1
|
Beyan A, Molla W, Molla AB, Birhan M, Ibrahim SM, Dessalegn B, Kenubih A, Gessese AT, Kinde MZ, Dagnaw GG, Fenta MD, Tesfaye H, Tesgera T, Tesfaw L, Abesha H, Tarekegn ZS, Dejene H, Bitew M. Seroprevalence and risk factors of bluetongue virus infection in sheep and goats in West Gondar zone, Northwest Ethiopia. Front Vet Sci 2025; 12:1565624. [PMID: 40110436 PMCID: PMC11920756 DOI: 10.3389/fvets.2025.1565624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Bluetongue is a non-contagious arthropod-borne viral disease that affects ruminants. No investigations have yet been conducted to ascertain the seroprevalence and associated risk factors of bluetongue in Northwest Ethiopia. It is essential to determine the seroprevalence and correlated risk elements to formulate an effective strategy for preventing and surveillance of the disease. Methods A cross-sectional study was carried out between February 2023 and May 2023 to determine the seroprevalence and risk factors associated with Bluetongue virus (BTV) in sheep and goats in the selected districts of West Gondar zone. A multistage cluster sampling technique was employed, with zones and districts purposively selected, and kebeles within these districts chosen through simple random sampling. Villages were treated as clusters. A total of 444 blood specimens were collected from the sheep and goats and subsequently tested for BTV antibodies using a commercially available competitive enzyme-linked immunosorbent assay kit. A mixed-effects logistic regression was employed to evaluate the relationship between Bluetongue virus seropositivity and potential risk factors. Results The overall seroprevalence rate at the individual animal level was 84.5% (95% CI: 81.09-87.82). The seroprevalence in sheep and goats was 83.8% (257/308) and 86.8% (118/136), respectively. Species and age were significant risk factors for BTV seropositivity in the study area (p < 0.05). Adult and older sheep and goats exhibited 3.49 (95% CI: 1.90-6.41) and 25.95 (95% CI: 9.45-71.28) times higher seroprevalence with the bluetongue virus in comparison to their younger counterparts, respectively. Discussion In conclusion, the current findings showed that BTV is highly prevalent. The specific circulating BTV serotypes and the temporal pattern of Bluetongue in the study area remain unknown, necessitating further investigation.
Collapse
Affiliation(s)
- Adem Beyan
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Wassie Molla
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Adugna Berju Molla
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mastewal Birhan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Saddam Mohammed Ibrahim
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Bereket Dessalegn
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Ambaye Kenubih
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Tesfaye Gessese
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Getaneh Dagnaw
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melkie Dagnaw Fenta
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Hana Tesfaye
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Takele Tesgera
- Department of Animal Health and Quality Control Team, National Veterinary Institute, Bishoftu, Ethiopia
| | - Liyuwork Tesfaw
- Department of Animal Health and Quality Control Team, National Veterinary Institute, Bishoftu, Ethiopia
| | - Habtamu Abesha
- Metekel Zone Agriculture and Rural Development Office, Metekel, Ethiopia
| | - Zewdu Seyoum Tarekegn
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Haileyesus Dejene
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Molalegne Bitew
- Health Biotechnology Directorate, Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Medrouh B, Abdelli A, Belkessa S, Ouinten Y, Brahimi M, Hakem A, Kernif T, Singer SM, Ziam H, Tsaousis AD, Jokelainen P, Savini G, Pasolli E. Seroprevalence and risk factors of bluetongue virus in domestic cattle, sheep, goats and camels in Africa: a systematic review and meta-analysis. Vet Q 2024; 44:1-12. [PMID: 39210745 PMCID: PMC11370698 DOI: 10.1080/01652176.2024.2396118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Bluetongue (BT) is a vector-borne disease affecting wild and domestic ruminants in many parts of the world. Although bluetongue virus (BTV) is widespread in ungulates in Africa, available epidemiological information on BT in this continent is limited. This systematic review and meta-analysis aimed to estimate the seroprevalence of BTV and summarize information on associated risk factors in domestic ruminants and camels in Africa. Systematic searches were conducted from the inception of the database to November 2022 on PubMed/MEDLINE, ScienceDirect, Web of Science, and Google/Google Scholar. Forty-four eligible publications were identified, published in the range from 1973 to 2020, and statistically analyzed. The pooled overall seroprevalence of BTV was 45.02% (95% confidence interval [CI]: 36.00-54.00%). The pooled seroprevalence was 49.70% (95% CI: 34.50-65.00%) in cattle, 47.00% (95% CI: 29.90-64.50%) in goats, 40.80% (95% CI: 19.60-63.90%) in camels, and 36.30% (95% CI: 29.00-44.90%) in sheep. The pooled seroprevalence decreased after 1990 and increased again after 2010. The highest pooled overall seroprevalence was found in the southeastern region, and the highest pooled overall seroprevalence was obtained by Competitive Enzyme-Linked Immunosorbent Assay. Finally, the seroprevalence in females (53.30%, 95% CI: 34.80-71.00%) was significantly higher than in males (28.10%, 95% CI: 17.40-40.30%) (p < 0.05). We showed that antibodies against BTV were common in African ruminants and camels. Monitoring the seroprevalence of BTV, as well as systematic and continuous surveillance of the Culicoides population, are encouraged to prevent and control the spread of BT.
