1
|
Gloeck NR, Leong TD, Mthethwa M, Iwu-Jaja CJ, Katoto PD, Wiysonge CS, Kredo T. Typhoid conjugate vaccines for preventing typhoid fever (enteric fever). Cochrane Database Syst Rev 2025; 5:CD015746. [PMID: 40326553 PMCID: PMC12053466 DOI: 10.1002/14651858.cd015746.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
RATIONALE Typhoid fever is a major cause of enteric disease-related morbidity and mortality. Vaccination reduces disease burden and prevents outbreaks, but policies and programmes should be informed by the most recent evidence as newer vaccines become available. OBJECTIVES To assess the benefits and harms of typhoid conjugate vaccines (TCVs) compared to no vaccine, placebo, typhoid-inactive agents (vaccines for another disease) or other typhoid vaccines for preventing morbidity and mortality associated with typhoid fever in adults and children. SEARCH METHODS In April 2024, we searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, CINAHL, Global Index Medicus, United States Advisory Committee on Immunization Practices and the World Health Organization vaccine repository for randomised controlled trials (RCTs), with no restrictions. We also searched clinical trial registries for ongoing trials (www. CLINICALTRIALS gov and the WHO International Clinical Trials Registry Platform), grey literature, bibliographic citations of reviews and key articles for additional studies. We contacted study authors for information about ongoing studies. ELIGIBILITY CRITERIA We included RCTs and cluster-RCTs of children and adults living in typhoid-endemic areas or travelling to typhoid-endemic areas. We included studies comparing TCVs to controls (i.e. no vaccine, placebo or vaccines for another disease), non-conjugated typhoid vaccines or other TCVs. OUTCOMES Outcomes included acute typhoid fever, defined by laboratory-confirmed isolation of Salmonella typhi, all-cause mortality, adverse events (AEs) and serious adverse events (SAEs). RISK OF BIAS Review authors independently assessed risk of bias for all outcomes, using the Cochrane RoB 2 tools. We resolved disagreements through discussion or adjudication. We assessed the intention-to-treat effect and used the overall RoB judgement to assess the certainty of evidence for each outcome. SYNTHESIS METHODS Three review authors independently screened titles and abstracts for eligible studies, followed by full-text assessment. Disagreements were resolved through discussion or adjudication by a fourth author. Four authors independently extracted characteristics of included studies and outcome data using a piloted, standardised data extraction form. We synthesised results for each outcome where possible, using the Mantel-Haenszel statistical method and random-effects analysis model. Where meta-analysis was not possible due to the nature of the data, we planned to synthesise results based on direction of effect. We used GRADE to assess the certainty of evidence for each outcome, assessing risk of bias, inconsistency, indirectness, imprecision and other bias. INCLUDED STUDIES We included 19 trials (17 RCTs and two cluster-RCTs). The 19 trials enrolled 395,650 participants, with ages ranging from six weeks to 60 years. Vaccines were delivered as a single dose in 14 studies; two doses, ranging from four to 24 weeks apart, in six studies; and three doses, four weeks apart, in one study. Comparators included: no vaccine, placebo and other vaccines. Seven studies compared TCV with non-conjugated typhoid vaccines. Six studies compared one TCV to another TCV. SYNTHESIS OF RESULTS TCV compared to control may result in a large reduction in acute typhoid fever (risk ratio (RR) 0.20, 95% confidence interval (CI) 0.12 to 0.32; I2 = 70%; 6 studies, 101,896 participants; low-certainty evidence) and probably results in little to no difference in all-cause mortality (RR 0.80, 95% CI 0.35 to 1.85; I2 = 52%; 4 studies, 100,337 participants; moderate-certainty evidence). TCV results in little to no difference in AEs when compared to control (RR 0.91, 95% CI 0.76 to 1.09; I2 = 0%; 3 studies, 29,465 participants; high-certainty evidence) and a slight reduction in SAEs compared to control (RR 0.82, 95% CI 0.71 to 0.95; I2 = 0%; 6 studies, 89,625 participants; high-certainty evidence). TCV compared to non-conjugated typhoid vaccines may result in little to no difference in acute typhoid fever (RR 0.90, 95% CI 0.48 to 1.69; 1 study, 78 participants; low-certainty evidence). There were no deaths in the included studies. When compared to non-conjugated typhoid vaccines, TCV likely results in little to no difference in AEs (RR 1.00, 95% CI 0.77 to 1.31; I2 = 0%; 3 studies, 244 participants; moderate-certainty evidence) and likely results in a slight reduction in SAEs (RR 0.30, 95% CI 0.05 to 1.88; I2 = 0%; 2 studies, 732 participants; moderate-certainty evidence). For TCV compared to another TCV, none of the studies reported on acute typhoid fever. Vi tetanus toxoid vaccine (Vi-TT) may result in little to no difference