that long non-coding RNAs (lncRNAs) exert significant roles in serious illnesses. Prostate androgen-regulated transcript 1 (PART1) is an identified lncRNA that has been reported to be a regulator in a number of diseases. However, the potential effects of PART1 in IDD have yet to be fully elucidated. The present study aimed to investigate the roles of lncRNA PART1 in IDD and identify a possible underlying mechanism. Human nucleus pulposus (NP) cells were first exposed to lipopolysaccharide (LPS) to construct in vitro IDD models. Reverse transcription-quantitative PCR (RT-qPCR) was performed to measure lncRNA PART1 expression levels in 10 ng/ml LPS-stimulated NP cells and normal cells (untreated cells). Dual-luciferase reporter assays were conducted to verify the possible binding sites of microRNA (miR)-190a-3p on lncRNA PART1. In addition, NP cell viability and apoptosis were measured by performing MTT and flow cytometry, respectively. Expression and secretion of inflammatory factors (TNF-α, IL-1β and IL-6) and extracellular matrix (ECM) degradation-related proteins (aggrecan and collagen type II) were measured using ELISA, RT-qPCR and western blotting. Expression levels of lncRNA PART1 in LPS-treated NP cells were found to be higher compared with those in the control groups. miR-190a-3p directly targeted lncRNA PART1. PART1 knockdown enhanced cell viability, reduced cell apoptosis, inhibited inflammatory factor secretion and promoted ECM degradation in LPS-stimulated NP cells. However, transfection with the miR-190a-3p inhibitor reversed the aforementioned PART1 knockdown-induced alterations in cell viability, apoptosis, inflammatory cytokine and ECM degradation. Collectively, these results suggest that PART1 accelerates the progression of IDD by directly targeting miR-190a-3p, which provides a novel target for IDD diagnosis and treatment.
Collapse
Affiliation(s)
- Zongyu Zhang
- Department of Orthopedics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, Jiangsu 222004, P.R. China
| | - Yongfeng Huo
- Department of Orthopedics, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222004, P.R. China
| | - Zhijing Zhou
- Department of Orthopedics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, Jiangsu 222004, P.R. China
| | - Peng Zhang
- Department of Orthopedics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, Jiangsu 222004, P.R. China
| | - Jun Hu
- Department of Orthopedics, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, Jiangsu 222004, P.R. China
| |
Collapse
|
33
|
Jiang C, Dong N, Feng J, Hao M. MiRNA-190 exerts neuroprotective effects against ischemic stroke through Rho/Rho-kinase pathway. Pflugers Arch 2020; 473:121-130. [PMID: 33196911 DOI: 10.1007/s00424-020-02490-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ischemic stroke is an urgent public health concern and one of the major causes of deaths and disabilities over the world. MicroRNA (miRNA) has become a key mediator of cerebral ischemia-reperfusion (I/R) injuries. However, whether miR-190 is involved in cerebral I/R-induced neuronal damage remains unknown. This study was to investigate the role of miR-190 in the brain I/R injury. We divided the rats into sham, I/R, control, and miR-190-mim (miR-190 mimics) groups. Quantitative real-time polymerase chain reaction (qRT-PCR), Nissl staining, flow cytometry, and western blot were conducted to examine the expression of miR-190 and cell apoptosis in different groups. The results showed that the expression of miR-190 was greatly decreased in rats suffering with I/R. Overexpression of miR-190 significantly reduced the increased neurological scores, brain water contents, infarct volumes, and neuronal apoptosis in rats suffering with I/R. In addition, we found that the expression of RhoA and Rho kinase was greatly elevated in rats suffering with I/R. Bioinformatics analysis indicated that Rho was a target of miR-190. Moreover, overexpression of miR-190 significantly downregulated the increased mRNA and protein expression of Rho/Rho kinase and cell apoptosis, while inhibition of miR-190 further upregulated the increased mRNA and protein expression of Rho/Rho kinase and cell apoptosis in rats suffering with I/R. Furthermore, knockdown of Rho significantly downregulated the increased mRNA and protein expression of Rho/Rho kinase and cell apoptosis, while these effects were inhibited by miR-190 inhibitors in rats suffering with I/R. These results indicate that miR-190 confers protection against brain I/R damage by modulating Rho/Rho-kinase signaling.
