1
|
Alshaya OA, Alhamed A, Althewaibi S, Fetyani L, Alshehri S, Alnashmi F, Alharbi S, Alrashed M, Alqifari SF, Alshaya AI. Calcium Channel Blocker Toxicity: A Practical Approach. J Multidiscip Healthc 2022; 15:1851-1862. [PMID: 36065348 PMCID: PMC9440664 DOI: 10.2147/jmdh.s374887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Calcium channel blockers (CCBs) are widely prescribed medications for various clinical indications in adults and children. They are available in both immediate and long-acting formulations and are generally classified into dihydropyridines and nondihydropyridines, with nondihydropyridines having more cardioselectivity. CCB toxicity is common given the widespread use which leads to serious adverse clinical outcomes, especially in children. Severe CCB toxicities may present with life-threatening bradycardia, hypotension, hyperglycemia, and renal insufficiency. Dihydropyridine toxicity, however, may present with reflex tachycardia instead of bradycardia. Initial patient evaluation and assessment are crucial to identify the severity of CCB toxicity and design the best management strategy. There are different strategies to overcome CCB toxicity that requires precise dosing and close monitoring in various patient populations. These strategies may include large volumes of IV fluids, calcium salts, high insulin euglycemia therapy (HIET), and vasopressors. We hereby summarize the evidence behind the management of CCB toxicity and present a practical guide for clinicians to overcome this common drug toxicity.
Collapse
Affiliation(s)
- Omar A Alshaya
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pharmaceutical Care, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Correspondence: Omar A Alshaya, Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 3660, Riyadh, 11481, Saudi Arabia, Email
| | - Arwa Alhamed
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sara Althewaibi
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Lolwa Fetyani
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Shaden Alshehri
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fai Alnashmi
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Shmeylan Alharbi
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pharmaceutical Care, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alrashed
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pharmaceutical Care, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmacy Department, Northwest Medical Center, Tucson, AZ, USA
| | - Saleh F Alqifari
- Department of Pharmacy Practice, College of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulrahman I Alshaya
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Pharmaceutical Care, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Konieczny KM, Dorian P. Clinically Important Drug-Drug Interactions Between Antiarrhythmic Drugs and Anticoagulants. J Innov Card Rhythm Manag 2019; 10:3552-3559. [PMID: 32494414 PMCID: PMC7252850 DOI: 10.19102/icrm.2019.100304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 12/02/2022] Open
Abstract
Until the last decade, vitamin K antagonists (VKAs) were the only agents available for oral anticoagulation. Although effective and accessible, their use was complicated by a narrow therapeutic window, the need for regular monitoring of the international normalized ratio, and an associated susceptibility to interactions with both food and numerous medications. Furthermore, the onset of action was delayed, often requiring bridging with intravenous agents. In more recent years, we have enjoyed the development of nonvitamin-K-dependent, direct oral anticoagulants (DOACs), which either directly inhibit the activity of factor IIa (eg, dabigatran) or factor Xa (eg, rivaroxaban, apixaban, edoxaban). These medications boast a more rapid onset of action, predictable pharmacokinetics, wider therapeutic window, and equal or superior safety profiles. Although these medications appear to have fewer drug–drug interactions than VKAs, their interactions remain of clinical importance, particularly in one of the largest populations requiring anticoagulation: patients with atrial fibrillation. These patients are rarely on single medications, with the majority of them requiring some form of rate or rhythm control due to their arrhythmia. Unfortunately, data on interactions between DOACs and antiarrhythmic medications, despite their common coadministration, remain limited. Here, we summarize the interactions between antiarrhythmics and VKAs and review existing knowledge regarding their interactions with DOACs.