in all-cause mortality compared to a different TCV (RR 5.19, 95% CI 0.54 to 49.80; I2 = 0%; 2 studies, 2422 participants; low-certainty evidence). Vi-TT likely results in little to no difference in AEs compared to another TCV (RR 1.18, 95% CI 0.92 to 1.51; I2 = 39%; 4 studies, 2916 participants; moderate-certainty evidence) and may result in little to no difference in SAEs (RR 2.48, 95% CI 0.74 to 8.36; I2 = 0%; 3 studies, 2866 participants; low-certainty evidence). The certainty of evidence was consistently reduced due to imprecision, indirectness and bias. AUTHORS' CONCLUSIONS This review highlights that TCVs, compared to controls, are effective in preventing typhoid fever, and may confer protection for up to four years. TCVs compared to non-conjugated typhoid vaccines may result in little to no difference in acute typhoid fever and AEs, and likely result in a slight reduction in SAEs. Vi-TT compared to another TCV may result in little to no difference in all-cause mortality or SAEs, and likely results in little to no difference in AEs. FUNDING NG, TL and TK were partly supported by, and the Cochrane Infectious Diseases Group (CIDG) editorial base is funded by, the Research, Evidence and Development Initiative (READ-It), funded by UK aid for the benefit of low- and middle-income countries (project number 300342-104). The views expressed in this review do not necessarily reflect the official policies of the UK government. REGISTRATION Protocol available via doi.org/10.1002/14651858.CD015746.
Collapse
Affiliation(s)
- Natasha R Gloeck
- Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Trudy D Leong
- Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Mashudu Mthethwa
- Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa
| | | | - Patrick Dmc Katoto
- Office of the President and CEO, South African Medical Research Council, Cape Town, South Africa
- Centre for Evidence-based Health Care, Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Tropical Diseases and Global Health, Department of Medicine, Catholic University of Bukavu, Bukavu, DRC
| | - Charles S Wiysonge
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
- Vaccine-Preventable Diseases Programme, WHO Regional Office for Africa, Brazzaville, Congo
| | - Tamara Kredo
- Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine and Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- School of Family Medicine and Public Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Du J, Wu Z, Zhu C, Yang H, Zhao F, Fang B. Exogenous cystine increases susceptibility of drug-resistant Salmonella to gentamicin by promoting oxidation of glutathione metabolism and imbalance of intracellular redox levels. Front Microbiol 2025; 16:1527480. [PMID: 39990151 PMCID: PMC11843173 DOI: 10.3389/fmicb.2025.1527480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Antibiotic overuse has caused the development of bacterial resistance, which is a major threat to public health. Intracellular metabolic processes are essential for maintaining the normal physiological activities of bacteria, and an increasing body of research has demonstrated a significant association between metabolic alterations and the development of drug resistance. Numerous studies have demonstrated that the addition of adjuvants can counteract bacterial antibiotic resistance. Method Cystine treatment was verified in vitro to promote the lethal effect of gentamicin on Salmonella using in vitro bactericidal counting methods. The metabolic differences in Salmonella enterica Typhimurium standard strain ATCC 14028 with or without the addition of cystine were analyzed via untargeted metabolomics. The multifunctional electronic enzyme marker was used to determine intracellular reduced glutathione/oxidized glutathione (GSH/GSSG), ferrous iron on (Fe2+), and reactive oxygen species (ROS) levels. The expression of glutathione and stress genes was determined using real-time quantitative PCR. Result We confirmed that exogenous cystine increased the lethal effect of gentamicin against strain S. enterica Typhimurium (ATCC 14028) and other clinically resistant Salmonella serotypes. Exogenous cystine stimulated the metabolism of the cell and activated the glutathione pathway while altering the GSH/GSSG ratio, which placed bacteria in a state of redox imbalance with increased Fe2+ and ROS levels. Our results suggest that when bacterial redox levels are reprogrammed, bacterial susceptibility to antibiotics can also change. Discussion This study confirms that cystine enhances the antimicrobial efficacy of gentamicin against drug-resistant Salmonella. Through the application of metabolomics, the underlying metabolic mechanisms by which cystine exerts its effects on Salmonella have been elucidated, offering a novel perspective in the domain of metabolic reprogramming aimed at counteracting drug resistance. Furthermore, these findings reinforce the potential role of small-molecule metabolites as effective adjuvants to enhance antibiotic action.