Collapse
Affiliation(s)
- Chuan Jiang
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, No.4 Duanxing West Road, Huanyin District, Jinan City, 250022, Shandong Province, People's Republic of China
| | - Ning Dong
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, 250001, Shandong Province, People's Republic of China
| | - Jianli Feng
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, No.4 Duanxing West Road, Huanyin District, Jinan City, 250022, Shandong Province, People's Republic of China.
| | - Maolin Hao
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, No.4 Duanxing West Road, Huanyin District, Jinan City, 250022, Shandong Province, People's Republic of China
| |
Collapse
|
34
|
Stackhouse CT, Gillespie GY, Willey CD. Exploring the Roles of lncRNAs in GBM Pathophysiology and Their Therapeutic Potential. Cells 2020; 9:cells9112369. [PMID: 33126510 PMCID: PMC7692132 DOI: 10.3390/cells9112369] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) remains the most devastating primary central nervous system malignancy with a median survival of around 15 months. The past decades of research have not yielded significant advancements in the treatment of GBM. In that same time, a novel class of molecules, long non-coding RNAs (lncRNAs), has been found to play a multitude of roles in cancer and normal biology. The increased accessibility of next generation sequencing technologies and the advent of lncRNA-specific microarrays have facilitated the study of lncRNA etiology. Molecular and computational methods can be applied to predict lncRNA function. LncRNAs can serve as molecular decoys, scaffolds, super-enhancers, or repressors. These molecules can serve as phenotypic switches for GBM cells at the expression and/or epigenetic levels. LncRNAs can affect stemness/differentiation, proliferation, invasion, survival, DNA damage response, and chromatin dynamics. Aberrant expression of these transcripts may facilitate therapy resistance, leading to tumor recurrence. LncRNAs could serve as novel theragnostic or prognostic biomarkers in GBM and other cancers. RNA-based therapeutics may also be employed to target lncRNAs as a novel route of treatment for primary or recurrent GBM. In this review, we explore the roles of lncRNAs in GBM pathophysiology and posit their novel therapeutic potential for GBM.
Collapse
Affiliation(s)
- Christian T. Stackhouse
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (C.T.S.); (G.Y.G.)
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - G. Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (C.T.S.); (G.Y.G.)
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Correspondence:
| |
Collapse
|
35
|
Zhao X, Hong Y, Cheng Q, Guo L. LncRNA PART1 Exerts Tumor-Suppressive Functions in Tongue Squamous Cell Carcinoma via miR-503-5p. Onco Targets Ther 2020; 13:9977-9989. [PMID: 33116583 PMCID: PMC7548330 DOI: 10.2147/ott.s264410] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Tongue squamous cell carcinoma (TSCC) accounts for one-third of oral cancers. Previous studies had reported that lncRNA/miRNA regulated the biological behaviors of different cancer cells. However, the mechanisms of PART1 in regulating tumorigenesis and TSCC development via targeting miR-503-5p had not been studied. Methods The expressions of PART1 and miR-503-5p in tissues and cultured cell lines were detected by qRT-PCR. StarBase 3.0 was used to predict the binding sites of PART1, then dual-luciferase assay and RNA pull-down assay were executed to confirm whether miR-503-5p was a target of PART1. TSCC cells were co-transfected with PART1-overexpressed plasmid or miR-503-5p mimics in vitro, and the transfection efficiency was evaluated through qRT-PCR. Western blot was performed to assess the expressions of EMT-related proteins. CCK-8 and clone formation assays were conducted to detect cell proliferation, TUNEL assay was used to detect apoptosis, and transwell assay was executed to test migration and invasion. Results The low PART1 expression and high miR-503-5p expression were found in TSCC tissues and cell lines (CAL-27 and SCC9). PART1 expression was positively correlated with patients’ prognosis. The targeting and binding relationship between PART1 and miR-503-5p was confirmed, and overexpressed PART1 diminished the expression of miR-503-5p as well. Moreover, PART1 facilitated apoptosis, inhibited proliferation, invasion and migration of TSCC cells, and these influences were impeded by miR-503-5p overexpression. Conclusion LncRNA PART1 played a cancer-suppressing role in TSCC by targeting miR-503-5p, which provided a potential target for TSCC treatment.
