1
|
Goleij P, Tabari MAK, Khandan M, Poudineh M, Rezaee A, Sadreddini S, Sanaye PM, Khan H, Larsen DS, Daglia M. Genistein in focus: pharmacological effects and immune pathway modulation in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3557-3571. [PMID: 39601821 DOI: 10.1007/s00210-024-03647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Cancer is a significant global health concern, responsible for mortality and morbidity of individuals. It is characterized by uncontrolled cellular growth, tumor formation, and potential metastasis. The immune system is pivotal in recognizing and eliminating cancerous cells, with immune cells such as T cells, B cells, natural killer cells (NK), and dendritic cells playing critical roles. Dysregulation of immune responses can contribute to cancer progression. Phytochemicals, bioactive compounds derived from plants, have gained attention for their potential roles in cancer prevention and therapy due to their antioxidant, anti-inflammatory, and immunomodulatory properties. Genistein, an isoflavone found in soy products, is of particular interest. In this study, genistein's mechanisms of action at the molecular and cellular levels in cancer were demonstrated, highlighting its impact on T and B lymphocytes, NK cells and dendritic cells. Genistein's ability to influence cytokine production, reducing levels of inflammatory cytokines such as TNF-α, IL-6, and IL-1β, is emphasized. Genistein modulates inflammatory response pathways like Toll-like receptors (TLRs), NF-κB, chemokines, and MAPK, inhibiting tumor growth, promoting apoptosis, and reducing metastasis. It shows promise in overcoming chemoresistance, particularly in ovarian and neuroblastoma cancers, by inhibiting autophagy. Genistein also affects T-cell execution markers, including granzyme B, TNF-α, and FAS ligand in cancer by influencing key proteins involved in immune response and apoptosis. Clinical trials have investigated genistein's therapeutic potential, revealing its promise in enhancing the efficacy of traditional cancer treatments while mitigating associated toxicities. Genistein helps overcome chemoresistance in various cancers by inhibiting autophagy and promoting apoptosis. It also enhances immunotherapy by boosting immune responses and modifying antigens, but careful dosing is needed when combined with anti-PD-1 treatments to avoid reducing effectiveness.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, 4816118761, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohanna Khandan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Aryan Rezaee
- Medical Doctor, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Sarvin Sadreddini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 51656-87386, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples, 80131, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
2
|
Liu C, Niu Y, Jin J, Ulita SA, Lin Y, Cong J, Lei S, Chen J, Yang J. Elucidating the immunomodulatory effects of phytoestrogens and their groundbreaking applications in transplantation medicine. Int Immunopharmacol 2024; 143:113220. [PMID: 39405935 DOI: 10.1016/j.intimp.2024.113220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024]
Abstract
Phytoestrogens are natural compounds found in plants and plant-based foods. When ingested, they can affect the human body in the same way as estrogen produced by the body. Phytoestrogens affect the regulation, differentiation, and production of immune cells. People who consume polyphenol and flavonoid-rich foods have lower incidences of inflammation, autoimmune diseases, and cancer. In organ transplantation, immune rejection is a lifelong problem for patients. In clinical practice, acute rejection is treated with hormonal shock or immunosuppressive drugs. However, effective reversal measures for chronic rejection, specifically for prevention, are still lacking. Recipients are also prone to post-transplant complications such as new tumors, diabetes, hyperlipidemia, hyperuricemia, and cardiovascular and cerebrovascular diseases, owing to the long-term use of immunosuppressive drugs. Phytoestrogens play a promising role in immune regulation and exert curative effects on cardiovascular diseases and cancer. In this study, we reviewed the use of phytoestrogens in the fields of immune regulation and organ transplantation.
Collapse
Affiliation(s)
- Chen Liu
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Yewei Niu
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Jiamin Jin
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Salsa Ayudia Ulita
- Department of Immunology, Guilin Medical University, Guilin 541199, China
| | - Yi Lin
- Department of Ultrasound, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China
| | - Jiacheng Cong
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Shangbo Lei
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China
| | - Jian Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| | - Jinfeng Yang
- Department of Immunology, Guilin Medical University, Guilin 541199, China; Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
3
|
Shirvani-Naghani S, Fallah S, Pokhrel LR, Rostamnejadi A. Drought stress mitigation and improved yield in Glycine max through foliar application of zinc oxide nanoparticles. Sci Rep 2024; 14:27898. [PMID: 39537733 PMCID: PMC11560926 DOI: 10.1038/s41598-024-78504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of climate change on agricultural production is apparent due to declining irrigation water availability vis-à-vis rising drought stress, particularly affecting summer crops. Growing evidence suggests that zinc (Zn) supplementation may serve as a potential drought stress management strategy in agriculture. Field studies were conducted using soybean (Glycine max var. Saba) as a model crop to test whether foliar application of zinc oxide nanoparticles (ZnO-NPs) or conventional Zn fertilizer (ZnSO4) would mitigate drought-related water stress and improve soybean yield. Each fertilizer was foliar applied twice at a two-week interval during the flowering stage. Experiments were concurrently conducted under non-drought conditions (70% field capacity) for comparison. Results showed drought significantly reduced relative water content, chlorophyll-a, and chlorophyll-b in untreated control plants by 35.7%, 47.7%, and 41.4%, respectively, compared to non-drought conditions (p < 0.05). Under drought conditions, ZnO-NPs (200 mg Zn/L) led to 33.1% and 20.7% increase in chlorophyll-a and chlorophyll-b levels, respectively, compared to ZnSO4 at 400 mg Zn/L. Likewise, catalase, peroxidase and superoxide dismutase activities increased by 62.6%, 39.5% and 28.5%, respectively, with ZnO-NPs (200 mg Zn/L) under drought compared to non-drought conditions. Proline was significantly increased under drought but was remarkably suppressed (~ 54% lower) with ZnO-NPs (200 mg Zn/L) treatment. More importantly, the highest seed yield was observed with ZnO-NPs (200 mg Zn/L) treatment under drought (39% higher than untreated control) and non-drought (79.4% higher than control) conditions. Overall, the findings suggest that ZnO-NPs could promote seed yield in soybean under drought stress via increased antioxidant activities, increased relative water content, decreased stress-related proline content, and increased photosynthetic pigments. It is recommended that foliar application of 200 mg Zn/L as ZnO-NPs could serve as an effective drought stress management strategy to improve soybean yield.
Collapse
Affiliation(s)
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Rostamnejadi
- Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Li S, Wang M, Lee J. Phytochemical profiling of soybean genotypes using GC-MS and UHPLC-DAD/MS. PLoS One 2024; 19:e0308489. [PMID: 39146325 PMCID: PMC11326653 DOI: 10.1371/journal.pone.0308489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
Soybean is one of the most economically important crops worldwide. However, soybean yield can be substantially decreased by many diseases. Soybean genotypes could have different reactions to pathogen infection. As a first step toward investigating the biochemical basis of soybean resistance and susceptibility to disease, phytochemicals in the seeds of 52 soybean genotypes previously reported to have different reactions to diseases of soybean rust (SBR), Phomopsis seed decay (PSD), and purple seed stain (PSS) were analyzed. Using GC-MS, a total of 46 compounds were tentatively identified which included 11 chemical groups. Among those, the major group was esters, followed by carboxylic acid, ketone, and sugar moieties. Compounds having reported antioxidant, anti-microbial, and anti-inflammatory activities were also identified. UHPLC-DAD/MS analysis indicated that there were five major isoflavone components presented in the samples, including daidzin, glycitin, genistin, malonyldaidzin, and malonylglycitin. Isoflavones have been reported to play an important role in defense from plant pathogens. Although there was variance in the isoflavone content among soybean genotypes, those with the SBR resistance Rpp6 gene (PI 567102B, PI 567104B, PI 567129) consistently exhibited the highest concentrations of daidzin, glycitin, genistin, and malonyldaidzin. The SBR resistant genotype, PI 230970 (Rpp2) had the greatest amount of genistin. The SBR resistant genotype, PI 200456 (Rpp5) resistant genotype uniquely contained glycitein, a compound that was absent in the other 51 genotypes examined. A PSD-resistant genotype PI 424324B had nearly four times the amount of stigmasterol as PI 556625, which was susceptible to SBR, PSD, and PSS in our previous tests. Results of this study provide useful information for further investigation of the biochemical basis of soybean resistance to diseases. The results may also aid in selection of soybean lines for breeding for resistance to soybean rust and other diseases.
Collapse
Affiliation(s)
- Shuxian Li
- United States Department of Agriculture, Agricultural Research Service (USDA, ARS), Crop Genetics Research Unit, Stoneville, Mississippi, United States of America
| | - Mei Wang
- USDA, ARS, Natural Products Utilization Research Unit, University of Mississippi, University, Mississippi, United States of America
| | - Joseph Lee
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, United States of America
| |
Collapse
|
5
|
Liang H, Ren M, Zhang L, Mi H, Yu H, Huang D, Gu J, Teng T. Excessive Replacement of Fish Meal by Soy Protein Concentrate Resulted in Inhibition of Growth, Nutrient Metabolism, Antioxidant Capacity, Immune Capacity, and Intestinal Development in Juvenile Largemouth Bass ( Micropterus salmoides). Antioxidants (Basel) 2024; 13:809. [PMID: 39061878 PMCID: PMC11274161 DOI: 10.3390/antiox13070809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the effects of replacing 0% (SPC0), 25% (SPC25), 50% (SPC50), 75% (SPC75), and 100% (SPC100) of fish meal (FM) with soy protein concentrate (SPC) on the growth, nutritional metabolism, antioxidant capacity, and inflammatory factors in juvenile largemouth bass (Micropterus salmoides) (17.03 ± 0.01 g). After 56 days of culturing, various growth parameters including FW, WGR, and SGR were not significantly different among SPC0, SPC25, and SPC50 groups; however, they were significantly higher than those in SPC75 and SPC100 groups. Conversely, significantly lower FCR were determined for the SPC0, SPC25, and SPC50 groups compared with that for the SPC100 group; specifically, no significant difference among SPC0, SPC25, and SPC50 groups was found. Moreover, compared with SPC75 and SPC100 groups, a significantly higher FI was observed in the SPC0 group, whereas a significantly lower SR was observed in SPC100 compared with that in SPC0 and SPC25 groups. Compared with the SPC0 group, significantly lower mRNA levels of tor, rps6, 4ebp1, pparγ, and fas were found in SPC75 and SPC100. Additionally, the mRNA levels of cpt were significantly higher in SPC0, SPC25, and SPC50 groups than in SPC75 and SPC100 groups. Moreover, the mRNA levels of scd and acc remained unchanged for all the groups. Replacement of FM with SPC did not significantly affect the mRNA levels of gk, pk, and pepck. Compared with the SPC0 group, significantly decreased activities of CAT were observed in the SPC50, SPC75, and SPC100 groups, and significantly decreased activities of GSH-Px were observed in the SPC75 and SPC100 groups. In addition, significantly lower activity of SOD was observed in SPC100 compared with the other groups. Moreover, compared with the other groups, the SPC75 and SPC100 groups had significantly decreased and increased contents of GSH and MDA, respectively, while significantly lower mRNA levels of nrf2, cat, sod, and gsh-px were found in SPC50, SPC75, and SPC100; however, significantly higher mRNA levels of keap1 were observed in SPC75 and SPC100 groups. Additionally, significantly higher mRNA levels of il-8 and nf-κb were found in the SPC50, SPC75, and SPC100 groups compared with the SPC0 group. Conversely, significantly lower mRNA levels of il-10 and significantly higher mRNA levels of tnf-α were found in the SPC75 and SPC100 groups compared with the other groups. Compared with the SPC0 group, mucosal thickness and villus height were significantly decreased in the SPC75 and SPC100 groups. Collectively, SPC replacing 50% FM did not affect its growth of juvenile largemouth bass. However, SPC replacing 50% or more FM might inhibit antioxidant capacity and immune capacity to even threaten the SR, resulting in impaired intestinal development in replacing FM level of 75% or more.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Heng Yu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiaze Gu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Tao Teng
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| |
Collapse
|
6
|
Li W, Hakkak R. Feeding soy protein concentrates with low or high isoflavone decreases liver inflammation by reducing lipopolysaccharide translocation. Front Nutr 2023; 10:1278158. [PMID: 38075211 PMCID: PMC10699199 DOI: 10.3389/fnut.2023.1278158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/25/2023] [Indexed: 04/30/2025] Open
Abstract
Lipopolysaccharide (LPS) translocation and inflammation contribute to the increased risk of chronic diseases, including non-alcoholic fatty liver disease (NAFLD), associated with obesity. Previously, we reported that feeding soy protein with high or low (negligible) isoflavone reduces liver steatosis in obese Zucker rats, and the reduced steatosis is accompanied by decreased serum C-reactive protein levels. The current study investigated the effect of feeding soy protein concentrate (SPC) with high or low isoflavone (HIF or LIF) on liver inflammation and LPS translocation in obese Zucker rats. Six-week-old male lean (L, n = 21) and obese (O, n = 21) Zucker rats were fed casein control, SPC-LIF, or SPC-HIF diets for 18 weeks. At the end of 18 weeks, the expression levels of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), inducible nitric oxide synthase (iNOS), arginase 1 (ARG1), lipopolysaccharide binding protein (LBP), myeloperoxidase (MPO), and sterol regulatory element-binding protein 1 (SREBP-1) were significantly higher in obese rats compared to lean rats. Compared to the casein control diet, both the SPC-LIF and SPC-HIF diets significantly decreased TNF-α, MCP-1, iNOS, and LBP expression in obese rats, which is accompanied by significantly less LPS staining in liver slides from SPC-LIF-and SPC-HIF-fed obese rats compared to the casein control diet-fed obese rats. Taken together, the SPC-LIF and SPC-HIF diets attenuated liver inflammation in obese Zucker rats, likely by decreasing LPS translocation.
