1
|
Blade SP, Falkowski DJ, Bachand SN, Pagano SJ, Chin L. Mechanobiology of Adipocytes. BIOLOGY 2024; 13:434. [PMID: 38927314 PMCID: PMC11200640 DOI: 10.3390/biology13060434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
The growing obesity epidemic necessitates increased research on adipocyte and adipose tissue function and disease mechanisms that progress obesity. Historically, adipocytes were viewed simply as storage for excess energy. However, recent studies have demonstrated that adipocytes play a critical role in whole-body homeostasis, are involved in cell communication, experience forces in vivo, and respond to mechanical stimuli. Changes to the adipocyte mechanical microenvironment can affect function and, in some cases, contribute to disease. The aim of this review is to summarize the current literature on the mechanobiology of adipocytes. We reviewed over 100 papers on how mechanical stress is sensed by the adipocyte, the effects on cell behavior, and the use of cell culture scaffolds, particularly those with tunable stiffness, to study adipocyte behavior, adipose cell and tissue mechanical properties, and computational models. From our review, we conclude that adipocytes are responsive to mechanical stimuli, cell function and adipogenesis can be dictated by the mechanical environment, the measurement of mechanical properties is highly dependent on testing methods, and current modeling practices use many different approaches to recapitulate the complex behavior of adipocytes and adipose tissue. This review is intended to aid future studies by summarizing the current literature on adipocyte mechanobiology.
Collapse
Affiliation(s)
- Sean P. Blade
- Department of Biomedical Engineering, Widener University, Chester, PA 19013, USA; (S.P.B.); (D.J.F.); (S.N.B.)
| | - Dylan J. Falkowski
- Department of Biomedical Engineering, Widener University, Chester, PA 19013, USA; (S.P.B.); (D.J.F.); (S.N.B.)
| | - Sarah N. Bachand
- Department of Biomedical Engineering, Widener University, Chester, PA 19013, USA; (S.P.B.); (D.J.F.); (S.N.B.)
| | - Steven J. Pagano
- Department of Mechanical Engineering, Widener University, Chester, PA 19013, USA;
| | - LiKang Chin
- Department of Biomedical Engineering, Widener University, Chester, PA 19013, USA; (S.P.B.); (D.J.F.); (S.N.B.)
| |
Collapse
|
2
|
Marcelin G, Clément K. The multifaceted progenitor fates in healthy or unhealthy adipose tissue during obesity. Rev Endocr Metab Disord 2021; 22:1111-1119. [PMID: 34105090 DOI: 10.1007/s11154-021-09662-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
While obesity is defined as an excessive fat accumulation conferring a risk to metabolic health, increased adipose mass by itself does not fully explain obesity's propensity to promote metabolic alterations. Adipose tissue regulates multiple processes critical for energy homeostasis and its dysfunction favors the development and perpetuation of metabolic diseases. Obesity drives inflammatory leucocyte infiltration in adipose tissue and fibrotic transformation of the fat depots. Both features associate with metabolic alterations such as impaired glucose control and resistance to fat mass loss. In this context, adipose progenitors, an heterogenous resident population of mesenchymal stromal cells, display functions important to shape healthy or unhealthy adipose tissue expansion. We, here, outline the current understanding of adipose progenitor biology in the context of obesity-induced adipose tissue remodeling.
Collapse
Affiliation(s)
- Geneviève Marcelin
- Nutrition and Obesities : Systemic Approaches (NutriOmics, UMRS U1269), Sorbonne Universités, INSERM, Paris, France
| | - Karine Clément
- Nutrition and Obesities : Systemic Approaches (NutriOmics, UMRS U1269), Sorbonne Universités, INSERM, Paris, France.
- Nutrition Department, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, CRNH Ile de France, 75013, Paris, France.