Collapse
Affiliation(s)
- Junyuan Du
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Zhiyi Wu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Chunyang Zhu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Heng Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Feike Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Binghu Fang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Muleta A, Meseret N. Seroprevalence of Typhoid Fever and Its Associated Risk Factors Among Clinically Diagnosed Febrile Patients Visiting the Outpatient Department at Debark Hospital and Drug Susceptibility Patterns of Isolates. BIOMED RESEARCH INTERNATIONAL 2025; 2025:1717780. [PMID: 39949373 PMCID: PMC11824479 DOI: 10.1155/bmri/1717780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025]
Abstract
Typhoid fever is caused by the bacterium Salmonella Typhi, which poses major health problems in developing countries, including Ethiopia. However, there is limited information regarding typhoid fever, contributing factors with it, and its drug susceptibility pattern in the research area. The aim of this study was to determine the seroprevalence of typhoid fever and its associated risk factors among clinically diagnosed febrile patients at Debark Hospital and evaluate the drug susceptibility patterns of the isolates. A hospital-based cross-sectional study was conducted among 158 febrile patients from December 2022 to April 2023. Blood and stool samples were collected from each febrile patient. The Widal test was used to test Salmonella Typhi O and H antigens sera from blood, and bacteria were cultured from the stool. Gram staining and biochemical analyses were carried out for each isolate. Antibiotic susceptibility testing was performed for the isolates using Kirby-Bauer disk diffusion techniques. Descriptive statistics and logistic regression were used for analysis. In this study, the seroprevalence of typhoid fever among febrile patients at Debark Hospital was 22.8%. Gender (adjusted odds ratio (AOR): 95% confidence interval (CI): 0.02, 0.31, p ≤ 0.001), marital status (AOR: 95% CI: 2.63, 4.66, p ≤ 0.001), family size (AOR: 95% CI: 0.01, 0.31, p ≤ 0.001), residence (AOR: 95% CI: 0.09, 0.83, p = 0.021), practice of using toilet (AOR: 95% CI: 0.08, 0.086, p = 0.027), washing fruits and vegetables before eating (AOR: 95% CI: 0.12, 0.87, p = 0.025), and awareness of typhoid fever transmission and prevention (AOR: 95% CI: 0.12, 0.91, p = 0.032) are the associated risk factors for typhoid fever. Fifty percent of the isolates showed multidrug resistance to two or more antibiotics. It was suggested that improving personal hygiene, providing safe drinking water, and careful use of antibiotics could considerably reduce the prevalence of typhoid fever in the study area.
Collapse
Affiliation(s)
- Atsede Muleta
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| | - Naod Meseret
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
4
|
Muturi P, Wachira P, Wagacha M, Mbae C, Kavai SM, Mugo MM, Mohamed M, González JF, Kariuki S, Gunn JS. Salmonella Typhi Haplotype 58 biofilm formation and genetic variation in isolates from typhoid fever patients with gallstones in an endemic setting in Kenya. Front Cell Infect Microbiol 2024; 14:1468866. [PMID: 39606745 PMCID: PMC11599249 DOI: 10.3389/fcimb.2024.1468866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
Although typhoid fever has largely been eliminated in high-income countries, it remains a major global public health concern especially among low- and middle-income countries. The causative agent, Salmonella enterica serovar Typhi (S. Typhi), is a human restricted pathogen with a limited capacity to replicate outside the human host. Human carriers, 90% of whom have gallstones in their gallbladder, continue to shed the pathogen for an ill-defined period of time after treatment. The genetic mechanisms involved in establishing the carrier state are poorly understood, but S. Typhi is thought to undergo specific genetic changes within the gallbladder as an adaptive mechanism. In the current study, we aimed to identify the genetic differences in longitudinal clinical S. Typhi isolates from asymptomatic carriers with gallstones in a typhoid endemic setting in Nairobi, Kenya. Whole-genome sequences were analyzed from 22 S. Typhi isolates, 20 from stool samples, and 2 from blood samples, all genotype 4.3.1 (H58). Out of this, 19 strains were from four patients also diagnosed with gallstones, of whom three had typhoid symptoms and continued to shed S. Typhi after treatment. All isolates had point mutations in the quinolone resistance-determining region (QRDR), and only sub-lineage 4.3.1.2.EA3 encoded multidrug resistance genes. There was no variation in antimicrobial resistance patterns among strains from the same patient/household. Non-multidrug resistant (MDR) isolates formed significantly stronger biofilms in vitro than the MDR isolates, p<0.001. A point mutation within the treB gene (treB A383T) was observed in strains isolated after clinical resolution from patients living in 75% of the households. For missense mutations in Vi capsular polysaccharide genes, tviE P263S was also observed in 18% of the isolates. This study provides insights into the role of typhoid carriage, biofilm formation, AMR genes, and genetic variations in S. Typhi during asymptomatic carriage.
