1
|
Torres-Rico M, García-Calvo V, Gironda-Martínez A, Pascual-Guerra J, García AG, Maneu V. Targeting calciumopathy for neuroprotection: focus on calcium channels Cav1, Orai1 and P2X7. Cell Calcium 2024; 123:102928. [PMID: 39003871 DOI: 10.1016/j.ceca.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As the uncontrolled entry of calcium ions (Ca2+) through plasmalemmal calcium channels is a cell death trigger, the conjecture is here raised that mitigating such an excess of Ca2+ entry should rescue from death the vulnerable neurons in neurodegenerative diseases (NDDs). However, this supposition has failed in some clinical trials (CTs). Thus, a recent CT tested whether isradipine, a blocker of the Cav1 subtype of voltage-operated calcium channels (VOCCs), exerted a benefit in patients with Parkinson's disease (PD); however, outcomes were negative. This is one more of the hundreds of CTs done under the principle of one-drug-one-target, that have failed in Alzheimer's disease (AD) and other NDDs during the last three decades. As there are myriad calcium channels to let Ca2+ ions gain the cell cytosol, it seems reasonable to predict that blockade of Ca2+ entry through a single channel may not be capable of preventing the Ca2+ flood of cells by the uncontrolled Ca2+ entry. Furthermore, as Ca2+ signaling is involved in the regulation of myriad functions in different cell types, it seems also reasonable to guess that a therapy should be more efficient by targeting different cells with various drugs. Here, we propose to mitigate Ca2+ entry by the simultaneous partial blockade of three quite different subtypes of plasmalemmal calcium channels that is, the Cav1 subtype of VOCCs, the Orai1 store-operated calcium channel (SOCC), and the purinergic P2X7 calcium channel. All three channels are expressed in both microglia and neurons. Thus, by targeting the three channels with a combination of three drug blockers we expect favorable changes in some of the pathogenic features of NDDs, namely (i) to mitigate Ca2+ entry into microglia; (ii) to decrease the Ca2+-dependent microglia activation; (iii) to decrease the sustained neuroinflammation; (iv) to decrease the uncontrolled Ca2+ entry into neurons; (v) to rescue vulnerable neurons from death; and (vi) to delay disease progression. In this review we discuss the arguments underlying our triad hypothesis in the sense that the combination of three repositioned medicines targeting Cav1, Orai1, and P2X7 calcium channels could boost neuroprotection and delay the progression of AD and other NDDs.
Collapse
Affiliation(s)
| | | | - Adrián Gironda-Martínez
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Antonio G García
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
2
|
Fan Y, Wang J, Jian J, Wen Y, Li J, Tian H, Crommen J, Bi W, Zhang T, Jiang Z. High-throughput discovery of highly selective reversible hMAO-B inhibitors based on at-line nanofractionation. Acta Pharm Sin B 2024; 14:1772-1786. [PMID: 38572096 PMCID: PMC10985270 DOI: 10.1016/j.apsb.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 04/05/2024] Open
Abstract
Human monoamine oxidase B (hMAO-B) has emerged as a pivotal therapeutic target for Parkinson's disease. Due to adverse effects and shortage of commercial drugs, there is a need for novel, highly selective, and reversible hMAO-B inhibitors with good blood-brain barrier permeability. In this study, a high-throughput at-line nanofractionation screening platform was established with extracts from Chuanxiong Rhizoma, which resulted in the discovery of 75 active compounds, including phenolic acids, volatile oils, and phthalides, two of which were highly selective novel natural phthalide hMAO-B inhibitors that were potent, selective, reversible and had good blood‒brain permeability. Molecular docking and molecular dynamics simulations elucidated the inhibition mechanism. Sedanolide (IC50 = 103 nmol/L; SI = 645) and neocnidilide (IC50 = 131 nmol/L; SI = 207) demonstrated their excellent potential as hMAO-B inhibitors. They offset the limitations of deactivating enzymes associated with irreversible hMAO-B inhibitors such as rasagiline. In SH-SY5Y cell assays, sedanolide (EC50 = 0.962 μmol/L) and neocnidilide (EC50 = 1.161 μmol/L) exhibited significant neuroprotective effects, comparable to the positive drugs rasagiline (EC50 = 0.896 μmol/L) and safinamide (EC50 = 1.079 μmol/L). These findings underscore the potential of sedanolide as a novel natural hMAO-B inhibitor that warrants further development as a promising drug candidate.