Collapse
Affiliation(s)
- Wei Li
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
7
|
Li W, Twaddle NC, Spray B, Nounamo B, Monzavi-Karbassi B, Hakkak R. Feeding Soy Protein Concentrates with Low and High Isoflavones Alters 9 and 18 Weeks Serum Isoflavones and Inflammatory Protein Levels in Lean and Obese Zucker Rats. J Med Food 2023; 26:120-127. [PMID: 36720082 DOI: 10.1089/jmf.2022.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Soy's anti-inflammatory properties contribute to the health benefits of soy foods. This study was designed to investigate the bioavailability of soy isoflavones and whether the isoflavone content of soy protein concentrate diet would affect serum inflammatory proteins in an obese (fa/fa) Zucker rat model. Six-week-old male lean (L) and obese (O) Zucker rats were fed a casein control diet (C), soy protein concentrate with low isoflavones (SPC-LIF), or soy protein concentrate with high isoflavones (SPC-HIF) (7 rats/dietary group) before being killed at 9 and 18 weeks. Serum samples were analyzed for isoflavones and inflammatory proteins. At both time points, serum total (aglycone + conjugates) genistein, daidzein, and equol concentrations were significantly higher in L-SPC-HIF and O-SPC-HIF groups compared with L-SPC-LIF and O-SPC-LIF groups, respectively, and were not detectable in either L-C or O-C groups. At week 9, serum C-reactive protein (CRP) concentration was significantly lower in O-SPC-HIF group compared with O-C and O-SPC-LIF group, whereas proteins tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels did not differ between any groups. At week 18, serum CRP levels in both O-SPC-HIF and O-SPC-LIF groups were significantly lower compared with the O-C group. TNF-α level was higher in the O-SPC-LIF group compared with both O-C and O-SPC-HIF groups, whereas IL-6 levels were not different between any groups. Taken together, feeding Zucker rats SPC-LIF and SPC-HIF diets led to different serum isoflavone concentrations in both L and O Zucker rats and altered CRP and TNF-α levels in obese Zucker rats compared with controls.
Collapse
Affiliation(s)
- Wei Li
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nathan C Twaddle
- Division of Biochemical Toxicology of National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Beverly Spray
- Division of Biostatistics Core, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Bernice Nounamo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Division of Biostatistics Core, Arkansas Children's Research Institute, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
8
|
Peng X, Zhu Y, Wu Y, Xiang X, Deng M, Liu L, Li T, Yang G. Genistein, a Soybean Isoflavone, Promotes Wound Healing by Enhancing Endothelial Progenitor Cell Mobilization in Rats with Hemorrhagic Shock. Adv Biol (Weinh) 2023; 7:e2200236. [PMID: 36634922 DOI: 10.1002/adbi.202200236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Severe trauma and hemorrhaging are often accompanied by delayed cutaneous wound healing. Soybean isoflavone is a natural phytoestrogen that has attracted great attention due to its protective effects against various injuries. Endothelial progenitor cells (EPCs) are precursor cells with directional differentiation characteristics. This study is to determine whether genistein (GEN), an isoflavone in soybean products, benefits wound healing in hemorrhagic shock (HS) rats by promoting EPC homing and to investigate the underlying mechanisms. In this study, it is found that GEN promotes skin wound healing in HS rats, which is due at least partly to the mobilization of endogenous EPCs to the injury site via angiotensin II (Ang-II), stromal cell-derived factor-1alpha (SDF-1α), and transforming growth factor beta(TGF-β) signaling.
Collapse
Affiliation(s)
- Xiaoyong Peng
- Department of Shock and Transfusion, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Yu Zhu
- Department of Shock and Transfusion, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Yue Wu
- Department of Shock and Transfusion, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Xinming Xiang
- Department of Shock and Transfusion, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Mengsheng Deng
- Department of Weapon Bioeffect Assessment, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Liangming Liu
- Department of Shock and Transfusion, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Tao Li
- Department of Shock and Transfusion, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| | - Guangming Yang
- Department of Weapon Bioeffect Assessment, Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, P. R. China
| |
Collapse
|
9
|
Li M, Li H, Sun A, Wang L, Ren C, Liu J, Gao X. Transcriptome analysis reveals key drought-stress-responsive genes in soybean. Front Genet 2022; 13:1060529. [PMID: 36518213 PMCID: PMC9742610 DOI: 10.3389/fgene.2022.1060529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 08/21/2023] Open
Abstract
Drought is the most common environmental stress and has had dramatic impacts on soybean (Glycine max L.) growth and yield worldwide. Therefore, to investigate the response mechanism underlying soybean resistance to drought stress, the drought-sensitive cultivar "Liaodou 15" was exposed to 7 (mild drought stress, LD), 17 (moderate drought stress, MD) and 27 (severe drought stress, SD) days of drought stress at the flowering stage followed by rehydration until harvest. A total of 2214, 3684 and 2985 differentially expressed genes (DEGs) in LD/CK1, MD/CK2, and SD/CK3, respectively, were identified by RNA-seq. Weighted gene co-expression network analysis (WGCNA) revealed the drought-response TFs such as WRKY (Glyma.15G021900, Glyma.15G006800), MYB (Glyma.15G190100, Glyma.15G237900), and bZIP (Glyma.15G114800), which may be regulated soybean drought resistance. Second, Glyma.08G176300 (NCED1), Glyma.03G222600 (SDR), Glyma.02G048400 (F3H), Glyma.14G221200 (CAD), Glyma.14G205200 (C4H), Glyma.19G105100 (CHS), Glyma.07G266200 (VTC) and Glyma.15G251500 (GST), which are involved in ABA and flavonoid biosynthesis and ascorbic acid and glutathione metabolism, were identified, suggesting that these metabolic pathways play key roles in the soybean response to drought. Finally, the soybean yield after rehydration was reduced by 50% under severe drought stress. Collectively, our study deepens the understanding of soybean drought resistance mechanisms and provides a theoretical basis for the soybean drought resistance molecular breeding and effectively adjusts water-saving irrigation for soybean under field production.
Collapse
Affiliation(s)
- Mingqian Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Hainan Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Anni Sun
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Liwei Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chuanyou Ren
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jiang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xining Gao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| |
Collapse
|
10
|
Future Prospective of Radiopharmaceuticals from Natural Compounds Using Iodine Radioisotopes as Theranostic Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228009. [PMID: 36432107 PMCID: PMC9694974 DOI: 10.3390/molecules27228009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Natural compounds provide precursors with various pharmacological activities and play an important role in discovering new chemical entities, including radiopharmaceuticals. In the development of new radiopharmaceuticals, iodine radioisotopes are widely used and interact with complex compounds including natural products. However, the development of radiopharmaceuticals from natural compounds with iodine radioisotopes has not been widely explored. This review summarizes the development of radiopharmaceuticals from natural compounds using iodine radioisotopes in the last 10 years, as well as discusses the challenges and strategies to improve future discovery of radiopharmaceuticals from natural resources. Literature research was conducted via PubMed, from which 32 research articles related to the development of natural compounds labeled with iodine radioisotopes were reported. From the literature, the challenges in developing radiopharmaceuticals from natural compounds were the purity and biodistribution. Despite the challenges, the development of radiopharmaceuticals from natural compounds is a golden opportunity for nuclear medicine advancement.
Collapse
|
11
|
Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR. Responses of soybean (Glycine max [L.] Merr.) to zinc oxide nanoparticles: Understanding changes in root system architecture, zinc tissue partitioning and soil characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155348. [PMID: 35460795 DOI: 10.1016/j.scitotenv.2022.155348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Addressing global Zinc (Zn) deficiency in food and feed requires innovation in Zn fertilizer. Recently, Zn oxide nanoparticles (ZnONPs) have piqued interest for potential use as a novel nano-Zn fertilizer. However, little is known about potential factors influencing ZnONPs partitioning in different plant tissues, and changes in root system architecture (RSA) and soil characteristics. Herein, we tested the effects of particle size (38, 59, and > 500 nm) and concentration (0-500 mg/kg) of ZnONPs on Zn bioaccumulation in multiple tissues in soil-grown soybean (Glycine max) grown for 120 days, including changes in RSA (root biomass, length, area, volume, and density) and soil characteristics (pH and electrical conductance [EC]). Our results showed significant effects of Zn compound types, Zn concentrations and their interaction on RSA, and Zn uptake by root, stem, leaf, and seed, in soybean. Concentration-response curves for root structures with varied sized ZnONPs and Zn2+ ions were deemed nonlinear, whereas for Zn distribution between different tissues the concentration-response curves were linear. Interestingly, ZnONPs and Zn2+ ions up to 200 mg/kg showed beneficial effects on root growth and development, but toxic response was observed at higher concentrations for both compounds. Root dry weight, length, volume, and area with 200 mg/kg ZnONPs-38 nm were higher by 48%, 56%, 33% and 44%, respectively, compared to control, and were higher by 15%, 23%, 15% and 19%, respectively, compared to 200 mg/kg ZnCl2. In general, soybean responses to the smallest size ZnONPs-38 nm were higher for all parameters evaluated compared to the larger-sized ZnONPs (59 and > 500 nm) and Zn2+ ions. Zn bioaccumulation varied among tissues in the order: root > seed > leaf > stem. A minor but steady decrease in soil pH and EC occurred among different concentrations for both ZnONPs and Zn2+ ions. Improved RSA can facilitate water and nutrient uptake in soybean, promoting growth and yield, especially considering arid and semi-arid climates where water is a limiting factor. Further, improving seed and shoot Zn levels, as demonstrated herein using ZnONPs, is paramount to addressing Zn deficiency in food and feed. Future studies assessing potential impacts on soil microbes, soil health and food safety upon ZnONPs application is critical for risk assessment of the novel nanofertilizer.
