1
|
Pavelescu LA, Mititelu-Zafiu NL, Mindru DE, Vladareanu R, Curici A. Molecular Insights into HPV-Driven Cervical Cancer: Oncoproteins, Immune Evasion, and Epigenetic Modifications. Microorganisms 2025; 13:1000. [PMID: 40431173 PMCID: PMC12113743 DOI: 10.3390/microorganisms13051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Cervical cancer ranks third in mortality and fourth in incidence among women worldwide as one of the leading causes of death from cancer in females. The main reason behind cervical carcinogenesis is long-term infection with high-risk human papillomavirus (HPV) genotypes, particularly HPV16 and HPV18. This review investigates HPV distribution across the world, along with cervical cancer molecular development mechanisms and current treatment strategies. Epidemiological data show that disease patterns vary significantly between different geographic regions because underdeveloped nations bear a higher disease burden. The molecular mechanisms of oncogenes E6 and E7 disrupt tumor suppressor pathways, while epigenetic modifications through DNA methylation and miRNA dysregulation promote malignant cell transformation. The reduction in HPV infection through prophylactic vaccination has shown promise, yet barriers related to accessibility and coverage still exist. The therapeutic technologies of gene expression inhibitors together with immunotherapies and epigenetic targeting agents show promise but require optimization to achieve specific targeting while minimizing off-target effects. A combined approach that integrates HPV vaccination with early diagnosis and molecular-specific therapies represents the most effective method to manage cervical cancer impact. The future care of patients will require increased translational research along with better immunization programs to drive prevention and therapeutic outcomes.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | | | - Dana Elena Mindru
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Radu Vladareanu
- Department of Obstetrics-Gynecology and Neonatology, Elias Emergency Hospital Bucharest, 011461 Bucharest, Romania
- Obstetrics and Gynecology, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Antoanela Curici
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Synevo Romania, 021408 Bucharest, Romania;
| |
Collapse
|
2
|
Querney J, Mendez A, Skinner J, Wihlidal J, Ramazani F, Biron V, Côté D. Prognostic role of p16 overexpression in sinonasal squamous cell carcinoma: A retrospective analysis of Alberta patients. World J Otorhinolaryngol Head Neck Surg 2025; 11:52-56. [PMID: 40070492 PMCID: PMC11891288 DOI: 10.1002/wjo2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 03/14/2025] Open
Abstract
Objective Sinonasal squamous cell carcinoma (SNSCC) is rare in the general population. No clear and consistent etiologic correlation between human papillomavirus (HPV) and SNSCC has yet been delineated in the literature. p16 is a tumor suppressor protein used as a surrogate marker for HPV. This study aims to evaluate the relationship between p16 overexpression in SNSCC and its role in prognosis and survival. Methods A population-based retrospective analysis was performed using prospectively collected data from the Northern Alberta Head and Neck Tumour Board, the Alberta Cancer Registry, and the Alberta Cancer Research Biobank. p16 overexpression was analyzed from pathologic samples of patients meeting study criteria, and participants were dichotomized by status. Subsequently, nonparametric analysis of demographics, initial staging, and initial treatment were performed, and a Kapan-Meier curve was developed to assess differences in survival. Results Sixteen patients were included in the analysis. p16 overexpression was seen in 68.8% of patients. p16 positive and negative groups were comparable for age, gender, smoking status, stage, and treatment. A statistically significant 5-year survival advantage was observed in patients with p16 positive SNSCC (P = 0.013). Conclusions This is the first Canadian study to demonstrate a high prevalence of p16 positivity in SNSCC and its presence denoting a statistically significant survival advantage. Results demonstrate a previously unconfirmed role of oncogenic HPV in SNSCC.
Collapse
Affiliation(s)
- Jill Querney
- Department of Otolaryngology–Head and Neck SurgeryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Anesthesia and Perioperative MedicineWestern UniversityLondonOntarioCanada
| | - Adrian Mendez
- Department of Otolaryngology–Head and Neck SurgeryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Otolaryngology–Head and Neck SurgeryWestern UniversityLondonOntarioCanada
| | - Jamila Skinner
- Department of Otolaryngology–Head and Neck SurgeryWestern UniversityLondonOntarioCanada
| | - Jacob Wihlidal
- Department of Otolaryngology–Head and Neck SurgeryWestern UniversityLondonOntarioCanada
| | - Fatemeh Ramazani
- Department of Otolaryngology–Head and Neck SurgeryUniversity of AlbertaEdmontonAlbertaCanada
| | - Vincent Biron
- Department of Otolaryngology–Head and Neck SurgeryUniversity of AlbertaEdmontonAlbertaCanada
| | - David Côté
- Department of Otolaryngology–Head and Neck SurgeryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
3
|
Caretto M, Gadducci A, Pistolesi S, Mattiussi Tome D, Fanelli GN, Naccarato AG, Simoncini T. Deciphering the stromal molecular landscape: the correlation between p16 and α-SMA in epithelial ovarian cancer. J Cancer Res Clin Oncol 2025; 151:79. [PMID: 39937250 PMCID: PMC11821793 DOI: 10.1007/s00432-025-06120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION The tumor microenvironment (TME) plays an essential role in promoting cancer initiation, progression and metastasis. Cancer-associated fibroblasts (CAFs) are a major constituent of the TME, but universal CAFs' markers have not yet been identified. We selected several new biomarkers [p16 and α-smooth muscle actin (α-SMA)] to investigate the molecular landscape in epithelial ovarian cancer (EOC), given to the unique TME of this malignancy. METHODS In total, 64 patients with a diagnosis of EOC who underwent primary debulking surgery (PDS) at the Department of Gynecology and Obstetrics of the University of Pisa were enrolled between January 2019 and June 2021. The stromal expression of α-SMA and p16 was investigated by using immunohistochemistry, and the correlations between p16 and α-SMA immunoreactivity and BRCA mutational status were analyzed. RESULTS Positive p16 stromal expression was found in 6 out of 38 (15,78%) patients with wild-type BRCA and in only 1 of the 22 (4,50%) patients with mutated BRCA. Conversely, positive α-SMA expression was detected in 34 of 38 patients with wild-type BRCA (89,47%) and in 21 of 22 patients (95,45%) with mutated BRCA. There was a significant difference (r = -0,32) between the negative stromal p16 expression and the positive stromal expression of α-SMA. CONCLUSION This study suggests a new correlation between stromal expression of p16 and α-SMA and BRCA mutational status in EOC. Further investigations are strongly warranted to improve the understanding of the landscape of this malignancy.
Collapse
Affiliation(s)
- Marta Caretto
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology I, University of Pisa, Pisa, Italy.
| | - Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology I, University of Pisa, Pisa, Italy
| | - Sabina Pistolesi
- First Division of Pathology, Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
| | - Diletta Mattiussi Tome
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology I, University of Pisa, Pisa, Italy
| | - Giuseppe Nicolò Fanelli
- First Division of Pathology, Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio Giuseppe Naccarato
- First Division of Pathology, Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tommaso Simoncini
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology I, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Fatima S, Kumar V, Kumar D. Molecular mechanism of genetic, epigenetic, and metabolic alteration in lung cancer. Med Oncol 2025; 42:61. [PMID: 39893601 DOI: 10.1007/s12032-025-02608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Lung cancer, a leading cause of cancer-related deaths worldwide, is primarily linked to smoking, tobacco use, air pollution, and exposure to hazardous chemicals. Genetic alterations, particularly in oncogenes like RAS, EGFR, MYC, BRAF, HER, and P13K, can lead to metabolic changes in cancer cells. These cells often rely on glycolysis for energy production, even in the presence of oxygen, a phenomenon known as aerobic glycolysis. This metabolic shift, along with other alterations, contributes to cancer cell growth and survival. To develop effective therapies, it's crucial to understand the genetic and metabolic changes that drive lung cancer. This review aims to identify specific genes associated with these metabolic alterations and screen phytochemicals for their potential to target these genes. By targeting both genetic and metabolic pathways, we hope to develop innovative therapeutic approaches to combat lung cancer.
Collapse
Affiliation(s)
- Sheeri Fatima
- School of Health Science and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Vineet Kumar
- Chemistry & Bioprospecting Division, Forest Research Institute, Dehradun, 248006, India
| | - Dhruv Kumar
- School of Health Science and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
5
|
Gao M, Li H, Zhang J. RB functions as a key regulator of senescence and tumor suppression. Semin Cancer Biol 2025; 109:1-7. [PMID: 39675647 DOI: 10.1016/j.semcancer.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024]
Abstract
The Retinoblastoma (RB) protein is crucial for regulating gene transcription and chromatin remodeling, impacting cell cycle progression, cellular senescence, and tumorigenesis. Cellular senescence, characterized by irreversible growth arrest and phenotypic alterations, serves as a vital barrier against tumor progression and age-related diseases. RB is crucial in mediating senescence and tumor suppression by modulating the RB-E2F pathway and cross talking with other key senescence effectors such as p53 and p16INK4a. The interplay between RB-mediated cell cycle arrest and cellular senescence offers critical insights into tumorigenesis and potential therapeutic strategies. Leveraging RB-mediated senescence presents promising opportunities for cancer therapy, including novel approaches in tumor immunotherapy designed to enhance treatment efficacy. This review highlights recent advancements in the RB signaling pathway, focusing on its roles in cellular senescence and tumor suppression, and discusses its potential to improve tumor management and clinical outcomes.
Collapse
Affiliation(s)
- Minling Gao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior/Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Haiou Li
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Jinfang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior/Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
6
|
Liu J, Guo B, Liu Q, Zhu G, Wang Y, Wang N, Yang Y, Fu S. Cellular Senescence: A Bridge Between Diabetes and Microangiopathy. Biomolecules 2024; 14:1361. [PMID: 39595537 PMCID: PMC11591988 DOI: 10.3390/biom14111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest and plays an important role in many vascular lesions. This study found that the cells of diabetic patients have more characteristics of senescence, which may cause microvascular complications. Cell senescence, as one of the common fates of cells, links microangiopathy and diabetes. Cell senescence in a high-glucose environment can partially elucidate the mechanism of diabetic microangiopathy, and various types of cellular senescence induced by it can promote the progression of diabetic microangiopathy. Still, the molecular mechanism of microangiopathy-related cellular senescence has not yet been clearly studied. Building on recent research evidence, we herein summarize the fundamental mechanisms underlying the development of cellular senescence in various microangiopathies associated with diabetes. We gradually explain how cellular senescence serves as a key driver of diabetic microangiopathy. At the same time, the treatment of basic senescence mechanisms such as cellular senescence may have a great impact on the pathogenesis of the disease, may be more effective in preventing the development of diabetic microangiopathy, and may provide new ideas for the clinical treatment and prognosis of diabetic microangiopathy.