Collapse
Affiliation(s)
- Kaja M Konieczny
- Division of Cardiology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Paul Dorian
- Division of Cardiology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Torpet LA, Kragelund C, Reibel J, Nauntofte B. Oral Adverse Drug Reactions to Cardiovascular Drugs. ACTA ACUST UNITED AC 2016; 15:28-46. [PMID: 14761898 DOI: 10.1177/154411130401500104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A great many cardiovascular drugs (CVDs) have the potential to induce adverse reactions in the mouth. The prevalence of such reactions is not known, however, since many are asymptomatic and therefore are believed to go unreported. As more drugs are marketed and the population includes an increasing number of elderly, the number of drug prescriptions is also expected to increase. Accordingly, it can be predicted that the occurrence of adverse drug reactions (ADRs), including the oral ones (ODRs), will continue to increase. ODRs affect the oral mucous membrane, saliva production, and taste. The pathogenesis of these reactions, especially the mucosal ones, is largely unknown and appears to involve complex interactions among the drug in question, other medications, the patient’s underlying disease, genetics, and life-style factors. Along this line, there is a growing interest in the association between pharmacogenetic polymorphism and ADRs. Research focusing on polymorphism of the cytochrome P450 system (CYPs) has become increasingly important and has highlighted the intra- and inter-individual responses to drug exposure. This system has recently been suggested to be an underlying candidate regarding the pathogenesis of ADRs in the oral mucous membrane. This review focuses on those CVDs reported to induce ODRs. In addition, it will provide data on specific drugs or drug classes, and outline and discuss recent research on possible mechanisms linking ADRs to drug metabolism patterns. Abbreviations used will be as follows: ACEI, ACE inhibitor; ADR, adverse drug reaction; ANA, antinuclear antigen; ARB, angiotensin II receptor blocker; BAB, beta-adrenergic blocker; CCB, calcium-channel blocker; CDR, cutaneous drug reaction; CVD, cardiovascular drug; CYP, cytochrome P450 enzyme; EM, erythema multiforme; FDE, fixed drug eruption; I, inhibitor of CYP isoform activity; HMG-CoA, hydroxymethyl-glutaryl coenzyme A; NAT, N-acetyltransferase; ODR, oral drug reaction; RDM, reactive drug metabolite; S, substrate for CYP isoform; SJS, Stevens-Johnson syndrome; SLE, systemic lupus erythematosus; and TEN, toxic epidermal necrolysis.
Collapse
Affiliation(s)
- Lis Andersen Torpet
- Department of Oral Medicine, Clinical Oral Physiology, Oral Pathology & Anatomy, School of Dentistry, Faculty of Health Sciences, University of Copenhagen, 20 Norre Allé, DK-2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|
4
|
Maradey-Romero C, Gabbard S, Fass R. Treatment of esophageal motility disorders based on the chicago classification. ACTA ACUST UNITED AC 2014; 12:441-55. [PMID: 25263532 DOI: 10.1007/s11938-014-0032-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT The Chicago Classification divides esophageal motor disorders based on the recorded value of the integrated relaxation pressure (IRP). The first group includes those with an elevated mean IRP that is associated with peristaltic abnormalities such as achalasia and esophagogastric junction outflow obstruction. The second group includes those with a normal mean IRP that is associated with esophageal hypermotility disorders such as distal esophageal spasm, hypercontractile esophagus (jackhammer esophagus), and hypertensive peristalsis (nutcracker esophagus). The third group includes those with a normal mean IRP that is associated with esophageal hypomotility peristaltic abnormalities such as absent peristalsis, weak peristalsis with small or large breaks, and frequent failed peristalsis. The therapeutic options vary greatly between the different groups of esophageal motor disorders. In achalasia patients, potential treatment strategies comprise medical therapy (calcium channel blockers, nitrates, and phosphodiesterase 5 inhibitors), endoscopic procedures (botulinum toxin A injection, pneumatic dilation, or peroral endoscopic myotomy) or surgery (Heller myotomy). Patients with a normal IRP and esophageal hypermotility disorder are candidates for medical therapy (nitrates, calcium channel blockers, phosphodiesterase 5 inhibitors, cimetropium/ipratropium bromide, proton pump inhibitors, benzodiazepines, tricyclic antidepressants, trazodone, selective serotonin reuptake inhibitors, and serotonin-norepinephrine reuptake inhibitors), endoscopic procedures (botulinum toxin A injection and peroral endoscopic myotomy), or surgery (Heller myotomy). Lastly, in patients with a normal IRP and esophageal hypomotility disorder, treatment is primarily focused on controlling the presence of gastroesophageal reflux with proton pump inhibitors and lifestyle modifications (soft and liquid diet and eating in the upright position) to address patient's dysphagia.
