1
|
Sun L, Ma Y, Geng C, Gao X, Li X, Ru Q, Zhu S, Zhang P. DPP4, a potential tumor biomarker, and tumor therapeutic target: review. Mol Biol Rep 2025; 52:126. [PMID: 39821530 DOI: 10.1007/s11033-025-10235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Dipeptidyl peptidase 4 (DPP4) is a serine protease widely distributed in membrane-bound and soluble forms in various tissues and organs throughout the body. DPP4 plays a role in inflammation, immune regulation, cell growth, migration and differentiation. The role of DPP4 in tumors has garnered increasing attention. Previous research has demonstrated that DPP4 contributes to the promotion of cancer in most cancers, and it may play a specific biological function through the variation in tumor cell types and expression forms. However, the expression of DDP4 in different tumor types and its specific mechanism remains unclear. In this review, we describe the structure of DPP4, summarize the recent research progress of its expression and potential mechanisms in common tumors, and discuss the development prospects of DPP4 inhibitors in tumor therapy. Although current research emphasizes the potential of DPP4 as a drug target, the incomplete understanding of its regulatory mechanisms impedes the discovery and development of new therapies against it. Further research on DPP4-related tumors is anticipated to promote its clinical application as a potential therapeutic target.
Collapse
Affiliation(s)
- Lu Sun
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Yuhui Ma
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Chenchen Geng
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Xiaoqian Gao
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Xinbing Li
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Qi Ru
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Shuzhen Zhu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, 266035, China.
| | - Ping Zhang
- Department of Ultrasound, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China.
- Health Management Center, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China.
| |
Collapse
|
2
|
Fromhage G, Obermayr E, Bednarz-Knoll N, Van Gorp T, Welsch E, Polterauer S, Braicu EI, Mahner S, Sehouli J, Vergote I, Concin N, Kurtz S, Steinbiss S, Torge A, Zeillinger R, Wölber L, Brandt B. Loss of copy numbers of retrotransposons (HERVK) on chromosome 7p11.2 impacts EGFR (Epidermal Growth Factor Receptor)-induced phenotypes for platinum sensitivity and long-term survival in ovarian cancer-A study from the OVCAD consortium. Int J Cancer 2024; 155:934-945. [PMID: 38709956 DOI: 10.1002/ijc.34976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024]
Abstract
We analyzed variations in the epidermal growth factor receptor (EGFR) gene and 5'-upstream region to identify potential molecular predictors of treatment response in primary epithelial ovarian cancer. Tumor tissues collected during debulking surgery from the prospective multicenter OVCAD study were investigated. Copy number variations in the human endogenous retrovirus sequence human endogenous retrovirus K9 (HERVK9) and EGFR Exons 7 and 9, as well as repeat length and loss of heterozygosity of polymorphic CA-SSR I and relative EGFR mRNA expression were determined quantitatively. At least one EGFR variation was observed in 94% of the patients. Among the 30 combinations of variations discovered, enhanced platinum sensitivity (n = 151) was found dominantly with HERVK9 haploidy and Exon 7 tetraploidy, overrepresented among patients with survival ≥120 months (24/29, p = .0212). EGFR overexpression (≥80 percentile) was significantly less likely in the responders (17% vs. 32%, p = .044). Multivariate Cox regression analysis, including age, FIGO stage, and grade, indicated that the patients' subgroup was prognostically significant for CA-SSR I repeat length <18 CA for both alleles (HR 0.276, 95% confidence interval 0.109-0.655, p = .001). Although EGFR variations occur in ovarian cancer, the mRNA levels remain low compared to other EGFR-mutated cancers. Notably, the inherited length of the CA-SSR I repeat, HERVK9 haploidy, and Exon 7 tetraploidy conferred three times higher odds ratio to survive for more than 10 years under therapy. This may add value in guiding therapies if determined during follow-up in circulating tumor cells or circulating tumor DNA and offers HERVK9 as a potential therapeutic target.