Collapse
Affiliation(s)
- Jiahui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yaqi Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Na Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou 730000, China
| |
Collapse
|
7
|
Li H, Sun X, Lv Y, Wei G, Ni T, Qin W, Jin H, Jia Q. Downregulation of Splicing Factor PTBP1 Curtails FBXO5 Expression to Promote Cellular Senescence in Lung Adenocarcinoma. Curr Issues Mol Biol 2024; 46:7730-7744. [PMID: 39057099 PMCID: PMC11276454 DOI: 10.3390/cimb46070458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) plays an essential role in splicing and post-transcriptional regulation. Moreover, PTBP1 has been implicated as a causal factor in tumorigenesis. However, the involvement of PTBP1 in cellular senescence, a key biological process in aging and cancer suppression, remains to be clarified. Here, it is shown that PTBP1 is associated with the facilitation of tumor growth and the prognosis in lung adenocarcinoma (LUAD). PTBP1 exhibited significantly increased expression in various cancer types including LUAD and showed consistently decreased expression in multiple cellular senescence models. Suppression of PTBP1 induced cellular senescence in LUAD cells. In terms of molecular mechanisms, the silencing of PTBP1 enhanced the skipping of exon 3 in F-box protein 5 (FBXO5), resulting in the generation of a less stable RNA splice variant, FBXO5-S, which subsequently reduces the overall FBXO5 expression. Additionally, downregulation of FBXO5 was found to induce senescence in LUAD. Collectively, these findings illustrate that PTBP1 possesses an oncogenic function in LUAD through inhibiting senescence, and that targeting aberrant splicing mediated by PTBP1 has therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Haoyu Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; (H.L.); (X.S.); (Y.L.); (W.Q.); (H.J.)
| | - Xiaoxiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; (H.L.); (X.S.); (Y.L.); (W.Q.); (H.J.)
| | - Yuanyuan Lv
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; (H.L.); (X.S.); (Y.L.); (W.Q.); (H.J.)
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; (G.W.); (T.N.)
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China; (G.W.); (T.N.)
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; (H.L.); (X.S.); (Y.L.); (W.Q.); (H.J.)
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; (H.L.); (X.S.); (Y.L.); (W.Q.); (H.J.)
| | - Qi Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China; (H.L.); (X.S.); (Y.L.); (W.Q.); (H.J.)
| |
Collapse
|
8
|
Yan H, Miranda EAD, Jin S, Wilson F, An K, Godbee B, Zheng X, Brau-Rodríguez AR, Lei L. Primary oocytes with cellular senescence features are involved in ovarian aging in mice. Sci Rep 2024; 14:13606. [PMID: 38871781 PMCID: PMC11176158 DOI: 10.1038/s41598-024-64441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
In mammalian females, quiescent primordial follicles serve as the ovarian reserve and sustain normal ovarian function and egg production via folliculogenesis. The loss of primordial follicles causes ovarian aging. Cellular senescence, characterized by cell cycle arrest and production of the senescence-associated secretory phenotype (SASP), is associated with tissue aging. In the present study, we report that some quiescent primary oocytes in primordial follicles become senescent in adult mouse ovaries. The senescent primary oocytes share senescence markers characterized in senescent somatic cells. The senescent primary oocytes were observed in young adult mouse ovaries, remained at approximately 15% of the total primary oocytes during ovarian aging from 6 to 12 months, and accumulated in aged ovaries. Administration of a senolytic drug ABT263 to 3-month-old mice reduced the percentage of senescent primary oocytes and the transcription of the SASP factors in the ovary, in addition, led to increased numbers of primordial and total follicles and a higher rate of oocyte maturation. Our study provides experimental evidence that primary oocytes, a germline cell type that is arrested in meiosis, become senescent in adult mouse ovaries and that senescent cell clearance reduced primordial follicle loss and mitigated ovarian aging phenotypes.
Collapse
Affiliation(s)
- Hao Yan
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Edgar Andres Diaz Miranda
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Shiying Jin
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Faith Wilson
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Kang An
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Brooke Godbee
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
- College of Health Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Astrid Roshealy Brau-Rodríguez
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Lei Lei
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA.
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
9
|
Chen J, Li G, He X, Chen X, Chen Z, Liu D, Guo S, Huang T, Lin Y, Lan P, Lian L, He X. ELMO1 ameliorates intestinal epithelial cellular senescence via SIRT1/p65 signaling in inflammatory bowel disease-related fibrosis. Gastroenterol Rep (Oxf) 2024; 12:goae045. [PMID: 38756351 PMCID: PMC11096966 DOI: 10.1093/gastro/goae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Background Intestinal fibrosis is a common complication in inflammatory bowel disease (IBD), which still lacks of reliable markers and therapeutic options. Cellular senescence has been considered an important mechanism of intestinal fibrosis, but the underlying molecular link remains elusive. Methods Tissues were stained using α-smooth muscle actin (α-SMA), fibronectin, and collagen I as markers of myofibroblastic differentiation. Cellular senescence was confirmed through Lamin B1 staining, senescence-associated β-galactosidase staining, and the expression of senescence-associated secretory phenotype (SASP) factors. We explored the relationship between senescence of intestinal epithelial cells (IECs) and intestinal fibrosis, as well as the molecular mechanism underlying this interaction. The effects of irisin on cellular senescence and fibrosis were determined. Results Here, we identify engulfment and cell motility protein 1 (ELMO1) as a novel biomarker for intestinal cellular senescence and fibrosis. In fibrostrictured tissues from patients and murine models with IBD, significantly high levels of cellular senescence score and factors were noted, which positively correlated with the fibrotic regulator fibronectin. Senescent IECs, not fibroblast itself, released SASP factors to regulate fibroblast activation. Prolonging exposure to severe and persistent injurious stimuli decreased ELMO1 expression, which dampened SIRT1 deacetylase activity, enhanced NF-κB (p65) acetylation, and thereby accelerated cellular senescence. Deletion of ELMO1 led to senescent IECs accumulation and triggered premature fibrosis in murine colitis. Furthermore, irisin, inhibiting the degradation of ELMO1, could downregulate p65 acetylation, reduce IECs senescence, and prevent incipient intestinal fibrosis in murine colitis models. Conclusions This study reveals ELMO1 downregulation is an early symbol of intestinal senescence and fibrosis, and the altered ELMO1-SIRT1-p65 pathway plays an important role in intestinal cellular senescence and IBD-related fibrosis.
Collapse
Affiliation(s)
- Junguo Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Guanman Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Xiaowen He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xijie Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zexian Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Danling Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Shuang Guo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Tianze Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yanyun Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Lei Lian
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiaosheng He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital,Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
10
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Yan H, Miranda EAD, Jin S, Wilson F, An K, Godbee B, Zheng X, Brau-Rodríguez AR, Lei L. Primary oocytes with cellular senescence features are involved in ovarian aging in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574768. [PMID: 38260383 PMCID: PMC10802418 DOI: 10.1101/2024.01.08.574768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In mammalian females, quiescent primordial follicles serve as the ovarian reserve and sustain normal ovarian function and egg production via folliculogenesis. The loss of primordial follicles causes ovarian aging. Cellular senescence, characterized by cell cycle arrest and production of the senescence-associated secretory phenotype (SASP), is associated with tissue aging. In the present study, we report that some quiescent primary oocytes in primordial follicles become senescent in adult mouse ovaries. The senescent primary oocytes share senescence markers characterized in senescent somatic cells. The senescent primary oocytes were observed in young adult mouse ovaries, remained at approximately 15% of the total primary oocytes during ovarian aging from 6 months to 12 months, and accumulated in aged ovaries. Administration of a senolytic drug ABT263 to 3-month-old mice reduced the percentage of senescent primary oocytes and the transcription of the SASP cytokines in the ovary. In addition, led to increased numbers of primordial and total follicles and a higher rate of oocyte maturation and female fertility. Our study provides experimental evidence that primary oocytes, a germline cell type that is arrested in meiosis, become senescent in adult mouse ovaries and that senescent cell clearance reduced primordial follicle loss and mitigated ovarian aging phenotypes.
Collapse
Affiliation(s)
- Hao Yan
- Buck Institute for Research on Aging, Novato, California, 94945
- Carnegie Institution for Science, Department of Embryology, Baltimore, Maryland, 21218
| | - Edgar Andres Diaz Miranda
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
| | - Shiying Jin
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
| | - Faith Wilson
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, Missouri, 65211
| | - Kang An
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
| | - Brooke Godbee
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
- College of Health Sciences, University of Missouri, Columbia, Missouri, 65211
| | - Xiaobin Zheng
- Carnegie Institution for Science, Department of Embryology, Baltimore, Maryland, 21218
| | - Astrid Roshealy Brau-Rodríguez
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
| | - Lei Lei
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, 65211
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, Missouri, 65211
| |
Collapse
|
12
|
Zhang Y, Li Q, Shi S, Liu L, Lv J, Zhu L, Zhang H. Clinical and pathological characteristics in elderly patients with IgA nephropathy. Clin Kidney J 2023; 16:1974-1979. [PMID: 37915928 PMCID: PMC10616429 DOI: 10.1093/ckj/sfad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 11/03/2023] Open
Abstract
Background Immunoglobulin A nephropathy (IgAN) is the most common cause of primary glomerulonephritis, with highly variable manifestations. Although the peak incidence of IgAN is in young adults, the diagnosis among elderly people is increasing. Here we explored the effect of aging on IgAN features, as well as cellular senescence in the kidney of IgAN. Methods A total of 910 patients with IgAN were enrolled, which contained 182 individuals in each age stage (aged ≥60, 50-59, 40-49, 30-39 and 20-29 years). Clinical and pathological manifestations at the time of renal biopsy were compared. Additionally, 38 patients with IgAN (19 aged over or equal to 60 years and 19 aged below 60 years) were randomly selected for p16INK4a staining by immunohistochemistry. The percentage of p16INK4a-positive cells in glomeruli, renal tubule and interstitium were separately quantified. Results Compared with young IgAN patients, elderly patients presented with higher levels of circulating IgA, uric acid and proteinuria, but lower estimated glomerular filtration rates (eGFR), as well as lower red blood cell counts, platelet counts and lymphocyte counts. Moreover, elderly IgAN patients showed higher incidence of hypertension, and lower incidence of prodromic infection. Regarding histological lesions in the kidney, young IgAN patients had higher degree of IgA and C3 deposits, while elderly IgAN patients had more severe Oxford-E lesions, but less severe Oxford-S lesions. The percentage of glomerular and tubular p16INK4a-positive cells in elderly patients showed an increasing trend, but statistical significance was not reached. The percentage of p16INK4a-positive nuclei in renal interstitium was positively associated with T score, while increased percentage of p16INK4a-positive nuclei in renal tubule was associated with eGFR and 24-h urinary protein level. Conclusion In our IgAN cohort, elderly IgAN patients presented with some aging-related features, and both aging- and IgAN-induced pathological injury contributed to the kidney lesions in patients with IgAN.
Collapse
Affiliation(s)
- Yongji Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| | - Qianqian Li
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| | - Sufang Shi
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| | - Lijun Liu
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| | - Jicheng Lv
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| | - Li Zhu
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
13
|
Borghini A, Mercuri A, Campolo J, Parolini M, Ndreu R, Turchi S, Andreassi MG. Influence of Chromosome 9p21.3 rs1333049 Variant on Telomere Length and Their Interactive Impact on the Prognosis of Coronary Artery Disease. J Cardiovasc Dev Dis 2023; 10:387. [PMID: 37754816 PMCID: PMC10531536 DOI: 10.3390/jcdd10090387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Both telomere shortening and the chromosome 9p21.3 (Chr9p21) rs1333049 (G/C) variant are involved in coronary artery disease (CAD) risk, likely affecting mechanisms related to cell cycle arrest and vascular senescence. The aim of the study was to examine the link between Chr9p21 rs1333049 variant and leucocyte telomere length (LTL), as well as their interactive effect on the risk of major adverse cardiovascular events (MACEs). METHODS A cohort of 472 patients with angiographically proven and clinically stable CAD were included in the study. At baseline, the LTL, biochemical parameters, and genotype analysis of Chr9p21 rs1333049 variant were measured in all patients. The primary endpoint of this study was the occurrence of MACE defined as a composite of coronary-related death, nonfatal MI, and coronary revascularization. RESULTS On multivariable linear regression analysis, age (p = 0.02) and Chr9p21 rs1333049 variant (p = 0.002) were the only independent predictors of LTL levels. Carriers of the CC genotype of this SNP had shorter telomeres than GC carriers (p = 0.02) and GG carriers (p = 0.0005). After a follow-up with a mean period of 62 ± 19 months, 90 patients (19.1%) had MACE. Short LTL was an independent prognostic factor of MACE incidence (HR:2.2; 95% CI: 1.3-3.7; p = 0.005) after adjustment for potential confounders. There was a significant interaction (p = 0.01) between the LTL and rs1333049 variant, with patients with risk-allele C and short LTL having a higher risk (HR:5.8; 95% CI: 1.8-19.2; p = 0.004). CONCLUSION A strong relationship between LTL and Chr9p21 rs1333049 variant was identified, and they interactively affect the risk of poor prognosis in CAD patients.