| |
Collapse
|
3
|
Abstract
Obesity is a chronic and progressive process affecting whole-body energy balance and is associated with comorbidities development. In addition to increased fat mass, obesity induces white adipose tissue (WAT) inflammation and fibrosis, leading to local and systemic metabolic dysfunctions, such as insulin resistance (IR). Accordingly, limiting inflammation or fibrosis deposition may improve IR and glucose homeostasis. Although no targeted therapy yet exists to slow or reverse adipose tissue fibrosis, a number of findings have clarified the underlying cellular and molecular mechanisms. In this review, we highlight adipose tissue remodeling events shown to be associated with fibrosis deposition, with a focus on adipose progenitors involved in obesity-induced healthy as well as unhealthy WAT expansion. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Geneviève Marcelin
- INSERM, Nutrition and Obesities: Systemic Approach (NutriOmics) Research Unit, UMRS U1269, Sorbonne Université, Paris, France; ,
| | | | - Karine Clément
- INSERM, Nutrition and Obesities: Systemic Approach (NutriOmics) Research Unit, UMRS U1269, Sorbonne Université, Paris, France; , .,Nutrition Department, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
4
|
Huang A, Lin YS, Kao LZ, Chiou YW, Lee GH, Lin HH, Wu CH, Chang CS, Lee KT, Hsueh YY, Tsai PJ, Tang MJ, Tsai YS. Inflammation-induced macrophage lysyl oxidase in adipose stiffening and dysfunction in obesity. Clin Transl Med 2021; 11:e543. [PMID: 34586740 PMCID: PMC8444557 DOI: 10.1002/ctm2.543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- An Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yi-Shiuan Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ling-Zhen Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yu-Wei Chiou
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Gang-Hui Lee
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Hsi-Hui Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chih-Hsing Wu
- Department of Family Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China
| | - Chin-Sung Chang
- Department of Family Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China
| | - Kuo-Ting Lee
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ming-Jer Tang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Center for Clinical Medicine Research, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China
| |
Collapse
|
5
|
Di Caprio N, Bellas E. Collagen Stiffness and Architecture Regulate Fibrotic Gene Expression in Engineered Adipose Tissue. ACTA ACUST UNITED AC 2020; 4:e1900286. [PMID: 32529801 DOI: 10.1002/adbi.201900286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022]
Abstract
Adipose tissue (AT) has a dynamic extracellular matrix (ECM) surrounding adipocytes that allows for remodeling during metabolic fluctuations. During the progression of obesity, AT has increased ECM deposition, stiffening, and remodeling, resulting in a pro-fibrotic dysfunctional state. Here, the incorporation of ethylene glycol-bis-succinic acid N-hydroxysuccinimide ester (PEGDS) allows for control over 3D collagen hydrogel stiffness and architecture to investigate its influence on adipocyte metabolic and fibrotic function. Upon stiffening and altering ECM architecture, adipocytes did not alter their expression of key adipokines, leptin, and adiponectin. However, they do increase actin cytoskeletal fiber formation, pro-fibrotic gene expression, ECM deposition, and remodeling within a stiffer, 3D collagen hydrogel. For example, COL6A3 gene expression is upregulated approximately twofold, resulting in increased deposition of pericellular collagen VI alpha 3 surrounding adipocytes. Furthermore, inhibition of actin contractility results in a reversal of pro-fibrotic gene expression and ECM deposition, indicating that adipocytes are mediating mechanical cues through actin cytoskeletal networks. This study demonstrates that ECM stiffness and architecture plays a critical regulatory role in adipocyte fibrotic function and contributes to the overall pro-fibrotic dysfunctional state of AT during the progression of obesity and AT fibrosis.
Collapse
Affiliation(s)
- Nikolas Di Caprio
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, 19122, USA
| | - Evangelia Bellas
- Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, 19122, USA
| |
Collapse
|
6
|
Sun M, Chi G, Xu J, Tan Y, Xu J, Lv S, Xu Z, Xia Y, Li L, Li Y. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5. Stem Cell Res Ther 2018; 9:52. [PMID: 29490668 PMCID: PMC5831741 DOI: 10.1186/s13287-018-0798-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/18/2018] [Accepted: 02/05/2018] [Indexed: 01/12/2023] Open
Abstract