Collapse
Affiliation(s)
| | - Amine Abdelli
- Department of Agricultural Sciences, University of Bouira, Bouira, Algeria
| | - Salem Belkessa
- Laboratory of Exploration and Valorization of Steppic Ecosystems, Department of Biology, Faculty of Nature and Life Sciences, Ziane Achour University of Djelfa, Djelfa, Algeria
| | | | | | - Ahcène Hakem
- Research Centre for Agropastoralism, Djelfa, Algeria
| | - Tahar Kernif
- Laboratory of Parasitic Eco-epidemiology and Population Genetics, Pasteur Institute of Algeria, Dely-Brahim, Algeria
| | - Steven M. Singer
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Hocine Ziam
- Laboratory of Biotechnology, Environment and Health, University of Blida 1, Blida, Algeria
| | - Anastasios D. Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Pikka Jokelainen
- Infectious Disease Preparedness and One Health, Statens Serum Institut, Copenhagen, Denmark
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise (IZS-Teramo), Teramo, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Portici, Italy
| |
Collapse
|
3
|
Di Rubbo A, Agnihotri K, Bowden TR, Giles M, Newberry K, Peck GR, Shiell BJ, Zamanipereshkaft M, White JR. Challenges of BTV-Group Specific Serology Testing: No One Test Fits All. Viruses 2024; 16:1810. [PMID: 39772121 PMCID: PMC11680153 DOI: 10.3390/v16121810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
A newly formatted enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to bluetongue virus (BTV) was developed and validated for bovine and ovine sera and plasma. Validation of the new sandwich ELISA (sELISA) was achieved with 949 negative bovine and ovine sera from BTV endemic and non-endemic areas of Australia and 752 BTV positive (field and experimental) sera verified by VNT and/or PCR. The test diagnostic sensitivity (DSe) and diagnostic specificity (DSp) were 99.70% and 99.20%, respectively, for bovine sera, and 97.80% and 99.50%, respectively, for ovine sera. Comparable diagnostic performances were noted for the sELISA compared to four competition ELISAs. While the sensitivity of the sELISA remained unaffected by BTV-15 positive sera, the cELISAs were not as sensitive. BTV-15 is endemic to Australia, and early warning depends on sensitive diagnoses of all serotypes: endemic or incurring. The sELISA failed to discriminate against epizootic hemorrhagic disease virus (EHDV) antibodies, the most serologically related orbivirus to BTV. The ACDP cELISA and the IDEXX kit showed cross-reactivity with some EHDV serotypes, with the least cross-reactive being the VMRD and the IDVet kits. Cross-reactivities, however, were also detected in sera raised experimentally from 10 isolates of the 21 known non-BTV orbiviruses. In this case, the sELISA was the least affected, followed equally by the VMRD and IDVet kits, and the IDEXX kit and the ACDP cELISA were the least discriminatory. In addition to exclusivity assessment of the ELISAs, an inclusivity assessment was made for all ELISAs using well characterized reference sera positive for antibodies to all serotypes BTV-1 to BTV-24.
Collapse
Affiliation(s)
- Antonio Di Rubbo
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, 5 Portarlington Road, East Geelong, VIC 3219, Australia; (K.A.); (T.R.B.); (M.G.); (K.N.); (G.R.P.); (B.J.S.); (M.Z.); (J.R.W.)
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ayele BA, Ayele A, Molla W, Molla AB, Birhan M, Ibrahim SM, Dessalegn B, Kenubih A, Gessese AT, Kinde MZ, Dagnaw GG, Fenta MD, Mulatu T, Tesfaye H, Bitew M, Tarekegn ZS, Dejene H. Identifications, spatial distribution, and seasonal occurrence of Culicoides in selected districts of Northwest Ethiopia. Sci Rep 2024; 14:23267. [PMID: 39370423 PMCID: PMC11456578 DOI: 10.1038/s41598-024-74524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Culicoides, among the tiniest and most abundant hematophagous insects globally, serve as vectors for a variety of pathogens such as viruses, bacteria, parasites, protozoa, and nematodes. This study aimed to identify Culicoides species and assess their spatial distribution and seasonal occurrence in selected districts of the Central, South, and West Gondar zones, Northwest Ethiopia. A cross-sectional study was conducted between January to July 2023. A total of 44 UV light- onderstepoort traps were deployed in the study districts near specific areas. The traps were operational from dusk (6:00 PM) until dawn (6:00 AM) and were suspended at a height of 1.5 to 2 m above the ground. Poisson regression was used to assess associations, the Shannon diversity index to measure diversity, and QGIS 3.22.6 to create maps. In this study, 8,857 Culicoides were captured across the 44 trapping sites. Of the total flies captured flies, 8,838 were identified as belonging to 12 distinct species, while the classification of the remaining 19 flies remained unclear. Notably, C. kingi (54.01%) was the most prevalent species, followed by C. imicola (44.55%). The abundance of Culicoides observed from January to late April (3505) was significantly lower compared to the wet season (5355), with a marked increase in the capture of C. kingi (2499) from May to late July. A statistically significant association (p < 0.05) was observed between the occurrence of Culicoides and factors such as district, sampling point, and season. Spatial analysis revealed that C. kingi had a broader range of suitability than other Culicoides species, with high suitability observed in East Dembia. The diversity index analysis indicated that Culicoides species diversity was higher in samples from animal pens (H = 0.73) and during the wet season (H = 0.75). Additionally, this study documented the presence of eight Culicoides species namely C. corsicus, C. kibunensis, C. reioxi, C. kiouxi, C. saharienines, C. desertorum, C. reithi, and C. festivipennis, which have not been previously documented in Ethiopia. In conclusion, the study highlighted that the occurrence of Culicoides species was higher in East Dembia, with moderate presence in Wegera and West Armacho. Further research is needed to assess the impact of various Culicoides species on animal and human health, as well as their economic implications, and to develop corresponding control strategies based on these findings.