Collapse
Affiliation(s)
- Andrea Borghini
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (A.M.); (R.N.); (S.T.); (M.G.A.)
| | - Antonella Mercuri
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (A.M.); (R.N.); (S.T.); (M.G.A.)
| | - Jonica Campolo
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (J.C.); (M.P.)
| | - Marina Parolini
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (J.C.); (M.P.)
| | - Rudina Ndreu
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (A.M.); (R.N.); (S.T.); (M.G.A.)
| | - Stefano Turchi
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (A.M.); (R.N.); (S.T.); (M.G.A.)
| | - Maria Grazia Andreassi
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (A.M.); (R.N.); (S.T.); (M.G.A.)
| |
Collapse
|
14
|
Kawamura Y, Oka K, Semba T, Takamori M, Sugiura Y, Yamasaki R, Suzuki Y, Chujo T, Nagase M, Oiwa Y, Fujioka S, Homma S, Yamamura Y, Miyawaki S, Narita M, Fukuda T, Sakai Y, Ishimoto T, Tomizawa K, Suematsu M, Yamamoto T, Bono H, Okano H, Miura K. Cellular senescence induction leads to progressive cell death via the INK4a-RB pathway in naked mole-rats. EMBO J 2023; 42:e111133. [PMID: 37431790 PMCID: PMC10425838 DOI: 10.15252/embj.2022111133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 07/12/2023] Open
Abstract
Naked mole-rats (NMRs) have exceptional longevity and are resistant to age-related physiological decline and diseases. Given the role of cellular senescence in aging, we postulated that NMRs possess unidentified species-specific mechanisms to prevent senescent cell accumulation. Here, we show that upon induction of cellular senescence, NMR fibroblasts underwent delayed and progressive cell death that required activation of the INK4a-retinoblastoma protein (RB) pathway (termed "INK4a-RB cell death"), a phenomenon not observed in mouse fibroblasts. Naked mole-rat fibroblasts uniquely accumulated serotonin and were inherently vulnerable to hydrogen peroxide (H2 O2 ). After activation of the INK4a-RB pathway, NMR fibroblasts increased monoamine oxidase levels, leading to serotonin oxidization and H2 O2 production, which resulted in increased intracellular oxidative damage and cell death activation. In the NMR lung, induction of cellular senescence caused delayed, progressive cell death mediated by monoamine oxidase activation, thereby preventing senescent cell accumulation, consistent with in vitro results. The present findings indicate that INK4a-RB cell death likely functions as a natural senolytic mechanism in NMRs, providing an evolutionary rationale for senescent cell removal as a strategy to resist aging.
Collapse
Affiliation(s)
- Yoshimi Kawamura
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Kaori Oka
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Takashi Semba
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Mayuko Takamori
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Yuki Sugiura
- Department of BiochemistryKeio University School of MedicineTokyoJapan
| | - Riyo Yamasaki
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
| | - Yusuke Suzuki
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
| | - Takeshi Chujo
- Department of Molecular PhysiologyKumamoto UniversityKumamotoJapan
| | - Mari Nagase
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
| | - Yuki Oiwa
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of Chemical BiologyNational Center for Geriatrics and GerontologyObuJapan
| | - Shusuke Fujioka
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Sayuri Homma
- Department of PharmacologyHoshi University School of Pharmacy and Pharmaceutical SciencesTokyoJapan
| | - Yuki Yamamura
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
| | - Shingo Miyawaki
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Laboratory of Veterinary Surgery, Faculty of Applied Biological SciencesGifu UniversityGifuJapan
| | - Minoru Narita
- Department of PharmacologyHoshi University School of Pharmacy and Pharmaceutical SciencesTokyoJapan
- Division of Cancer PathophysiologyNational Cancer Center Research Institute (NCCRI)TokyoJapan
| | - Takaichi Fukuda
- Department of Anatomy and NeurobiologyKumamoto UniversityKumamotoJapan
| | - Yusuke Sakai
- Department of PathologyNational Institute of Infectious DiseasesTokyoJapan
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kazuhito Tomizawa
- Department of Molecular PhysiologyKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| | - Makoto Suematsu
- Department of BiochemistryKeio University School of MedicineTokyoJapan
- WPI‐Bio2Q Research CenterCentral Institute for Experimental AnimalsKawasakiJapan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi), Kyoto UniversityKyotoJapan
- Medical‐risk Avoidance based on iPS Cells TeamRIKEN Center for Advanced Intelligence Project (AIP)KyotoJapan
| | - Hidemasa Bono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi‐HiroshimaJapan
- Laboratory of BioDX, PtBio Collaborative Research Laboratory, Genome Editing Innovation CenterHiroshima UniversityHigashi‐HiroshimaJapan
| | - Hideyuki Okano
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| | - Kyoko Miura
- Department of Aging and Longevity ResearchKumamoto UniversityKumamotoJapan
- Biomedical Animal Research Laboratory, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
- Center for Metabolic Regulation of Healthy AgingKumamoto UniversityKumamotoJapan
| |
Collapse
|
15
|
Eléouët M, Lu C, Zhou Y, Yang P, Ma J, Xu G. Insights on the biological functions and diverse regulation of RNA-binding protein 39 and their implication in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194902. [PMID: 36535628 DOI: 10.1016/j.bbagrm.2022.194902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding protein 39 (RBM39) involves in pre-mRNA splicing and transcriptional regulation. RBM39 is dysregulated in many cancers and its upregulation enhances cancer cell proliferation. Recently, it has been discovered that aryl sulfonamides act as molecular glues to recruit RBM39 to the CRL4DCAF15 E3 ubiquitin ligase complex for its ubiquitination and proteasomal degradation. Therefore, various studies have focused on the degradation of RBM39 by aryl sulfonamides in the aim of finding new cancer therapeutics. These discoveries also attracted focus for thorough study on the biological functions of RBM39. RBM39 was found to regulate the splicing and transcription of genes mainly involved in pre-mRNA splicing, cell cycle regulation, DNA damage response, and metabolism, but the understanding of these regulations is still in its infancy. This article reviews the advances of the current literature and discusses the remaining key issues on the biological function and dynamic regulation of RBM39 at the post-translational level.
Collapse
Affiliation(s)
- Morgane Eléouët
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yijia Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ping Yang
- Synbio Technologies Company, BioBay C20, 218 Xinghu Street, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
16
|
Birder LA, Jackson EK. Purine nucleoside phosphorylase as a target to treat age-associated lower urinary tract dysfunction. Nat Rev Urol 2022; 19:681-687. [PMID: 36071153 PMCID: PMC9842101 DOI: 10.1038/s41585-022-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 01/18/2023]
Abstract
The lower urinary tract (LUT), including the bladder, urethra and external striated muscle, becomes dysfunctional with age; consequently, many older individuals suffer from lower urinary tract disorders (LUTDs). By compromising urine storage and voiding, LUTDs degrade quality of life for millions of individuals worldwide. Treatments for LUTDs have been disappointing, frustrating both patients and their physicians; however, emerging evidence suggests that partial inhibition of the enzyme purine nucleoside phosphorylase (PNPase) with 8-aminoguanine (an endogenous PNPase inhibitor that moderately reduces PNPase activity) reverses age-associated defects in the LUT and restores the LUT to that of a younger state. Thus, 8-aminoguanine improves LUT biochemistry, structure and function by rebalancing the LUT purine metabolome, making 8-aminoguanine a novel potential treatment for LUTDs.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Heavener KS, Bradshaw EM. The aging immune system in Alzheimer's and Parkinson's diseases. Semin Immunopathol 2022; 44:649-657. [PMID: 35505128 PMCID: PMC9519729 DOI: 10.1007/s00281-022-00944-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
The neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) both have a myriad of risk factors including genetics, environmental exposures, and lifestyle. However, aging is the strongest risk factor for both diseases. Aging also profoundly influences the immune system, with immunosenescence perhaps the most prominent outcome. Through genetics, mouse models, and pathology, there is a growing appreciation of the role the immune system plays in neurodegenerative diseases. In this review, we explore the intersection of aging and the immune system in AD and PD.
Collapse
Affiliation(s)
- Kelsey S Heavener
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Elizabeth M Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
18
|
Barnes RP, de Rosa M, Thosar SA, Detwiler AC, Roginskaya V, Van Houten B, Bruchez MP, Stewart-Ornstein J, Opresko PL. Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening. Nat Struct Mol Biol 2022; 29:639-652. [PMID: 35773409 PMCID: PMC9287163 DOI: 10.1038/s41594-022-00790-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
Abstract
Oxidative stress is a primary cause of cellular senescence and contributes to the etiology of numerous human diseases. Oxidative damage to telomeric DNA has been proposed to cause premature senescence by accelerating telomere shortening. Here, we tested this model directly using a precision chemoptogenetic tool to produce the common lesion 8-oxo-guanine (8oxoG) exclusively at telomeres in human fibroblasts and epithelial cells. A single induction of telomeric 8oxoG is sufficient to trigger multiple hallmarks of p53-dependent senescence. Telomeric 8oxoG activates ATM and ATR signaling, and enriches for markers of telomere dysfunction in replicating, but not quiescent cells. Acute 8oxoG production fails to shorten telomeres, but rather generates fragile sites and mitotic DNA synthesis at telomeres, indicative of impaired replication. Based on our results, we propose that oxidative stress promotes rapid senescence by producing oxidative base lesions that drive replication-dependent telomere fragility and dysfunction in the absence of shortening and shelterin loss. This study uncovers a new mechanism linking oxidative stress to telomere-driven senescence. A common oxidative lesion at telomeres causes rapid premature cellular aging by inducing telomere fragility, rather than telomere shortening.
Collapse
Affiliation(s)
- Ryan P Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mariarosaria de Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Sanjana A Thosar
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Vera Roginskaya
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marcel P Bruchez
- Departments of Biological Sciences and Chemistry and the Molecular Biosensors and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jacob Stewart-Ornstein
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA. .,UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Gao J, Li Y, Guan Y, Wei X, Chen S, Li X, Li Y, Huang Z, Liu S, Li G, Xu P, Zhang Y, Zhao Y. The accelerated aging skin in rhino-like SHJH hr mice. Exp Dermatol 2022; 31:1597-1606. [PMID: 35737869 DOI: 10.1111/exd.14632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/26/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
SHJHhr mice line is rhino-like mice with a nonsense Hairless (Hr) mutant, which shows the characteristic of shedding hair and wrinkled skin with increasing age. Though histological analysis and aging indexes detection, SHJHhr mice show an increased thickness skin with degraded hair follicle and dermal cysts, and disorganized collagen fibers as well as decreased level of Hyp. Meanwhile, the aging markers p16 and p21 are significantly higher in SHJHhr mouse skin than ICR mouse skin at same age. Moreover, the data of MDA and SOD show a higher oxidative stress in SHJHhr mouse skin, and the levels of Nrf2 and its targets are significantly down-regulated, which suggests SHJHhr mice have a faster aging skin and its reason maybe poor antioxidative protection. Overall, this study shows SHJHhr mice with an accelerated aging skin, which suggests the role of Hr gene in skin aging.