Collapse
Affiliation(s)
- Peter Muturi
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Peter Wachira
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Maina Wagacha
- Department of Biology, University of Nairobi, Nairobi, Kenya
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Susan M. Kavai
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Michael M. Mugo
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Musa Mohamed
- Department of Medical Services, Ministry of Health, Nairobi, Kenya
| | - Juan F. González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
- Eastern Africa Office, Drugs for Neglected Diseases initiative, Nairobi, Kenya
| | - John S. Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Singh K, Vashishtha S, Chakraborty A, Kumar A, Thakur S, Kundu B. The Salmonella typhi Cell Division Activator Protein StCAP Impacts Pathogenesis by Influencing Critical Molecular Events. ACS Infect Dis 2024; 10:1990-2001. [PMID: 38815059 DOI: 10.1021/acsinfecdis.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Conserved molecular signatures in multidrug-resistant Salmonella typhi can serve as novel therapeutic targets for mitigation of infection. In this regard, we present the S. typhi cell division activator protein (StCAP) as a conserved target across S. typhi variants. From in silico and fluorimetric assessments, we found that StCAP is a DNA-binding protein. Replacement of the identified DNA-interacting residue Arg34 of StCAP with Ala34 showed a dramatic (15-fold) increase in Kd value compared to the wild type (Kd 546 nm) as well as a decrease in thermal stability (10 °C shift). Out of the two screened molecules against the DNA-binding pocket of StCAP, eltrombopag, and nilotinib, the former displayed better binding. Eltrombopag inhibited the stand-alone S. typhi culture with an IC50 of 38 μM. The effect was much more pronounced on THP-1-derived macrophages (T1Mac) infected with S. typhi where colony formation was severely hindered with IC50 reduced further to 10 μM. Apoptotic protease activating factor1 (Apaf1), a key molecule for intrinsic apoptosis, was identified as an StCAP-interacting partner by pull-down assay against T1Mac. Further, StCAP-transfected T1Mac showed a significant increase in LC3 II (autophagy marker) expression and downregulation of caspase 3 protein. From these experiments, we conclude that StCAP provides a crucial survival advantage to S. typhi during infection, thereby making it a potent alternative therapeutic target.
Collapse
Affiliation(s)
- Kritika Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Ankan Chakraborty
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Ashish Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sheetal Thakur
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
6
|
Muturi P, Wachira P, Wagacha M, Mbae C, Kavai S, Mugo M, Muhammed M, González JF, Kariuki S, Gunn JS. Salmonella Typhi Haplotype 58 (H58) Biofilm Formation and Genetic Variation in Typhoid Fever Patients with Gallstones in an Endemic Setting in Kenya. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.03.24308409. [PMID: 38883710 PMCID: PMC11177912 DOI: 10.1101/2024.06.03.24308409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The causative agent of typhoid fever, Salmonella enterica serovar Typhi, is a human restricted pathogen. Human carriers, 90% of whom have gallstones in their gallbladder, continue to shed the pathogen after treatment. The genetic mechanisms involved in establishing the carrier state are poorly understood, but S. Typhi is thought to undergo specific genetic changes within the gallbladder as an adaptive mechanism. In the current study, we aimed to identify biofilm forming ability and the genetic differences in longitudinal clinical S. Typhi isolates from asymptomatic carriers with gallstones in Nairobi, Kenya. Whole genome sequences were analyzed from 22 S. Typhi isolates, 20 from stool and 2 from blood samples, all genotype 4.3.1 (H58). Nineteen strains were from four patients also diagnosed with gallstones, of whom, three had typhoid symptoms and continued to shed S. Typhi after treatment. All isolates had point mutations in the quinolone resistance determining region (QRDR) and only sub-lineage 4.3.1.2EA3 encoded multidrug resistance genes. There was no variation in antimicrobial resistance patterns among strains from the same patient/household. Non-multidrug resistant (MDR), isolates formed significantly stronger biofilms in vitro than the MDR isolates, p<0.001. A point mutation within the treB gene (treB A383T) was observed in strains isolated after clinical resolution from patients living in 75% of the households. Missense mutations in Vi capsular polysaccharide genes, tviE P263S was also observed in 18% of the isolates. This study provides insights into the role of typhoid carriage, biofilm formation, AMR genes and genetic variations in S. Typhi from asymptomatic carriers.