Collapse
Affiliation(s)
| | - Abrham Ayele
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Wassie Molla
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Adugna Berju Molla
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mastewal Birhan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Saddam Mohammed Ibrahim
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Bereket Dessalegn
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Ambaye Kenubih
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Tesfaye Gessese
- Department of Veterinary Biomedical Science, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Veterinary Biomedical Science, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Getaneh Dagnaw
- Department of Veterinary Biomedical Science, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melkie Dagnaw Fenta
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | | | - Hana Tesfaye
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Molalegne Bitew
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Zewdu Seyoum Tarekegn
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Haileyesus Dejene
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia.
| |
Collapse
|
5
|
Chiuya T, Fèvre EM, Okumu NO, Abdi AM, Junglen S, Borgemeister C. Exposure to Arboviruses in Cattle: Seroprevalence of Rift Valley Fever, Bluetongue, and Epizootic Hemorrhagic Disease Viruses and Risk Factors in Baringo County, Kenya. Pathogens 2024; 13:613. [PMID: 39204214 PMCID: PMC11357150 DOI: 10.3390/pathogens13080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Rift Valley fever virus (RVFV) causes disease outbreaks in livestock and humans; however, its inter-epidemic circulation is poorly understood, similar to other arboviruses affecting cattle such as bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV). Serum samples were collected in Baringo County, Kenya from 400 cattle, accompanied by a risk factor questionnaire. Serological tests were then conducted to determine the exposure of cattle to RVFV, BTV, and EHDV. RVFV, BTV, and EHDV IgG seroprevalence rates were 15.5%, 91.5%, and 91%, respectively. Seropositivity for RVFV, BTV, and EHDV was significantly higher in adult cattle, as well as in females for RVFV. Cattle with herd owners aged between 30-39 years were less likely to be seropositive for RVFV compared to those with owners over the age of 60 years. High seroprevalence of BTV and EHDV in cattle indicates significant exposure and the subclinical circulation of these viruses, presenting a risk of outbreaks to sheep and naïve cattle. Moreover, the detection of RVFV-seropositive young cattle born after the last reported outbreak suggests inter-epidemic circulation of the virus. Overall, monitoring these arboviruses in cattle is crucial in understanding their distribution and seroprevalence during inter-epidemic periods.
Collapse
Affiliation(s)
- Tatenda Chiuya
- Centre for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany;
| | - Eric M. Fèvre
- International Livestock Research Institute, Old Naivasha Road, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.F.); (N.O.O.); (A.M.A.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Noah O. Okumu
- International Livestock Research Institute, Old Naivasha Road, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.F.); (N.O.O.); (A.M.A.)
| | - Abdullahi M. Abdi
- International Livestock Research Institute, Old Naivasha Road, P.O. Box 30709, Nairobi 00100, Kenya; (E.M.F.); (N.O.O.); (A.M.A.)
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin and Berlin Institute of Health, 10117 Berlin, Germany;
| | - Christian Borgemeister
- Centre for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany;
| |
Collapse
|
6
|
Gestier S, Finlaison DS, Parrish K, Kirkland PD. The potential for bluetongue virus serotype 16 to cause disease in sheep in New South Wales, Australia. Aust Vet J 2023; 101:510-521. [PMID: 37772318 DOI: 10.1111/avj.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023]
Abstract
BLUETONGUE VIRUS SEROTYPE 16 DETECTION IN NSW: In coastal New South Wales (NSW), bluetongue virus (BTV) serotypes 1 and 21 are endemic and transmitted in most years without evidence of disease. However, serotype 16 (BTV-16) infection was detected for the first time in NSW in November 2016 in cattle undergoing testing for export. Retrospective testing of blood samples collected from sentinel cattle as part of the National Arbovirus Monitoring Program (NAMP) established that the first detected transmission of BTV-16 in NSW occurred in April 2016 in sentinel cattle on the NSW North Coast. Subsequently, until 2022, BTV-16 has been transmitted in most years and was the predominant serotype in the 2018-2019 transmission season. The data available suggests that BTV-16 may have become endemic in NSW. EXPERIMENTAL STUDIES: During experimental infection studies with BTV-16, all sheep were febrile, with the peak of viremia occurring 6-10 days after inoculation. There was nasal and oral hyperaemia in most sheep with several animals developing a nasal discharge and nasal oedema. All sheep developed coronitis of varying severity, with most also developing haemorrhages along the coronary band. There was a high incidence of haemorrhage in the pulmonary artery, epicardial petechiae, extensive pericardial haemorrhages and moderate body cavity effusions including pericardial effusions. CONCLUSION: Overall, experimental pathogenicity findings suggest moderate disease may occur in sheep in the field. These findings, when combined with climatic variability that could result in an expansion of the range of Culicoides brevitarsis into major sheep-producing areas of the state, suggest that there is an increasing risk of bluetongue disease in NSW.