Collapse
Affiliation(s)
- Jinfeng Gao
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongchao Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.,The Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yalun Guan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiaoyue Wei
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Shijian Chen
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yunfeng Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Zhongqiang Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Shuhua Liu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Ping Xu
- Shanghai Jihui Laboratory Animal Care Co., Ltd., Shanghai, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yuhong Zhao
- Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
20
|
Preininger MK, Kaufer D. Blood-Brain Barrier Dysfunction and Astrocyte Senescence as Reciprocal Drivers of Neuropathology in Aging. Int J Mol Sci 2022; 23:6217. [PMID: 35682895 PMCID: PMC9180977 DOI: 10.3390/ijms23116217] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 01/27/2023] Open
Abstract
As the most abundant cell types in the brain, astrocytes form a tissue-wide signaling network that is responsible for maintaining brain homeostasis and regulating various brain activities. Here, we review some of the essential functions that astrocytes perform in supporting neurons, modulating the immune response, and regulating and maintaining the blood-brain barrier (BBB). Given their importance in brain health, it follows that astrocyte dysfunction has detrimental effects. Indeed, dysfunctional astrocytes are implicated in age-related neuropathology and participate in the onset and progression of neurodegenerative diseases. Here, we review two mechanisms by which astrocytes mediate neuropathology in the aging brain. First, age-associated blood-brain barrier dysfunction (BBBD) causes the hyperactivation of TGFβ signaling in astrocytes, which elicits a pro-inflammatory and epileptogenic phenotype. Over time, BBBD-associated astrocyte dysfunction results in hippocampal and cortical neural hyperexcitability and cognitive deficits. Second, senescent astrocytes accumulate in the brain with age and exhibit a decreased functional capacity and the secretion of senescent-associated secretory phenotype (SASP) factors, which contribute to neuroinflammation and neurotoxicity. Both BBBD and senescence progressively increase during aging and are associated with increased risk of neurodegenerative disease, but the relationship between the two has not yet been established. Thus, we discuss the potential relationship between BBBD, TGFβ hyperactivation, and senescence with respect to astrocytes in the context of aging and disease and identify future areas of investigation in the field.
Collapse
Affiliation(s)
- Marcela K. Preininger
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA;
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
21
|
Rettko NJ, Campisi J, Wells JA. Engineering Antibodies Targeting p16 MHC-Peptide Complexes. ACS Chem Biol 2022; 17:545-555. [PMID: 35212540 DOI: 10.1021/acschembio.1c00808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Senescent cells undergo a permanent cell cycle arrest and drive a host of age-related pathologies. Recent transgenic mouse models indicate that removing cells expressing the senescence marker p16Ink4a (p16) can increase median lifespan and delay the onset of many aging phenotypes. However, identifying and eliminating native human cells expressing p16 has remained a challenge. We hypothesize that senescent cells display peptides derived from p16 in major histocompatibility complex (MHC)-peptide complexes on the cell surface that could serve as targetable antigens for antibody-based biologics. Using Fab-phage display technology, we generated antibodies that bind to a p16 MHC-peptide complex from the human leukocyte antigen (HLA) allele HLA-B*35:01. When converted to single-chain Fab chimeric antigen receptor (CAR) constructs, these antibodies can recognize naturally presented p16 MHC-peptide complexes on the surface of cells and activate Jurkat cells. Furthermore, we developed antibodies against predicted p16 MHC-peptide complexes for HLA-A*02:01 that specifically recognize their respective antigen on the surface of cells. These tools establish a platform to survey the surface of senescent cells and provide a potential novel senolytic strategy.
Collapse
Affiliation(s)
- Nicholas J. Rettko
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California 94945, United States
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
22
|
Skin senescence: mechanisms and impact on whole-body aging. Trends Mol Med 2022; 28:97-109. [PMID: 35012887 DOI: 10.1016/j.molmed.2021.12.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023]
Abstract
The skin is the largest organ and has a key protective role. Similar to any other tissue, the skin is influenced not only by intrinsic/chronological aging, but also by extrinsic aging, triggered by environmental factors that contribute to accelerating the skin aging process. Aged skin shows structural, cellular, and molecular changes and accumulation of senescent cells. These senescent cells can induce or accelerate the age-related dysfunction of other nearby cells from the skin, or from different origins. However, the extent and underlying mechanisms remain unknown. In this opinion, we discuss the possible relevant role of skin senescence in the induction of aging phenotypes to other organs/tissues, contributing to whole-body aging. Moreover, we suggest that topical administration of senolytics/senotherapeutics could counteract the overall whole-body aging phenotype.
Collapse
|
23
|
Lawlor RT, Mafficini A, Sciammarella C, Cantù C, Rusev BC, Piredda ML, Antonello D, Grimaldi S, Bonizzato G, Sperandio N, Marchegiani G, Malleo G, Pea A, Salvia R, Mombello A, Mazzoleni G, Nottegar A, Hanspeter E, Riva G, Tomezzoli A, Bencivenga M, de Manzoni G, Pedron S, Paolino G, Mattiolo P, Brosens LA, Silvestris N, Fassan M, Cooke SL, Beer PA, Milella M, Adsay VN, Cheng L, Scarpa A, Luchini C. Genomic characterization of hepatoid tumors: context matters. Hum Pathol 2021; 118:30-41. [PMID: 34562502 DOI: 10.1016/j.humpath.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022]
Abstract
Hepatoid tumors (HT) are rare neoplasms morphologically resembling hepatocellular carcinoma, which arise in several organs other than the liver. A comprehensive molecular profile of this group of neoplasms is still lacking. Genomic characterization of 19 HTs from different organs (three colon HTs, four esophagogastric HTs, four biliary HTs, six genitourinary HTs, two lung HTs) was performed using a multigene next-generation sequencing panel. NGS unraveled a composite molecular profile of HT. Their genetic alterations were clearly clustered by tumor site: (i) colorectal HT displayed microsatellite instability, high tumor mutational burden, mutations in ARID1A/B genes and NCOA4-RET gene fusion (2/3 cases); (ii) gastric HT had TP53 mutations (2/4); (iii) biliary HT displayed loss of CDKN2A (3/4) and loss of chromosome 18 (2/4); (iv) genital HT showed gain of chromosome 12 (3/6); (v) lung HT had STK11 somatic mutations (2/2). The only commonly mutated gene occurring in HT of different sites was TP53 (8/19 cases: colon 2, esophagogastric 2, biliary 2, genital 1, lungs 1). This study shows that most genetic alterations of HT were clustered by site, indicating that context matters. The novel potential targets for HT precision oncology are also clustered based on the anatomic origin. This study shed light on the biology of these rare cancers and may have important consequences for treatment decisions and clinical trial selection for HT patients.
Collapse
Affiliation(s)
- Rita T Lawlor
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Andrea Mafficini
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Concetta Sciammarella
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Cinzia Cantù
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Borislav C Rusev
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Maria L Piredda
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Davide Antonello
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Sonia Grimaldi
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Giada Bonizzato
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Nicola Sperandio
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Giovanni Marchegiani
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Giuseppe Malleo
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Antonio Pea
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Roberto Salvia
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Aldo Mombello
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy
| | - Guido Mazzoleni
- Department of Pathology, Central Hospital of Bolzano, 39100 Bolzano, Italy
| | - Alessia Nottegar
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Esther Hanspeter
- Department of Pathology, Central Hospital of Bolzano, 39100 Bolzano, Italy
| | - Giulio Riva
- Department of Diagnostics, Pathology Unit, San Bortolo Hospital, 36100 Vicenza, Italy
| | - Anna Tomezzoli
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Maria Bencivenga
- Unit of General and Upper GI Surgery, University of Verona, 37134 Verona, Italy
| | - Giovanni de Manzoni
- Unit of General and Upper GI Surgery, University of Verona, 37134 Verona, Italy
| | - Serena Pedron
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Gaetano Paolino
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Lodewijk A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands; Department of Pathology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Nicola Silvestris
- IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, and Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy
| | - Susanna L Cooke
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1QH Glasgow, UK
| | - Philip A Beer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, G61 1QH Glasgow, UK; Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA Cambridge, UK
| | - Michele Milella
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Volkan N Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), 34010 Istanbul, Turkey
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 46202 Indianapolis, IN, USA
| | - Aldo Scarpa
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy.
| | - Claudio Luchini
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, 37134 Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy.
| |
Collapse
|
24
|
The protective effects of Agomelatine against Aβ1-42 oligomers-induced cellular senescence mediated by SIRT6 and Agomelatine's potential in AD treatment. Hum Cell 2021; 34:1734-1743. [PMID: 34535875 DOI: 10.1007/s13577-021-00611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is a vicious degenerative disease commonly observed in the elderly population, and the deposition of Amyloid β (Aβ) is regarded as the principal pathological inducement of AD. Severe oxidative stress, inflammatory reactions, and cell senescence in neurons can be induced by Aβ1-42 oligomers, which further contribute to the damage on neurons. Agomelatine is an antidepressant that is recently claimed to have promising anti-oxidative stress and anti-inflammatory effects. The present study aims to explore the potential therapeutic function of Agomelatine on AD and the possible mechanism. Aβ1-42 oligomers were used to induce an in vitro injury model in SH-SY5Y neuronal cells. First, we found that exposure to Aβ1-42 oligomers significantly exacerbated oxidative stress by increasing hydrogen peroxide production and reducing glutathione peroxidase (GPx), which were partially rescued by Agomelatine. Also, Agomelatine attenuated Aβ1-42 oligomers-induced inflammatory response by decreasing the expression of TNF-α and IL-1β. Notably, Agomelatine improved cellular senescence by reducing senescence-associated β-galactosidase (SA-β-Gal) staining and mitigating Aβ1-42 oligomers-induced reduction of telomerase activity. In addition, the upregulated p16INK4A and p21CIP1 and the suppressed expression of SIRT6 in Aβ1-42 oligomers-treated cells were reversed by Agomelatine. Lastly, after the knockdown of SIRT6, the protective effect of Agomelatine against Aβ1-42 oligomers-induced cellular senescence was significantly eliminated. In conclusion, our data indicated that Agomelatine ameliorated Aβ1-42 oligomers-induced cellular senescence mediated by SIRT6, and thus, Agomelatine could be effective in treating AD.