Collapse
Affiliation(s)
- Gesa Fromhage
- Department of Obstetrics and Gynecology, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Obermayr
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Toon Van Gorp
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eva Welsch
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Stephan Polterauer
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Elena Ioana Braicu
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Jalid Sehouli
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Nicole Concin
- Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
| | - Stefan Kurtz
- Center for Bioinformatics Hamburg, MIN-Faculty, Universität Hamburg, Hamburg, Germany
| | - Sascha Steinbiss
- DCSO Deutsche Cyber-Sicherheitsorganisation GmbH, Berlin, Germany
| | - Antje Torge
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Robert Zeillinger
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Linn Wölber
- Department of Obstetrics and Gynecology, Medical University Center Hamburg-Eppendorf, Hamburg, Germany
| | - Burkhard Brandt
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
3
|
Hamidi AA, Khalili-Tanha G, Nasrpour Navaei Z, Moghbeli M. Long non-coding RNAs as the critical regulators of epithelial mesenchymal transition in colorectal tumor cells: an overview. Cancer Cell Int 2022; 22:71. [PMID: 35144601 PMCID: PMC8832734 DOI: 10.1186/s12935-022-02501-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/30/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer mortality and a major health challenge worldwide. Despite advances in therapeutic and diagnostic methods, there is still a poor prognosis in CRC patients. Tumor recurrence and metastasis are the main causes of high mortality rate in these patients, which are due to late diagnosis in advanced tumor stages. Epithelial-mesenchymal transition (EMT) is known to be the most important cause of CRC metastasis, during which tumor cells obtain metastasis ability by losing epithelial features and gaining mesenchymal features. Long non-coding RNAs (lncRNAs) are pivotal regulators of EMT process. Regarding the higher stability of lncRNAs compared with coding RNAs in body fluids, they can be used as non-invasive diagnostic markers for EMT process. In the present review, we summarized all of the lncRNAs involved in regulation of EMT process during CRC progression and metastasis. It was observed that lncRNAs mainly induced the EMT process in CRC cells by regulation of EMT-related transcription factors, Poly comb repressive complex (PRC), and also signaling pathways such as WNT, NOTCH, MAPK, and Hippo.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Nasrpour Navaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Wang X, Du ZW, Xu TM, Wang XJ, Li W, Gao JL, Li J, Zhu H. HIF-1α Is a Rational Target for Future Ovarian Cancer Therapies. Front Oncol 2022; 11:785111. [PMID: 35004308 PMCID: PMC8739787 DOI: 10.3389/fonc.2021.785111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer is the eighth most commonly diagnosed cancer among women worldwide. Even with the development of novel drugs, nearly one-half of the patients with ovarian cancer die within five years of diagnosis. These situations indicate the need for novel therapeutic agents for ovarian cancer. Increasing evidence has shown that hypoxia-inducible factor-1α(HIF-1α) plays an important role in promoting malignant cell chemoresistance, tumour metastasis, angiogenesis, immunosuppression and intercellular interactions. The unique microenvironment, crosstalk and/or interaction between cells and other characteristics of ovarian cancer can influence therapeutic efficiency or promote the disease progression. Inhibition of the expression or activity of HIF-1α can directly or indirectly enhance the therapeutic responsiveness of tumour cells. Therefore, it is reasonable to consider HIF-1α as a potential therapeutic target for ovarian cancer. In this paper, we summarize the latest research on the role of HIF-1α and molecules which can inhibit HIF-1α expression directly or indirectly in ovarian cancer, and drug clinical trials about the HIF-1α inhibitors in ovarian cancer or other solid malignant tumours.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Zhen-Wu Du
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China.,Research Center, The Second Hospital of Jilin University, Changchun, China
| | - Tian-Min Xu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Jun Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Li Gao