Background Human mesenchymal stem cell (hMSC) differentiation into osteoblasts has important clinical significance in treating bone injury, and the stiffness of the extracellular matrix (ECM) has been shown to be an important regulatory factor for hMSC differentiation. The aim of this study was to further delineate how matrix stiffness affects intracellular signaling through integrin α5/β1, FAK, and Wnt signaling, subsequently regulating the osteogenic phenotype of hMSCs. Methods hMSCs were cultured on tunable polyacrylamide hydrogels coated with fibronectin with stiffness corresponding to a Young’s modulus of 13–16 kPa and 62–68 kPa. After hMSCs were cultured on gels for 1 week, gene expression of alpha-1typeIcollagen, BGLAP, and RUNX2 were evaluated by real-time PCR. After hMSCs were cultured on gels for 24 h, signaling molecules relating to integrin α5 (FAK, ERK, p-ERK, Akt, p-Akt, GSK-3β, p-GSK-3β, and β-catenin) were evaluated by western blot analysis. Results Osteogenic differentiation was increased on 62–68 kPa ECM, as evidenced by alpha-1 type I collagen, BGLAP, and RUNX2 gene expression, calcium deposition, and ALP staining. In the process of differentiation, gene and protein expression of integrin α5/β1 increased, together with protein expression of the downstream signaling molecules FAK, p-ERK, p-Akt, GSK-3β, p-GSK-3β, and β-catenin, indicating that these molecules can affect the osteogenic differentiation of hMSCs. An antibody blocking integrin α5 suppressed the stiffness-induced expression of all osteoblast markers examined. In particular, alpha-1 type I collagen, RUNX2, and BGLAP were significantly downregulated, indicating that integrin α5 regulates hMSC osteogenic differentiation. Downstream expression of FAK, ERK, p-ERK, and β-catenin protein was unchanged, whereas Akt, p-Akt, GSK-3β, and p-GSK-3β were upregulated. Moreover, expression of Akt and p-Akt was upregulated with anti-integrin α5 antibody, but no difference was observed for FAK, ERK, and p-ERK between the with or without anti-integrin α5 antibody groups. At the same time, expression of GSK-3β and p-GSK-3β was upregulated and β-catenin levels showed no difference between the groups with or without anti-integrin α5 antibody. Since Akt, p-Akt, GSK-3β, and p-GSK-3β displayed the same changes between the groups with or without anti-integrin α5 antibody, we then detected the links among them. Expression of p-Akt and p-GSK-3β was reduced effectively in the presence of the Akt inhibitor Triciribine. However, Akt, GSK-3β, and β-catenin were unchanged. These results suggested that expression of p-GSK-3β was regulated by p-Akt on 62–68 kPa ECM. Conclusions Taken together, our results provide evidence that matrix stiffness (62–68 kPa) affects the osteogenic outcome of hMSCs through mechanotransduction events that are mediated by integrin α5. Electronic supplementary material The online version of this article (10.1186/s13287-018-0798-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meiyu Sun
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Juanjuan Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Ye Tan
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Jiayi Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Yuhan Xia
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China.
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
7
|
Microenvironmental Control of Adipocyte Fate and Function. Trends Cell Biol 2016; 26:745-755. [PMID: 27268909 DOI: 10.1016/j.tcb.2016.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
Abstract
The properties of tissue-specific microenvironments vary widely in the human body and demonstrably influence the structure and function of many cell types. Adipocytes are no exception, responding to cues in specialized niches to perform vital metabolic and endocrine functions. The adipose microenvironment is remodeled during tissue expansion to maintain the structural and functional integrity of the tissue and disrupted remodeling in obesity contributes to the progression of metabolic syndrome, breast cancer, and other malignancies. The increasing incidence of these obesity-related diseases and the recent focus on improved in vitro models of human tissue biology underscore growing interest in the regulatory role of adipocyte microenvironments in health and disease.
Collapse
|
8
|
Frydrych M, Román S, MacNeil S, Chen B. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Acta Biomater 2015; 18:40-9. [PMID: 25769230 DOI: 10.1016/j.actbio.2015.03.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/10/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023]
Abstract
Large three-dimensional poly(glycerol sebacate) (PGS)/poly(l-lactic acid) (PLLA) scaffolds with similar bulk mechanical properties to native low and high stress adapted adipose tissue were fabricated via a freeze-drying and a subsequent curing process. PGS/PLLA scaffolds containing 73vol.% PGS were prepared using two different organic solvents, resulting in highly interconnected open-pore structures with porosities and pore sizes in the range of 91-92% and 109-141μm, respectively. Scanning electron microscopic analysis indicated that the scaffolds featured different microstructure characteristics, depending on the organic solvent in use. The PGS/PLLA scaffolds had a tensile Young's modulus of 0.030MPa, tensile strength of 0.007MPa, elongation at the maximum stress of 25% and full shape recovery capability upon release of the compressive load. In vitro degradation tests presented mass losses of 11-16% and 54-55% without and with the presence of lipase enzyme in 31days, respectively. In vitro cell tests exhibited clear evidence that the PGS/PLLA scaffolds prepared with 1,4-dioxane as the solvent are suitable for culture of adipose derived stem cells. Compared to pristine PLLA scaffolds prepared with the same procedure, these scaffolds provided favourable porous microstructures, good hydrophilic characteristics, and appropriate mechanical properties for soft tissue applications, as well as enhanced scaffold cell penetration and tissue in-growth characteristics. This work demonstrates that the PGS/PLLA scaffolds have potential for applications in adipose tissue engineering.