Collapse
Affiliation(s)
- Carla Maradey-Romero
- The Esophageal and Swallowing Center, Division of Gastroenterology and Hepatology, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH, 44109 -1998, USA
| | | | | |
Collapse
|
5
|
Dingemanse J, Nicolas LB, van Bortel L. Effect of Multiple-Dose Diltiazem on the Pharmacokinetics of the Renin Inhibitor ACT-077825. Clin Pharmacol Drug Dev 2013; 2:113-9. [DOI: 10.1002/cpdd.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 01/30/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Jasper Dingemanse
- Actelion Pharmaceuticals Ltd; Gewerbestrasse; Allschwil; Switzerland
| | | | - Luc van Bortel
- Drug Research Unit Ghent; Ghent University Hospital; De Pintelaan; Ghent; Belgium
| |
Collapse
|
6
|
Sultana N, Arayne MS, Naveed S, Shamshad H. An RP-HPLC method for simultaneous analysis of, and interaction studies on, enalapril maleate and H2-receptor antagonists. ACTA CHROMATOGR 2009. [DOI: 10.1556/achrom.21.2009.4.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Abstract
Adverse drug reactions (ADRs) occur frequently in modern medical practice, increasing morbidity and mortality and inflating the cost of care. Patients with cardiovascular disease are particularly vulnerable to ADRs due to their advanced age, polypharmacy, and the influence of heart disease on drug metabolism. The ADR potential for a particular cardiovascular drug varies with the individual, the disease being treated, and the extent of exposure to other drugs. Knowledge of this complex interplay between patient, drug, and disease is a critical component of safe and effective cardiovascular disease management. The majority of significant ADRs involving cardiovascular drugs are predictable and therefore preventable. Better patient education, avoidance of polypharmacy, and clear communication between physicians, pharmacists, and patients, particularly during the transition between the inpatient to outpatient settings, can substantially reduce ADR risk.
Collapse
|
8
|
Konno Y, Sekimoto M, Nemoto K, Degawa M. Induction of hepatic Cyp2b and Cyp3a subfamily enzymes by nicardipine and nifedipine in mice. Xenobiotica 2008; 34:607-18. [PMID: 15672751 DOI: 10.1080/00498250412331285472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. Nicardipine (Nic) or nifedipine (Nif) was given to male and female C57BL/6J mice by a single gavage at doses of 100, 200 and 400 micromolkg(-1), and changes in the levels of mRNA and apoprotein of hepatic cytochrome P450 (P450) enzymes, including Cyp2b9, Cyp2b10, Cyp3a11 and Cyp3a41, were examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting, respectively. Furthermore, hepatic microsomal activities for pentoxyresorufin O-dealkylation (PROD) and nifedipine oxidation, which are mainly mediated by Cyp2b and Cyp3a subfamily enzymes, respectively, were measured. 2. Results from RT-PCR analysis revealed that Nic, but not Nif, showed a capacity for activating the Cyp3a11 gene in either sex of mice and that both chemicals could induce a male-selective activation of Cyp2b10 gene, although they had no capacity for activating the Cyp2b9 and Cyp3a41 genes in either sex. 3. Increased levels of the mRNAs of Cyp2b10 and Cyp3a11 were closely correlated with those of apoprotein and activity of the corresponding P450 subfamily enzymes. 4. The study demonstrated for the first time that Nic, but not Nif, showed the ability to induce Cyp3a11 in both sexes of mice, although both Nif and Nic led to a male-selective induction of Cyp2b10, and that Nic and Nif had no ability to induce Cyp2b9 and Cyp3a41 in either sex.