Collapse
|
25
|
Mori H, Funahashi Y, Yoshino Y, Kumon H, Ozaki Y, Yamazaki K, Ochi S, Tachibana A, Yoshida T, Shimizu H, Mori T, Iga JI, Ueno SI. Blood CDKN2A Gene Expression in Aging and Neurodegenerative Diseases. J Alzheimers Dis 2021; 82:1737-1744. [PMID: 34219731 PMCID: PMC8461666 DOI: 10.3233/jad-210483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cyclin-dependent kinase inhibitor 2A (CDKN2A) is an important gene in cellular senescence and aging. OBJECTIVE This study assessed the utility of blood CDKN2A mRNA expression levels and methylation status as a potential biomarker for aging and the pathogenesis of Alzheimer's disease (AD). METHODS The correlation between CDKN2A mRNA expression levels and age was examined in 45 healthy subjects, after which mRNA expression levels were compared among 46 AD patients, 20 mild cognitive impairment due to AD patients, 21 Parkinson's disease patients, 21 dementia with Lewy bodies patients, and 55 older healthy controls. The methylation rates of the second exon of the CDKN2A gene, known to influence its expression levels, was also examined. RESULTS A significant correlation between CDKN2A mRNA expression levels and age was found (Spearman's rank correlation coefficient: r = 0.407, p = 0.005). CDKN2A mRNA expression levels in blood were significantly decreased in AD patients, although those of healthy controls were significantly increased with age. Further, only in AD patients were CDKN2A mRNA expression levels significantly and positively correlated with methylation rates. CONCLUSION Although further research with a larger sample size is needed to elucidate the relationships between CDKN2A gene expression in blood and the development of other neurodegenerative diseases, CDKN2A mRNA expression in blood may be a biomarker for differentiating AD from normal aging and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hiroaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuki Ozaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Ayumi Tachibana
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Taku Yoshida
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Hideaki Shimizu
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Takaaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
26
|
Yang J, Liu M, Hong D, Zeng M, Zhang X. The Paradoxical Role of Cellular Senescence in Cancer. Front Cell Dev Biol 2021; 9:722205. [PMID: 34458273 PMCID: PMC8388842 DOI: 10.3389/fcell.2021.722205] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence occurs in proliferating cells as a consequence of various triggers including telomere shortening, DNA damage, and inappropriate expression of oncogenes. The senescent state is accompanied by failure to reenter the cell cycle under mitotic stimulation, resistance to cell death and enhanced secretory phenotype. A growing number of studies have convincingly demonstrated a paradoxical role for spontaneous senescence and therapy-induced senescence (TIS), that senescence may involve both cancer prevention and cancer aggressiveness. Cellular senescence was initially described as a physiological suppressor mechanism of tumor cells, because cancer development requires cell proliferation. However, there is growing evidence that senescent cells may contribute to oncogenesis, partly in a senescence-associated secretory phenotype (SASP)-dependent manner. On the one hand, SASP prevents cell division and promotes immune clearance of damaged cells, thereby avoiding tumor development. On the other hand, SASP contributes to tumor progression and relapse through creating an immunosuppressive environment. In this review, we performed a review to summarize both bright and dark sides of senescence in cancer, and the strategies to handle senescence in cancer therapy were also discussed.
Collapse
Affiliation(s)
- Jing Yang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dongchun Hong
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
27
|
Akt Isoforms: A Family Affair in Breast Cancer. Cancers (Basel) 2021; 13:cancers13143445. [PMID: 34298660 PMCID: PMC8306188 DOI: 10.3390/cancers13143445] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Breast cancer is the second leading cause of cancer-related death in women in the United States. The Akt signaling pathway is deregulated in approximately 70% of patients with breast cancer. While targeting Akt is an effective therapeutic strategy for the treatment of breast cancer, there are several members in the Akt family that play distinct roles in breast cancer. However, the function of Akt isoforms depends on many factors. This review analyzes current progress on the isoform-specific functions of Akt isoforms in breast cancer. Abstract Akt, also known as protein kinase B (PKB), belongs to the AGC family of protein kinases. It acts downstream of the phosphatidylinositol 3-kinase (PI3K) and regulates diverse cellular processes, including cell proliferation, cell survival, metabolism, tumor growth and metastasis. The PI3K/Akt signaling pathway is frequently deregulated in breast cancer and plays an important role in the development and progression of breast cancer. There are three closely related members in the Akt family, namely Akt1(PKBα), Akt2(PKBβ) and Akt3(PKBγ). Although Akt isoforms share similar structures, they exhibit redundant, distinct as well as opposite functions. While the Akt signaling pathway is an important target for cancer therapy, an understanding of the isoform-specific function of Akt is critical to effectively target this pathway. However, our perception regarding how Akt isoforms contribute to the genesis and progression of breast cancer changes as we gain new knowledge. The purpose of this review article is to analyze current literatures on distinct functions of Akt isoforms in breast cancer.
Collapse
|
28
|
Basu A. The interplay between apoptosis and cellular senescence: Bcl-2 family proteins as targets for cancer therapy. Pharmacol Ther 2021; 230:107943. [PMID: 34182005 DOI: 10.1016/j.pharmthera.2021.107943] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Cell death by apoptosis and permanent cell cycle arrest by senescence serve as barriers to the development of cancer. Chemotherapeutic agents not only induce apoptosis, they can also induce senescence known as therapy-induced senescence (TIS). There are, however, controversies whether TIS improves or worsens therapeutic outcome. Unlike apoptosis, which permanently removes cancer cells, senescent cells are metabolically active, and can contribute to tumor progression and relapse. If senescent cells are not cleared by the immune system or if cancer cells escape senescence, they may acquire resistance to apoptotic stimuli and become highly aggressive. Thus, there have been significant efforts in developing senolytics, drugs that target these pro-survival molecules to eliminate senescent cells. The anti-apoptotic Bcl-2 family proteins not only protect against cell death by apoptosis, but they also allow senescent cells to survive. While combining senolytics with chemotherapeutic drugs is an attractive approach, there are also limitations. Moreover, members of the Bcl-2 family have distinct effects on apoptosis and senescence. The purpose of this review article is to discuss recent literatures on how members of the Bcl-2 family orchestrate the interplay between apoptosis and senescence, and the challenges and progress in targeting these Bcl-2 family proteins for cancer therapy.
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
29
|
Jacczak B, Rubiś B, Totoń E. Potential of Naturally Derived Compounds in Telomerase and Telomere Modulation in Skin Senescence and Aging. Int J Mol Sci 2021; 22:6381. [PMID: 34203694 PMCID: PMC8232155 DOI: 10.3390/ijms22126381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Proper functioning of cells-their ability to divide, differentiate, and regenerate-is dictated by genomic stability. The main factors contributing to this stability are the telomeric ends that cap chromosomes. Telomere biology and telomerase activity have been of interest to scientists in various medical science fields for years, including the study of both cancer and of senescence and aging. All these processes are accompanied by telomere-length modulation. Maintaining the key levels of telomerase component (hTERT) expression and telomerase activity that provide optimal telomere length as well as some nontelomeric functions represents a promising step in advanced anti-aging strategies, especially in dermocosmetics. Some known naturally derived compounds contribute significantly to telomere and telomerase metabolism. However, before they can be safely used, it is necessary to assess their mechanisms of action and potential side effects. This paper focuses on the metabolic potential of natural compounds to modulate telomerase and telomere biology and thus prevent senescence and skin aging.
Collapse
Affiliation(s)
| | | | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (B.J.); (B.R.)
| |
Collapse
|
30
|
Stöckl JB, Schmid N, Flenkenthaler F, Drummer C, Behr R, Mayerhofer A, Arnold GJ, Fröhlich T. Age-Related Alterations in the Testicular Proteome of a Non-Human Primate. Cells 2021; 10:cells10061306. [PMID: 34074003 PMCID: PMC8225046 DOI: 10.3390/cells10061306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Aging of human testis and associated cellular changes is difficult to assess. Therefore, we used a translational, non-human primate model to get insights into underlying cellular and biochemical processes. Using proteomics and immunohistochemistry, we analyzed testicular tissue of young (age 2 to 3) and old (age 10 to 12) common marmosets (Callithrix jacchus). Using a mass spectrometry-based proteomics approach, we identified 63,124 peptides, which could be assigned to 5924 proteins. Among them, we found proteins specific for germ cells and somatic cells, such as Leydig and Sertoli cells. Quantitative analysis showed 31 differentially abundant proteins, of which 29 proteins were more abundant in older animals. An increased abundance of anti-proliferative proteins, among them CDKN2A, indicate reduced cell proliferation in old testes. Additionally, an increased abundance of several small leucine rich repeat proteoglycans and other extracellular matrix proteins was observed, which may be related to impaired cell migration and fibrotic events. Furthermore, an increased abundance of proteins with inhibitory roles in smooth muscle cell contraction like CNN1 indicates functional alterations in testicular peritubular cells and may mirror a reduced capacity of these cells to contract in old testes.
Collapse
Affiliation(s)
- Jan B. Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
| | - Nina Schmid
- Biomedical Center (BMC), Anatomy III–Cell Biology, Medical Faculty, LMU München, 82152 Martinsried, Germany; (N.S.); (A.M.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
| | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.D.); (R.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.D.); (R.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
| | - Artur Mayerhofer
- Biomedical Center (BMC), Anatomy III–Cell Biology, Medical Faculty, LMU München, 82152 Martinsried, Germany; (N.S.); (A.M.)
| | - Georg J. Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
- Correspondence: (G.J.A.); (T.F.)
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
- Correspondence: (G.J.A.); (T.F.)
| |
Collapse
|
31
|
Mutant CDKN2A regulates P16/p14 expression by alternative splicing in renal cell carcinoma metastasis. Pathol Res Pract 2021; 223:153453. [PMID: 34022680 DOI: 10.1016/j.prp.2021.153453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Metastatic renal cell carcinoma (mRCC) is the important factor for patient mortality, meanwhile gene mutation constantly changes cancer prognosis in tumor process. Exploring the driver mutation in mRCC process become more and more important. MATERIALS AND METHODS We obtained the 15 paired primary and metastatic mRCC samples and analyzed specific mutation genes in the metastatic foci (SMGs) by next generation sequencing. Moreover, we explored the Correlated networks, Pathway and Gene Ontology (GO) enrichment results, prediction analysis of AS sites and prognosis of survival. RESULTS We identify EPCAM, TMEM127, EZH2, EXT1, CDKN2A, PRF1, AIP, CDK4, PRKARIA as SMGs and find that CDKN2A mutation sites affect the prognosis of mRCC by altering splicing elements. Based on the differential analysis for SMGs in KIRC, we found that EPCAM, PRF1 and EZH2 were differential expression in both primary tumors with metastasis compared to primary tumors without metastasis or metastatic tissues. By the AS prediction analysis, we suggest that CDKN2A mutation sites play an important role for RCC metastasis by affecting the p16/p14 expression. CONCLUSIONS The SMGs could provide new molecular cues associated with tumor metastasis and have potential clinical implications for cancer prognosis and treatment. Definitive conclusions await further validation and follow up.
Collapse
|
32
|
Vashi R, Patel BM. Roles of ARF tumour suppressor protein in lung cancer: time to hit the nail on the head! Mol Cell Biochem 2021; 476:1365-1375. [PMID: 33392921 DOI: 10.1007/s11010-020-03996-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
Owing to its poor prognosis, the World Health Organization (WHO) lists lung cancer on top of the list when it comes to growing mortality rates and incidence. Usually, there are two types of lung cancer, small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), which also includes adenocarcinoma, squamous cell carcinoma and large cell carcinomas. ARF, also known in humans as p14ARF and in the mouse as p19ARF, is a nucleolar protein and a member of INK4, a family of cyclin-independent kinase inhibitors (CKI). These genes are clustered on chromosome number 9p21 within the locus of CDKN2A. NSCLC has reported the role of p14ARF as a potential target. p14ARF has a basic mechanism to inhibit mouse double minute 2 protein that exhibits inhibitory action on p53, a phosphoprotein tumour suppressor, thus playing a role in various tumour-related activities such as growth inhibition, DNA damage, autophagy, apoptosis, cell cycle arrest and others. Extensive cancer research is ongoing and updated reports regarding the role of ARF in lung cancer are available. This article summarizes the available lung cancer ARF data, its molecular mechanisms and its associated signalling pathways. Attempts have been made to show how p14ARF functions in different types of lung cancer providing a thought to look upon ARF as a new target for treating the debilitating condition of lung cancer.