Collapse
Affiliation(s)
- Peter Muturi
- Centre for Microbiology Research, Kenya Medical Research Institute
- Department of Biology, University of Nairobi, Kenya
| | | | | | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute
| | - Susan Kavai
- Centre for Microbiology Research, Kenya Medical Research Institute
| | - Michael Mugo
- Centre for Microbiology Research, Kenya Medical Research Institute
| | | | - Juan F. González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Drugs for Neglected Diseases initiative Eastern Africa, Nairobi, Kenya
| | - John S. Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Muturi P, Wachira P, Wagacha M, Mbae C, Kavai S, Muhammed M, Gunn JS, Kariuki S. Fecal Shedding, Antimicrobial Resistance and In Vitro Biofilm formation on Simulated Gallstones by Salmonella Typhi Isolated from Typhoid Cases and Asymptomatic Carriers in Nairobi, Kenya. INTERNATIONAL JOURNAL OF CLINICAL MICROBIOLOGY 2024; 1:23-36. [PMID: 39319013 PMCID: PMC11421374 DOI: 10.14302/issn.2690-4721.ijcm-24-5030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Typhoid fever, caused by the human restricted pathogen Salmonella Typhi, remains a major global public health concern. Even after successful treatment, approximately 3-5% of patients with typhoid fail to clear the bacteria within one year and become chronic carriers. Most typhoid carriers have gallstones in their gallbladder, and biofilm formation on gallstones is highly correlated with chronic carriage. This study's goal was to identify asymptomatic typhoid carriers in an endemic setting in Kenya, and to compare acute versus chronic isolates. A cohort of typhoid fever patients identified through blood and/or stool culture, and their household contacts, were followed up after treatment to detect longitudinal S. Typhi stool shedding. An abdominal ultrasound scan was used to identify individuals with gallstones. A total of 32 index patients and 32 household contacts were successfully followed-up. Gallstones were detected in 4 cases and 1 household contact. The duration of S. Typhi shedding was significantly longer in individuals with gallstones compared to those without, P<0.001. Eighty-three (83) S. Typhi strains were tested for susceptibility to commonly used antimicrobials and examined by in vitro biofilm formation assays. Out of 37 infected individuals, 32.4% had infections caused by multidrug resistant (MDR) S. Typhi strains and only 18.9% were infected by susceptible strains. Non-MDR strains formed significantly better biofilms in vitro than the MDR strains (P<0.001). This study provides data on S. Typhi chronic carriage that will influence public health approaches aimed at reducing typhoid transmission and the burden of infection.