Collapse
Affiliation(s)
- Yu Fan
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jincai Wang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingyi Jian
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
- KU Leuven-University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, Leuven 3000, Belgium
| | - Yalei Wen
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiahao Li
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hao Tian
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Wei Bi
- Department of Neurology, the First Affiliated Hospital of Jinan University/Clinical Neuroscience Institute, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Chahid Y, Sheikh ZH, Mitropoulos M, Booij J. A systematic review of the potential effects of medications and drugs of abuse on dopamine transporter imaging using [ 123I]I-FP-CIT SPECT in routine practice. Eur J Nucl Med Mol Imaging 2023; 50:1974-1987. [PMID: 36847827 PMCID: PMC10199883 DOI: 10.1007/s00259-023-06171-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE In routine practice, dopamine transporter (DAT) imaging is frequently used as a diagnostic tool to support the diagnosis of Parkinson's disease or dementia with Lewy bodies. In 2008, we published a review on which medications and drugs of abuse may influence striatal [123I]I-FP-CIT binding and consequently may influence the visual read of an [123I]I-FP-CIT SPECT scan. We made recommendations on which drugs should be withdrawn before performing DAT imaging in routine practice. Here, we provide an update of the original work based on published research since 2008. METHODS We performed a systematic review of literature without language restriction from January 2008 until November 2022 to evaluate the possible effects of medications and drugs of abuse, including the use of tobacco and alcohol, on striatal DAT binding in humans. RESULTS The systematic literature search identified 838 unique publications, of which 44 clinical studies were selected. Using this approach, we found additional evidence to support our original recommendations as well as some new findings on potential effect of other medications on striatal DAT binding. Consequently, we updated the list of medications and drugs of abuse that may influence the visual read of [123I]I-FP-CIT SPECT scans in routine clinical practice. CONCLUSION We expect that a timely withdrawal of these medications and drugs of abuse before DAT imaging may reduce the incidence of false-positive reporting. Nevertheless, the decision to withdraw any medication must be made by the specialist in charge of the patient's care and considering the pros and cons of doing so.
Collapse
Affiliation(s)
- Youssef Chahid
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam UMC location University of Amsterdam, Clinical Pharmacy, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Zulfiqar H Sheikh
- GE Healthcare, Pharmaceutical Diagnostics, Nightingales Ln, Chalfont Saint Giles, United Kingdom
| | - Max Mitropoulos
- GE Healthcare, Pharmaceutical Diagnostics, Nightingales Ln, Chalfont Saint Giles, United Kingdom
| | - Jan Booij
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
4
|
X-ray diffraction and theoretical study of molecular and crystal structure of new crystalline aryl- and alkyl-substituted N-(adamantan-1-yl)amides: Similarities and differences. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Huang Q, Liao C, Ge F, Ao J, Liu T. Acetylcholine bidirectionally regulates learning and memory. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Jayanti S, Moretti R, Tiribelli C, Gazzin S. Bilirubin: A Promising Therapy for Parkinson's Disease. Int J Mol Sci 2021; 22:6223. [PMID: 34207581 PMCID: PMC8228391 DOI: 10.3390/ijms22126223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
Following the increase in life expectancy, the prevalence of Parkinson's disease (PD) as the most common movement disorder is expected to rise. Despite the incredibly huge efforts in research to find the definitive biomarker, to date, the diagnosis of PD still relies mainly upon clinical symptoms. A wide range of treatments is available for PD, mainly alleviating the clinical symptoms. However, none of these current therapies can stop or even slow down the disease evolution. Hence, disease-modifying treatment is still a paramount unmet medical need. On the other side, bilirubin and its enzymatic machinery and precursors have offered potential benefits by targeting multiple mechanisms in chronic diseases, including PD. Nevertheless, only limited discussions are available in the context of neurological conditions, particularly in PD. Therefore, in this review, we profoundly discuss this topic to understand bilirubin's therapeutical potential in PD.