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jing Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Tseng WC, Lee MS, Lin YC, Lai HC, Yu MH, Wu KL, Wu ZF. Propofol-Based Total Intravenous Anesthesia is Associated with Better Survival than Desflurane Anesthesia in Epithelial Ovarian Cancer Surgery: A Retrospective Cohort Study. Front Pharmacol 2021; 12:685265. [PMID: 34630078 PMCID: PMC8497698 DOI: 10.3389/fphar.2021.685265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/10/2021] [Indexed: 02/01/2023] Open
Abstract
Background: Previous studies have shown that anesthetic techniques can affect outcomes of cancer surgery. We investigated the association between anesthetic techniques and patient outcomes after elective epithelial ovarian cancer surgery. Methods: This was a retrospective cohort study of patients who received elective open surgery for epithelial ovarian cancer between January 2009 and December 2014. Patients were grouped according to the administration of propofol or desflurane anesthesia. Kaplan–Meier analysis was performed, and survival curves were constructed from the date of surgery to death. Univariate and multivariate Cox regression models were used to compare hazard ratios for death after propensity matching. Subgroup analyses were performed for age, body mass index, preoperative carbohydrate antigen-125 level, International Federation of Gynecology and Obstetrics staging, and operation and anesthesia time. Results: In total, 165 patients (76 deaths, 46.1%) who received desflurane anesthesia and 119 (30 deaths, 25.2%) who received propofol anesthesia were eligible for analysis. After propensity matching, 104 patients were included in each group. In the matched analysis, patients who received propofol anesthesia had better survival with a hazard ratio of 0.52 (95% confidence interval, 0.33–0.81; p = 0.005). Subgroup analyses also showed significantly better survival with old age, high body mass index, elevated carbohydrate antigen-125 level, advanced International Federation of Gynecology and Obstetrics stage, and prolonged operation and anesthesia time in the matched propofol group. In addition, patients administered with propofol anesthesia had less postoperative recurrence and metastasis than those administered with desflurane anesthesia in the matched analysis. Conclusion: Propofol anesthesia was associated with better survival in patients who underwent elective epithelial ovarian cancer open surgery. Prospective studies are warranted to evaluate the effects of propofol anesthesia on oncological outcomes in patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Wei-Cheng Tseng
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Meei-Shyuan Lee
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Chih Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Hou-Chuan Lai
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Mu-Hsien Yu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Ke-Li Wu
- Department of General Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Zhi-Fu Wu
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Pitman M, Oehler MK, Pitson SM. Sphingolipids as multifaceted mediators in ovarian cancer. Cell Signal 2021; 81:109949. [PMID: 33571664 DOI: 10.1016/j.cellsig.2021.109949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is the most lethal gynaecological malignancy. It is commonly diagnosed at advanced stage when it has metastasised to the abdominal cavity and treatment becomes very challenging. While current standard therapy involving debulking surgery and platinum + taxane-based chemotherapy is associated with high response rates initially, the large majority of patients relapse and ultimately succumb to chemotherapy-resistant disease. In order to improve survival novel strategies for early detection and therapeutics against treatment-refractory disease are urgently needed. A promising new target against ovarian cancer is the sphingolipid pathway which is commonly hijacked in cancer to support cell proliferation and survival and has been shown to promote chemoresistance and metastasis in a wide range of malignant neoplasms. In particular, the sphingosine kinase 1-sphingosine 1-phosphate receptor 1 axis has been shown to be altered in ovarian cancer in multiple ways and therefore represents an attractive therapeutic target. Here we review the roles of sphingolipids in ovarian cancer progression, metastasis and chemoresistance, highlighting novel strategies to target this pathway that represent potential avenues to improve patient survival.
Collapse
Affiliation(s)
- MelissaR Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5000, Australia.