Collapse
Affiliation(s)
- Y Konno
- Department of Molecular Toxicology and COE Program in the 21st Century, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
9
|
Sternieri E, Coccia CPR, Pinetti D, Guerzoni S, Ferrari A. Pharmacokinetics and interactions of headache medications, part II: prophylactic treatments. Expert Opin Drug Metab Toxicol 2007; 2:981-1007. [PMID: 17125412 DOI: 10.1517/17425255.2.6.981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The present part II review highlights pharmacokinetic drug-drug interactions (excluding those of minor severity) of medications used in prophylactic treatment of the main primary headaches (migraine, tension-type and cluster headache). The principles of pharmacokinetics and metabolism, and the interactions of medications for acute treatment are examined in part I. The overall goal of this series of two reviews is to increase the awareness of physicians, primary care providers and specialists regarding pharmacokinetic drug-drug interactions (DDIs) of headache medications. The aim of prophylactic treatment is to reduce the frequency of headache attacks using beta-blockers, calcium-channel blockers, antidepressants, antiepileptics, lithium, serotonin antagonists, corticosteroids and muscle relaxants, which must be taken daily for long periods. During treatment the patient often continues to take symptomatic drugs for the attack, and may need other medications for associated or new-onset illnesses. DDIs can, therefore, occur. As a whole, DDIs of clinical relevance concerning prophylactic drugs are a limited number. Their effects can be prevented by starting the treatment with low dosages, which should be gradually increased depending on response and side effects, while frequently monitoring the patient and plasma levels of other possible coadministered drugs with a narrow therapeutic range. Most headache medications are substrates of CYP2D6 (e.g., beta-blockers, antidepressants) or CYP3A4 (e.g., calcium-channel blockers, selective serotonin re-uptake inhibitors, corticosteroids). The inducers and, especially, the inhibitors of these isoenzymes should be carefully coadministered.
Collapse
Affiliation(s)
- Emilio Sternieri
- University of Modena and Reggio Emilia, Division of Toxicology and Clinical Pharmacology, Headache Centre, University Centre for Adaptive Disorders and Headache, Section Modena II, Largo del Pozzo 71, Modena, Italy
| | | | | | | | | |
Collapse
|
10
|
Shimizu M, Uno T, Sugawara K, Tateishi T. Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol 2006; 61:538-44. [PMID: 16669847 PMCID: PMC1885063 DOI: 10.1111/j.1365-2125.2006.02613.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS Fexofenadine is a substrate of several drug transporters including P-glycoprotein. Our objective was to evaluate the possible effects of two P-glycoprotein inhibitors, itraconazole and diltiazem, on the pharmacokinetics of fexofenadine, a putative probe of P-glycoprotein activity in vivo, and compare the inhibitory effect between the two in healthy volunteers. METHODS In a randomized three-phase crossover study, eight healthy volunteers were given oral doses of 100 mg itraconazole twice daily, 100 mg diltiazem twice daily or a placebo capsule twice daily (control) for 5 days. On the morning of day 5 each subject was given 120 mg fexofenadine, and plasma concentrations and urinary excretion of fexofenadine were measured up to 48 h after dosing. RESULTS Itraconazole pretreatment significantly increased mean (+/-SD) peak plasma concentration (Cmax) of fexofenadine from 699 (+/-366) ng ml-1 to 1346 (+/-561) ng ml-1 (95% CI of differences 253, 1040; P<0.005) and the area under the plasma concentration-time curve [AUC0,infinity] from 4133 (+/-1776) ng ml-1 h to 11287 (+/-4552) ng ml-1 h (95% CI 3731, 10575; P<0.0001). Elimination half-life and renal clearance in the itraconazole phase were not altered significantly compared with those in the control phase. In contrast, diltiazem pretreatment did not affect Cmax (704+/-316 ng ml-1, 95% CI -145, 155), AUC0, infinity (4433+/-1565 ng ml-1 h, 95% CI -1353, 754), or other pharmacokinetic parameters of fexofenadine. CONCLUSIONS Although some drug transporters other than P-glycoprotein are thought to play an important role in fexofenadine pharmacokinetics, itraconazole pretreatment increased fexofenadine exposure, probably due to the reduced first-pass effect by inhibiting the P-glycoprotein activity. As diltiazem pretreatment did not alter fexofenadine pharmacokinetics, therapeutic doses of diltiazem are unlikely to affect the P-glycoprotein activity in vivo.