Collapse
Affiliation(s)
- Elham Yusefi-Tanha
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Ali Rostamnejadi
- Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Iran
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
12
|
Amanah HZ, Tunny SS, Masithoh RE, Choung MG, Kim KH, Kim MS, Baek I, Lee WH, Cho BK. Nondestructive Prediction of Isoflavones and Oligosaccharides in Intact Soybean Seed Using Fourier Transform Near-Infrared (FT-NIR) and Fourier Transform Infrared (FT-IR) Spectroscopic Techniques. Foods 2022; 11:foods11020232. [PMID: 35053964 PMCID: PMC8774574 DOI: 10.3390/foods11020232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
The demand for rapid and nondestructive methods to determine chemical components in food and agricultural products is proliferating due to being beneficial for screening food quality. This research investigates the feasibility of Fourier transform near-infrared (FT-NIR) and Fourier transform infrared spectroscopy (FT-IR) to predict total as well as an individual type of isoflavones and oligosaccharides using intact soybean samples. A partial least square regression method was performed to develop models based on the spectral data of 310 soybean samples, which were synchronized to the reference values evaluated using a conventional assay. Furthermore, the obtained models were tested using soybean varieties not initially involved in the model construction. As a result, the best prediction models of FT-NIR were allowed to predict total isoflavones and oligosaccharides using intact seeds with acceptable performance (R2p: 0.80 and 0.72), which were slightly better than the model obtained based on FT-IR data (R2p: 0.73 and 0.70). The results also demonstrate the possibility of using FT-NIR to predict individual types of evaluated components, denoted by acceptable performance values of prediction model (R2p) of over 0.70. In addition, the result of the testing model proved the model’s performance by obtaining a similar R2 and error to the calibration model.
Collapse
Affiliation(s)
- Hanim Z. Amanah
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.Z.A.); (S.S.T.); (W.-H.L.)
- Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta 55281, Indonesia;
| | - Salma Sultana Tunny
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.Z.A.); (S.S.T.); (W.-H.L.)
| | - Rudiati Evi Masithoh
- Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta 55281, Indonesia;
| | - Myoung-Gun Choung
- Department of Herbal Medicine Resource, Dogye Campus, Kangwon National University, Samcheok 25949, Korea;
| | - Kyung-Hwan Kim
- Department of Gene Engineering, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
| | - Moon S. Kim
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Powder Mill Road, BARC-East, Bldg 303, Beltsville, MD 20705, USA; (M.S.K.); (I.B.)
| | - Insuck Baek
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Powder Mill Road, BARC-East, Bldg 303, Beltsville, MD 20705, USA; (M.S.K.); (I.B.)
| | - Wang-Hee Lee
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.Z.A.); (S.S.T.); (W.-H.L.)
- Department of Smart Agriculture Systems, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Byoung-Kwan Cho
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.Z.A.); (S.S.T.); (W.-H.L.)
- Department of Smart Agriculture Systems, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-8216-715
| |
Collapse
|
13
|
Ivashkevich A. The role of isoflavones in augmenting the effects of radiotherapy. Front Oncol 2022; 12:800562. [PMID: 36936272 PMCID: PMC10016616 DOI: 10.3389/fonc.2022.800562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 08/31/2022] [Indexed: 03/05/2023] Open
Abstract
Cancer is one of the major health problems and the second cause of death worldwide behind heart disease. The traditional soy diet containing isoflavones, consumed by the Asian population in China and Japan has been identified as a protective factor from hormone-related cancers. Over the years the research focus has shifted from emphasizing the preventive effect of isoflavones from cancer initiation and promotion to their efficacy against established tumors along with chemo- and radiopotentiating effects. Studies performed in mouse models and results of clinical trials emphasize that genistein or a mixture of isoflavones, containing in traditional soy diet, could be utilized to both potentiate the response of cancer cells to radiotherapy and reduce radiation-induced toxicity in normal tissues. Currently ongoing clinical research explores a potential of another significant isoflavone, idronoxil, also known as phenoxodiol, as radiation enhancing agent. In the light of the recent clinical findings, this article reviews the accumulated evidence which support the clinically desirable interactions of soy isoflavones with radiation therapy resulting in improved tumor treatment. This review discusses important aspects of the development of isoflavones as anticancer agents, and mechanisms potentially relevant to their activity in combination with radiation therapy of cancer. It gives a critical overview of studies characterizing isoflavone targets such as topoisomerases, ENOX2/PMET, tyrosine kinases and ER receptor signaling, and cellular effects on the cell cycle, DNA damage, cell death, and immune responses.
Collapse
Affiliation(s)
- Alesia Ivashkevich
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
- Noxopharm, Gordon, NSW, Australia
- *Correspondence: Alesia Ivashkevich,
| |
Collapse
|
14
|
Knizia D, Yuan J, Bellaloui N, Vuong T, Usovsky M, Song Q, Betts F, Register T, Williams E, Lakhssassi N, Mazouz H, Nguyen HT, Meksem K, Mengistu A, Kassem MA. The Soybean High Density 'Forrest' by 'Williams 82' SNP-Based Genetic Linkage Map Identifies QTL and Candidate Genes for Seed Isoflavone Content. PLANTS 2021; 10:plants10102029. [PMID: 34685837 PMCID: PMC8541105 DOI: 10.3390/plants10102029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
Isoflavones are secondary metabolites that are abundant in soybean and other legume seeds providing health and nutrition benefits for both humans and animals. The objectives of this study were to construct a single nucleotide polymorphism (SNP)-based genetic linkage map using the ‘Forrest’ by ‘Williams 82’ (F×W82) recombinant inbred line (RIL) population (n = 306); map quantitative trait loci (QTL) for seed daidzein, genistein, glycitein, and total isoflavone contents in two environments over two years (NC-2018 and IL-2020); identify candidate genes for seed isoflavone. The FXW82 SNP-based map was composed of 2075 SNPs and covered 4029.9 cM. A total of 27 QTL that control various seed isoflavone traits have been identified and mapped on chromosomes (Chrs.) 2, 4, 5, 6, 10, 12, 15, 19, and 20 in both NC-2018 (13 QTL) and IL-2020 (14 QTL). The six QTL regions on Chrs. 2, 4, 5, 12, 15, and 19 are novel regions while the other 21 QTL have been identified by other studies using different biparental mapping populations or genome-wide association studies (GWAS). A total of 130 candidate genes involved in isoflavone biosynthetic pathways have been identified on all 20 Chrs. And among them 16 have been identified and located within or close to the QTL identified in this study. Moreover, transcripts from four genes (Glyma.10G058200, Glyma.06G143000, Glyma.06G137100, and Glyma.06G137300) were highly abundant in Forrest and Williams 82 seeds. The identified QTL and four candidate genes will be useful in breeding programs to develop soybean cultivars with high beneficial isoflavone contents.
Collapse
Affiliation(s)
- Dounya Knizia
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (N.L.); (K.M.)
- Laboratoire de Biotechnologies & Valorisation des Bio-Ressources (BioVar), Department de Biology, Faculté des Sciences, Université Moulay Ismail, Meknès 50000, Morocco;
| | - Jiazheng Yuan
- Plant Genomics and Biotechnology Laboratory, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (J.Y.); (F.B.); (T.R.); (E.W.)
| | - Nacer Bellaloui
- Crop Genetics Research Unit, USDA, Agriculture Research Service, 141 Experiment Station Road, Stoneville, MS 38776, USA;
| | - Tri Vuong
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (T.V.); (M.U.); (H.T.N.)
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (T.V.); (M.U.); (H.T.N.)
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, USA;
| | - Frances Betts
- Plant Genomics and Biotechnology Laboratory, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (J.Y.); (F.B.); (T.R.); (E.W.)
| | - Teresa Register
- Plant Genomics and Biotechnology Laboratory, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (J.Y.); (F.B.); (T.R.); (E.W.)
| | - Earl Williams
- Plant Genomics and Biotechnology Laboratory, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (J.Y.); (F.B.); (T.R.); (E.W.)
| | - Naoufal Lakhssassi
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (N.L.); (K.M.)
| | - Hamid Mazouz
- Laboratoire de Biotechnologies & Valorisation des Bio-Ressources (BioVar), Department de Biology, Faculté des Sciences, Université Moulay Ismail, Meknès 50000, Morocco;
| | - Henry T. Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (T.V.); (M.U.); (H.T.N.)
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (N.L.); (K.M.)
| | - Alemu Mengistu
- Crop Genetics Research Unit, USDA, Agricultural Research Service, Jackson, TN 38301, USA;
| | - My Abdelmajid Kassem
- Plant Genomics and Biotechnology Laboratory, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (J.Y.); (F.B.); (T.R.); (E.W.)
- Correspondence:
| |
Collapse
|
15
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
16
|
Jensen SN, Cady NM, Shahi SK, Peterson SR, Gupta A, Gibson-Corley KN, Mangalam AK. Isoflavone diet ameliorates experimental autoimmune encephalomyelitis through modulation of gut bacteria depleted in patients with multiple sclerosis. SCIENCE ADVANCES 2021; 7:7/28/eabd4595. [PMID: 34244137 PMCID: PMC8270496 DOI: 10.1126/sciadv.abd4595] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 05/27/2021] [Indexed: 05/16/2023]
Abstract
The gut microbiota is a potential environmental factor that influences the development of multiple sclerosis (MS). We and others have demonstrated that patients with MS and healthy individuals have distinct gut microbiomes. However, the pathogenic relevance of these differences remains unclear. Previously, we showed that bacteria that metabolize isoflavones are less abundant in patients with MS, suggesting that isoflavone-metabolizing bacteria might provide protection against MS. Here, using a mouse model of MS, we report that an isoflavone diet provides protection against disease, which is dependent on the presence of isoflavone-metabolizing bacteria and their metabolite equol. Notably, the composition of the gut microbiome in mice fed an isoflavone diet exhibited parallels to healthy human donors, whereas the composition in those fed an isoflavone-free diet exhibited parallels to patients with MS. Collectively, our study provides evidence that dietary-induced gut microbial changes alleviate disease severity and may contribute to MS pathogenesis.