| | - Martin K Oehler
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
7
|
Grimes MM, Kenney SR, Dominguez DR, Brayer KJ, Guo Y, Wandinger-Ness A, Hudson LG. The R-enantiomer of ketorolac reduces ovarian cancer tumor burden in vivo. BMC Cancer 2021; 21:40. [PMID: 33413202 PMCID: PMC7791840 DOI: 10.1186/s12885-020-07716-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rho-family GTPases, including Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42), are important modulators of cancer-relevant cell functions and are viewed as promising therapeutic targets. Based on high-throughput screening and cheminformatics we identified the R-enantiomer of an FDA-approved drug (ketorolac) as an inhibitor of Rac1 and Cdc42. The corresponding S-enantiomer is a non-steroidal anti-inflammatory drug (NSAID) with selective activity against cyclooxygenases. We reported previously that R-ketorolac, but not the S-enantiomer, inhibited Rac1 and Cdc42-dependent downstream signaling, growth factor stimulated actin cytoskeleton rearrangements, cell adhesion, migration and invasion in ovarian cancer cell lines and patient-derived tumor cells. METHODS In this study we treated mice with R-ketorolac and measured engraftment of tumor cells to the omentum, tumor burden, and target GTPase activity. In order to gain insights into the actions of R-ketorolac, we also performed global RNA-sequencing (RNA-seq) analysis on tumor samples. RESULTS Treatment of mice with R-ketorolac decreased omental engraftment of ovarian tumor cells at 18 h post tumor cell injection and tumor burden after 2 weeks of tumor growth. R-ketorolac treatment inhibited tumor Rac1 and Cdc42 activity with little impact on mRNA or protein expression of these GTPase targets. RNA-seq analysis revealed that R-ketorolac decreased expression of genes in the HIF-1 signaling pathway. R-ketorolac treatment also reduced expression of additional genes associated with poor prognosis in ovarian cancer. CONCLUSION These findings suggest that R-ketorolac may represent a novel therapeutic approach for ovarian cancer based on its pharmacologic activity as a Rac1 and Cdc42 inhibitor. R-ketorolac modulates relevant pathways and genes associated with disease progression and worse outcome.
Collapse
Affiliation(s)
- Martha M. Grimes
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| | - S. Ray Kenney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
- Division of Molecular Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Dayna R. Dominguez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| | - Kathryn J. Brayer
- Analytical and Translational Genomics Shared Resource, Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico USA
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Yuna Guo
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Angela Wandinger-Ness
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| |
Collapse
|
8
|
Wu Y, Meng D, You Y, Sun R, Fu M, Yan Q, Zhang S, Fang Z, Bao J, Li Y. Hypoxia Inducible Factor-1alpha (HIF-1A) plays different roles in Gallbladder Cancer and Normal Gallbladder Tissues. J Cancer 2021; 12:827-839. [PMID: 33403040 PMCID: PMC7778542 DOI: 10.7150/jca.46749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/24/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose: Hypoxia-inducible factor-1alpha (HIF-1A) is a transcription factor that plays an “angiogenic switch” role especially under hypoxia microenvironment in solid tumor. However, the functions and clinical significance of HIF-1A in gallbladder cancer (GBC) are still controversial, and it has not been studied in normal gallbladder tissues. In this study, we sought to clarify the role of sub-cellular localization of HIF-1A expression in GBC and normal gallbladder tissues. Methods: The expressions of HIF-1A and CD34 in 127 GBC and 47 normal gallbladder tissues were evaluated by immunohistochemistry. Cox's proportional hazards model analysis and Kaplan-Meier method analysis were used to assess the correlations between these factors and clinicopathological features and prognosis. Results: HIF-1A was expressed in both cytoplasm and nucleus of GBC and normal control tissues, and was significantly correlated with microvessel density (MVD). GBC tissues with positive nuclear HIF-1A expression had higher MVD compared to that with positive cytoplasmic HIF-1A expression; however, in normal gallbladder tissues, samples with positive cytoplasmic HIF-1A had higher MVD compared to that with positive nuclear HIF-1A expression. Moreover, GBC with nuclear HIF-1A expression tended to be more poorly differentiated and had larger tumor size compared to that with cytoplasm HIF-1A expression. Furthermore, GBC patients with nuclear HIF-1A positive were significantly correlated with worse overall survival (OS) compared with cytoplasmic HIF-1A positive. Multivariate Cox regression analysis identified lymph node metastasis and nuclear HIF-1A expression to be independent prognostic parameter in GBC. Conclusions: Our findings provide evidence for the first time that HIF-1A is expressed in normal gallbladder tissues. Nuclear HIF-1A and cytoplasm HIF-1A plays different roles in GBC and normal gallbladder tissues.