Collapse
Affiliation(s)
- S Gestier
- Virology Laboratory, Elizabeth Macarthur Agriculture, Institute Department of Primary Industries, Menangle, New South Wales, Australia
- Biosecurity Sciences Laboratory, Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
| | - D S Finlaison
- Virology Laboratory, Elizabeth Macarthur Agriculture, Institute Department of Primary Industries, Menangle, New South Wales, Australia
| | - K Parrish
- Virology Laboratory, Elizabeth Macarthur Agriculture, Institute Department of Primary Industries, Menangle, New South Wales, Australia
| | - P D Kirkland
- Virology Laboratory, Elizabeth Macarthur Agriculture, Institute Department of Primary Industries, Menangle, New South Wales, Australia
| |
Collapse
|
7
|
Ayaz Kök S, Üstün S, Taşkent Sezgin H. Diagnosis of Ruminant Viral Diseases with Loop-Mediated Isothermal Amplification. Mol Biotechnol 2023; 65:1228-1241. [PMID: 36719638 PMCID: PMC9888337 DOI: 10.1007/s12033-023-00674-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Infectious diseases in livestock industry are major problems for animal health, food safety, and the economy. Zoonotic diseases from farm animals are significant threat to human population as well. These are notifiable diseases listed by the World Organization for Animal Health (OIE). Rapid diagnostic methods can help keep infectious diseases under control in herds. Loop-mediated isothermal amplification (LAMP) is a simple and rapid nucleic acid amplification method that is studied widely for detection of many infectious diseases in the field. LAMP allows biosensing of target DNA or RNA under isothermal conditions with high specificity in a short period of time. An untrained user can analyze results based on color change or turbidity. Here we review LAMP assays to diagnose OIE notifiable ruminant viral diseases in literature highlighting properties of LAMP method considering what is expected from an efficient, field usable diagnostic test.
Collapse
Affiliation(s)
- Sanem Ayaz Kök
- Biotechnology Interdisciplinary Program, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430
- New Era Biotechnology, Teknopark İzmir, Gülbahçe, Urla, İzmir, Turkey, 35430
| | - Selcen Üstün
- Bioengineering Department, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430
| | - Hümeyra Taşkent Sezgin
- Biotechnology Interdisciplinary Program, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430.
- New Era Biotechnology, Teknopark İzmir, Gülbahçe, Urla, İzmir, Turkey, 35430.
- Bioengineering Department, İzmir Institute of Technology, Gülbahçe, Urla, İzmir, Turkey, 35430.
| |
Collapse
|
8
|
Punia M, Maan S, Batra K, Kumar A, Maan NS, Gahlawat SK. Development of a multiplexed Luminex assay for simultaneous detection of enteric viruses in cattle. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 15:13-19. [PMID: 38464606 PMCID: PMC10921133 DOI: 10.30466/vrf.2023.2005728.3925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/23/2023] [Indexed: 03/12/2024]
Abstract
Viral and bacterial gastroenteritis and diarrhea have long been a problem in livestock with devastating effects on animal health and production causing a heavy financial burden on producers. Therefore, the bead-based multiplex detection assay was created for simultaneous detection of three livestock viral diarrheic agents viz. bovine rotavirus (BRV), bovine coronavirus (BCoV) and bluetongue virus (BTV). The primers and probes for triplex MAGPIX assay for simultaneous detection of three enteric viruses were designed and the assay was optimized for hybridization temperature, primer-probe and bead concentrations. The newly developed MAGPIX assay was used to determine the prevalence of these diarrhea-associated viruses by testing 200 fecal samples collected from Haryana state of India during 2018-2019. The limit of detection of the developed triplex assay was 1 × 105, 1 × 104, and 1 × 105 RNA copies for BRV, BCoV, and BTV, respectively, being lower than the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). However, it was higher than the conventional RT-PCR, showing it to be more sensitive. The newly developed MAGPIX assay was a rapid, cost-effective and high throughput diagnostic tool for identification of three major entero-pathogenic diarrhea associated viruses, either alone or in tandem, with the aim to prevent and control viral diarrhea in animals.