Collapse
Affiliation(s)
- Mikiko Shimizu
- Department of Clinical Pharmacology, Hirosaki University School of MedicineHirosaki, Japan
| | - Tsukasa Uno
- Department of Clinical Pharmacology, Hirosaki University School of MedicineHirosaki, Japan
| | | | - Tomonori Tateishi
- Department of Clinical Pharmacology, Hirosaki University School of MedicineHirosaki, Japan
| |
Collapse
|
11
|
Abstract
A drug interaction is the quantitative or qualitative modification of the effect of a drug by the simultaneous or successive administration of a different one. Hypertensive patients, mainly the more elderly ones, frequently present concomitant diseases that require the administration of several medicines which facilitates the appearance of interactions. The lack of effectiveness of the antihypertensive treatment is a relatively frequent fact that sometimes is due to interactions of antihypertensive drugs with other treatments. It is difficult to determine the incidence of interactions, but it is related to the number of drugs administered simultaneously. Between 37 and 60% of hospital-admissions are treated with potentially dangerous drug associations and up to a 6% of fatal events are due to this circumstance. Among antihypertensive drugs, diuretics and angiotensin converting enzyme inhibitors are less affected by drug-interactions. Lipophilic beta-blockers agents may present some clinical relevant interactions, whereas calcium channel blockers, especially the non-dihydropiridinic ones, are implied in clinically relevant pharmacokinetic interactions. Among the angiotensin receptor blockers there are differences that would have to be considered when they are used in patients who receive other drugs. Although it is impossible for the doctor to remember all the clinical relevant interactions, it is important to bear in mind their existence and the possible mechanisms of production which can help to identify them and to contribute to their prevention. The most frequent interactions related with clinical problems are the pharmacokinetic ones, mainly those related to the metabolism through the cytochrome P450 system or the presystemic clearance by means of the P-glycoprotein. Enzymes of the cytochrome P450 system may present polymorphisms that can explain the individual differences in the response to drugs or the appearance of drug-interactions.
Collapse
|
12
|
Abstract
Calcium antagonists were introduced for the treatment of hypertension in the 1980s. Their use was subsequently expanded to additional disorders, such as angina pectoris, paroxysmal supraventricular tachycardias, hypertrophic cardiomyopathy, Raynaud phenomenon, pulmonary hypertension, diffuse esophageal spasms, and migraine. Calcium antagonists as a group are heterogeneous and include 3 main classes--phenylalkylamines, benzothiazepines, and dihydropyridines--that differ in their molecular structure, sites and modes of action, and effects on various other cardiovascular functions. Calcium antagonists lower blood pressure mainly through vasodilation and reduction of peripheral resistance. They maintain blood flow to vital organs, and are safe in patients with renal impairment. Unlike diuretics and beta-blockers, calcium antagonists do not impair glucose metabolism or lipid profile and may even attenuate the development of arteriosclerotic lesions. In long-term follow-up, patients treated with calcium antagonists had development of less overt diabetes mellitus than those who were treated with diuretics and beta-blockers. Moreover, calcium antagonists are able to reduce left ventricular mass and are effective in improving anginal pain. Recent prospective randomized studies attested to the beneficial effects of calcium antagonists in hypertensive patients. In comparison with placebo, calcium antagonist-based therapy reduced major cardiovascular events and cardiovascular death significantly in elderly hypertensive patients and in diabetic patients. In several comparative studies in hypertensive patients, treatment with calcium antagonists was equally effective as treatment with diuretics, beta-blockers, or angiotensin-converting enzyme inhibitors. From these studies, it seems that a calcium antagonist-based regimen is superior to other regimens in preventing stroke, equivalent in preventing ischemic heart disease, and inferior in preventing congestive heart failure. Calcium antagonists are also safe and effective as first-line or add-on therapy in diabetic hypertensive patients. Heart rate-lowering calcium antagonists (verapamil, diltiazem) may have an edge over the dihydropyridines in post-myocardial infarction patients and in diabetic nephropathy. Thus, calcium antagonists may be safely used in the management of hypertension and angina pectoris.