Collapse
Affiliation(s)
- Youliang Wu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Delong Meng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yexiang You
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Ruochuan Sun
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Min Fu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Qiang Yan
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Shangxin Zhang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Zheng Fang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Junjun Bao
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Yongxiang Li
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| |
Collapse
|
9
|
Moffitt LR, Bilandzic M, Wilson AL, Chen Y, Gorrell MD, Oehler MK, Plebanski M, Stephens AN. Hypoxia Regulates DPP4 Expression, Proteolytic Inactivation, and Shedding from Ovarian Cancer Cells. Int J Mol Sci 2020; 21:8110. [PMID: 33143089 PMCID: PMC7672561 DOI: 10.3390/ijms21218110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 01/03/2023] Open
Abstract
The treatment of ovarian cancer has not significantly changed in decades and it remains one of the most lethal malignancies in women. The serine protease dipeptidyl peptidase 4 (DPP4) plays key roles in metabolism and immunity, and its expression has been associated with either pro- or anti-tumour effects in multiple tumour types. In this study, we provide the first evidence that DPP4 expression and enzyme activity are uncoupled under hypoxic conditions in ovarian cancer cells. Whilst we identified strong up-regulation of DPP4 mRNA expression under hypoxic growth, the specific activity of secreted DPP4 was paradoxically decreased. Further investigation revealed matrix metalloproteinases (MMP)-dependent inactivation and proteolytic shedding of DPP4 from the cell surface, mediated by at least MMP10 and MMP13. This is the first report of uncoupled DPP4 expression and activity in ovarian cancer cells, and suggests a previously unrecognized, cell- and tissue-type-dependent mechanism for the regulation of DPP4 in solid tumours. Further studies are necessary to identify the functional consequences of DPP4 processing and its potential prognostic or therapeutic value.
Collapse
Affiliation(s)
- Laura R. Moffitt
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Maree Bilandzic
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Amy L. Wilson
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Yiqian Chen
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Mark D. Gorrell
- Centenary Institute, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Martin K. Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
- Robinson Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia;
| | - Andrew N. Stephens
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| |
Collapse
|
10
|
Han Y, Kim B, Cho U, Park IS, Kim SI, Dhanasekaran DN, Tsang BK, Song YS. Mitochondrial fission causes cisplatin resistance under hypoxic conditions via ROS in ovarian cancer cells. Oncogene 2019; 38:7089-7105. [DOI: 10.1038/s41388-019-0949-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/08/2022]
|
11
|
Han S, Huang T, Hou F, Yao L, Wang X, Wu X. The prognostic value of hypoxia-inducible factor-1α in advanced cancer survivors: a meta-analysis with trial sequential analysis. Ther Adv Med Oncol 2019; 11:1758835919875851. [PMID: 31579115 PMCID: PMC6759726 DOI: 10.1177/1758835919875851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Expression of hypoxia-inducible factors (HIFs) has been observed, but their prognostic role in advanced cancers remains uncertain. We conducted a meta-analysis to establish the prognostic effect of HIFs and to better guide treatment planning for advanced cancers. Methods: Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. Trial sequential analysis (TSA) was also performed. The clinical outcomes included overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), cancer-specific survival (CSS), relapse/recurrence-free survival (RFS), and metastasis-free survival (MFS) in patients with advanced tumors according to multivariate analysis. Results: A total of 31 studies including 3453 cases who received chemotherapy, radiotherapy, or chemoradiotherapy were identified. Pooled analyses revealed that HIF-1α expression was correlated with worse OS (HR = 1.61, p < 0.001), DFS (HR = 1.61, p < 0.001), PFS (HR = 1.49, p = 0.01), CSS (HR = 1.65, p = 0.056), RFS (HR = 2.10, p = 0.015), or MFS (HR = 2.36, p = 0.002) in advanced cancers. HIF-1α expression was linked to shorter OS in the digestive tract, epithelial ovarian, breast, non-small cell lung, and clear cell renal cell carcinomas. Subgroup analysis by study region showed that HIF-1α expression was correlated with poor OS in Europeans and Asians, while an analysis by histologic subtypes found that HIF-1α expression was not associated with OS in squamous cell carcinoma. No relationship was found between HIF-2α expression and OS, DFS, PFS, or CSS. Conclusions: Targeting HIF-1α may be a useful therapeutic approach to improve survival for advanced cancer patients. Based on TSA, more randomized controlled trials are strongly suggested.