Collapse
Affiliation(s)
- Samantha N Jensen
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Nicole M Cady
- Program in Biomedical Sciences, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
| | - Shailesh K Shahi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Stephanie R Peterson
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Arnav Gupta
- BITS Pilani, K K Birla Goa Campus, Pilani, India
| | | | - Ashutosh K Mangalam
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
17
|
Dini I, Laneri S. Spices, Condiments, Extra Virgin Olive Oil and Aromas as Not Only Flavorings, but Precious Allies for Our Wellbeing. Antioxidants (Basel) 2021; 10:868. [PMID: 34071441 PMCID: PMC8230008 DOI: 10.3390/antiox10060868] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Spices, condiments and extra virgin olive oil (EVOO) are crucial components of human history and nutrition. They are substances added to foods to improve flavor and taste. Many of them are used not only to flavor foods, but also in traditional medicine and cosmetics. They have antioxidant, antiviral, antibiotic, anticoagulant and antiinflammatory properties and exciting potential for preventing chronic degenerative diseases such as cardiomyopathy and cancer when used in the daily diet. Research and development in this particular field are deeply rooted as the consumer inclination towards natural products is significant. It is essential to let consumers know the beneficial effects of the daily consumption of spices, condiments and extra virgin olive oil so that they can choose them based on effects proven by scientific works and not by the mere illusion that plant products are suitable only because they are natural and not chemicals. The study begins with the definition of spices, condiments and extra virgin olive oil. It continues by describing the pathologies that can be prevented with a spicy diet and it concludes by considering the molecules responsible for the beneficial effects on human health (phytochemical) and their eventual transformation when cooked.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | | |
Collapse
|
18
|
Xu J, Xiong H, Zhao Z, Luo M, Ju Y, Yang G, Mei Z. Genistein suppresses allergic contact dermatitis through regulating the MAP2K2/ERK pathway. Food Funct 2021; 12:4556-4569. [PMID: 33908440 DOI: 10.1039/d0fo03238g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genistein is one of the main components of soybeans and has been reported to be a potential candidate for the treatment of obesity, cancer, osteoporosis and cardiovascular diseases. Recently, genistein has been shown to have therapeutic effects on some chronic skin diseases, but its underlying mechanisms remain unclear. In this study, we evaluated the role of genistein in alleviating squaric acid dibutylester (SADBE)-induced allergic contact dermatitis (ACD) in mice, and elucidated the potential molecular mechanisms in human keratinocyte (HaCaT) cell line. The impacts of genistein on the production of pro-inflammatory chemokines and cytokines including CXCL9, TSLP, TNF-α, IL-1β and IL-6 in the skin and serum of ACD mice were assessed, as well as the phosphorylation of components in the MAPK and JAK-STAT3 signaling pathways in the skin and dorsal root ganglions (DRGs). The results showed that genistein exerted protective effects on skin damage and inflammatory cell infiltration. Moreover, genistein significantly inhibited the increased expressions of pro-inflammatory factors in skin and peripheral blood, and down-regulated the levels of p-ERK, p-p38 and p-STAT3 in skin and DRGs. Furthermore, genistein inhibited the phosphorylation of ERK and STAT3 to downregulate the expression of cytokines and chemokines, and feedback downregulate phospho-p38 in TNF-α/IFN-γ-induced HaCaT cells. The genistein-mediated inhibitory effect on the MAPK pathway can be reversed by siMAP2K2 but not by siMAP2K4. Altogether, our findings demonstrated that genistein exhibits strong antipruritic and anti-inflammatory effects in ACD mice by inhibiting the production of pro-inflammatory cytokines and intracellular MAP2K2/ERK cell signaling, which makes genistein a potentially valuable candidate for the treatment of skin conditions and systemic syndromes in the setting of contact dermatitis.
Collapse
Affiliation(s)
- Jinhong Xu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Gut microbial molecules in behavioural and neurodegenerative conditions. Nat Rev Neurosci 2020; 21:717-731. [DOI: 10.1038/s41583-020-00381-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
|
20
|
Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR. Root System Architecture, Copper Uptake and Tissue Distribution in Soybean ( Glycine max (L.) Merr.) Grown in Copper Oxide Nanoparticle (CuONP)-Amended Soil and Implications for Human Nutrition. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1326. [PMID: 33050103 PMCID: PMC7600329 DOI: 10.3390/plants9101326] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Understanding the potential uptake and biodistribution of engineered nanoparticles (ENPs) in soil-grown plants is imperative for realistic toxicity and risk assessment considering the oral intake of edibles by humans. Herein, growing N-fixing symbiont (Bradyrhizobium japonicum) inoculated soybean (Glycine max (L.) Merr.) for a full lifecycle of 120 days, we assessed the potential influence of particle size (25, 50, and 250 nm) and concentration (0, 50, 100, 200, and 500 mg/kg soil) of Copper oxide nanoparticles (CuONPs) on: (1) root system architecture, (2) soil physicochemical attributes at the soil-root interface, and (3) Cu transport and accumulation in root, stem, leaf, and seed in soybean, and compared them with the soluble Cu2+ ions and water-only controls. Finally, we performed a comparative assessment of total seed Cu levels in soybean with other valuable food sources for Cu intake and discussed potential human health implications. Results showed particle size- and concentration-dependent influence of CuONPs on Cu uptake and distribution in root, stem, leaf, and seed. Alterations in root architecture (root biomass, length, volume, and area) were dependent on the Cu compound types, Cu concentrations, and their interactions. Concentration-response relationships for all three sizes of CuONPs and Cu2+ ions were found to be linear. Furthermore, CuONPs and Cu2+ ions had inhibitory effects on root growth and development. Overall, soybean responses to the smallest size of CuONPs-25 nm-were greater for all parameters tested compared to the two larger-sized CuONPs (50 nm, 250 nm) or Cu2+ ions. Results suggest that minor changes in soil-root physicochemical attributes may not be a major driver for Cu uptake in soybean. Cu bioaccumulation followed the order: root > leaf > stem > seed. Despite reduction in root architecture and seed yield, the smallest size CuONPs-25 nm led to increased total seed Cu uptake compared to the larger-sized CuONPs or Cu2+ ions. Our findings also suggest that soil amendment with CuONPs, and more so with the smallest size of CuONPs-25 nm-could significantly improve seed nutritional Cu value in soybean as reflected by the % Daily Values (DV) and are rated "Good" to "Very Good" according to the "World's Healthiest Foods" rating. However, until the potential toxicity and risk from CuONP-fortified soybean seed ingestion is characterized in humans, we caution recommending such seeds for daily human consumption when addressing food Cu-deficiency and associated diseases, globally.
Collapse
Affiliation(s)
- Elham Yusefi-Tanha
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahr-e Kord, Iran;
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahr-e Kord, Iran;
| | - Ali Rostamnejadi
- Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Tehran, Iran;
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine and Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
21
|
Ramdhani D, Widyasari EM, Sriyani ME, Arnanda QP, Watabe H. Iodine-131 labeled genistein as a potential radiotracer for breast cancer. Heliyon 2020; 6:e04780. [PMID: 33005774 PMCID: PMC7509807 DOI: 10.1016/j.heliyon.2020.e04780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 01/17/2023] Open
Abstract
Objective Genistein is an isoflavone compound that has been proven to have anticancer activity and is capable of binding to estrogen β receptors with Selective Estrogen Receptor Modulators (SERMs) properties, and has a strong affinity to inhibit the development of cancer cells. This study is to determine the optimum conditions of the reaction in the synthesis process of compounds labeled 131I-genestein which can be potential for application of breast cancer diagnosis. Methods Synthesis of 131I-Genistein compound labeling using the Chloramine-T iodination method. This method uses several parameter optimizations, including: pH conditions, the amount of chloramine-T oxidizer and sodium metabisulfite reducing agent. The radiochemical purity of the 131I-Genistein compound was determined using thin layer chromatography TLC-SG F254, and measured by SCA (Single Channel Analyzer). The radiochemical purity of labeled compounds must fulfill the requirements of the United States of Pharmacopeia. Results Optimization of the synthesis conditions of the 131I-Genistein compound was obtained at pH 8, the amount of chloramine-T 0.225 mg, and the amount of Na-Metabisulfite 0.342 mg, with 30 min reaction time. This optimum condition produces radiochemical purity of 95.02 ± 0.76%. Conclusion Products labeled 131I-Genistein meet radiochemical purity requirements according to USP requirements. The labeled compound is expected to be able to be used to detect breast cancer through a binding mechanism with estrogen receptors β.
Collapse
Affiliation(s)
- Danni Ramdhani
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java 45363, Indonesia.,Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Eva Maria Widyasari
- Applied Nuclear Science and Technology Center (PSTNT), National Nuclear Energy Agency of Indonesia (BATAN), Bandung, West Java 40116, Indonesia
| | - Maula Eka Sriyani
- Applied Nuclear Science and Technology Center (PSTNT), National Nuclear Energy Agency of Indonesia (BATAN), Bandung, West Java 40116, Indonesia
| | - Quinzheilla Putri Arnanda
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java 45363, Indonesia
| | - Hiroshi Watabe
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Benvenuto M, Albonici L, Focaccetti C, Ciuffa S, Fazi S, Cifaldi L, Miele MT, De Maio F, Tresoldi I, Manzari V, Modesti A, Masuelli L, Bei R. Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E6635. [PMID: 32927836 PMCID: PMC7555128 DOI: 10.3390/ijms21186635] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
One of the hallmarks of cellular transformation is the altered mechanism of cell death. There are three main types of cell death, characterized by different morphological and biochemical features, namely apoptosis (type I), autophagic cell death (type II) and necrosis (type III). Autophagy, or self-eating, is a tightly regulated process involved in stress responses, and it is a lysosomal degradation process. The role of autophagy in cancer is controversial and has been associated with both the induction and the inhibition of tumor growth. Autophagy can exert tumor suppression through the degradation of oncogenic proteins, suppression of inflammation, chronic tissue damage and ultimately by preventing mutations and genetic instability. On the other hand, tumor cells activate autophagy for survival in cellular stress conditions. Thus, autophagy modulation could represent a promising therapeutic strategy for cancer. Several studies have shown that polyphenols, natural compounds found in foods and beverages of plant origin, can efficiently modulate autophagy in several types of cancer. In this review, we summarize the current knowledge on the effects of polyphenols on autophagy, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of polyphenols for envisioning future therapies employing polyphenols as chemoadjuvants.
Collapse
Affiliation(s)
- Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| |
Collapse
|
23
|
Wu ZY, Sang LX, Chang B. Isoflavones and inflammatory bowel disease. World J Clin Cases 2020; 8:2081-2091. [PMID: 32548137 PMCID: PMC7281056 DOI: 10.12998/wjcc.v8.i11.2081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/27/2020] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
Isoflavones constitute a class of plant hormones including genistein, daidzein, glycitein, formononetin, biochanin A, and irilone, and the major source of human intake is soybeans. Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease including ulcerative colitis, Crohn’s disease, and indeterminate colitis, which seriously affects the quality of life of patients and has become a global health problem. Although the pathogenesis of IBD is not very clear, many factors are thought to be related to the occurrence and development of IBD such as genes, immunity, and intestinal flora. How to control IBD effectively for a long time is still a problem for gastroenterologists. Diet has an important effect on IBD. Patients with IBD should pay more attention to diet. To date, many studies have reported that isoflavones have both good and bad effects on IBD. Isoflavones have many activities such as regulating the inflammatory signal pathways and affecting intestinal barrier functions and gut flora. They can also act through estrogen receptors, as they have a similar structure to estrogen. Isoflavones are easy to get from diet for human. Whether they are valuable to be applied to the treatment of IBD is worth studying. This review summarizes the relationship between isoflavones and IBD.