Collapse
Affiliation(s)
- Ruju Vashi
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
33
|
Tsai C, Chang C, Lin B, Wu Y, Wu M, Lin L, Huang W, Holz JD, Sheu T, Lee J, Kitsis RN, Tai P, Lee Y. Up-regulation of cofilin-1 in cell senescence associates with morphological change and p27 kip1 -mediated growth delay. Aging Cell 2021; 20:e13288. [PMID: 33336885 PMCID: PMC7811848 DOI: 10.1111/acel.13288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/05/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Morphological change is an explicit characteristic of cell senescence, but the underlying mechanisms remains to be addressed. Here, we demonstrated, after a survey of various actin-binding proteins, that the post-translational up-regulation of cofilin-1 was essential for the reduced rate of actin depolymerization morphological enlargement in senescent cells. Additionally, up-regulated cofilin-1 mainly existed in the serine-3 phosphorylated form, according to the 2D gel immunoblotting assay. The up-regulation of cofilin-1 was also detected in aged mammalian tissues. The over-expression of wild-type cofilin-1 and constitutively phosphorylated cofilin-1 promoted cell senescence with an increased cell size. Additionally, senescent phenotypes were also reduced by knockdown of total cofilin-1, which led to a decrease in phosphorylated cofilin-1. The senescence induced by the over-expression of cofilin-1 was dependent on p27Kip1 , but not on the p53 and p16INK4 expressions. The knockdown of p27Kip1 alleviated cell senescence induced by oxidative stress or replicative stress. We also found that the over-expression of cofilin-1 induced the expression of p27Kip1 through transcriptional suppression of the transcriptional enhancer factors domain 1 (TEAD1) transcription factor. The TEAD1 transcription factor played a transrepressive role in the p27Kip1 gene promoter, as determined by the promoter deletion reporter gene assay. Interestingly, the down-regulation of TEAD1 was accompanied by the up-regulation of cofilin-1 in senescence. The knockdown and restoration of TEAD1 in young cells and old cells could induce and inhibit p27Kip1 and senescent phenotypes, respectively. Taken together, the current data suggest that cofilin-1/TEAD1/p27Kip1 signaling is involved in senescence-related morphological change and growth arrest.
Collapse
Affiliation(s)
- Cheng‐Han Tsai
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Chun‐Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Bing‐Ze Lin
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Yu‐Lou Wu
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Meng‐Hsiu Wu
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Liang‐Tin Lin
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Wen‐Chien Huang
- Department of Surgery Division of Thoracic Surgery MacKay Memorial Hospital Taipei Taiwan
| | - Jonathan D. Holz
- Department of Biology University of Rochester Rochester NY14642USA
| | - Tzong‐Jen Sheu
- Department of Orthopaedics Center for Musculoskeletal Research University of Rochester School of Medicine Rochester NY14642USA
| | - Jhih‐Shian Lee
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
| | - Richard N. Kitsis
- Departments of Medicine (Cardiology) and Cell Biology and Wilf Family Cardiovascular Research Institute Albert Einstein College of Medicine Bronx, New York NY USA
| | - Pei‐Han Tai
- Graduate Institute of Oral Biology School of Dentistry National Taiwan University Taipei Taiwan
| | - Yi‐Jang Lee
- Department of Biomedical Imaging and Radiological Sciences National Yang‐Ming University Taipei Taiwan
- Cancer Progression Research Center National Yang‐Ming University Taipei11221Taiwan
| |
Collapse
|
34
|
Xing D, Fadare O. Molecular events in the pathogenesis of vulvar squamous cell carcinoma. Semin Diagn Pathol 2021; 38:50-61. [PMID: 33032902 PMCID: PMC7749059 DOI: 10.1053/j.semdp.2020.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Vulvar squamous cell carcinomas (VSCC), which constitute over 90% of vulvar malignancies in adults, are classifiable into 2 subgroups that are mostly clinicopathologically distinct, a classification that is fundamentally based whether or not the tumors are HPV-mediated. In this review, we aim to summarize the recent advances in the understanding of molecular events in the pathogenesis of VSCC, including common and targetable mutations, copy number alterations, epigenetics, noncoding RNAs, and tumor immune microenvironment, which may provide insight into the future management of the disease. These events show substantial differences between the 2 subgroups, although significant areas of overlap exist. Recurrent, driver mutations appear to be substantially more prevalent in HPV(-) VSCC. TP53 mutations are the most common somatic mutations in VSCC overall, and are notably predominant in the HPV(-) VSCC, where 30-88% show a mutation. TP53 mutations are associated with worse patient outcomes, and co-mutations between TP53 and either HRAS, PIK3CA or CDKN2A appear to define subsets with even worse outcomes. A wide variety of other somatic mutations have been identified, including a subset with different mutational frequencies between HPV(+) and HPV(-) VSCC. CDKN2A mutations are common, and have been identified in 21 to 55% of HPV(-) VSCC, and in 2 to 25% of HPV(+) VSCC. Hypermethylation of CDKN2A is the most frequently reported epigenetic alteration in VSCC and the expression of some microRNAs may be associated with patient outcomes. The PTEN/PI3K/AKT/mTOR pathway is commonly altered in HPV(+) VSCC, and is accordingly potentially targetable. HPV-positivity/p16 block expression by immunohistochemistry has been found to be an independent prognostic marker for improved survival in VSCC, and may have some predictive value in VSCC patients treated with definitive radiotherapy. 22-39.3% and 68% of VSCC show EGFR amplification and protein overexpression respectively, although the prognostic and predictive value of an EGFR alteration requires additional study. Recurrent chromosomal gains in VSCCs have been found at 1q, 2q, 3q, 4p, 5p, 7p, 8p, 8q, and 12q, and there may be differential patterns of alterations depending on HPV-status. At least one-third of VSCC patients may potentially benefit from immune checkpoint inhibition therapy, based on a high frequency of PD-L1 expression or amplification, or a high tumor mutational burden. Additional studies are ultimately required to better understand the global landscape of genetic and epigenetic alterations in VSCC, and to identify and test potential targets for clinical application.
Collapse
Affiliation(s)
- Deyin Xing
- Departments of Pathology, Oncology, Gynecology and Obstetrics, The Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego Health, La Jolla, CA, United States
| |
Collapse
|
35
|
Kameda M, Mikawa T, Yokode M, Inagaki N, Kondoh H. Senescence research from historical theory to future clinical application. Geriatr Gerontol Int 2020; 21:125-130. [PMID: 33372374 DOI: 10.1111/ggi.14121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022]
Abstract
Historically, the findings from cellular lifespan studies have greatly affected aging research. The discovery of replicative senescence by Hayflick developed into research on telomeres and telomerase, while stress-induced senescence became known as a telomere-independent event. Senescence-inducing signals comprise several tumor suppressors or cell cycle inhibitors, e.g., p53, cyclin-dependent kinase inhibitor p16 Ink4a and others. Stress-induced senescence serves as a physiological barrier to oncogenesis in vivo, while it activates senescence-associated secretary phenotype, inducing chronic inflammation. Thus, beside telomere length, p16, p53 and inflammatory cytokines have been utilized as biomarkers for cellular senescence. Telomere lengths in human leukocytes correlate well with events of aging-related lifestyle diseases, indicating the importance of cellular senescence in organismal aging. As such, the development of senescence research will have significant future clinical applications, e.g., senolysis. Geriatr Gerontol Int 2021; 21: 125-130.
Collapse
Affiliation(s)
- Masahiro Kameda
- Geriatric unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takumi Mikawa
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Yokode
- Geriatric unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kondoh
- Geriatric unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Ilie OD, Ciobica A, Riga S, Dhunna N, McKenna J, Mavroudis I, Doroftei B, Ciobanu AM, Riga D. Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E626. [PMID: 33228124 PMCID: PMC7699382 DOI: 10.3390/medicina56110626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Intra-lysosomal accumulation of the autofluorescent "residue" known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. The latest evidence highlighted that lipofuscin strongly correlates with the excessive production of reactive oxygen species; however, despite this, lipofuscin cannot be removed by the biological recycling mechanisms. The antagonistic effects exerted at the DNA level culminate in a dysregulation of the cell cycle, by inducing a loss of the entire internal environment and abnormal gene(s) expression. Additionally, it appears that a crucial role in the production of reactive oxygen species can be attributed to gut microbiota, due to their ability to shape our behavior and neurodevelopment through their maintenance of the central nervous system.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Sorin Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Nitasha Dhunna
- Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK;
| | - Jack McKenna
- York Hospital, Wigginton road Clifton, York YO31 8HE, UK;
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK;
- Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania;
| | - Adela-Magdalena Ciobanu
- Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, no 37, 020021 Bucharest, Romania;
| | - Dan Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| |
Collapse
|
37
|
Depletion of senescent-like neuronal cells alleviates cisplatin-induced peripheral neuropathy in mice. Sci Rep 2020; 10:14170. [PMID: 32843706 PMCID: PMC7447787 DOI: 10.1038/s41598-020-71042-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy is among the most common dose-limiting adverse effects of cancer treatment, leading to dose reduction and discontinuation of life-saving chemotherapy and a permanently impaired quality of life for patients. Currently, no effective treatment or prevention is available. Senescence induced during cancer treatment has been shown to promote the adverse effects. Here, we show that cisplatin induces senescent-like neuronal cells in primary culture and in mouse dorsal root ganglia (DRG), as determined by the characteristic senescence markers including senescence-associated beta-galactosidase, accumulation of cytosolic p16INK4A and HMGB1, as well as increased expression of p16Ink4a, p21, and MMP-9. The accumulation of senescent-like neuronal cells in DRG is associated with cisplatin-induced peripheral neuropathy (CIPN) in mice. To determine if depletion of senescent-like neuronal cells may effectively mitigate CIPN, we used a pharmacological ‘senolytic’ agent, ABT263, which inhibits the anti-apoptotic proteins BCL-2 and BCL-xL and selectively kills senescent cells. Our results demonstrated that clearance of DRG senescent neuronal cells reverses CIPN, suggesting that senescent-like neurons play a role in CIPN pathogenesis. This finding was further validated using transgenic p16-3MR mice, which permit ganciclovir (GCV) to selectively kill senescent cells expressing herpes simplex virus 1 thymidine kinase (HSV-TK). We showed that CIPN was alleviated upon GCV administration to p16-3MR mice. Together, the results suggest that clearance of senescent DRG neuronal cells following platinum-based cancer treatment might be an effective therapy for the debilitating side effect of CIPN.