Collapse
Affiliation(s)
- Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Road, 200071, People's Republic of China
| | - Tao Huang
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, People's Republic of China
| | - Liting Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, People's Republic of China
| | - Xiyu Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, People's Republic of China
| | - Xing Wu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, People's Republic of China
| |
Collapse
|
12
|
Zhang W, Yuan W, Song J, Wang S, Gu X. LncRNA CPS1-IT1 suppresses EMT and metastasis of colorectal cancer by inhibiting hypoxia-induced autophagy through inactivation of HIF-1α. Biochimie 2017; 144:21-27. [PMID: 29017924 DOI: 10.1016/j.biochi.2017.10.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/05/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Hypoxia is a common phenomenon in solid tumor microenvironment. Thereby, the aim of this study was to investigate the molecular mechanisms of tumor metastasis and epithelial-mesenchymal transition (EMT) regulated by lncRNA CPS1 intronic transcript 1 (CPS1-IT1) under hypoxia in CRC. METHODS Expression of lncRNA CPS1-IT1, hypoxia-inducible factor-1 alpha (HIF-1α) and autophagy related protein (LC3) were initially assessed in human CRC tissues and in a series of CRC cell lines. The relationship of CPS1-IT1, HIF-1α and autophagy were analyzed in CRC were performed through in vitro and in vivo functional assays. RESULTS Expression of CPS1-IT1 were significantly reduced, while HIF-1α and LC3-II were increased in CRC tissues and cell lines. Then, in vitro assays revealed that CPS1-IT1 suppresses EMT and autophagy by inhibiting the activation of HIF-1α in CRC. An in vivo animal model also demonstrated the tumor suppressor mechanism of CPS1- IT1. CONCLUSION In this study, we found that hypoxia induce autophagy, and inhibition of autophagy could suppress tumor metastasis and EMT in CRC. Additionally, lncRNA CPS1-IT might suppresses metastasis and EMT by inhibiting hypoxia-induced autophagy through inactivation of HIF-1α in CRC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan Provence, China.
| | - Weitang Yuan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan Provence, China
| | - Junmin Song
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan Provence, China
| | - Shijun Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan Provence, China
| | - Xiaoming Gu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan Provence, China
| |
Collapse
|
13
|
Chase DM, Chaplin DJ, Monk BJ. The development and use of vascular targeted therapy in ovarian cancer. Gynecol Oncol 2017; 145:393-406. [DOI: 10.1016/j.ygyno.2017.01.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 02/08/2023]
|
14
|
The Protective Roles of ROS-Mediated Mitophagy on 125I Seeds Radiation Induced Cell Death in HCT116 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9460462. [PMID: 28119765 PMCID: PMC5227180 DOI: 10.1155/2016/9460462] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/18/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022]
Abstract
For many unresectable carcinomas and locally recurrent cancers (LRC), 125I seeds brachytherapy is a feasible, effective, and safe treatment. Several studies have shown that 125I seeds radiation exerts anticancer activity by triggering DNA damage. However, recent evidence shows mitochondrial quality to be another crucial determinant of cell fate, with mitophagy playing a central role in this control mechanism. Herein, we found that 125I seeds irradiation injured mitochondria, leading to significantly elevated mitochondrial and intracellular ROS (reactive oxygen species) levels in HCT116 cells. The accumulation of mitochondrial ROS increased the expression of HIF-1α and its target genes BINP3 and NIX (BINP3L), which subsequently triggered mitophagy. Importantly, 125I seeds radiation induced mitophagy promoted cells survival and protected HCT116 cells from apoptosis. These results collectively indicated that 125I seeds radiation triggered mitophagy by upregulating the level of ROS to promote cellular homeostasis and survival. The present study uncovered the critical role of mitophagy in modulating the sensitivity of tumor cells to radiation therapy and suggested that chemotherapy targeting on mitophagy might improve the efficiency of 125I seeds radiation treatment, which might be of clinical significance in tumor therapy.