Collapse
Affiliation(s)
- Ze-Yu Wu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
24
|
Cady N, Peterson SR, Freedman SN, Mangalam AK. Beyond Metabolism: The Complex Interplay Between Dietary Phytoestrogens, Gut Bacteria, and Cells of Nervous and Immune Systems. Front Neurol 2020; 11:150. [PMID: 32231636 PMCID: PMC7083015 DOI: 10.3389/fneur.2020.00150] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
The human body has a large, diverse community of microorganisms which not only coexist with us, but also perform many important physiological functions, including metabolism of dietary compounds that we are unable to process ourselves. Furthermore, these bacterial derived/induced metabolites have the potential to interact and influence not only the local gut environment, but the periphery via interaction with and modulation of cells of the immune and nervous system. This relationship is being further appreciated every day as the gut microbiome is researched as a potential target for immunomodulation. A common feature among inflammatory diseases including relapsing-remitting multiple sclerosis (RRMS) is the presence of gut microbiota dysbiosis when compared to healthy controls. However, the specifics of these microbiota-neuro-immune system interactions remain unclear. Among all factors, diet has emerged as a strongest factor regulating structure and function of gut microbial community. Phytoestrogens are one class of dietary compounds emerging as potentially being of interest in this interaction as numerous studies have identified depletion of phytoestrogen-metabolizing bacteria such as Adlercreutzia, Parabacteroides and Prevotella in RRMS patients. Additionally, phytoestrogens or their metabolites have been reported to show protective effects when compounds are administered in the animal model of MS, Experimental Autoimmune Encephalomyelitis (EAE). In this review, we will illustrate the link between MS and phytoestrogen metabolizing bacteria, characterize the importance of gut bacteria and their mechanisms of action in the production of phytoestrogen metabolites, and discuss what is known about the interactions of specific compounds with cells immune and nervous system. A better understanding of gut bacteria-mediated phytoestrogen metabolism and mechanisms through which these metabolites facilitate their biological actions will help in development of novel therapeutic options for MS as well as other inflammatory diseases.
Collapse
Affiliation(s)
- Nicole Cady
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | | | | | - Ashutosh K. Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States
- Immunology, University of Iowa, Iowa City, IA, United States
- Molecular Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
25
|
Kolesar V, Sharipova G, Safina D, Safin R. Use of foliar fertilizers on soybeans in the Republic of Tatarstan. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20201700069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In 2018, studies were conducted to assess the impact of foliar feeding with complex fertilizers on the yield and grain quality of two soybean varieties. Weather conditions throughout the year were noted periodically dry in May, June and August. Metallocene® fertilizers with different mineral nutrition elements were used for soybean spraying. The fertilizers were used for spraying in the soybean beginning bloom stage. Epy control served as a variant without foliar feeding. It was found that the variety Annushka in the conditions of 2018 was more productive than the variety Milyaushaa. The difference between the varieties in the control was 0.3 t/ha. Low yield in the control sample was associated with the negative effect of drought on the existing root system and the nudeles on it. Spraying Annushka crops by Metallocene® A with copper has high positive effect on the yield. The yield increase from this fertilizer was 0.72 t/ha. In case with Milyaushaa, the best indicators were achieved by Metallocene® D spraying with manganese. In case the yield increased by 0.79 t/ha. The use of foliar feeding had positive effect on soybean seed size. The maximum 1000 seed weight Annushka was for Metallocene® A with copper. For Milyaushaa the largest seeds were when using Metallocene® D with manganese. Foliar feeding by Metallocene® D with manganese had positive effect on phosphorus accumulation in seeds.
Collapse
|
26
|
Nogueira-de-Almeida CA, Ferraz IS, Ued FDV, Almeida ACF, Ciampo LAD. Impact of soy consumption on human health: integrative review. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.12919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract Soy consumption is a millenary habit of populations of the eastern world and has recently increased in the western world. The risks and benefits of this practice have been extensively studied, with a current fundamental need of integration of available information. The aim of this study was to carry out an integrative review on this topic, in order to consolidate the available information. Based on the main question: “What is the impact of soy consumption on human health?”, were reviewed publications classified as original articles and reviews published from 1998 to 2020 in the databases Scopus, PubMed, SciELO, Web of Science, and Cochrane Library. A total of 97 studies were selected. In the present review were described the general impact of soy on human health and its protein quality, the effects of early exposure using soy formulas, and the effects of soy consumption on breast cancer, endometrial and ovarian cancer, prostate cancer, gastrointestinal cancer, cardiovascular disease, glucose metabolism and type 2 diabetes, obesity, reproductive health, menopause, female and male osteoporosis, microbiota, immunity and immunomodulation, thyroid function, attention-deficit hyperactivity disorder, and renal function.
Collapse
|
27
|
Smeriglio A, Calderaro A, Denaro M, Laganà G, Bellocco E. Effects of Isolated Isoflavones Intake on Health. Curr Med Chem 2019; 26:5094-5107. [PMID: 28990503 DOI: 10.2174/0929867324666171006143047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Isoflavones are naturally occurring flavonoids, commonly found in the food consumed for centuries in the East-Asian population, characterized by a structure able to exert nonsteroidal estrogen-like activity on human cells. They have attracted researcher interest all around the word, following the results obtained in epidemiological and clinical studies. The involvement of isoflavones and their metabolites in various biological processes suggests that they can influence several metabolic pathways and can influence the gene expression at epigenetic level, involving effects that probably are due to early life exposure. They show positive health effects on several diseases, especially in the prevention of coronary heart and neurological diseases, hormone-related cancers, osteoporosis, and postmenopausal symptoms. METHODS We have performed a critical evaluation of available literature trough a structured search of bibliographic databases about isoflavones health promoting properties, risk assessment and mechanisms of action. In addition, we supplied useful information on their biochemical properties, sources and bioavailability. RESULTS Although these molecules have been the subjects of numerous researches, their role for the wellness of the human organism remains controversial. Moreover, there are substantial inconsistencies between the results obtained by epidemiologic studies conducted on Eastern population, which found high health promoting properties, and Western clinical trials, which found much less positive effects. CONCLUSION Further epidemiologic studies and well-designed prospective human studies are to determine the beneficial effects of isoflavones exposure, as well as establishing its safe therapeutic.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Antonella Calderaro
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Marcella Denaro
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Giuseppina Laganà
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Ersilia Bellocco
- Department of Chemical, University of Messina, Biological, Pharmaceutical and Environmental Sciences, Viale F. Stagno d'Alcontres 31, Messina, Italy
| |
Collapse
|
28
|
Youseflu S, Jahanian Sadatmahalleh SH, Mottaghi A, Kazemnejad A. Dietary Phytoestrogen Intake and The Risk of Endometriosis in Iranian Women: A Case-Control Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:296-300. [PMID: 31710190 PMCID: PMC6875851 DOI: 10.22074/ijfs.2020.5806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/04/2019] [Indexed: 02/03/2023]
Abstract
Background Endometriosis is an important gynecologic disease affecting reproductive-age women. Based on the
effect of phytoestrogens on inflammatory, immunological and hormonal factors, limited studies have suggested that
phytoestrogen consumption could probably modulate endometriosis risk. The aim of this study was to evaluate the
relationship between phytoestrogen intake and endometriosis risk. Materials and Methods In the present case-control study, 78 women with a laparoscopically confirmed endome-
triosis and 78 normal pelvis women (as the control group), were recruited. Common dietary intake was recorded by a
validated 147-item semi-quantitative food frequency questionnaire (FFQ). Type of phytoestrogen in each dietary item
was analyzed by the database from the United States Department of Agriculture (USDA). A logistic regression model
was used to determine the association between phytoestrogen intake and endometriosis risk. Results Higher intake of total phytoestrogen (P-trend=0.01), total isoflavones (P-trend=0.002) specially formononetin
(P-trend=0.04) and glycitein (P-trend=0.04), total lignan (P-trend=0.01) specially secoisolariciresinol (P-trend=0.01)
and lariciresinol (P-trend=0.02) and matairesinol (P-trend=0.003), and total coumestrol [third quartile odds ratios
(OR): 0.38; 95% confidence intervals (CI): 0.15-0.96; P-trend=0.1] was related to reduced endometriosis risk. Among
food groups, only isoflavin (OR: 0.48; 95% CI: 0.44-0.63), lignan (OR: 0.66; 95% CI: 0.62-0.94), coumestrol (OR:
0.64; 95% CI: 0.51-0.99), phytoestrogen (OR: 0.46; 95% CI: 0.38-0.83) in dairy products and coumestrol in fruits
(OR: 0.69; 95% CI: 0.03-0.77) were negatively associated with endometriosis risk. Conclusion Phytoestrogens have a major impact on the level of hormones, and immune and inflammatory markers;
thus, it can play an important role in the control and prevention of many diseases. Due to the inflammatory nature of
endometriosis and the effect of hormones on the progression of the disease, the role of phytoestrogens consumption in
the progression and regression of the disease should be assessed in future works.
Collapse
Affiliation(s)
- Samaneh Youseflu
- Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Hahideh Jahanian Sadatmahalleh
- Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Elevtronic Address:
| | - Azadeh Mottaghi
- Research Center for Prevention of Cardiovascular Diseases, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Impact of Beef and Beef Product Intake on Cognition in Children and Young Adults: A Systematic Review. Nutrients 2019; 11:nu11081797. [PMID: 31382632 PMCID: PMC6722791 DOI: 10.3390/nu11081797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
(1) Background: Undernutrition and micronutrient deficiency have been consistently linked to cognitive impairment among children and young adults. As a primary source of dietary animal protein, beef consumption holds the potential to improve diet quality and positively influence cognitive function. This study systematically reviewed evidence linking beef intake to cognition among children and young adults. (2) Methods: A literature search was conducted in seven electronic bibliographic databases for studies assessing the impact of beef consumption on cognition. (3) Results: We identified eight studies reporting results from five unique interventions. Two interventions were conducted in Kenya, two in the U.S. and one in four countries including Guatemala, Pakistan, Democratic Republic of the Congo and Zambia. Only one intervention employed a non-feeding control arm and found beef consumption to improve cognitive abilities compared to the control. However, the other interventions comparing beef consumption to other food types found no consistent result. (4) Conclusions: Evidence pertaining to the impact of beef consumption on cognition remains limited due to the small and heterogeneous set of studies. Future research should adopt a population representative sample and longer follow-up period, employ a non-feeding control arm and comprehensively measure nutrient intakes among study participants.