Collapse
Affiliation(s)
- Sri Jayanti
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (C.T.); (S.G.)
- Faculty of Medicine, University of Hasanuddin, Makassar 90245, Indonesia
- Molecular Biomedicine Ph.D. Program, University of Trieste, 34127 Trieste, Italy
| | - Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34139 Trieste, Italy;
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (C.T.); (S.G.)
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149 Trieste, Italy; (C.T.); (S.G.)
| |
Collapse
|
7
|
Is YS, Aksoydan B, Senturk M, Yurtsever M, Durdagi S. Integrated Binary QSAR-Driven Virtual Screening and In Vitro Studies for Finding Novel hMAO-B-Selective Inhibitors. J Chem Inf Model 2020; 60:4047-4055. [PMID: 32672456 DOI: 10.1021/acs.jcim.0c00169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increased activity of monoamine oxidase (MAO) enzymes may lead to serious consequences since they reduce the level of neurotransmitters and are associated with severe neurodegenerative diseases. The inhibition of this enzyme, especially the B isoform, plays a vital role in the treatment of Parkinson's disease (PD). This study is aimed to find novel human MAO-B (hMAO-B) selective inhibitors. A total of 256.750 compounds from the Otava small molecules database were virtually screened gradually by employing several screening techniques for this purpose. Initially, a high-throughput virtual screening (HTVS) method was employed, and 10% of the molecules having high docking scores were subjected to binary QSAR models for further screening of their therapeutic activities against PD, Alzheimer's disease (AD), and depression as well as for their toxicity and pharmacokinetic properties. Then, enzyme selectivity of the ligands towards the A and B forms that passed through all the filters were studied using the induced-fit docking method and molecular dynamics simulations. At the end of this exhaustive research, we identified two hit molecules ligand 3 (Otava ID: 7131545) and ligand 4 (Otava ID: 7566820). Based on the in vitro results, these two compounds (ligands 3 and 4) together with ligands 1 and 2 found in our previous study showed activity at the nanomolar (nM) level, and the results indicated that these four ligands inhibit hMAO-B better than the FDA-approved drug selegiline.
Collapse
Affiliation(s)
- Yusuf Serhat Is
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey.,Department of Chemistry, Istanbul Technical University, 34467 Istanbul, Turkey.,Department of Chemical Technology, Istanbul Gedik University, 34876 Istanbul, Turkey
| | - Busecan Aksoydan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey.,Neuroscience Program, Graduate School of Health Sciences, Bahçeşehir University, 34349 Istanbul, Turkey
| | - Murat Senturk
- Department of Biochemistry, Faculty of Pharmacy, Agri Ibrahim Cecen University, 04100 Agri, Turkey
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, 34467 Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey.,Neuroscience Program, Graduate School of Health Sciences, Bahçeşehir University, 34349 Istanbul, Turkey.,Virtual Drug Screening and Development Laboratory, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| |
Collapse
|
8
|
Crans RAJ, Wouters E, Valle-León M, Taura J, Massari CM, Fernández-Dueñas V, Stove CP, Ciruela F. Striatal Dopamine D 2-Muscarinic Acetylcholine M 1 Receptor-Receptor Interaction in a Model of Movement Disorders. Front Pharmacol 2020; 11:194. [PMID: 32231561 PMCID: PMC7083216 DOI: 10.3389/fphar.2020.00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor control deficits, which is associated with the loss of striatal dopaminergic neurons from the substantia nigra. In parallel to dopaminergic denervation, there is an increase of acetylcholine within the striatum, resulting in a striatal dopaminergic–cholinergic neurotransmission imbalance. Currently, available PD pharmacotherapy (e.g., prodopaminergic drugs) does not reinstate the altered dopaminergic–cholinergic balance. In addition, it can eventually elicit cholinergic-related adverse effects. Here, we investigated the interplay between dopaminergic and cholinergic systems by assessing the physical and functional interaction of dopamine D2 and muscarinic acetylcholine M1 receptors (D2R and M1R, respectively), both expressed at striatopallidal medium spiny neurons. First, we provided evidence for the existence of D2R–M1R complexes via biochemical (i.e., co-immunoprecipitation) and biophysical (i.e., BRET1 and NanoBiT®) assays, performed in transiently transfected HEK293T cells. Subsequently, a D2R–M1R co-distribution in the mouse striatum was observed through double-immunofluorescence staining and AlphaLISA® immunoassay. Finally, we evaluated the functional interplay between both receptors via behavioral studies, by implementing the classical acute reserpine pharmacological animal model of experimental parkinsonism. Reserpinized mice were administered with a D2R-selective agonist (sumanirole) and/or an M1R-selective antagonist (VU0255035), and alterations in PD-related behavioral tasks (i.e., locomotor activity) were evaluated. Importantly, VU0255035 (10 mg/kg) potentiated the antiparkinsonian-like effects (i.e., increased locomotor activity and decreased catalepsy) of an ineffective sumanirole dose (3 mg/kg). Altogether, our data suggest the existence of putative striatal D2R/M1R heteromers, which might be a relevant target to manage PD motor impairments with fewer adverse effects.