Collapse
|
15
|
Gleiss A, Zeillinger R, Braicu EI, Trillsch F, Vergote I, Schemper M. Statistical controversies in clinical research: the importance of importance. Ann Oncol 2016; 27:1185-9. [PMID: 27052655 DOI: 10.1093/annonc/mdw159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/30/2016] [Indexed: 11/13/2022] Open
Abstract
We define the notion of 'importance' of prognostic factors in studies of survival and suggest quantifying it by the Schemper-Henderson measure of explained variation. Conceptual differences to the standard approach for the statistical analysis of oncologic studies of survival are discussed and exemplified by means of a study of ovarian cancer. Explained variation permits to establish a ranking of the importance of factors, also if measured on different scales, or of different types (dichotomous, qualitative or continuous), and permits to compare groups of related factors. In practice, the importance of prognostic factors often is disappointingly low. From this, it follows that even strong and highly significant prognostic factors often do not translate into close determination of individual survival of patients.
Collapse
Affiliation(s)
- A Gleiss
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems
| | - R Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - E I Braicu
- Department of Gynecology, Tumor Bank Ovarian Cancer (TOC), European Competence Center for Ovarian Cancer, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Berlin
| | - F Trillsch
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - I Vergote
- Department of Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - M Schemper
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems
| |
Collapse
|
16
|
Perut F, Carta F, Bonuccelli G, Grisendi G, Di Pompo G, Avnet S, Sbrana FV, Hosogi S, Dominici M, Kusuzaki K, Supuran CT, Baldini N. Carbonic anhydrase IX inhibition is an effective strategy for osteosarcoma treatment. Expert Opin Ther Targets 2015; 19:1593-605. [PMID: 26357839 DOI: 10.1517/14728222.2016.1086339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hypoxia-inducible factor 1, a regulator of CA IX activity, is often overexpressed in human osteosarcoma (OS) but not in normal tissues, and its expression levels correlate with prognosis. In this study, we investigated the therapeutic potential of newly synthesized CA IX sulfonamide inhibitors in OS. METHODS CA IX expression was evaluated in OS cell lines and bone marrow stromal cells (BMSC). After treatment with CA IX inhibitors, cell proliferation, apoptosis, cell cycle, extracellular and cytosolic pH changes were evaluated both in vitro and in mouse OS xenografts. RESULTS CA IX expression levels were significantly higher in OS than in BMSC. Accordingly, CA IX inhibitor 3 induced remarkable cytotoxicity on OS cells without affecting BMSC proliferation. This activity was increased under hypoxia, and was mediated by cell cycle arrest and by the modulation of cytosolic and extracellular pH. In vivo, CA IX inhibitor 3 reduced tumor growth by inducing significant necrosis. CONCLUSIONS Our results provide a strong rationale for the clinical use of the newly synthesized CA IX inhibitor 3 in human OS.
Collapse
Affiliation(s)
- Francesca Perut
- a 1 Istituto Ortopedico Rizzoli, Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine , via di Barbiano 1/10, 40136 Bologna, Italy +39 05 16 36 66 78 ; +39 05 16 36 68 97 ;
| | - Fabrizio Carta
- b 2 University of Florence, Section of Pharmaceutical Chemistry, NEUROFARBA Department , Sesto Fiorentino, FI, Italy
| | - Gloria Bonuccelli
- a 1 Istituto Ortopedico Rizzoli, Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine , via di Barbiano 1/10, 40136 Bologna, Italy +39 05 16 36 66 78 ; +39 05 16 36 68 97 ;
| | - Giulia Grisendi
- c 3 University of Modena e Reggio Emilia, Department of Medical and Surgical Sciences for Children & Adults , Modena, Italy
| | - Gemma Di Pompo
- a 1 Istituto Ortopedico Rizzoli, Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine , via di Barbiano 1/10, 40136 Bologna, Italy +39 05 16 36 66 78 ; +39 05 16 36 68 97 ;
| | - Sofia Avnet
- a 1 Istituto Ortopedico Rizzoli, Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine , via di Barbiano 1/10, 40136 Bologna, Italy +39 05 16 36 66 78 ; +39 05 16 36 68 97 ;