Collapse
|
38
|
Sanaei M, Kavoosi F, Ghasemi A. Investigation of the Effect of 5-Aza-2'-Deoxycytidine on p15INK4, p16INK4, p18INK4, and p19INK4 Genes Expression, Cell Growth Inhibition, and Apoptosis Induction in Hepatocellular Carcinoma PLC/PRF/5 Cell Line. Adv Biomed Res 2020; 9:33. [PMID: 33072645 PMCID: PMC7532824 DOI: 10.4103/abr.abr_68_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023] Open
Abstract
Background Cyclin-dependent kinases (CDKs) are the key regulators of cell-cycle transitions and characterized by needing a separate subunit, a cyclin, which provides domains essential for enzymatic activity. The activities of cyclin-CDK complexes are controlled by a group of molecules that inhibit CDK activity and CDK inhibitors (CKIs). Cancer often exhibits an aberrant CpG methylation of promoter regions of tumor suppressor genes such as CKIs. Treatment with the DNA demethylating agents, such as 5-aza-2'-deoxycytidine (5-Aza-CdR), can restore and upregulate CKIs. Previously, we reported the effect of 5-Aza-CdR and genistein on DNA methyltransferase (DNMTs) in hepatocellular carcinoma (HCC). The aim of the present study was to evaluate the effect of 5-Aza-CdR on p15INK4, p16INK4, p18INK4, and p19INK4 genes expression, cell growth inhibition, and apoptosis induction in HCC PLC/PRF/5 cell line. Materials and Methods The effect of 5-Aza-CdR on the cell growth of PLC/PRF/5 cells, genes expression, and apoptosis induction were assessed by 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide assay, real-time quantitative reverse transcription-polymerase chain reaction analysis, and flow cytometry, respectively. Results 5-Aza-CdR (0, 1, 5, 10, 25, and 50 μM) inhibited PLC/PRF/5 cell growth at different periods significantly. This compound induced apoptosis and reactivated p15INK4, p16INK4, p18INK4, and p19INK4 genes expression at a concentration of 5 μM significantly. Conclusion 5-Aza-CdR can inhibit cell viability and induce apoptosis by epigenetic reactivation of p15INK4, p16INK4, p18INK4, and p19INK4 genes in HCC PLC/PRF/5.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| | - Ali Ghasemi
- Student of Research Committee, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| |
Collapse
|
39
|
Wang Y, Gorlova OY, Gorlov IP, Zhu M, Dai J, Albanes D, Lam S, Tardon A, Chen C, Goodman GE, Bojesen SE, Landi MT, Johansson M, Risch A, Wichmann HE, Bickeboller H, Christiani DC, Rennert G, Arnold SM, Brennan P, Field JK, Shete S, Le Marchand L, Melander O, Brunnstrom H, Liu G, Hung RJ, Andrew AS, Kiemeney LA, Zienolddiny S, Grankvist K, Johansson M, Caporaso NE, Woll PJ, Lazarus P, Schabath MB, Aldrich MC, Stevens VL, Ma H, Jin G, Hu Z, Amos CI, Shen H. Association Analysis of Driver Gene-Related Genetic Variants Identified Novel Lung Cancer Susceptibility Loci with 20,871 Lung Cancer Cases and 15,971 Controls. Cancer Epidemiol Biomarkers Prev 2020; 29:1423-1429. [PMID: 32277007 PMCID: PMC8120681 DOI: 10.1158/1055-9965.epi-19-1085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/10/2019] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A substantial proportion of cancer driver genes (CDG) are also cancer predisposition genes. However, the associations between genetic variants in lung CDGs and the susceptibility to lung cancer have rarely been investigated. METHODS We selected expression-related single-nucleotide polymorphisms (eSNP) and nonsynonymous variants of lung CDGs, and tested their associations with lung cancer risk in two large-scale genome-wide association studies (20,871 cases and 15,971 controls of European descent). Conditional and joint association analysis was performed to identify independent risk variants. The associations of independent risk variants with somatic alterations in lung CDGs or recurrently altered pathways were investigated using data from The Cancer Genome Atlas (TCGA) project. RESULTS We identified seven independent SNPs in five lung CDGs that were consistently associated with lung cancer risk in discovery (P < 0.001) and validation (P < 0.05) stages. Among these loci, rs78062588 in TPM3 (1q21.3) was a new lung cancer susceptibility locus (OR = 0.86, P = 1.65 × 10-6). Subgroup analysis by histologic types further identified nine lung CDGs. Analysis of somatic alterations found that in lung adenocarcinomas, rs78062588[C] allele (TPM3 in 1q21.3) was associated with elevated somatic copy number of TPM3 (OR = 1.16, P = 0.02). In lung adenocarcinomas, rs1611182 (HLA-A in 6p22.1) was associated with truncation mutations of the transcriptional misregulation in cancer pathway (OR = 0.66, P = 1.76 × 10-3). CONCLUSIONS Genetic variants can regulate functions of lung CDGs and influence lung cancer susceptibility. IMPACT Our findings might help unravel biological mechanisms underlying lung cancer susceptibility.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Olga Y Gorlova
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas
| | - Ivan P Gorlov
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas
| | - Meng Zhu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- Department of Public Health IUOPA, University of Oviedo, ISPA and CIBERESP, Oviedo, Spain
| | - Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gary E Goodman
- Public Health Sciences Division, Swedish Cancer Institute, Seattle, Washington
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Angela Risch
- University of Salzburg, Department of Biosciences, Allergy-Cancer-BioNano Research Centre, Salzburg, Austria
- Division of Epigenomics and Cancer Risk Factors, DKFZ-German Cancer Research Center, Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Heunz-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig Maximilians University, Munich, Bavaria, Germany
- Helmholtz Zentrum Munchen, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Neuherberg, Germany
- Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
| | - Heike Bickeboller
- Department of Genetic Epidemiology, University Medical Center Goettingen, Goettingen, Germany
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gad Rennert
- Technion Faculty of Medicine, Carmel Medical Center, Haifa, Israel
| | - Susanne M Arnold
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - John K Field
- Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, The University of Liverpool Institute of Translational Medicine, Liverpool, United Kingdom
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawai'i Cancer Center, Honolulu, Hawai'i
| | - Olle Melander
- Clinical Sciences, Lund University, Lund, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | | | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Rayjean J Hung
- Prosseman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Angeline S Andrew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Lambertus A Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umea, Sweden
| | | | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Penella J Woll
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Melinda C Aldrich
- Department of Medicine (Division of Genetic Medicine), Vanderbilt University Medical Center, Nashville, Tennessee
| | - Victoria L Stevens
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Hongxia Ma
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Christopher I Amos
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas.
| | - Hongbing Shen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Yang H, Chen C, Chen H, Duan X, Li J, Zhou Y, Zeng W, Yang L. Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging (Albany NY) 2020; 12:12750-12770. [PMID: 32611834 PMCID: PMC7377880 DOI: 10.18632/aging.103177] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2020] [Indexed: 02/05/2023]
Abstract
Cell senescence is a chronic process associated with age-related degenerative diseases such as osteoarthritis (OA). Senescent cells (SnCs) accumulate in the articular cartilage and synovium, leading to OA pathologies. The accumulation of SnCs in the cartilage results in a senescence-associated secretory phenotype (SASP) and age-related inflammation and dysfunction. Selective removal of SnCs by senolytic agent as a therapeutic strategy has been developed recently. In this study, we examined the ability of the senolytic drug ABT263 (navitoclax) to clear SnCs and further evaluated the therapeutic effect of ABT263 on post-traumatic OA. Monolayer and 3D pellet cultured osteoarthritic chondrocytes were used to evaluate the effect of ABT263 in vitro and a DMM rat model was established for in vivo experiments. We found that ABT263 reduced the expression of inflammatory cytokines and promoted cartilage matrix aggregation in OA chondrocyte pellet culture by inducing SnC apoptosis. Moreover, OA pathological changes in the cartilage and subchondral bone in post-traumatic OA rat were alleviated by ABT263 intra-articular injection. These results demonstrated that ABT263 not only improves inflammatory microenvironment but also promotes cartilage phenotype maintenance in vitro. Furthermore, ABT263 might play a protective role against post-traumatic OA development. Therefore, strategies targeting SnC elimination might be promising for the clinical therapy of OA.
Collapse
Affiliation(s)
- Hao Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Hao Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Xiaojun Duan
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Juan Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Yi Zhou
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| | - Weinan Zeng
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China.,Department of Orthopedics, West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing 400038, People's Republic of China
| |
Collapse
|
41
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
42
|
Kim J, Chee WY, Yabuta N, Kajiwara K, Nada S, Okada M. Atg5-mediated autophagy controls apoptosis/anoikis via p53/Rb pathway in naked mole-rat fibroblasts. Biochem Biophys Res Commun 2020; 528:146-153. [PMID: 32451084 DOI: 10.1016/j.bbrc.2020.05.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
The naked mole-rat (NMR, Heterocephalus glaber) is the longest-living known rodent species, with a maximum lifespan of over 30 years. NMRs exhibit negligible senescence, exceptional resistance to cancer, and high basal autophagy activity compared with mouse. The molecular mechanisms and physiological roles underlying the high basal autophagy activity in NMRs remain to be elucidated. We identified that the Atg12-Atg5 conjugate, a critical component of autophagosome formation, was highly expressed in NMR skin fibroblasts (NSFs) compared with that in mouse skin fibroblasts. Phenotypic analysis of Atg5 knockdown NSFs revealed that high basal autophagy activity in NSFs was associated with abundant expression of the Atg12-Atg5 conjugate. Atg5 knockdown in NSFs led to accumulation of dysfunctional mitochondria, and suppressed cell proliferation and cell adhesion ability, promoting apoptosis/anoikis accompanied by upregulation of the apoptosis-related genes, Bax and Noxa. Furthermore, inhibition of the p53/Rb pro-apoptotic pathway with SV40 large T antigen abolished Atg5 knockdown-induced increases in apoptosis/anoikis. Taken together, these findings suggest that high basal autophagy activity in NMR cells, mediated by Atg5, contributes to suppression of p53/Rb-induced apoptosis, which could benefit the longevity of NMR cells.
Collapse
Affiliation(s)
- Junhyeong Kim
- Department of Oncogene Research, Research for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Woei-Yaw Chee
- Department of Oncogene Research, Research for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norikazu Yabuta
- Department of Oncogene Research, Research for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Kajiwara
- Department of Oncogene Research, Research for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masato Okada
- Department of Oncogene Research, Research for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
43
|
Li N, Zhang S, Xiong F, Eizirik DL, Wang CY. SUMOylation, a multifaceted regulatory mechanism in the pancreatic beta cells. Semin Cell Dev Biol 2020; 103:51-58. [PMID: 32331991 DOI: 10.1016/j.semcdb.2020.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
SUMOylation is an evolutionarily conserved post-translational modification (PTM) that regulates protein subcellular localization, stability, conformation, transcription and enzymatic activity. Recent studies indicate that SUMOylation plays a key role in insulin gene expression, glucose metabolism and insulin exocytosis under physiological conditions in the pancreatic beta cells. Furthermore, SUMOylation is implicated in beta cell survival and recovery following exposure to oxidative stress, ER stress and inflammatory mediators under pathological situations. SUMOylation is closely regulated by the cellular redox status, and it collaborates with other PTMs such as phosphorylation, ubiquitination, and NEDDylation, to maintain beta cellular homeostasis. We hereby provide an update on recent findings regarding the role of SUMOylation in the regulation of pancreatic beta cell viability and function, and discuss its potential implication in beta cell senescence and RNA processing (e.g., pre-mRNA splicing and mRNA methylation). Through which we intend to provide novel insights into this fundamental biological process regarding both maintenance of beta cell viability and functionality, and beta cell dysfunction in diabetes mellitus.