Collapse
Affiliation(s)
- Martin Frydrych
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Sabiniano Román
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield S3 7HQ, United Kingdom
| | - Sheila MacNeil
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield S3 7HQ, United Kingdom
| | - Biqiong Chen
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom.
| |
Collapse
|
9
|
Huang C, Dai J, Zhang XA. Environmental physical cues determine the lineage specification of mesenchymal stem cells. Biochim Biophys Acta Gen Subj 2015; 1850:1261-6. [PMID: 25727396 DOI: 10.1016/j.bbagen.2015.02.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/05/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers. SCOPE OF REVIEW Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, which resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination. MAJOR CONCLUSIONS Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment. GENERAL SIGNIFICANCE These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate.
Collapse
Affiliation(s)
- Chao Huang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jingxing Dai
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Anatomy, Southern Medical University, Guangzhou, China
| | - Xin A Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
10
|
Peters SB, Naim N, Nelson DA, Mosier AP, Cady NC, Larsen M. Biocompatible tissue scaffold compliance promotes salivary gland morphogenesis and differentiation. Tissue Eng Part A 2014; 20:1632-42. [PMID: 24410370 PMCID: PMC4029047 DOI: 10.1089/ten.tea.2013.0515] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/12/2013] [Indexed: 12/14/2022] Open
Abstract
Substrate compliance is reported to alter cell phenotype, but little is known about the effects of compliance on cell development within the context of a complex tissue. In this study, we used 0.48 and 19.66 kPa polyacrylamide gels to test the effects of the substrate modulus on submandibular salivary gland development in culture and found a significant decrease in branching morphogenesis in explants grown on the stiff 19.66 kPa gels relative to those grown on the more physiologically compliant 0.48 kPa gels. While proliferation and apoptosis were not affected by the substrate modulus, tissue architecture and epithelial acinar cell differentiation were profoundly perturbed by aberrant, high stiffness. The glands cultured on 0.48 kPa gels were similar to developing glands in morphology and expression of the differentiation markers smooth muscle alpha-actin (SM α-actin) in developing myoepithelial cells and aquaporin 5 (AQP5) in proacinar cells. At 19.66 kPa, however, tissue morphology and the expression and distribution of SM α-actin and AQP5 were disrupted. Significantly, aberrant gland development at 19.66 kPa could be rescued by both mechanical and chemical stimuli. Transfer of glands from 19.66 to 0.48 kPa gels resulted in substantial recovery of acinar structure and differentiation, and addition of exogenous transforming growth factor beta 1 at 19.66 kPa resulted in a partial rescue of morphology and differentiation within the proacinar buds. These results indicate that environmental compliance is critical for organogenesis, and suggest that both mechanical and chemical stimuli can be exploited to promote organ development in the contexts of tissue engineering and organ regeneration.