Collapse
Affiliation(s)
- Monika Punia
- Department of Biotechnology, Faculty of Life Sciences, Chaudhary Devi Lal University, Sirsa, India
| | - Sushila Maan
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Kanisht Batra
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Aman Kumar
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Narender Singh Maan
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Suresh Kumar Gahlawat
- Department of Biotechnology, Faculty of Life Sciences, Chaudhary Devi Lal University, Sirsa, India
| |
Collapse
|
9
|
Kandeel M, Al-Mubarak AIA. Camel viral diseases: Current diagnostic, therapeutic, and preventive strategies. Front Vet Sci 2022; 9:915475. [PMID: 36032287 PMCID: PMC9403476 DOI: 10.3389/fvets.2022.915475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Many pathogenic viruses infect camels, generally regarded as especially hardy livestock because of their ability to thrive in harsh and arid conditions. Transmission of these viruses has been facilitated by the commercialization of camel milk and meat and their byproducts, and vaccines are needed to prevent viruses from spreading. There is a paucity of information on the effectiveness of viral immunizations in camels, even though numerous studies have looked into the topic. More research is needed to create effective vaccines and treatments for camels. Because Camels are carriers of coronavirus, capable of producing a powerful immune response to recurrent coronavirus infections. As a result, camels may be a suitable model for viral vaccine trials since vaccines are simple to create and can prevent viral infection transfer from animals to humans. In this review, we present available data on the diagnostic, therapeutic, and preventative strategies for the following viral diseases in camels, most of which result in significant economic loss: camelpox, Rift Valley fever, peste des petits ruminants, bovine viral diarrhea, bluetongue, rotavirus, Middle East respiratory syndrome, and COVID-19. Although suitable vaccines have been developed for controlling viral infections and perhaps interrupting the transmission of the virus from the affected animals to blood-feeding vectors, there is a paucity of information on the effectiveness of viral immunizations in camels and more research is needed. Recent therapeutic trials that include specific antivirals or supportive care have helped manage viral infections.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- *Correspondence: Mahmoud Kandeel
| | - Abdullah I. A. Al-Mubarak
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| |
Collapse
|
10
|
Rudenko NV, Karatovskaya AP, Zamyatina AV, Malogolovkin AS, Oleinikov VA, Brovko FA, Kol’tsov AU, Lapteva OG, Kolbasov DV, Shepelyakovskaya AO. Bluetongue Virus Detection Using Microspheres Conjugated with Monoclonal Antibodies against Group-Specific Protein Vp7 by Flow Virometry. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Fetene E, Teka G, Dejene H, Mandefro D, Teshome T, Temesgen D, Negussie H, Mulatu T, Jaleta MB, Leta S. Modeling the spatial distribution of Culicoides species (Diptera: Ceratopogonidae) as vectors of animal diseases in Ethiopia. Sci Rep 2022; 12:12904. [PMID: 35902616 PMCID: PMC9334590 DOI: 10.1038/s41598-022-16911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are the major vectors of bluetongue, Schmallenberg, and African horse sickness viruses. This study was conducted to survey Culicoides species in different parts of Ethiopia and to develop habitat suitability for the major Culicoides species in Ethiopia. Culicoides traps were set in different parts of the country from December 2018 to April 2021 using UV light Onderstepoort traps and the collected Culicoides were sorted to species level. To develop the species distribution model for the two predominant Culicoides species, namely Culicoides imicola and C. kingi, an ensemble modeling technique was used with the Biomod2 package of R software. KAPPA True skill statistics (TSS) and ROC curve were used to evaluate the accuracy of species distribution models. In the ensemble modeling, models which score TSS values greater than 0.8 were considered. Negative binomialregression models were used to evaluate the relationship between C. imicola and C. kingi catch and various environmental and climatic factors. During the study period, a total of 9148 Culicoides were collected from 66 trapping sites. Of the total 9148, 8576 of them belongs to seven species and the remaining 572 Culicoides were unidentified. The predominant species was C. imicola (52.8%), followed by C. kingi (23.6%). The abundance of these two species was highly influenced by the agro-ecological zone of the capture sites and the proximity of the capture sites to livestock farms. Climatic variables such as mean annual minimum and maximum temperature and mean annual rainfall were found to influence the catch of C. imicola at the different study sites. The ensemble model performed very well for both species with KAPPA (0.9), TSS (0.98), and ROC (0.999) for C. imicola and KAPPA (0.889), TSS (0.999), and ROC (0.999) for C. kingi. Culicoides imicola has a larger suitability range compared to C. kingi. The Great Rift Valley in Ethiopia, the southern and eastern parts of the country, and the areas along the Blue Nile and Lake Tana basins in northern Ethiopia were particularly suitable for C. imicola. High suitability for C. kingi was found in central Ethiopia and the Southern Nations, Nationalities and Peoples Region (SNNPR). The habitat suitability model developed here could help researchers better understand where the above vector-borne diseases are likely to occur and target surveillance to high-risk areas.
Collapse
Affiliation(s)
- Eyerusalem Fetene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Getachew Teka
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Hana Dejene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.,Faculty of Agriculture and Veterinary Science, Ambo University, P.O. Box 19, Ambo, Ethiopia
| | - Deresegn Mandefro
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Tsedale Teshome
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Dawit Temesgen
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Haileleul Negussie
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Tesfaye Mulatu
- National Animal Health Diagnostic and Investigation Centre (NAHDIC), P. O. Box 4, Sebeta, Ethiopia
| | - Megarsa Bedasa Jaleta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.
| |
Collapse
|
12
|
Munmun TK, Islam S, Zamil S, Rahman MA, Abedin J, Ahad A, Islam A. Seroprevalence and risk factors of bluetongue virus in sheep of Chattogram, Bangladesh. Vet World 2022; 15:1589-1594. [PMID: 35993077 PMCID: PMC9375224 DOI: 10.14202/vetworld.2022.1589-1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bluetongue (BT) is a non-contagious, infectious disease of wild and domestic ruminant animals caused by the BT virus (BTV). Bangladesh having a border with a BTV-endemic country, India and a substantial number of susceptible animals. Therefore, this study aimed to estimate BTV seroprevalence and potential risk factors. Materials and Methods: We collected 150 serum samples from indigenous sheep from Chattogram, Bangladesh. We screened the serum samples using a competitive enzyme-linked immunosorbent assay for detecting BTV-specific immunoglobulin. Results: We detected antibodies against BTV in 39.3% (59/150; 95% confidence interval: 31.5–47.6) of all sampled sheep. Factors like sampling site, sheep rearing location, rearing sheep with other farm species, and body condition score had a significant (p < 0.05) influence on the seroprevalence of BTV. Conclusion: The findings show that indigenous sheep have a higher BTV seroprevalence, necessitating sustained surveillance for early diagnosis and a better understanding of virus epidemiology in Bangladesh.