Collapse
|
30
|
Torno C, Staats S, Fickler A, de Pascual-Teresa S, Soledad Izquierdo M, Rimbach G, Schulz C. Combined effects of nutritional, biochemical and environmental stimuli on growth performance and fatty acid composition of gilthead sea bream (Sparus aurata). PLoS One 2019; 14:e0216611. [PMID: 31086380 PMCID: PMC6516738 DOI: 10.1371/journal.pone.0216611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/24/2019] [Indexed: 01/06/2023] Open
Abstract
The reliance of the aquafeed industry on marine resources has to be reduced by innovative approaches in fish nutrition. Thus, a three-factorial approach (fish oil reduced diet, phytochemical genistein, and temperature reduction) was chosen to investigate the interaction of effects on growth performance and tissue omega-3 long chain polyunsaturated fatty acid (LC-PUFA) levels in juvenile sea bream (Sparus aurata, 12.5 ± 2.2 g). Genistein is a phytoestrogen with estrogen-like activity and thus LC-PUFA increasing potential. A decrease in the rearing temperature was chosen based on the positive effects of low temperature on fish lipid quality. The experimental diets were reduced in marine ingredients and had a fish oil content of either 6% dry matter (DM; F6: positive control) or 2% DM (F2: negative control) and were administered in the plain variant or with inclusion of 0.15% DM genistein (F6 + G and F2 + G). The feeding trial was performed simultaneously at 23°C and 19°C. The results indicated that solely temperature had a significant effect on growth performance and whole body nutrient composition of sea bream. Nevertheless, the interaction of all three factors significantly affected the fatty acid compositions of liver and fillet tissue. Most importantly, they led to a significant increase by 4.3% of fillet LC-PUFA content in sea bream fed with the diet F6 + G in comparison to control fish fed diet F6, when both groups were held at 19°C. It is hypothesized that genistein can act via estrogen-like as well as other mechanisms and that the dietary LC-PUFA content may impact its mode of action. Temperature most likely exhibited its effects indirectly via altered growth rates and metabolism. Although effects of all three factors and of genistein in particular were only marginal, they highlight a possibility to utilize the genetic capacity of sea bream to improve tissue lipid quality.
Collapse
Affiliation(s)
- Claudia Torno
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Marine Aquaculture Research Group, Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
- * E-mail:
| | - Stefanie Staats
- Food Science Research Group, Institute of Human Nutrition and Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Anna Fickler
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Marine Aquaculture Research Group, Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN–CSIC), Madrid, Spain
| | - María Soledad Izquierdo
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Gerald Rimbach
- Food Science Research Group, Institute of Human Nutrition and Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Carsten Schulz
- GMA—Gesellschaft für Marine Aquakultur mbH, Büsum, Germany
- Marine Aquaculture Research Group, Institute of Animal Breeding and Husbandry, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
31
|
Caceres S, Silván G, Illera MJ, Millan P, Moyano G, Illera JC. Effects of soya milk on reproductive hormones during puberty in male Wistar rats. Reprod Domest Anim 2019; 54:855-863. [DOI: 10.1111/rda.13434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/15/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Sara Caceres
- Departamento de Fisiología, Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| | - Gema Silván
- Departamento de Fisiología, Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| | - Maria J. Illera
- Departamento de Fisiología, Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| | - Pilar Millan
- Departamento de Fisiología, Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| | - Gabriel Moyano
- Departamento de Fisiología, Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| | - Juan C. Illera
- Departamento de Fisiología, Facultad de Veterinaria Universidad Complutense de Madrid Madrid Spain
| |
Collapse
|
32
|
Anti-inflammatory activity of elicited soybean ( Glycine max) extract on Balb/C mice ( Mus musculus) with high-fat and -fructose diet. Cent Eur J Immunol 2019; 44:7-14. [PMID: 31114431 PMCID: PMC6526585 DOI: 10.5114/ceji.2019.84010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity causes adipocyte hypertrophy, which leads to cell death. Consequently, macrophages and lymphocytes infiltrate into the adipose tissue and elevate pro-inflammatory cytokine production through TLR activation. This study aimed to determine the efficacy of soybean extract, which was elicited by Saccharomyces cerevisiae and light, as an anti-inflammatory agent in mice with a high-fat and -fructose diet (HFFD). The elicited soybean extract (ESE) was administered orally to mice for four weeks after being given an HFFD for 20 weeks. Three different doses were used: (1) low-dose (78 mg/kg BW); (2) normal dose (104 mg/kg BW); and (3) high dose (130 mg/kg BW). HFFD mice model treated with simvastatin 2.8 mg/kg BW considered as drug control. After 24 weeks, the lymphocytes were isolated and the relative number of CD4+TLR3+ T, CD4+TLR4+ T, CD4+TNF-α+ T, and CD4+IFN-γ+ T cells were analysed using flow cytometry. The results showed that the HFFD mouse model had an increased number of CD4+TLR3+ T, CD4+TLR4+ T, CD4+TNF-α+ T, and CD4+IFN-γ+ T cells. ESE administration decreased the relative number of CD4+TLR3+ T, CD4+TLR4+ T, CD4+TNF-α+ T, and CD4+IFN-γ+ T cells. The normal dose of ESE is the most effective dose in suppressing inflammation compared to positive controls. ESE 104 mg/kg BW can be considered as an alternative herbal medicine that may suppress inflammation in HFFD mice.
Collapse
|
33
|
Sahin I, Bilir B, Ali S, Sahin K, Kucuk O. Soy Isoflavones in Integrative Oncology: Increased Efficacy and Decreased Toxicity of Cancer Therapy. Integr Cancer Ther 2019; 18:1534735419835310. [PMID: 30897972 PMCID: PMC6431760 DOI: 10.1177/1534735419835310] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
Soy consumption in human diet has been linked to decreased incidence of a variety of cancers, suggesting a potential role of soy products in cancer prevention and control. Furthermore, a substantial body of evidence in the literature suggests that soy supplementation may improve the efficacy and prevent the adverse effects of cancer chemotherapy and radiation therapy. Isoflavones constitute the predominant anticancer bioactive compounds in soy. Genistein, which is the most abundant and active isoflavone in soy, has a multitude of effects on cancer cells, including inhibition of NF-κB activation and DNA methylation, enhancement of histone acetylation, inhibition of cell growth and metastasis, and antiangiogenic, anti-inflammatory, and anti-oxidant effects. Isoflavones are orally bioavailable, easily metabolized, and usually considered safe. In this article, we review in vitro and in vivo evidence as well as the results of clinical and epidemiological studies on the effects of soy isoflavones, with a focus on sensitization of cancer cells to chemotherapy and radiation while at the same time protecting normal cells from the harmful effects of these treatments.
Collapse
Affiliation(s)
- Ilyas Sahin
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Birdal Bilir
- Emory University School of Medicine, Atlanta, GA, USA
- Emory University, Atlanta, GA, USA
| | | | | | - Omer Kucuk
- Emory University School of Medicine, Atlanta, GA, USA
- Emory University, Atlanta, GA, USA
| |
Collapse
|
34
|
Jeong YJ, An CH, Park SC, Pyun JW, Lee J, Kim SW, Kim HS, Kim H, Jeong JC, Kim CY. Methyl Jasmonate Increases Isoflavone Production in Soybean Cell Cultures by Activating Structural Genes Involved in Isoflavonoid Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4099-4105. [PMID: 29630360 DOI: 10.1021/acs.jafc.8b00350] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Isoflavonoids are a class of biologically active natural products that accumulate in soybean ( Glycine max L.) seeds during development, play vital roles in plant defense, and act as phytoestrogens with important human health benefits. Plant cell suspension cultures represent an excellent source of biologically important secondary metabolites. We found that methyl jasmonate (MJ) treatment increased isoflavone production in soybean suspension cell cultures. To investigate the underlying mechanism, we examined the expression of structural genes ( CHS6, CHS7, CHI1, IFS1, IFS2, IFMaT, and HID) in the isoflavonoid biosynthesis pathways in soybean suspension cells under various abiotic stress conditions. MJ treatment had the most significant effect on gene expression and increased the production of three glycosidic isoflavones (daidzin, malonyldaidzin, and malonylgenistin), with the maximum total isoflavone production (∼10-fold increase) obtained on day 9 after MJ application. MJ treatment significantly increased total phenolic contents and upregulated isoflavonoid biosynthesis genes, shedding light on the underlying mechanism.
Collapse
Affiliation(s)
- Yu Jeong Jeong
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Chul Han An
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Sung-Chul Park
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Jang Won Pyun
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Jiyoung Lee
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Suk Weon Kim
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141 , Republic of Korea
| | - HyeRan Kim
- Plant Systems Engineering Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141 , Republic of Korea
| | - Jae Cheol Jeong
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Cha Young Kim
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| |
Collapse
|
35
|
Li HJ, Wu NL, Lee GA, Hung CF. The Therapeutic Potential and Molecular Mechanism of Isoflavone Extract against Psoriasis. Sci Rep 2018; 8:6335. [PMID: 29679037 PMCID: PMC5910427 DOI: 10.1038/s41598-018-24726-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a common inflammatory disease. It affects 1-3% of the population worldwide and is associated with increasing medical costs every year. Typical psoriatic skin lesions are reddish, thick, scaly plaques that can occur on multiple skin sites all over the body. Topical application of imiquimod (IMQ), a toll-like receptor (TLR)7 agonist and potent immune system activator, can induce and exacerbate psoriasis. Previous studies have demonstrated that isoflavone extract has an antioxidant effect which may help decrease inflammation and inflammatory pain. Through in vivo studies in mice, we found that the topical application to the shaved back and right ear of mice of isoflavone extract prior to IMQ treatment significantly decreased trans-epidermal water loss (TEWL), erythema, blood flow speed, and ear thickness, while it increased surface skin hydration, and attenuated epidermal hyperplasia and inflammatory cell infiltration. Through in vitro experiments, we found that isoflavone extract can reduce IL-22, IL-17A, and TNF-α-induced MAPK, NF-κB, and JAK-STAT activation in normal human epidermal keratinocytes. At the mRNA level, we determined that isoflavone extract attenuated the increased response of the TNF-α-, IL-17A-, and IL-22- related pathways. These results indicate that isoflavone extract has great potential as an anti-psoriatic agent and in the treatment of other inflammatory skin diseases.
Collapse
Affiliation(s)
- Hsin-Ju Li
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan
- Department of Dermatology, Mackay Memorial Hospital, Taipei, 10449, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, 25245, Taiwan
| | - Gon-Ann Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan.
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, 24205, Taiwan.
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
36
|
Gaffer GG, Elgawish RA, Abdelrazek HMA, Ebaid HM, Tag HM. Dietary soy isoflavones during pregnancy suppressed the immune function in male offspring albino rats. Toxicol Rep 2018; 5:296-301. [PMID: 29854598 PMCID: PMC5978017 DOI: 10.1016/j.toxrep.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
Less attention has been paid to the immune effects of phytoestrogens during pregnancy on the first generation. Soy isoflavones fed to pregnant rats could modulate the immune response of the male offspring. Isoflavones reduced spleen and thymus weights in rats born to dams fed dietary soy. Soy isoflavones possibly mediated its effect through reduction of IFN-γ that interacts with the IL-12 production pathway.
Phytoestrogens have an impact on both animals and humans due to use of legumes in animal diets as well as the increase of vegetarian diets in some human populations. Phytoestrogens thought to have varieties of adverse effects, among which immune system was involved. The present study aimed to investigate the effect of prenatal exposure to dietary soy isoflavones on some immunological parameters in male albino rat offspring. The pregnant rats were divided to three groups (12/group). Control group (free soy isoflavones), low soy isoflavones group (6.5%) and high soy isoflavones group (26%). The male offspring cell-mediated immune response was determined using phytohemagglutinin (PHA) injection and the intumesce index which was calculated on postnatal day 50 (PND 50). At PND 50, blood samples were collected for interleukin 12 (IL-12), interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) determination. Spleen, thymus, and PHA injected footpads were fixed for histopathology. Intumesce index, IL-12, IFN-γ, spleen and thymus relative weights were significantly (P < 0.05) decreased in offspring born to dams fed low and high dietary soy isoflavones. In contrary, TNF-α was significantly (P < 0.05) increased in offspring born to dams fed high dietary soy isoflavones. Spleen of rats born to dams fed high dose of dietary soy isoflavones showed coagulative necrosis in white pulp. In conclusion, male offspring born to dams fed different levels of soy isoflavones showed marked immunosuppression after PHA stimulation. This effect was mediated through the reduced IFN-γ that interacts with the IL-12 production pathway.