Collapse
Affiliation(s)
- Na Li
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 808 Route de Lennik, B-1070, Brussels, Belgium; Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, USA.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China.
| |
Collapse
|
44
|
Khalyfa A, Marin JM, Qiao Z, Rubio DS, Kheirandish-Gozal L, Gozal D. Plasma exosomes in OSA patients promote endothelial senescence: effect of long-term adherent continuous positive airway pressure. Sleep 2020; 43:zsz217. [PMID: 31552414 PMCID: PMC7901815 DOI: 10.1093/sleep/zsz217] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea (OSA) is associated with increased risk for end-organ morbidities, which can collectively be viewed as accelerated aging. Vascular senescence is an important contributor to end-organ dysfunction. Exosomes are released ubiquitously into the circulation, and transfer their cargo to target cells facilitating physiological and pathological processes. Plasma exosomes from 15 patients with polysomnographically diagnosed OSA at baseline (OSA-T1) after 12 months of adherent continuous positive airway pressure (CPAP) treatment (OSA-T2), 13 untreated OSA patients at 12-month intervals (OSA-NT1, OSA-NT2), and 12 controls (CO1 and CO2) were applied on naïve human microvascular endothelialcells-dermal (HMVEC-d). Expression of several senescence gene markers including p16 (CDKN2A), SIRT1, and SIRT6 and immunostaining for β-galactosidase activity (x-gal) were performed. Endothelial cells were also exposed to intermittent hypoxia (IH) or normoxia (RA) or treated with hydrogen peroxide (H2O2), stained with x-gal and subjected to qRT-PCR. Exosomes from OSA-T1, OSA-NT1, and OSA-NT2 induced significant increases in x-gal staining compared to OSA-T2, CO1, and CO2 (p-value < 0.01). p16 expression was significantly increased (p < 0.01), while SIRT1 and SIRT6 expression levels were decreased (p < 0.02 and p < 0.009). Endothelial cells exposed to IH or to H2O2 showed significant increases in x-gal staining (p < 0.001) and in senescence gene expression. Circulating exosomes in untreated OSA induce marked and significant increases in senescence of naïve endothelial cells, which are only partially reversible upon long-term adherent CPAP treatment. Furthermore, endothelial cells exposed to IH or H2O2 also elicit similar responses. Thus, OSA either directly or indirectly via exosomes may initiate and exacerbate cellular aging, possibly via oxidative stress-related pathways.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO
| | - Jose M Marin
- Translational Research Unit, Hospital Universitario Miguel Servet & IISAragon, CIBERES, Zaragoza, Spain
| | - Zhuanhong Qiao
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO
| | - David Sanz Rubio
- Translational Research Unit, Hospital Universitario Miguel Servet & IISAragon, CIBERES, Zaragoza, Spain
| | - Leila Kheirandish-Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO
| |
Collapse
|
45
|
Chu YH, Zhong W, Rehrauer W, Pavelec DM, Ong IM, Arjang D, Patel SS, Hu R. Clinicopathologic Characterization of Post-Renal Transplantation BK Polyomavirus-Associated Urothelial CarcinomaSingle Institutional Experience. Am J Clin Pathol 2020; 153:303-314. [PMID: 31628837 DOI: 10.1093/ajcp/aqz167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES To review rare cases of BK polyomavirus (BKPyV) associated urologic carcinomas in kidney transplant recipients at one institution and in the literature. METHODS We describe the clinicopathologic features of BKPyV-associated urologic carcinomas in a single-institution cohort. RESULTS Among 4,772 kidney recipients during 1994 to 2014, 26 (0.5%) and 26 (0.5%) developed posttransplantation urothelial carcinomas (UCs) and renal cell carcinomas (RCCs), respectively, as of 2017. Six (27%) UCs but none of the RCCs expressed large T antigen (TAg). TAg-expressing UCs were high grade with p16 and p53 overexpression (P < .05 compared to TAg-negative UCs). Tumor genome sequencing revealed BKPyV integration and a lack of pathogenic mutations in 50 cancer-relevant genes. Compared to TAg-negative UCs, TAg-expressing UCs more frequently presented at advanced stages (50% T3-T4) with lymph node involvement (50%) and higher UC-specific mortality (50%). CONCLUSIONS Post-renal transplantation BKPyV-associated UCs are aggressive and genetically distinct from most non-BKPyV-related UCs.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, Madison
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, Madison
- Department of Pathology and Laboratory Medicine Service, William S. Middleton Memorial Veterans Hospital, Madison, WI
| | | | - Derek M Pavelec
- Department of Bioinformatics Resource Center, University of Wisconsin Biotechnology Center, Madison
- Department of Cancer Informatics Shared Resource, University of Wisconsin Carbone Cancer Center, Madison
| | - Irene M Ong
- Department of Bioinformatics Resource Center, University of Wisconsin Biotechnology Center, Madison
| | - Djamali Arjang
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison
| | - Sanjay S Patel
- Department of Pathology and Laboratory Medicine, Madison
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, Madison
| |
Collapse
|
46
|
Integrating context of tumor biology and vaccine design to shape multidimensional immunotherapies. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2019-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Advances in cancer therapy have offered great promise but only modest clinical benefits as monotherapies to date. Patients usually respond well to therapies targeted at specific mutations, but only for a short time. Conversely, immunotherapies help fewer patients, but increase survival. Combination therapies, which could offer the best of both worlds, are currently limited by substantial toxicity. While recent advances in genomics and proteomics have yielded an unprecedented depth of enabling datasets, it has also shifted the focus toward in silico predictions. Designing the next wave of multidimensional immunotherapies will require leveraging this knowledge while providing a renewed emphasis on tumor biology and vaccine design. This includes careful selection of tumor clinical stage in the context of pre-existing tumor microenvironments, target antigen and technology platform selections to maximize their effect, and treatment staging. Here, we review strategies on how to approach an increasingly complex landscape of immunotherapeutic agents for use in combination therapies.
Collapse
|
47
|
Shi YX, Sheng DQ, Cheng L, Song XY. Current Landscape of Epigenetics in Lung Cancer: Focus on the Mechanism and Application. JOURNAL OF ONCOLOGY 2019; 2019:8107318. [PMID: 31889956 PMCID: PMC6930737 DOI: 10.1155/2019/8107318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/29/2019] [Accepted: 11/23/2019] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Tumorigenesis involves a multistep process resulting from the interactions of genetic, epigenetic, and environmental factors. Genome-wide association studies and sequencing studies have identified many epigenetic alterations associated with the development of lung cancer. Epigenetic mechanisms, mainly including DNA methylation, histone modification, and noncoding RNAs (ncRNAs), are heritable and reversible modifications that are involved in some important biological processes and affect cancer hallmarks. We summarize the major epigenetic modifications in lung cancer, focusing on DNA methylation and ncRNAs, their roles in tumorigenesis, and their effects on key signaling pathways. In addition, we describe the clinical application of epigenetic biomarkers in the early diagnosis, prognosis prediction, and oncotherapy of lung cancer. Understanding the epigenetic regulation mechanism of lung cancer can provide a new explanation for tumorigenesis and a new target for the precise treatment of lung cancer.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Department of Pharmacy, Medical College, China Three Gorges University, Yichang 443002, China
| | - De-Qiao Sheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang 443002, China
| | - Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52246, USA
| | - Xin-Yu Song
- Department of Respiratory Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China
| |
Collapse
|
48
|
Schmeer C, Kretz A, Wengerodt D, Stojiljkovic M, Witte OW. Dissecting Aging and Senescence-Current Concepts and Open Lessons. Cells 2019; 8:cells8111446. [PMID: 31731770 PMCID: PMC6912776 DOI: 10.3390/cells8111446] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023] Open
Abstract
In contrast to the programmed nature of development, it is still a matter of debate whether aging is an adaptive and regulated process, or merely a consequence arising from a stochastic accumulation of harmful events that culminate in a global state of reduced fitness, risk for disease acquisition, and death. Similarly unanswered are the questions of whether aging is reversible and can be turned into rejuvenation as well as how aging is distinguishable from and influenced by cellular senescence. With the discovery of beneficial aspects of cellular senescence and evidence of senescence being not limited to replicative cellular states, a redefinition of our comprehension of aging and senescence appears scientifically overdue. Here, we provide a factor-based comparison of current knowledge on aging and senescence, which we converge on four suggested concepts, thereby implementing the newly emerging cellular and molecular aspects of geroconversion and amitosenescence, and the signatures of a genetic state termed genosenium. We also address the possibility of an aging-associated secretory phenotype in analogy to the well-characterized senescence-associated secretory phenotype and delineate the impact of epigenetic regulation in aging and senescence. Future advances will elucidate the biological and molecular fingerprints intrinsic to either process.
Collapse
Affiliation(s)
- Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
- Correspondence:
| | - Alexandra Kretz
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Diane Wengerodt
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
| | - Milan Stojiljkovic
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (A.K.); (D.W.); (M.S.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| |
Collapse
|
49
|
Ohtani N. Deciphering the mechanism for induction of senescence-associated secretory phenotype (SASP) and its role in ageing and cancer development. J Biochem 2019; 166:289-295. [PMID: 31297533 DOI: 10.1093/jb/mvz055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2023] Open
Abstract
Cellular senescence is an irreversible form of cell cycle arrest that can be induced by persistent DNA damage, and is well known to function as an important tumour suppression mechanism. Cellular senescence is detected in aged organisms; thus, it is also recognized as a hallmark of organismal ageing. Unlike apoptotic cells, senescent cells can survive for long periods of time. Recently, it has been shown that the late stage of senescent cells are capable of expressing a variety of secreted proteins such as cytokines, chemokines and proteases, and this condition is now known as senescence-associated secretory phenotype (SASP). These secreted factors are involved in myriad of physiological functions including tissue repair and clearance of damaged cells. Alternatively, these factors may promote detrimental effects, such as chronic inflammation or cancer progression, should the SASP persist. Recent scientific advances have indicated that innate immune responses, particularly involving the cGAS-STING pathway, trigger SASP induction. Therefore, developing a strategy to regulate SASP may provide scientific insights for the management of age-associated diseases and the implementation of healthy ageing in the future.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, Japan
| |
Collapse
|
50
|
CDKN2A, CDK1, and CCNE1 overexpression in sebaceous gland carcinoma of eyelid. Int Ophthalmol 2019; 40:343-350. [PMID: 31571090 DOI: 10.1007/s10792-019-01185-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate the overexpression of genes in sebaceous gland carcinoma (SGC) of the eyelid compared to sebaceous adenoma of the eyelid in order to elucidate the molecular mechanism underlying pathogenesis. METHODS We performed histopathological examination of eyelid tissues surgically removed from four patients diagnosed with SGC (cases 1-3) and sebaceous adenoma (case 4) of the eyelid. Next, we performed global gene expression analysis of surgical tissue samples using a GeneChip® system and the Ingenuity Pathways Knowledge Base. The results of the GeneChip® analysis were explored with quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS In the SGC samples, we found that 211, 199, and 199 genes, respectively, showed ≥ 2.0-fold higher expression than those in the sebaceous adenoma sample (case 4); 194 genes were common to all three SGC samples. For the 194 genes with upregulated expression, functional category analysis showed that SGC of the eyelid employed a unique gene network, including cyclin-dependent kinase inhibitor 2A (CDKN2A), cyclin-dependent kinase 1 (CDK1), and cyclin E1 (CCNE1), which are related to cell cycle progression, incidence of tumor, and cell viability. Furthermore, qRT-PCR analysis showed that the expression levels of CDKN2A, CDK1, and CCNE1 were significantly upregulated in all SGC cases compared to those in the sebaceous adenoma case. These data were similar to the results of microarray analysis. CONCLUSION Overexpression of cell cycle-related genes CDKN2A, CDK1, CCNE1, and their gene network may help elucidate the pathogenic pathway of SGC of the eyelid at the molecular level.
Collapse
|