Collapse
Affiliation(s)
- Tahura Khanam Munmun
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram-4225, Bangladesh
| | - Shariful Islam
- Institute of Epidemiology, Disease Control, and Research, Mohakhali, Dhaka-1212, Bangladesh; EcoHealth Alliance, New York, NY, USA
| | - Shafayat Zamil
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram-4225, Bangladesh
| | - Md. Ashiqur Rahman
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram-4225, Bangladesh
| | - Josefina Abedin
- Institute of Epidemiology, Disease Control, and Research, Mohakhali, Dhaka-1212, Bangladesh; EcoHealth Alliance, New York, NY, USA
| | - Abdul Ahad
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram-4225, Bangladesh
| | - Ariful Islam
- EcoHealth Alliance, New York, NY, USA; Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Victoria, Australia
| |
Collapse
|
13
|
Vaccination as a Strategy to Prevent Bluetongue Virus Vertical Transmission. Pathogens 2021; 10:pathogens10111528. [PMID: 34832683 PMCID: PMC8622840 DOI: 10.3390/pathogens10111528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bluetongue virus (BTV) produces an economically important disease in ruminants of compulsory notification to the OIE. BTV is typically transmitted by the bite of Culicoides spp., however, some BTV strains can be transmitted vertically, and this is associated with fetus malformations and abortions. The viral factors associated with the virus potency to cross the placental barrier are not well defined. The potency of vertical transmission is retained and sometimes even increased in live attenuated BTV vaccine strains. Because BTV possesses a segmented genome, the possibility of reassortment of vaccination strains with wild-type virus could even favor the transmission of this phenotype. In the present review, we will describe the non-vector-based BTV infection routes and discuss the experimental vaccination strategies that offer advantages over this drawback of some live attenuated BTV vaccines.
Collapse
|
14
|
Bluetongue Virus Infections in Cattle Herds of Manabí Province of Ecuador. Pathogens 2021; 10:pathogens10111445. [PMID: 34832601 PMCID: PMC8623054 DOI: 10.3390/pathogens10111445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Bluetongue (BT) is a viral disease transmitted by Culicoides (Diptera: Ceratopogonidae) to domestic and wild ruminants. Infections in cattle are mainly subclinical, but severe necrotic and hemorrhagic illness and death may occur depending on the strain of the virus and other factors; cattle act as a reservoir for the virus. Although the Ecuadorian coast has climatic conditions that favor the presence of the vector, there are few serologic or virologic BTV studies available. Manabí is a coastal province in which livestock farming is mostly implemented in the northern part. We conducted two studies to assess, for the first time, the presence of active BTV infections in Manabí province. We collected 430 serum samples from 38 randomly selected farms between March and July 2019 to perform BTV competitive ELISA. In addition, six seropositive farms were selected to place eight sentinel BTV-naive calves. All these calves were blood sampled and the presence of BTV RNA and antibodies was tested for by RT-PCR and competitive ELISA, respectively, once a week for 6-8 weeks until seroconversion was evidenced. A high individual seroprevalence (99%) was obtained, and all investigated farms had BTV seropositive animals. All sentinel calves became BTV viremic and seroconverted. The first viremia appeared after 2-5 weeks from arrival at the farm; they seroconverted 1-3 weeks later. We demonstrate for the first time that there is a high level of BTV circulation north of Manabí, with active infections on these farms. Integrated control strategies such as hygienic measures on farms to reduce midge populations would be advisable for the owners as mitigation measures.
Collapse
|
15
|
Saminathan M, Singh KP, Khorajiya JH, Dinesh M, Vineetha S, Maity M, Rahman AF, Misri J, Malik YS, Gupta VK, Singh RK, Dhama K. An updated review on bluetongue virus: epidemiology, pathobiology, and advances in diagnosis and control with special reference to India. Vet Q 2021; 40:258-321. [PMID: 33003985 PMCID: PMC7655031 DOI: 10.1080/01652176.2020.1831708] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bluetongue (BT) is an economically important, non-contagious viral disease of domestic and wild ruminants. BT is caused by BT virus (BTV) and it belongs to the genus Orbivirus and family Reoviridae. BTV is transmitted by Culicoides midges and causes clinical disease in sheep, white-tailed deer, pronghorn antelope, bighorn sheep, and subclinical manifestation in cattle, goats and camelids. BT is a World Organization for Animal Health (OIE) listed multispecies disease and causes great socio-economic losses. To date, 28 serotypes of BTV have been reported worldwide and 23 serotypes have been reported from India. Transplacental transmission (TPT) and fetal abnormalities in ruminants had been reported with cell culture adopted live-attenuated vaccine strains of BTV. However, emergence of BTV-8 in Europe during 2006, confirmed TPT of wild-type/field strains of BTV. Diagnosis of BT is more important for control of disease and to ensure BTV-free trade of animals and their products. Reverse transcription polymerase chain reaction, agar gel immunodiffusion assay and competitive enzyme-linked immunosorbent assay are found to be sensitive and OIE recommended tests for diagnosis of BTV for international trade. Control measures include mass vaccination (most effective method), serological and entomological surveillance, forming restriction zones and sentinel programs. Major hindrances with control of BT in India are the presence of multiple BTV serotypes, high density of ruminant and vector populations. A pentavalent inactivated, adjuvanted vaccine is administered currently in India to control BT. Recombinant vaccines with DIVA strategies are urgently needed to combat this disease. This review is the first to summarise the seroprevalence of BTV in India for 40 years, economic impact and pathobiology.