Collapse
Affiliation(s)
- Sarah B. Peters
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York
| | - Nyla Naim
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York
| | - Deirdre A. Nelson
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York
| | - Aaron P. Mosier
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, New York
| | - Nathaniel C. Cady
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, New York
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York
| |
Collapse
|
11
|
Naujok O, Bandou Y, Shikama Y, Funaki M, Lenzen S. Effect of substrate rigidity in tissue culture on the function of insulin-secreting INS-1E cells. J Tissue Eng Regen Med 2014; 11:58-65. [DOI: 10.1002/term.1857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/05/2013] [Accepted: 11/10/2013] [Indexed: 11/10/2022]
Affiliation(s)
- O. Naujok
- Institute of Clinical Biochemistry; Hannover Medical School; Germany
| | - Y. Bandou
- Clinical Research Centre for Diabetes; Tokushima University Hospital; Japan
| | - Y. Shikama
- Clinical Research Centre for Diabetes; Tokushima University Hospital; Japan
| | - M. Funaki
- Clinical Research Centre for Diabetes; Tokushima University Hospital; Japan
| | - S. Lenzen
- Institute of Clinical Biochemistry; Hannover Medical School; Germany
| |
Collapse
|
12
|
Nobuhara M, Saotome M, Watanabe T, Urushida T, Katoh H, Satoh H, Funaki M, Hayashi H. Mitochondrial dysfunction caused by saturated fatty acid loading induces myocardial insulin-resistance in differentiated H9c2 myocytes: a novel ex vivo myocardial insulin-resistance model. Exp Cell Res 2013; 319:955-66. [PMID: 23416068 DOI: 10.1016/j.yexcr.2013.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/28/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
Heart failure (HF) is often accompanied with metabolic disorders and insufficient energy production. Some previous studies have suggested an elevated serum free fatty acid (FA) due to chronic adrenergic stimulation induces myocardial insulin-resistance, which further impairs myocardial energy production. Because little is known about the pathogenesis of FA-induced cardiac insulin-resistance, we established an ex vivo cardiac insulin-resistant model and investigated the relationship between insulin-resistance and mitochondrial dysfunction. The ex vivo insulin-resistant myocytes, which was produced by treating differentiated H9c2 myocytes with palmitate (saturated FA; 0.2mM) for 24h, exhibited insulin-signaling deficiency and attenuated 2-deoxy-d-glucose (2-DG) uptake. When myocytes were pretreated with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP, a ROS scavenger; 200 μM), the insulin-signaling deficiency by palmitate was restored, whereas the attenuated 2-DG uptake was remained. In contrast to TMPyP, the pretreatment with perhexiline (a mitochondrial FA uptake inhibitor; 2 μM) restored the insulin-signaling deficiency and the attenuated 2-DG uptake by palmitate. Perhexiline restored the depolarized mitochondrial membrane potential (ΔΨm) and the reduced intracellular ATP by palmitate, and thereby improved the impaired GLUT4 recruitment to plasma membrane after insulin, whereas TMPyP failed to do so. These results suggested that the mitochondrial dysfunction by saturated FA loading and consequent intracellular energy shortage induced myocardial insulin-resistance in our ex vivo insulin-resistant model.
Collapse
Affiliation(s)
- Mamoru Nobuhara
- Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fibronectin Gene Expression in Human Adipose Tissue and Its Associations with Obesity-Related Genes and Metabolic Parameters. Obes Surg 2012; 23:554-60. [DOI: 10.1007/s11695-012-0801-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Higuchi A, Ling QD, Hsu ST, Umezawa A. Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev 2012; 112:4507-40. [PMID: 22621236 DOI: 10.1021/cr3000169] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, 32001 Taiwan.
| | | | | | | |
Collapse
|
15
|
Shoham N, Gefen A. The influence of mechanical stretching on mitosis, growth, and adipose conversion in adipocyte cultures. Biomech Model Mechanobiol 2012; 11:1029-45. [DOI: 10.1007/s10237-011-0371-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 12/30/2011] [Indexed: 12/14/2022]
|
16
|
Nyman E, Brännmark C, Palmér R, Brugård J, Nyström FH, Strålfors P, Cedersund G. A hierarchical whole-body modeling approach elucidates the link between in Vitro insulin signaling and in Vivo glucose homeostasis. J Biol Chem 2011; 286:26028-41. [PMID: 21572040 PMCID: PMC3138269 DOI: 10.1074/jbc.m110.188987] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 03/08/2011] [Indexed: 01/15/2023] Open
Abstract
Type 2 diabetes is a metabolic disease that profoundly affects energy homeostasis. The disease involves failure at several levels and subsystems and is characterized by insulin resistance in target cells and tissues (i.e. by impaired intracellular insulin signaling). We have previously used an iterative experimental-theoretical approach to unravel the early insulin signaling events in primary human adipocytes. That study, like most insulin signaling studies, is based on in vitro experimental examination of cells, and the in vivo relevance of such studies for human beings has not been systematically examined. Herein, we develop a hierarchical model of the adipose tissue, which links intracellular insulin control of glucose transport in human primary adipocytes with whole-body glucose homeostasis. An iterative approach between experiments and minimal modeling allowed us to conclude that it is not possible to scale up the experimentally determined glucose uptake by the isolated adipocytes to match the glucose uptake profile of the adipose tissue in vivo. However, a model that additionally includes insulin effects on blood flow in the adipose tissue and GLUT4 translocation due to cell handling can explain all data, but neither of these additions is sufficient independently. We also extend the minimal model to include hierarchical dynamic links to more detailed models (both to our own models and to those by others), which act as submodules that can be turned on or off. The resulting multilevel hierarchical model can merge detailed results on different subsystems into a coherent understanding of whole-body glucose homeostasis. This hierarchical modeling can potentially create bridges between other experimental model systems and the in vivo human situation and offers a framework for systematic evaluation of the physiological relevance of in vitro obtained molecular/cellular experimental data.