Collapse
Affiliation(s)
- Peter Muturi
- Centre for Microbiology Research, Kenya Medical Research Institute
- Department of Biology, University of Nairobi, Kenya
| | | | | | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute
| | - Susan Kavai
- Centre for Microbiology Research, Kenya Medical Research Institute
| | | | - John S. Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Drugs for Neglected Diseases initiative Eastern Africa, Nairobi, Kenya
| |
Collapse
|
8
|
Uwanibe JN, Olawoye IB, Happi CT, Folarin OA. Genomic Characterization of Multidrug-Resistant Pathogenic Enteric Bacteria from Healthy Children in Osun State, Nigeria. Microorganisms 2024; 12:505. [PMID: 38543556 PMCID: PMC10974654 DOI: 10.3390/microorganisms12030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/01/2024] Open
Abstract
Antimicrobial resistance (AMR) is responsible for the spread and persistence of bacterial infections. Surveillance of AMR in healthy individuals is usually not considered, though these individuals serve as reservoirs for continuous disease transmission. Therefore, it is essential to conduct epidemiological surveillance of AMR in healthy individuals to fully understand the dynamics of AMR transmission in Nigeria. Thirteen multidrug-resistant Citrobacter spp., Enterobacter spp., Klebsiella pneumoniae, and Escherichia coli isolated from stool samples of healthy children were subjected to whole genome sequencing (WGS) using Illumina and Oxford nanopore sequencing platforms. A bioinformatics analysis revealed antimicrobial resistance genes such as the pmrB_Y358N gene responsible for colistin resistance detected in E. coli ST219, virulence genes such as senB, and ybtP&Q, and plasmids in the isolates sequenced. All isolates harbored more than three plasmid replicons of either the Col and/or Inc type. Plasmid reconstruction revealed an integrated tetA gene, a toxin production caa gene in two E. coli isolates, and a cusC gene in K. quasivariicola ST3879, which induces neonatal meningitis. The global spread of AMR pathogenic enteric bacteria is of concern, and surveillance should be extended to healthy individuals, especially children. WGS for epidemiological surveillance will improve the detection of AMR pathogens for management and control.
Collapse
Affiliation(s)
- Jessica N. Uwanibe
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Oshogbo 232102, Osun State, Nigeria; (J.N.U.); (I.B.O.); (C.T.H.)
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Oshogbo 232102, Osun State, Nigeria
| | - Idowu B. Olawoye
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Oshogbo 232102, Osun State, Nigeria; (J.N.U.); (I.B.O.); (C.T.H.)
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Oshogbo 232102, Osun State, Nigeria
| | - Christian T. Happi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Oshogbo 232102, Osun State, Nigeria; (J.N.U.); (I.B.O.); (C.T.H.)
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Oshogbo 232102, Osun State, Nigeria
| | - Onikepe A. Folarin
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Oshogbo 232102, Osun State, Nigeria; (J.N.U.); (I.B.O.); (C.T.H.)
- Department of Biological Sciences, College of Natural Sciences, Redeemer’s University, Oshogbo 232102, Osun State, Nigeria
| |
Collapse
|
9
|
Smith AM, Erasmus LK, Tau NP, Smouse SL, Ngomane HM, Disenyeng B, Whitelaw A, Lawrence CA, Sekwadi P, Thomas J. Enteric fever cluster identification in South Africa using genomic surveillance of Salmonella enterica serovar Typhi. Microb Genom 2023; 9. [PMID: 37339282 DOI: 10.1099/mgen.0.001044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
The National Institute for Communicable Diseases in South Africa participates in national laboratory-based surveillance for human isolates of Salmonella species. Laboratory analysis includes whole-genome sequencing (WGS) of isolates. We report on WGS-based surveillance of Salmonella enterica serovar Typhi (Salmonella Typhi) in South Africa from 2020 through 2021. We describe how WGS analysis identified clusters of enteric fever in the Western Cape Province of South Africa and describe the epidemiological investigations associated with these clusters. A total of 206 Salmonella Typhi isolates were received for analysis. Genomic DNA was isolated from bacteria and WGS was performed using Illumina NextSeq technology. WGS data were investigated using multiple bioinformatics tools, including those available at the Centre for Genomic Epidemiology, EnteroBase and Pathogenwatch. Core-genome multilocus sequence typing was used to investigate the phylogeny of isolates and identify clusters. Three major clusters of enteric fever were identified in the Western Cape Province; cluster one (n=11 isolates), cluster two (n=13 isolates), and cluster three (n=14 isolates). To date, no likely source has been identified for any of the clusters. All isolates associated with the clusters, showed the same genotype (4.3.1.1.EA1) and resistome (antimicrobial resistance genes: bla TEM-1B, catA1, sul1, sul2, dfrA7). The implementation of genomic surveillance of Salmonella Typhi in South Africa has enabled rapid detection of clusters indicative of possible outbreaks. Cluster identification allows for targeted epidemiological investigations and a timely, coordinated public health response.
Collapse
Affiliation(s)
- Anthony Marius Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Linda Kathleen Erasmus
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nomsa Pauline Tau
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Shannon Lucrecia Smouse
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Hlengiwe Mimmy Ngomane
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Bolele Disenyeng
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Andrew Whitelaw
- Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Charlene Ann Lawrence
- Communicable Disease Control, Service Priorities Coordination, Department of Health, Cape Town, South Africa
| | - Phuti Sekwadi
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Juno Thomas
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|