Collapse
Affiliation(s)
- Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sobharani Vineetha
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Madhulina Maity
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - At Faslu Rahman
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, New Delhi, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Raj Kumar Singh
- Director, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
16
|
Rodríguez-Martín D, Louloudes-Lázaro A, Avia M, Martín V, Rojas JM, Sevilla N. The Interplay between Bluetongue Virus Infections and Adaptive Immunity. Viruses 2021; 13:1511. [PMID: 34452376 PMCID: PMC8402766 DOI: 10.3390/v13081511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Viral infections have long provided a platform to understand the workings of immunity. For instance, great strides towards defining basic immunology concepts, such as MHC restriction of antigen presentation or T-cell memory development and maintenance, have been achieved thanks to the study of lymphocytic choriomeningitis virus (LCMV) infections. These studies have also shaped our understanding of antiviral immunity, and in particular T-cell responses. In the present review, we discuss how bluetongue virus (BTV), an economically important arbovirus from the Reoviridae family that affects ruminants, affects adaptive immunity in the natural hosts. During the initial stages of infection, BTV triggers leucopenia in the hosts. The host then mounts an adaptive immune response that controls the disease. In this work, we discuss how BTV triggers CD8+ T-cell expansion and neutralizing antibody responses, yet in some individuals viremia remains detectable after these adaptive immune mechanisms are active. We present some unpublished data showing that BTV infection also affects other T cell populations such as CD4+ T-cells or γδ T-cells, as well as B-cell numbers in the periphery. This review also discusses how BTV evades these adaptive immune mechanisms so that it can be transmitted back to the arthropod host. Understanding the interaction of BTV with immunity could ultimately define the correlates of protection with immune mechanisms that would improve our knowledge of ruminant immunology.
Collapse
Affiliation(s)
| | | | | | | | | | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (D.R.-M.); (A.L.-L.); (M.A.); (V.M.); (J.M.R.)
| |
Collapse
|
17
|
Rojas JM, Barba-Moreno D, Avia M, Sevilla N, Martín V. Vaccination With Recombinant Adenoviruses Expressing the Bluetongue Virus Subunits VP7 and VP2 Provides Protection Against Heterologous Virus Challenge. Front Vet Sci 2021; 8:645561. [PMID: 33778041 PMCID: PMC7987666 DOI: 10.3389/fvets.2021.645561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
Bluetongue virus (BTV) is the causative agent of a disease that affects domestic and wild ruminants and leads to critical economic losses. BTV is an arbovirus from the Reoviridae family that is typically transmitted by the bite of infected Culicoides midges. BTV possesses multiple serotypes (up to 28 have been described), and immunity to one serotype offers little cross-protection to other serotypes. The design of vaccines that provide protection across multiple serotypes is therefore highly desirable to control this disease. We previously reported that a recombinant replication-defective human adenovirus serotype 5 (Ad5) that expresses the VP7 inner core protein of BTV serotype 8 (Ad5VP7-8) induced T-cell responses and provided protection. In the present work, we evaluated as BTV vaccine the combination of Ad5VP7-8 with another recombinant Ad5 that expresses the outer core protein VP2 from BTV-1 (Ad5VP2-1). The combination of Ad5VP2-1 and Ad5VP7-8 protected against homologous BTV challenge (BTV-1 and BTV-8) and partially against heterologous BTV-4 in a murine model. Cross-reactive anti-BTV immunoglobulin G (IgG) were detected in immunized animals, but no significant titers of neutralizing antibodies were elicited. The Ad5VP7-8 immunization induced T-cell responses that recognized all three serotypes tested in this study and primed cytotoxic T lymphocytes specific for VP7. This study further confirms that targeting antigenic determinant shared by several BTV serotypes using cellular immunity could help develop multiserotype BTV vaccines.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Diego Barba-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
18
|
Hoste ACR, Ruiz T, Fernández-Pacheco P, Jiménez-Clavero MÁ, Djadjovski I, Moreno S, Brun A, Edwards TA, Barr JN, Rueda P, Sastre P. Development of a multiplex assay for antibody detection in serum against pathogens affecting ruminants. Transbound Emerg Dis 2020; 68:1229-1239. [PMID: 32767820 PMCID: PMC8246919 DOI: 10.1111/tbed.13776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 12/03/2022]
Abstract
Numerous infectious diseases impacting livestock impose an important economic burden and in some cases also represent a threat to humans and are classified as zoonoses. Some zoonotic diseases are transmitted by vectors and, due to complex environmental and socio‐economic factors, the distribution of many of these pathogens is changing, with increasing numbers being found in previously unaffected countries. Here, we developed a multiplex assay, based on a suspension microarray, able to detect specific antibodies to five important pathogens of livestock (three of them zoonotic) that are currently emerging in new geographical locations: Rift Valley fever virus (RVFV), Crimean‐Congo haemorrhagic fever virus (CCHFV), Schmallenberg virus (SBV), Bluetongue virus (BTV) and the bacteria complex Mycobacterium tuberculosis. Using the Luminex platform, polystyrene microspheres were coated with recombinant proteins from each of the five pathogens. The mix of microspheres was used for the simultaneous detection of antibodies against the five corresponding diseases affecting ruminants. The following panel of sera was included in the study: 50 sera from sheep experimentally infected with RVFV, 74 sera from calves and lambs vaccinated with SBV, 26 sera from cattle vaccinated with Mycobacterium bovis, 30 field sera from different species of ruminants infected with CCHFV and 88 calf sera infected with BTV. Finally, to determine its diagnostic specificity 220 field sera from Spanish farms free of the five diseases were assessed. All the sera were classified using commercial ELISAs specific for each disease, used in this study as the reference technique. The results showed the multiplex assay exhibited good performance characteristics with values of sensitivity ranging from 93% to 100% and of specificity ranging from 96% to 99% depending on the pathogen. This new tool allows the simultaneous detection of antibodies against five important pathogens, reducing the volume of sample needed and the time of analysis where these pathogens are usually tested individually.