Collapse
Affiliation(s)
- Ghada Gamal Gaffer
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rania Abdelrahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hala M Ebaid
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Hend M Tag
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.,University of Jeddah Branch of Khulais Governorate - Girls Section, Saudi Arabia
| |
Collapse
|
37
|
Rim CH. Development of quantitative index evaluating anticancer or carcinogenic potential of diet: the anti-cancer food scoring system 1.0. Nutr Res Pract 2018; 12:52-60. [PMID: 29399297 PMCID: PMC5792257 DOI: 10.4162/nrp.2018.12.1.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND/OBJECTIVE Cancer is closely related to diet. One of the most reliable reports of the subject is the expert report from the World Cancer Research Fund & American Institute of Cancer Research (WCRF&AICR). However, majority of the studies including above were written with academic terms and in English. The aim of this study is to create a model, named Anti-Cancer Food Scoring System (ACFS), to provide a simple index of the anticancer potential of food. SUBJECTS/METHODS We created ACFS codes of various food groups. The evidence of the ACFS codes was provided by the literature at a level comparable to that suggested in the WCRF&AICR report or from the WCRF&AICR report. The ACFS grade was calculated considering food group, cooking, and normalization. Application was performed for Koreans' 20 common meals, which encompass multinational recipes. RESULT We calculated the ACFS grades of Koreans' 20 common meals. The results were not significantly different from the WCRF&AICR guidelines or information from the National Cancer Information Center of Korea. The grades were briefly interpreted as follows: grade S. ideal for cancer prevention; grade A. good for cancer prevention; grade B, might have anticancer potential; grade C, difficult to be regarded as preventive or carcinogenic; grade D, might against cancer prevention; grade E, probably against cancer prevention. CONCLUSIONS The ACFS provides a simple index of anticancer potential of diets. This indicator can be useful for the people without expertise, and is effective in evaluating the diets including Asian foods. The ACFS can help design of future clinical or nutritional studies of cancer prevention.
Collapse
Affiliation(s)
- Chai Hong Rim
- Department of Radiation Oncology, Ansan Hospital, Korea University Medical College, 123, Jeokgeum ro, Danwon-gu, Gyeonggi 15355, Korea
| |
Collapse
|
38
|
Alghamdi SS, Khan MA, El-Harty EH, Ammar MH, Farooq M, Migdadi HM. Comparative phytochemical profiling of different soybean ( Glycine max (L.) Merr) genotypes using GC-MS. Saudi J Biol Sci 2018; 25:15-21. [PMID: 29379350 PMCID: PMC5775105 DOI: 10.1016/j.sjbs.2017.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022] Open
Abstract
This study aimed to estimate the proximate, phenolic and flavonoids contents and phytochemicals present in seeds of twenty four soybeans (Glycine max (L.) Merr) genotypes to explore their nutritional and medicinal values. Crude protein composition ranged between 35.63 and 43.13% in Argentinian and USA (Clark) genotypes, respectively. Total phenolic content varied from 1.15 to 1.77 mg GAE/g, whereas flavonoids varied from 0.68 to 2.13 mg QE/g. The GC-MS analysis resulted identification of 88 compounds categorized into aldehydes (5), ketones (13), alcohols (5), carboxylic acids (7), esters (13), alkanes (2), heterocyclic compounds (19), phenolic compound (9), sugar moiety (7) ether (4) and amide (3), one Alkene and one fatty acid ester. Indonesian genotypes (Ijen and Indo-1) had the highest phenolic compounds than others genotype having antioxidant activities, while the Australian genotype contains the maximum in esters compounds. The major phytocompounds identified in majority of genotypes were Phenol, 2,6-dimethoxy-, 2-Methoxy-4-vinylphenol, 3,5-Dimethoxyacetophenone, 1,2-cyclopentanedione and Hexadecanoic acid, methyl ester. The presence of phytochemicals with strong pharmacological actions like antimicrobial and antioxidants activities could be considered as sources of quality raw materials for food and pharmaceutical industries. This study further set a platform for isolating and understanding the characteristics of each compound for it pharmacological properties.
Collapse
Affiliation(s)
- Salem S. Alghamdi
- Legume Research Group, Plant Production Department, Faculty of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Muhammad A. Khan
- Legume Research Group, Plant Production Department, Faculty of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ehab H. El-Harty
- Legume Research Group, Plant Production Department, Faculty of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Megahed H. Ammar
- Rice Research and Training Center, Sakha 33717, KafrEl-Sheikh, Egypt
| | - Muhammad Farooq
- Legume Research Group, Plant Production Department, Faculty of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan
| | - Hussein M. Migdadi
- Legume Research Group, Plant Production Department, Faculty of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
39
|
Freedman SN, Shahi SK, Mangalam AK. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics 2018; 15:109-125. [PMID: 29204955 PMCID: PMC5794701 DOI: 10.1007/s13311-017-0588-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.
Collapse
Affiliation(s)
- Samantha N Freedman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shailesh K Shahi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ashutosh K Mangalam
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
40
|
Srisomboon Y, Poonyachoti S, Deachapunya C. Soy isoflavones enhance β-defensin synthesis and secretion in endometrial epithelial cells with exposure to TLR3 agonist polyinosinic-polycytidylic acid. Am J Reprod Immunol 2017; 78. [PMID: 28429578 DOI: 10.1111/aji.12694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/25/2017] [Indexed: 12/14/2022] Open
Abstract
PROBLEM β-defensins are important innate chemical barriers that protect the endometrium from pathogen invasion. The effects of soy isoflavones, genistein and daidzein, on the expression and secretion of porcine β-defensins (PBD) in endometrial epithelial cells were investigated under normal or poly I:C-stimulated conditions. METHOD OF STUDY Primary cultured porcine endometrial epithelial (PE) cells were pretreated with genistein or daidzein followed by poly I:C inoculation. During treatment, the culture media were analyzed for PBD 1-4 secretion by ELISA and the total RNA for PBD gene expression by quantitative RT-PCR. RESULTS Porcine endometrial epithelial cells constitutively expressed PBD 1-4 and secreted PBD-1, PBD-2, and PBD-4. Genistein and daidzein enhanced PBD-2 expression and PBD-2 and PBD-3 secretion. These compounds also potentiated PBD-2 and PBD-3 expression and secretion which were upregulated by poly I:C. CONCLUSION Soy isoflavones, genistein and daidzein, could be potentially used for promoting the innate host defense of endometrium against infection.
Collapse
Affiliation(s)
- Yotesawee Srisomboon
- Department of Physiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Sutthasinee Poonyachoti
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chatsri Deachapunya
- Department of Physiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
41
|
Govindasamy V, George P, Aher L, Ramesh SV, Thangasamy A, Anandan S, Raina SK, Kumar M, Rane J, Annapurna K, Minhas PS. Comparative conventional and phenomics approaches to assess symbiotic effectiveness of Bradyrhizobia strains in soybean (Glycine max L. Merrill) to drought. Sci Rep 2017; 7:6958. [PMID: 28761112 PMCID: PMC5537308 DOI: 10.1038/s41598-017-06441-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/13/2017] [Indexed: 11/21/2022] Open
Abstract
Symbiotic effectiveness of rhizobitoxine (Rtx)-producing strains of Bradyrhizobium spp. in soybean (cultivar NRC-37/Ahilya-4) under limited soil moisture conditions was evaluated using phenomics tools such as infrared(IR) thermal and visible imaging. Red, green and blue (RGB) colour pixels were standardized to analyse a total of 1017 IR thermal and 692 visible images. Plants inoculated with the Rtx-producing strains B. elkanii USDA-61 and USDA-94 and successive inoculation by B. diazoefficiens USDA-110 resulted in cooler canopy temperatures and increased canopy greenness. The results of the image analysis of plants inoculated with Rtx-producing strains were correlated with effective nodulation, improved photosynthesis, plant nitrogen status and yield parameters. Principal component analysis (PCA) revealed the reliability of the phenomics approach over conventional destructive approaches in assessing the symbiotic effectiveness of Bradyrhizobium strains in soybean plants under watered (87.41-89.96%) and water-stressed (90.54-94.21%) conditions. Multivariate cluster analysis (MCA) revealed two distinct clusters denoting effective (Rtx) and ineffective (non-Rtx) Bradyrhizobium inoculation treatments in soybean. Furthermore, correlation analysis showed that this phenotyping approach is a dependable alternative for screening drought tolerant genotypes or drought resilience symbiosis. This is the first report on the application of non-invasive phenomics techniques, particularly RGB-based image analysis, in assessing plant-microbe symbiotic interactions to impart abiotic stress tolerance.
Collapse
Affiliation(s)
- Venkadasamy Govindasamy
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India.
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Priya George
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
| | - Lalitkumar Aher
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
| | - Shunmugiah V Ramesh
- ICAR-Indian Institute of Soybean Research, Indore, 452001, Madhya Pradesh, India
| | - Arunachalam Thangasamy
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505, Maharashtra, India
| | - Sivalingam Anandan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505, Maharashtra, India
| | - Susheel Kumar Raina
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 190007, Jammu and Kashmir, India
| | - Mahesh Kumar
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
| | - Jagadish Rane
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
| | - Kannepalli Annapurna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Paramjit Singh Minhas
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
| |
Collapse
|
42
|
Lu D, Pan C, Ye C, Duan H, Xu F, Yin L, Tian W, Zhang S. Meta-analysis of Soy Consumption and Gastrointestinal Cancer Risk. Sci Rep 2017; 7:4048. [PMID: 28642459 PMCID: PMC5481399 DOI: 10.1038/s41598-017-03692-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 05/15/2017] [Indexed: 12/13/2022] Open
Abstract
Soy consumption has received considerable attention for its potential role in reducing cancer incidence and mortality. However, its effects on gastrointestinal (GI) cancer are controversial. Therefore, we performed a meta-analysis to evaluate the association between soy consumption and gastrointestinal cancer risk by searching for prospective studies in PubMed, Web of Science, EMBASE and the reference lists of the included articles. The study-specific odds ratio (OR), relative risk (RR) or hazard ratio (HR) estimates and 95% confidence intervals (CIs) were pooled using either a fixed-effect or random-effect model. Twenty-two independent prospective studies were eligible for our meta-analysis, including 21 cohort studies and one nested case-control study. Soy product consumption was inversely associated with the incidence of overall GI cancer (0.857; 95% CI: 0.766, 0.959) and the gastric cancer subgroup (0.847; 95% CI: 0.722, 0.994) but not the colorectal cancer subgroup. After stratifying the results according to gender, an inverse association was observed between soy product intake and the incidence of GI cancer for females (0.711; 95% CI: 0.506, 0.999) but not for males.