| | - Francesca Vittoria Sbrana
- a 1 Istituto Ortopedico Rizzoli, Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine , via di Barbiano 1/10, 40136 Bologna, Italy +39 05 16 36 66 78 ; +39 05 16 36 68 97 ;
| | - Shigekuni Hosogi
- a 1 Istituto Ortopedico Rizzoli, Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine , via di Barbiano 1/10, 40136 Bologna, Italy +39 05 16 36 66 78 ; +39 05 16 36 68 97 ;
| | - Massimo Dominici
- c 3 University of Modena e Reggio Emilia, Department of Medical and Surgical Sciences for Children & Adults , Modena, Italy
| | - Katsuyuki Kusuzaki
- d 4 Kyoto Kujo Hospital, Department of Orthopaedic Surgery , Kyoto, Japan
| | - Claudiu T Supuran
- b 2 University of Florence, Section of Pharmaceutical Chemistry, NEUROFARBA Department , Sesto Fiorentino, FI, Italy
| | - Nicola Baldini
- a 1 Istituto Ortopedico Rizzoli, Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine , via di Barbiano 1/10, 40136 Bologna, Italy +39 05 16 36 66 78 ; +39 05 16 36 68 97 ; .,e 5 University of Bologna, Department of Biomedical and Neuromotor Sciences , Bologna, Italy
| |
Collapse
|
17
|
Song X, Dilly AK, Choudry HA, Bartlett DL, Kwon YT, Lee YJ. Hypoxia Promotes Synergy between Mitomycin C and Bortezomib through a Coordinated Process of Bcl-xL Phosphorylation and Mitochondrial Translocation of p53. Mol Cancer Res 2015; 13:1533-43. [PMID: 26354682 DOI: 10.1158/1541-7786.mcr-15-0237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Colorectal peritoneal carcinomatosis (CPC) exhibits severe tumor hypoxia, leading to drug resistance and disease aggressiveness. This study demonstrates that the combination of the chemotherapeutic agent mitomycin C with the proteasome inhibitor bortezomib induced synergistic cytotoxicity and apoptosis, which was even more effective under hypoxia in colorectal cancer cells. The combination of mitomycin C and bortezomib at sublethal doses induced activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase and resulted in Bcl-xL phosphorylation at Serine 62, leading to dissociation of Bcl-xL from proapoptotic Bak. Interestingly, the intracellular level of p53 became elevated and p53 translocated to the mitochondria during the combinatorial treatment, in particular under hypoxia. The coordinated action of Bcl-xL phosphorylation and p53 translocation to the mitochondria resulted in conformational activation of Bak oligomerization, facilitating cytochrome c release and apoptosis induction. In addition, the combinatorial treatment with mitomycin C and bortezomib significantly inhibited intraperitoneal tumor growth in LS174T cells and increased apoptosis, especially under hypoxic conditions in vivo. This study provides a preclinical rationale for the use of combination therapies for CPC patients. IMPLICATIONS The combination of a chemotherapy agent and proteasome inhibitor at sublethal doses induced synergistic apoptosis, in particular under hypoxia, in vitro and in vivo through coordinated action of Bcl-xL and p53 on Bak activation.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ashok-Kumar Dilly
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haroon Asif Choudry
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
| | - Yong J Lee
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
18
|
Transcriptional regulation of chemokine expression in ovarian cancer. Biomolecules 2015; 5:223-43. [PMID: 25790431 PMCID: PMC4384120 DOI: 10.3390/biom5010223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 12/14/2022] Open
Abstract
The increased expression of pro-inflammatory and pro-angiogenic chemokines contributes to ovarian cancer progression through the induction of tumor cell proliferation, survival, angiogenesis, and metastasis. The substantial potential of these chemokines to facilitate the progression and metastasis of ovarian cancer underscores the need for their stringent transcriptional regulation. In this Review, we highlight the key mechanisms that regulate the transcription of pro-inflammatory chemokines in ovarian cancer cells, and that have important roles in controlling ovarian cancer progression. We further discuss the potential mechanisms underlying the increased chemokine expression in drug resistance, along with our perspective for future studies.
Collapse
|