Collapse
Affiliation(s)
- René A J Crans
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium.,Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elise Wouters
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Marta Valle-León
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Taura
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Caio M Massari
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Programa de Poìs-graduação em Bioquiìmica, Centro de Ciencias Bioloìgicas, Universidade Federal de Santa Catarina, Florianoìpolis, Brazil
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Engelbrecht I, Petzer JP, Petzer A. Evaluation of Selected Natural Compounds as Dual Inhibitors of Catechol-O-Methyltransferase and Monoamine Oxidase. Cent Nerv Syst Agents Med Chem 2019; 19:133-145. [PMID: 31258092 DOI: 10.2174/1871524919666190619090852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
Background:
The most effective symptomatic treatment of Parkinson’s disease remains
the metabolic precursor of dopamine, L-dopa. To enhance the efficacy of L-dopa, it is often combined
with inhibitors of the enzymes, catechol-O-methyltransferase (COMT) and monoamine oxidase
(MAO) B, key metabolic enzymes of L-dopa and dopamine.
Objective:
This study attempted to discover compounds that exhibit dual inhibition of COMT and
MAO-B among a library of 40 structurally diverse natural compounds. Such dual acting inhibitors
may be effective as adjuncts to L-dopa and offer enhanced value in the management of Parkinson’s
disease.
Methods:
Selected natural compounds were evaluated as in vitro inhibitors of rat liver COMT and
recombinant human MAO. Reversibility of MAO inhibition was investigated by dialysis.
Results:
Among the natural compounds morin (IC50 = 1.32 µM), chlorogenic acid (IC50 = 6.17 µM),
(+)-catechin (IC50 = 0.86 µM), alizarin (IC50 = 0.88 µM), fisetin (IC50 = 5.78 µM) and rutin (IC50 =
25.3 µM) exhibited COMT inhibition. Among these active COMT inhibitors only morin (IC50 = 16.2
µM), alizarin (IC50 = 8.16 µM) and fisetin (IC50 = 7.33 µM) were noteworthy MAO inhibitors, with
specificity for MAO-A.
Conclusion:
None of the natural products investigated here are dual COMT/MAO-B inhibitors.
However, good potency COMT inhibitors have been identified, which may serve as leads for future
development of COMT inhibitors.
Collapse
Affiliation(s)
- Idalet Engelbrecht
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Jacobus P. Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
Bastakis GG, Ktena N, Karagogeos D, Savvaki M. Models and treatments for traumatic optic neuropathy and demyelinating optic neuritis. Dev Neurobiol 2019; 79:819-836. [PMID: 31297983 DOI: 10.1002/dneu.22710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
Pathologies of the optic nerve could result as primary insults in the visual tract or as secondary deficits due to inflammation, demyelination, or compressing effects of the surrounding tissue. The extent of damage may vary from mild to severe, differently affecting patient vision, with the most severe forms leading to complete uni- or bilateral visual loss. The aim of researchers and clinicians in the field is to alleviate the symptoms of these, yet uncurable pathologies, taking advantage of known and novel potential therapeutic approaches, alone or in combinations, and applying them in a limited time window after the insult. In this review, we discuss the epidemiological and clinical profile as well as the pathophysiological mechanisms of two main categories of optic nerve pathologies, namely traumatic optic neuropathy and optic neuritis, focusing on the demyelinating form of the latter. Moreover, we report on the main rodent models mimicking these pathologies or some of their clinical aspects. The current treatment options will also be reviewed and novel approaches will be discussed.