Collapse
Affiliation(s)
- Xiqun Zhao
- Department of Pediatric Dentistry, Jinan Stomatological Hospital, Jinan, Shandong 250001, People's Republic of China
| | - Yanqing Hong
- Prosthodontic Lab, Jinan Stomatological Hospital, Jinan, Shandong 250001, People's Republic of China
| | - Qingyuan Cheng
- Department of Stomatology, Jinan LiCheng District Hospital of Traditional Chinese Medicine, Jinan, Shandong 250001, People's Republic of China
| | - Lixin Guo
- Department of Scientific Education, Jinan Stomatological Hospital, Jinan, Shandong 250001, People's Republic of China
| |
Collapse
|
36
|
Ashrafizadeh M, Zarrabi A, Samarghandian S, Najafi M. PTEN: What we know of the function and regulation of this onco-suppressor factor in bladder cancer? Eur J Pharmacol 2020; 881:173226. [PMID: 32485246 DOI: 10.1016/j.ejphar.2020.173226] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Bladder cancer accounts for high morbidity and mortality around the world and its incidence rate is suggested to be higher in following years. A number of factors involve in bladder cancer development such as lifestyle and drugs. However, it appears that genetic factors play a significant role in bladder cancer development and progression. Phosphatase and tensin homolog (PTEN) is a cancer-related transcription factor that is corelated with reduced proliferation and invasion of cancer cells by negatively targeting PI3K/Akt/mTOR signaling pathway. In the present review, we aimed to explore the role of PTEN in bladder cancer cells and how upstream modulators affect PTEN in this life-threatening disorder. Down-regulation of PTEN is associated with poor prognosis, chemoresistance and progression of cancer cells. Besides, microRNAs, long non-coding RNAs, circular RNAs and other molecular pathways such as NF-kB are able to target PTEN in bladder cancer cells. Notably, anti-tumor drugs such as kaempferol, β-elemene and sorafenib upregulate the expression of PTEN to exert their inhibitory effects on bladder cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
37
|
PART1 and hsa-miR-429-Mediated SHCBP1 Expression Is an Independent Predictor of Poor Prognosis in Glioma Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1767056. [PMID: 32351983 PMCID: PMC7174919 DOI: 10.1155/2020/1767056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Gliomas are the most common primary brain tumors. Because of their high degree of malignancy, patient survival rates are unsatisfactory. Therefore, exploring glioma biomarkers will play a key role in early diagnosis, guiding treatment, and monitoring the prognosis of gliomas. We found two lncRNAs, six miRNAs, and nine mRNAs that were differentially expressed by analyzing genomic data of glioma patients. The diagnostic value of mRNA expression levels in gliomas was determined by receiver operating characteristic (ROC) curve analysis. Among the nine mRNAs, the area under the ROC curve values of only CEP55 and SHCBP1 were >0.7, specifically 0.834 and 0.816, respectively. Additionally, CEP55 and SHCBP1 were highly expressed in glioma specimens and showed increased expression according to the glioma grade, and outcomes of high expression patients were poor. CEP55 was enriched in the cell cycle, DNA replication, mismatch repair, and P53 signaling pathway. SHCBP1 was enriched in the cell cycle, DNA replication, ECM receptor interaction, and P53 signaling pathway. Age, grade, IDH status, chromosome 19/20 cogain, and SHCBP1 were independent factors for prognosis. Our findings suggest the PART1-hsa-miR-429-SHCBP1 regulatory network plays an important role in gliomas.
Collapse
|