Collapse
Affiliation(s)
- Ehud Grossman
- Internal Medicine D and Hyperstension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | |
Collapse
|
13
|
Konno Y, Sekimoto M, Nemoto K, Degawa M. Sex difference in induction of hepatic CYP2B and CYP3A subfamily enzymes by nicardipine and nifedipine in rats. Toxicol Appl Pharmacol 2004; 196:20-8. [PMID: 15050404 DOI: 10.1016/j.taap.2003.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Accepted: 12/08/2003] [Indexed: 10/26/2022]
Abstract
Male and female of F344 rats were treated per os with nicardipine (Nic) and nifedipine (Nif), and changes in the levels of mRNA and protein of hepatic cytochrome P450 (P450) enzymes, CYP2B1, CYP2B2, CYP3A1, CYP3A2, CYP3A9, and CYP3A18 were examined. Furthermore, hepatic microsomal activities for pentoxyresorufin O-dealkylation (PROD) and nifedipine oxidation, which are mainly mediated by CYP2B and CYP3A subfamily enzymes, respectively, were measured. Analyses of RT-PCR and Western blotting revealed that Nic and Nif induced predominantly CYP3A and CYP2B enzymes, respectively. As for the gene activation of CYP2B enzymes, especially CYP2B1, Nif showed high capacity in both sexes of rats, whereas Nic did a definite capacity in the males but little in the females. Gene activations of CYP3A1, CYP3A2, and CYP3A18 by Nic occurred in both sexes of rats, although that of CYP3A9 did only in the male rats. Although gene activations of CYP3A1 and CYP3A2 by Nif were observed in both sexes of rats, a slight activation of the CYP3A9 gene occurred only in female rats, and the CYP3A18 gene activation, in neither male nor female rats. Thus, changes in levels of the mRNA or protein of CYP2B and CYP3A enzymes, especially CYP2B1 and CYP3A2, were closely correlated with those in hepatic PROD and nifedipine oxidation activities, respectively. The present findings demonstrate for the first time the sex difference in the Nic- and Nif-mediated induction of hepatic P450 enzymes in rats and further indicate that Nic and Nif show different specificities and sex dependencies in the induction of hepatic P450 enzymes.
Collapse
Affiliation(s)
- Yoshihiro Konno
- Department of Molecular Toxicology and COE program in the 21st Century, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
14
|
Konno Y, Degawa M. Gene Activations of CYP2B1 and CYP3A1 by Dihydropyridine Calcium Channel Antagonists in the Rat Liver: the Structure-Activity Relationship. Biol Pharm Bull 2004; 27:903-5. [PMID: 15187443 DOI: 10.1248/bpb.27.903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the gene activations of CYP2B1 and CYP3A1 by 1,4-dihydropyridine calcium channel antagonists, including nifedipine (Nif), nisoldipine (Nis), nitrendipine (Nit), nimodipine (Nim), and nicardipine (Nic), in the rat liver and their structure-activity relationships. All calcium channel antagonists used have nitrophenyl substituents at the 4-position of the dihydropyridine ring and their nitro group was located at o- or m-position. The m-nitro derivatives Nic, Nim, and Nit showed much higher capacities for activating CYP3A1 than the o-nitro derivatives Nif and Nis. On the other hand, in the activation of CYP2B1, the length of the side chain at the 3-position of the dihydropyridine ring was correlated with the activating capacity of each chemical, and Nif and Nit, with a shorter side chain than the other calcium channel antagonists examined, had potent capacities. The present findings suggest that the ability of dihydropyridine calcium channel antagonists to activate the CYP2B1 and CYP3A1 are mainly dependent on the length of the side chain at the 3-position of the dihydropyridine ring and the position of the nitro group in the nitrophenyl substituent, respectively.