Collapse
Affiliation(s)
| | - Niki Ktena
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Domna Karagogeos
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Maria Savvaki
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| |
Collapse
|
11
|
Latt MD, Lewis S, Zekry O, Fung VSC. Factors to Consider in the Selection of Dopamine Agonists for Older Persons with Parkinson's Disease. Drugs Aging 2019; 36:189-202. [PMID: 30623310 DOI: 10.1007/s40266-018-0629-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dopamine agonists (DAs) are frequently used in the management of Parkinson's disease (PD), a complex multisystem disorder influenced substantially by age-related factors. Over 80% of PD patients present after age 60 years and may have clinical features exacerbated by age-related comorbidities or decline in physiological compensatory mechanisms. Pharmacotherapy for motor symptoms in older persons is more likely to involve exclusive use of levodopa combined with a peripheral decarboxylase inhibitor throughout the course of the illness. Non-ergot DAs, such as pramipexole, rotigotine and ropinirole, may be used as de novo monotherapy for the control of motor symptoms in older persons, although they are less efficacious than levodopa therapy. DAs may also be considered as adjunct therapy in older persons when motor symptoms are no longer adequately controlled by levodopa or when motor fluctuations and dyskinesia appear. DAs may be used cautiously in older persons with cognitive impairment and orthostatic hypotension but should be avoided when there is a history or risk of psychosis or impulse control disorders.
Collapse
Affiliation(s)
- Mark Dominic Latt
- Geriatric Medicine Department, University of Sydney, Royal Prince Alfred Hospital, KGV Level 7, Missenden Road, Camperdown, NSW, 2050, Australia.
| | - Simon Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Olfat Zekry
- Department of Pharmacy, Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Victor S C Fung
- Department of Neurology, Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Mann T, Zilles K, Klawitter F, Cremer M, Hawlitschka A, Palomero-Gallagher N, Schmitt O, Wree A. Acetylcholine Neurotransmitter Receptor Densities in the Striatum of Hemiparkinsonian Rats Following Botulinum Neurotoxin-A Injection. Front Neuroanat 2018; 12:65. [PMID: 30147647 PMCID: PMC6095974 DOI: 10.3389/fnana.2018.00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
Cholinergic neurotransmission has a pivotal function in the caudate-putamen, and is highly associated with the pathophysiology of Parkinson's disease. Here, we investigated long-term changes in the densities of the muscarinic receptor subtypes M1, M2, M3 (mAchRs) and the nicotinic receptor subtype α4β2 (nAchRs) in the striatum of the 6-OHDA-induced hemiparkinsonian (hemi-PD) rat model using quantitative in vitro receptor autoradiography. Hemi-PD rats exhibited an ipsilateral decrease in striatal mAchR densities between 6 and 16%. Moreover, a massive and constant decrease in striatal nAchR density by 57% was found. A second goal of the study was to disclose receptor-related mechanisms for the positive motor effect of intrastriatally injected Botulinum neurotoxin-A (BoNT-A) in hemi-PD rats in the apomorphine rotation test. Therefore, the effect of intrastriatally injected BoNT-A in control and hemi-PD rats on mAchR and nAchR densities was analyzed and compared to control animals or vehicle-injected hemi-PD rats. BoNT-A administration slightly reduced interhemispheric differences of mAchR and nAchR densities in hemi-PD rats. Importantly, the BoNT-A effect on striatal nAchRs significantly correlated with behavioral testing after apomorphine application. This study gives novel insights of 6-OHDA-induced effects on striatal mAchR and nAchR densities, and partly explains the therapeutic effect of BoNT-A in hemi-PD rats on a cellular level.