Collapse
Affiliation(s)
- Elin Nyman
- From the Department of Clinical and Experimental Medicine, Diabetes and Integrative Systems Biology and
| | - Cecilia Brännmark
- From the Department of Clinical and Experimental Medicine, Diabetes and Integrative Systems Biology and
| | - Robert Palmér
- From the Department of Clinical and Experimental Medicine, Diabetes and Integrative Systems Biology and
| | - Jan Brugård
- MathCore Engineering AB, SE58330 Linköping, Sweden, and
| | - Fredrik H. Nyström
- the Department of Medical and Health Sciences, Linköping University, SE58185 Linköping, Sweden
| | - Peter Strålfors
- From the Department of Clinical and Experimental Medicine, Diabetes and Integrative Systems Biology and
| | - Gunnar Cedersund
- From the Department of Clinical and Experimental Medicine, Diabetes and Integrative Systems Biology and
- the School of Life Sciences, Freiburg Institute of Advanced Sciences, 79104 Freiburg, Germany
| |
Collapse
|
17
|
Li Q, Hata A, Kosugi C, Kataoka N, Funaki M. The density of extracellular matrix proteins regulates inflammation and insulin signaling in adipocytes. FEBS Lett 2010; 584:4145-50. [PMID: 20804756 DOI: 10.1016/j.febslet.2010.08.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 08/23/2010] [Accepted: 08/23/2010] [Indexed: 11/30/2022]
Abstract
Cells can not only sense the type of extracellular matrix (ECM) protein that is present in the microenvironment, but they can also sense its density. Here, we investigated the effects of ECM protein density on adipokine secretion and insulin signaling in adipocytes. To this end, 3T3-L1 adipocytes were cultured on the surface of polyacrylamide gels that were coated with gradient densities of a collagen type I and fibronectin mixture. We found that high density ECM causes a decrease in insulin signaling and adiponectin secretion, whereas the secretion of monocyte chemoattractant protein-1 (MCP-1) was increased via the activation of nuclear factor-κB (NF-κB). These results indicate that the density of the ECM directly regulates the inflammatory response and insulin sensitivity of adipocytes.
Collapse
Affiliation(s)
- Qinkai Li
- Clinical Research Center for Diabetes, Tokushima University Hospital, Tokushima, Japan.
| | | | | | | | | |
Collapse
|
18
|
Chiu YC, Cheng MH, Uriel S, Brey EM. Materials for engineering vascularized adipose tissue. J Tissue Viability 2009; 20:37-48. [PMID: 20005717 DOI: 10.1016/j.jtv.2009.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/19/2022]
Abstract
UNLABELLED Loss of adipose tissue can occur due to congenital and acquired lipoatrophies, trauma, tumor resection, and chronic disease. Clinically, it is difficult to regenerate or reconstruct adipose tissue. The extensive microvsacular network present in adipose, and the sensitivity of adipocytes to hypoxia, hinder the success of typical tissue transfer procedures. Materials that promote the formation of vascularized adipose tissue may offer alternatives to current clinical treatment options. A number of synthetic and natural biomaterials common in tissue engineering have been investigated as scaffolds for adipose regeneration. While these materials have shown some promise they do not account for the unique extracellular microenvironment of adipose. Adipose derived hydrogels more closely approximate the physical and chemical microenvironment of adipose tissue, promote preadipocyte differentiation and vessel assembly in vitro, and stimulate vascularized adipose formation in vivo. The combination of these materials with techniques that promote rapid and stable vascularization could lead to new techniques for engineering stable, vascularized adipose tissue for clinical application. In this review we discuss materials used for adipose tissue engineering and strategies for vascularization of these scaffolds. CLINICAL RELEVANCE Materials that promote formation of vascularized adipose tissue have the potential to serve as alternatives or supplements to existing treatment options, for adipose defects or deficiencies resulting from chronic disease, lipoatrophies, trauma, and tumor resection.
Collapse
Affiliation(s)
- Yu-Chieh Chiu
- Pritzker Institute of Biomedical Science and Engineering, Department of Biomedical Engineering, Illinois Institute of Technology Chicago, IL 60616, USA
| | | | | | | |
Collapse
|