Collapse
Affiliation(s)
- Yoshihiro Konno
- Department of Molecular Toxicology and COE Program in the 21st Century, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | | |
Collapse
|
15
|
Unger T, Kaschina E. Drug interactions with angiotensin receptor blockers: a comparison with other antihypertensives. Drug Saf 2003; 26:707-20. [PMID: 12862505 DOI: 10.2165/00002018-200326100-00004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The ever-increasing introduction of new therapeutic agents means that the potential for drug interactions is likely to escalate. Numerous different classes of drugs are currently used to treat hypertension. The angiotensin receptor blockers offer one of the newest approaches to the management of patients with high blood pressure. Compared with other classes of antihypertensive agents, the angiotensin receptor blockers appear overall to have a low potential for drug interactions, but variations within the class have been detected. Losartan and irbesartan have a greater affinity for cytochrome p450 (CYP) isoenzymes and, thus, are more likely to be implicated in drug interactions. There is pharmacokinetic evidence to suggest that such interactions could have a clinical impact. Candesartan cilexetil, valsartan and eprosartan have variable but generally modest affinity and telmisartan has no affinity for any of the CYP isoenzymes. In vitro studies and pharmacokinetic/pharmacodynamic evaluation can provide evidence for some interactions, but only a relatively small number of drug combinations are usually studied in this way. The absence of any pharmacokinetic evidence of drug interaction, however, should not lead to complacency. Patients should be made aware of possible interactions, especially involving the concurrent use of over-the-counter products, and it may be prudent for all patients receiving antihypertensive treatment to be monitored for possible drug interactions at their regular check-ups. The physician can help by prescribing agents with a low potential for interaction, such as angiotensin receptor blockers.
Collapse
Affiliation(s)
- Thomas Unger
- Institute of Pharmacology and Toxicology, Charité Hospital, Humboldt University at Berlin, Berlin, Germany
| | | |
Collapse
|
16
|
Yamreudeewong W, DeBisschop M, Martin LG, Lower DL. Potentially significant drug interactions of class III antiarrhythmic drugs. Drug Saf 2003; 26:421-38. [PMID: 12688833 DOI: 10.2165/00002018-200326060-00004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Class III antiarrhythmic drugs, especially amiodarone (a broad-spectrum antiarrhythmic agent), have gained popularity for use in clinical practice in recent years. Other class III antiarrhythmic drugs include bretylium, dofetilide, ibutilide and sotalol. These agents are effective for the management of various types of cardiac arrhythmias both atrial and ventricular in origin. Class III antiarrhythmic drugs may interact with other drugs by two major processes: pharmacodynamic and pharmacokinetic interactions. The pharmacodynamic interaction occurs when the pharmacological effects of the object drug are stimulated or inhibited by the precipitant drug. Pharmacokinetic interactions can result from the interference of drug absorption, metabolism and/or elimination of the object drug by the precipitant drug. Among the class III antiarrhythmic drugs, amiodarone has been reported to be involved in a significant number of drug interactions. It is mainly metabolised by cytochrome P450 (CYP)3A4 and it is a potent inhibitor of CYP1A2, 2C9, 2D6 and 3A4. In addition, amiodarone may interact with other drugs (such as digoxin) via the inhibition of the P-glycoprotein membrane transporter system, a recently described pharmacokinetic mechanism of drug interactions. Bretylium is not metabolised; it is excreted unchanged in the urine. Therefore the interactions between bretylium and other drugs (including other antiarrhythmic drugs) is primarily through the pharmacodynamic mechanism. Dofetilide is metabolised by CYP3A4 and excreted by the renal cation transport system. Drugs that inhibit CYP3A4 (such as erythromycin) and/or the renal transport system (such as triamterene) may interact with dofetilide. It appears that the potential for pharmacokinetic interactions between ibutilide and other drugs is low. This is because ibutilide is not metabolised by CYP3A4 or CYP2D6. However, ibutilide may significantly interact with other drugs by a pharmacodynamic mechanism. Sotalol is primarily excreted unchanged in the urine. The potential for drug interactions due to hepatic enzyme induction or inhibition appears to be less likely. However, a number of drugs (such as digoxin) have been reported to interact with sotalol pharmacodynamically. If concurrent use of a class III antiarrhythmic agent and another drug cannot be avoided or no published studies for that particular drug interaction are available, caution should be exercised and close monitoring of the patient should be performed in order to avoid or minimise the risks associated with a possible adverse drug interaction.