Collapse
Affiliation(s)
- Alexis C R Hoste
- Eurofins-Inmunología y Genética Aplicada (Eurofins-INGENASA), Madrid, Spain.,School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Tamara Ruiz
- Eurofins-Inmunología y Genética Aplicada (Eurofins-INGENASA), Madrid, Spain
| | - Paloma Fernández-Pacheco
- Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - Igor Djadjovski
- Faculty of Veterinary Medicine, University Ss. Cyril & Methodius, Skopje, North Macedonia
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Valdeolmos, Spain
| | - Thomas A Edwards
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - John N Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Paloma Rueda
- Eurofins-Inmunología y Genética Aplicada (Eurofins-INGENASA), Madrid, Spain
| | - Patricia Sastre
- Eurofins-Inmunología y Genética Aplicada (Eurofins-INGENASA), Madrid, Spain
| |
Collapse
|
19
|
El Wahab Hosny WA, Baheeg EM, El Raheem Aly HA, El Nabi SSA, Hanna NM. Field serological investigation for peste des petits ruminants, foot-and-mouth disease, and bluetongue diseases in illegally introduced animals in Egypt. Vet World 2020; 13:1661-1666. [PMID: 33061242 PMCID: PMC7522941 DOI: 10.14202/vetworld.2020.1661-1666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/30/2020] [Indexed: 12/05/2022] Open
Abstract
AIM In this study, laboratory scoping on the viruses that cause peste des petits ruminants (PPR), bluetongue (BT), and foot-and-mouth disease (FMD) was performed to evaluate the current status of animals illegally introduced into Egypt. This study aims to help control these infectious illnesses and tries to prevent the introduction of other strains of these three viruses to Egypt, as these illnesses spread quickly if not controlled. MATERIALS AND METHODS In the year 2018, 62 serum samples were collected and serologically tested through competitive enzyme-linked immunosorbent assays (ELISA) kits to detect antibodies against PPR, BT, and FMD, which are three important transboundary infectious illnesses. RESULTS The results indicated that 60 out of 62 serum samples were positive for PPR antibodies (96.7%), 31 out of 62 were positive for FMD antibodies (50%), and 59 out of 62 serum samples were positive for BT antibodies (95%). CONCLUSION This study revealed that PPR, FMD, and BT can be introduced into Egypt through the illegal introduction of sheep and goat from neighboring countries. Laboratory diagnostic abilities should be improved for the early detection and control of these illnesses.
Collapse
Affiliation(s)
- Wafaa Abd El Wahab Hosny
- ELISA Unit and Virus Strains Bank, Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Eman Mohamed Baheeg
- ELISA Unit and Virus Strains Bank, Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Hala Abd El Raheem Aly
- Department of Virology, Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Samia Said Abd El Nabi
- Department of Virology, Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Nadia Maher Hanna
- Department of Virology, Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| |
Collapse
|
20
|
Labadie T, Jegouic S, Roy P. Bluetongue Virus Nonstructural Protein 3 Orchestrates Virus Maturation and Drives Non-Lytic Egress via Two Polybasic Motifs. Viruses 2019; 11:v11121107. [PMID: 31795485 PMCID: PMC6949946 DOI: 10.3390/v11121107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Bluetongue virus (BTV) is an arthropod-borne virus that infects domestic and wild ruminants. The virion is a non-enveloped double-layered particle with an outer capsid that encloses a core containing the segmented double-stranded RNA genome. Although BTV is canonically released by cell lysis, it also exits non-lytically. In infected cells, the BTV nonstructural glycoprotein 3 (NS3) is found to be associated with host membranes and traffics from the endoplasmic reticulum through the Golgi apparatus to the plasma membrane. This suggests a role for NS3 in BTV particle maturation and non-lytic egress. However, the mechanism by which NS3 coordinates these events has not yet been elucidated. Here, we identified two polybasic motifs (PMB1/PMB2), consistent with the membrane binding. Using site-directed mutagenesis, confocal and electron microscopy, and flow cytometry, we demonstrated that PBM1 and PBM2 mutant viruses retained NS3 either in the Golgi apparatus or in the endoplasmic reticulum, suggesting a distinct role for each motif. Mutation of PBM2 motif decreased NS3 export to the cell surface and virus production. However, both mutant viruses produced predominantly inner core particles that remained close to their site of assembly. Together, our data demonstrates that correct trafficking of the NS3 protein is required for virus maturation and release.
Collapse
|