Collapse
Affiliation(s)
- Demin Lu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chi Pan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huijie Duan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Yin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Tian
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Suzhan Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Reseach Center for Air Pollution and Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
43
|
Liu X, Zhao XH. Effect of fermentation times and extracting solvents on the in vitro immune potentials of the soluble extracts of mucor-fermented Mao-tofu. Food Sci Biotechnol 2017; 26:707-714. [PMID: 30263595 DOI: 10.1007/s10068-017-0080-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/20/2016] [Accepted: 02/02/2017] [Indexed: 01/09/2023] Open
Abstract
Mucor-fermented Mao-tofu at 3-7 days was extracted using water (pH 4.5 and pH 6.5) and ethanol solutions (40 and 80%, v/v). At protein concentration of 40 μg/mL, all the extracts showed immune activities via activating macrophages, splenocytes, and natural killer cells, which enhances the secretion of interleukin (IL)-2, interferon-γ, tumor necrosis factor-α, IL-1β, IL-6, inducible nitric oxide synthase, and lysozyme, but inhibits the secretion of IL-4. All the extracts exhibited higher activities than that of soybean protein, demonstrating that Mucor-mediated fermentation enhanced the immune potentials of Mao-tofu. Fermentation time of 6 days ensured the extracts the highest activities, whereas lower activities were detected. The highest and lowest activities were detected on using a solution of water (pH 6.5) and 40% ethanol, respectively. The extract obtained using water (pH 6.5) contained more Arg and Cys with immune significance, which partially contributed to its high activities. Both fermentation times and extracting solvents were thus proved to affect the immune activities of soluble Mao-tofu extracts.
Collapse
Affiliation(s)
- Xin Liu
- 1Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030 People's Republic of China.,2Department of Food Science, Harbin University, Harbin, 150080 People's Republic of China
| | - Xin-Huai Zhao
- 1Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030 People's Republic of China
| |
Collapse
|
44
|
Yu J, Bi X, Yu B, Chen D. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats. Nutrients 2016; 8:nu8060361. [PMID: 27294954 PMCID: PMC4924202 DOI: 10.3390/nu8060361] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 12/15/2022] Open
Abstract
Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks.
Collapse
Affiliation(s)
- Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaojuan Bi
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
45
|
Nagano T, Wu W, Tsumura K, Yonemoto-Yano H, Kamada T, Haruma K. The inhibitory effect of soybean and soybean isoflavone diets on 2,4-dinitrofluorobenzene-induced contact hypersensitivity in mice. Biosci Biotechnol Biochem 2016; 80:991-997. [PMID: 26836235 DOI: 10.1080/09168451.2015.1132150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
Abstract
Murine contact hypersensitivity (CHS) is one of the most frequently used animal models of human allergic contact dermatitis. We investigated the inhibitory effects of soybean and soy isoflavone (SI) diets on 2,4-dinitrofluorobenzene- (DNFB) induced CHS in mice. The DNFB-induced ear swelling was inhibited in the soy- and SI-treated groups. Histopathological investigations revealed that oral feeding of soybean and SI attenuated ear tissue edema and reduced the number of Gr-1(+) cell infiltrations into ear tissues. DNA microarray analysis showed that the expression of Ccl24, Xcl1, Ifng, and Ccl17 in the ear tissues was lower in the soy-treated mice than in the positive controls. In addition, CCL24 mRNA and protein expression in the ear tissues were more highly suppressed in the soy- and SI-treated groups. These results suggest that soybean and SI consumption downregulated the gene and protein expression of CCL24, thereby affording protection against CHS in mice.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Anti-Allergic Agents/administration & dosage
- Anti-Allergic Agents/isolation & purification
- Chemokine CCL17/genetics
- Chemokine CCL17/immunology
- Chemokine CCL24/genetics
- Chemokine CCL24/immunology
- Chemokines, C/genetics
- Chemokines, C/immunology
- Dermatitis, Allergic Contact/diet therapy
- Dermatitis, Allergic Contact/etiology
- Dermatitis, Allergic Contact/immunology
- Dermatitis, Allergic Contact/pathology
- Diet
- Dinitrofluorobenzene/toxicity
- Disease Models, Animal
- Ear/blood supply
- Ear/pathology
- Edema/chemically induced
- Edema/diet therapy
- Edema/immunology
- Edema/pathology
- Female
- Gene Expression Profiling
- Gene Expression Regulation
- Humans
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Isoflavones/administration & dosage
- Isoflavones/isolation & purification
- Mice
- Mice, Inbred BALB C
- Oligonucleotide Array Sequence Analysis
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- Signal Transduction
- Glycine max/chemistry
Collapse
Affiliation(s)
- Takao Nagano
- a Department of Clinical Nutrition, Faculty of Health Science and Technology , Kawasaki University of Medical Welfare , Okayama , Japan
| | - Woruna Wu
- a Department of Clinical Nutrition, Faculty of Health Science and Technology , Kawasaki University of Medical Welfare , Okayama , Japan
| | | | | | - Tomoari Kamada
- c Division of Gastroenterology, Department of Internal Medicine , Kawasaki Medical School , Okayama , Japan
| | - Ken Haruma
- c Division of Gastroenterology, Department of Internal Medicine , Kawasaki Medical School , Okayama , Japan
| |
Collapse
|
46
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
47
|
Lesinski GB, Reville PK, Mace TA, Young GS, Ahn-Jarvis J, Thomas-Ahner J, Vodovotz Y, Ameen Z, Grainger E, Riedl K, Schwartz S, Clinton SK. Consumption of soy isoflavone enriched bread in men with prostate cancer is associated with reduced proinflammatory cytokines and immunosuppressive cells. Cancer Prev Res (Phila) 2015; 8:1036-44. [PMID: 26276751 PMCID: PMC4633400 DOI: 10.1158/1940-6207.capr-14-0464] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 07/21/2015] [Indexed: 01/13/2023]
Abstract
We hypothesized that soy phytochemicals may have immunomodulatory properties that may affect prostate carcinogenesis and progression. A randomized, phase II trial was conducted in 32 patients with prostate cancer with asymptomatic biochemical recurrence but no measurable disease on standard staging studies. Patients were randomized to two slices of soy bread (34 mg isoflavones/slice) or soy bread containing almond powder daily as a source of β-glucosidase. Flow cytometry and bioplex assays were used to measure cytokines or immune cell phenotype in blood at baseline (day 0) and following intervention (day 56). Adequate blood samples were available at enrollment and day 56 and evaluated. Multiple plasma cytokines and chemokines were significantly decreased on day 56 versus baseline. Subgroup analysis indicated reduced TH1 (P = 0.028) and myeloid-derived suppressor cell (MDSC)-associated cytokines (P = 0.035). TH2 and TH17 cytokines were not significantly altered. Phenotypic analysis revealed no change in CD8(+) or CD4(+) T cells but showed increased CD56(+) natural killer (NK) cells (P = 0.038). The percentage of cells with a T regulatory cell phenotype (CD4(+)CD25(+)FoxP3(+)) was significantly decreased after 56 days of soy bread (P = 0.0136). Significantly decreased monocytic (CD33(+)HLADR(neg)CD14(+)) MDSC were observed in patients consuming soy bread (P = 0.0056). These data suggest that soy bread modulates systemic soluble and cellular biomarkers consistent with limiting inflammation and suppression of MDSCs. Additional studies to elucidate impact on the carcinogenic process or as a complement to immune-based therapy are required.
Collapse
Affiliation(s)
- Gregory B Lesinski
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio. The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| | - Patrick K Reville
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio
| | - Thomas A Mace
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio
| | - Gregory S Young
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Jennifer Ahn-Jarvis
- College of Food, Agricultural and Environmental Science, Department of Food Science and Technology, The Ohio State University, Columbus, Ohio
| | - Jennifer Thomas-Ahner
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio
| | - Yael Vodovotz
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio. College of Food, Agricultural and Environmental Science, Department of Food Science and Technology, The Ohio State University, Columbus, Ohio
| | - Zeenath Ameen
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio
| | - Elizabeth Grainger
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio
| | - Kenneth Riedl
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio. College of Food, Agricultural and Environmental Science, Department of Food Science and Technology, The Ohio State University, Columbus, Ohio
| | - Steven Schwartz
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio. College of Food, Agricultural and Environmental Science, Department of Food Science and Technology, The Ohio State University, Columbus, Ohio
| | - Steven K Clinton
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James and Richard Solove Research Institute, Columbus, Ohio. The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| |
Collapse
|
48
|
Ko KP. Isoflavones: chemistry, analysis, functions and effects on health and cancer. Asian Pac J Cancer Prev 2015; 15:7001-10. [PMID: 25227781 DOI: 10.7314/apjcp.2014.15.17.7001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Isoflavones are phytoestrogens and natural plant compounds which are similar to 17-β-estradiol in chemical structure. It is known that they can act as estrogen agonists or antagonists, depending on endocrine estrogenic levels, but actions of isoflavones are rather complex due to large number of variables such as chemical structures and mechanisms. Some hypotheses on biological mechanisms have not satisfactorily been confirmed to date and human epidemiological and experimental studies have been relatively limited. Nevertheless, isoflavones and isoflavone rich foods have become a focus on interest due to positive health benefits on many diseases, especially prevention of hormone-related cancers, cardiovascular disease, osteoporosis, and adverse postmenopausal symptoms, and improvement of physiological condition such as maintaining cognitive function. This review provides an overview of chemistry, analytical techniques (focused on human biospecimens), functions including biological mechanisms, and effects of isoflavones, on the basis of the available meta-analysis and review articles and some original articles, on health and cancer.
Collapse
Affiliation(s)
- Kwang-Pil Ko
- Department of Preventive Medicine, Gachon University Graduate School of Medicine, Incheon, Korea E-mail :
| |
Collapse
|
49
|
In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci 2015; 16:9236-82. [PMID: 25918934 PMCID: PMC4463587 DOI: 10.3390/ijms16059236] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/09/2015] [Accepted: 04/15/2015] [Indexed: 12/16/2022] Open
Abstract
Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer.
Collapse
|
50
|
Caceres S, Peña L, Moyano G, Martinez-Fernandez L, Monsalve B, Illera MJ, Millan P, Illera JC, Silvan G. Isoflavones and their effects on the onset of puberty in male Wistar rats. Andrologia 2015; 47:1139-46. [PMID: 25581096 DOI: 10.1111/and.12394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2014] [Indexed: 02/07/2023] Open
Abstract
This study was performed to determine how two of the most important isoflavones, genistein and daidzein, affect the gonadal axis in male prepuberal rats. One hundred and seventy-five prepuberal male Wistar rats were allocated into seven groups: one control group and six experimental groups that were orally administered a high or low dose of genistein, daidzein or a mixture of both. Testosterone determination was assayed by EIA. The testes and body weights were measured, and the histology of the epididymis with the sperm content and epididymal sperm count were evaluated. In the control group, we observed an increase in the serum testosterone levels (>2.5 ng ml(-1) ) at the third week (52 days), which corresponded to the onset of puberty in these rats. The same increase in serum testosterone levels was observed at the fourth week in rats that received low doses of isoflavones; therefore, we concluded that the onset of puberty was delayed. At high doses, there was no significant increase in testosterone levels, which could be related to the fact that these male rats did not reach puberty. These findings were supported by the results obtained from the analysis of the epididymal content as well as the testes/body weight ratio.
Collapse
Affiliation(s)
- S Caceres
- Dpto. Fisiología Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - L Peña
- Dpto. Medicina y Cirugía Animal, Universidad Complutense de Madrid, Madrid, Spain
| | - G Moyano
- Dpto. Fisiología Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - L Martinez-Fernandez
- Dpto. Fisiología Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - B Monsalve
- Dpto. Fisiología Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - M J Illera
- Dpto. Fisiología Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - P Millan
- Dpto. Fisiología Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - J C Illera
- Dpto. Fisiología Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - G Silvan
- Dpto. Fisiología Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|