Collapse
Affiliation(s)
- Weeranuj Yamreudeewong
- School of Pharmacy, University of Wyoming, and Pharmacy Services, Cheyenne VAMC, Cheyenne, Wyoming 82001, USA.
| | | | | | | |
Collapse
|
17
|
Ogihara T, Hiwada K, Morimoto S, Matsuoka H, Matsumoto M, Takishita S, Shimamoto K, Shimada K, Abe I, Ouchi Y, Tsukiyama H, Katayama S, Imai Y, Suzuki H, Kohara K, Okaishi K, Mikami H. Guidelines for treatment of hypertension in the elderly--2002 revised version. Hypertens Res 2003; 26:1-36. [PMID: 12661910 DOI: 10.1291/hypres.26.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Toshio Ogihara
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The management of cardiac arrhythmias has grown more complex in recent years. Despite the recent focus on nonpharmacological therapy, most clinical arrhythmias are treated with existing antiarrhythmics. Because of the narrow therapeutic index of antiarrhythmic agents, potential drug interactions with other medications are of major clinical importance. As most antiarrhythmics are metabolised via the cytochrome P450 enzyme system, pharmacokinetic interactions constitute the majority of clinically significant interactions seen with these agents. Antiarrhythmics may be substrates, inducers or inhibitors of cytochrome P450 enzymes, and many of these metabolic interactions have been characterised. However, many potential interactions have not, and knowledge of how antiarrhythmic agents are metabolised by the cytochrome P450 enzyme system may allow clinicians to predict potential interactions. Drug interactions with Vaughn-Williams Class II (beta-blockers) and Class IV (calcium antagonists) agents have previously been reviewed and are not discussed here. Class I agents, which primarily block fast sodium channels and slow conduction velocity, include quinidine, procainamide, disopyramide, lidocaine (lignocaine), mexiletine, flecainide and propafenone. All of these agents except procainamide are metabolised via the cytochrome P450 system and are involved in a number of drug-drug interactions, including over 20 different interactions with quinidine. Quinidine has been observed to inhibit the metabolism of digoxin, tricyclic antidepressants and codeine. Furthermore, cimetidine, azole antifungals and calcium antagonists can significantly inhibit the metabolism of quinidine. Procainamide is excreted via active tubular secretion, which may be inhibited by cimetidine and trimethoprim. Other Class I agents may affect the disposition of warfarin, theophylline and tricyclic antidepressants. Many of these interactions can significantly affect efficacy and/or toxicity. Of the Class III antiarrhythmics, amiodarone is involved in a significant number of interactions since it is a potent inhibitor of several cytochrome P450 enzymes. It can significantly impair the metabolism of digoxin, theophylline and warfarin. Dosages of digoxin and warfarin should empirically be decreased by one-half when amiodarone therapy is added. In addition to pharmacokinetic interactions, many reports describe the use of antiarrhythmic drug combinations for the treatment of arrhythmias. By combining antiarrhythmic drugs and utilising additive electrophysiological/pharmacodynamic effects, antiarrhythmic efficacy may be improved and toxicity reduced. As medication regimens grow more complex with the aging population, knowledge of existing and potential drug-drug interactions becomes vital for clinicians to optimise drug therapy for every patient.
Collapse
Affiliation(s)
- T C Trujillo
- Department of Pharmacy Practice, Massachusetts College of Pharmacy and Health Sciences, Boston 02115, USA.
| | | |
Collapse
|
19
|
Abstract
Cytochrome P4503A (CYP3A) is importantly involved in the metabolism of many chemically diverse drugs administered to humans. Moreover, its localization in high amounts both in the small intestinal epithelium and liver makes it a major contributor to presystemic elimination following oral drug administration. Drug interactions involving enzyme inhibition or induction are common following the coadministration of two or more CYP3A substrates. Studies using in vitro preparations are useful in identifying such potential interactions and possibly permitting extrapolation of in vitro findings to the likely in vivo situation. Even if accurate quantitative predictions cannot be made, several classes of drugs can be expected to result in a drug interaction based on clinical experience. In many instances, the extent of such drug interactions is sufficiently pronounced to contraindicate the therapeutic use of the involved drugs.
Collapse
Affiliation(s)
- K E Thummel
- Department of Pharmaceutics, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|