Collapse
Affiliation(s)
- Teresa Mann
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Karl Zilles
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany.,JARA-Translational Brain Medicine, Aachen, Germany
| | - Felix Klawitter
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Markus Cremer
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany
| | | | - Nicola Palomero-Gallagher
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Oliver Schmitt
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Andreas Wree
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| |
Collapse
|
13
|
Is YS, Durdagi S, Aksoydan B, Yurtsever M. Proposing Novel MAO-B Hit Inhibitors Using Multidimensional Molecular Modeling Approaches and Application of Binary QSAR Models for Prediction of Their Therapeutic Activity, Pharmacokinetic and Toxicity Properties. ACS Chem Neurosci 2018; 9:1768-1782. [PMID: 29671581 DOI: 10.1021/acschemneuro.8b00095] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Monoamine oxidase (MAO) enzymes MAO-A and MAO-B play a critical role in the metabolism of monoamine neurotransmitters. Hence, MAO inhibitors are very important for the treatment of several neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). In this study, 256 750 molecules from Otava Green Chemical Collection were virtually screened for their binding activities as MAO-B inhibitors. Two hit molecules were identified after applying different filters such as high docking scores and selectivity to MAO-B, desired pharmacokinetic profile predictions with binary quantitative structure-activity relationship (QSAR) models. Therapeutic activity prediction as well as pharmacokinetic and toxicity profiles were investigated using MetaCore/MetaDrug platform which is based on a manually curated database of molecular interactions, molecular pathways, gene-disease associations, chemical metabolism, and toxicity information. Particular therapeutic activity and toxic effect predictions are based on the ChemTree ability to correlate structural descriptors to that property using recursive partitioning algorithm. Molecular dynamics (MD) simulations were also performed to make more detailed assessments beyond docking studies. All these calculations were made not only to determine if studied molecules possess the potential to be a MAO-B inhibitor but also to find out whether they carry MAO-B selectivity versus MAO-A. The evaluation of docking results and pharmacokinetic profile predictions together with the MD simulations enabled us to identify one hit molecule (ligand 1, Otava ID: 3463218) which displayed higher selectivity toward MAO-B than a positive control selegiline which is a commercially used drug for PD therapeutic purposes.
Collapse
Affiliation(s)
- Yusuf Serhat Is
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
- Vocational High School, Department of Chemical Technology, Istanbul Gedik University, Istanbul 34876, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey
- Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul 34349, Turkey
| | - Busecan Aksoydan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey
- Neuroscience Program, Graduate School of Health Sciences, Bahcesehir University, Istanbul 34349, Turkey
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
14
|
Conti MM, Chambers N, Bishop C. A new outlook on cholinergic interneurons in Parkinson's disease and L-DOPA-induced dyskinesia. Neurosci Biobehav Rev 2018; 92:67-82. [PMID: 29782883 DOI: 10.1016/j.neubiorev.2018.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/05/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Traditionally, dopamine (DA) and acetylcholine (ACh) striatal systems were considered antagonistic and imbalances or aberrant signaling between these neurotransmitter systems could be detrimental to basal ganglia activity and pursuant motor function, such as in Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID). Herein, we discuss the involvement of cholinergic interneurons (ChIs) in striatally-mediated movement in a healthy, parkinsonian, and dyskinetic state. ChIs integrate numerous neurotransmitter signals using intrinsic glutamate, serotonin, and DA receptors and convey the appropriate transmission onto nearby muscarinic and nicotinic ACh receptors to produce movement. In PD, severe DA depletion causes abnormal rises in ChI activity which promote striatal signaling to attenuate normal movement. When treating PD with L-DOPA, hyperkinetic side effects, or LID, develop due to increased striatal DA; however, the role of ChIs and ACh transmission, until recently has been unclear. Fortunately, new technology and pharmacological agents have facilitated understanding of ChI function and ACh signaling in the context of LID, thus offering new opportunities to modify existing and discover future therapeutic strategies in movement disorders.
Collapse
Affiliation(s)
- Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Nicole Chambers
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
15
|
Pittman-Polletta BR, Quach A, Mohammed AI, Romano M, Kondabolu K, Kopell NJ, Han X, McCarthy MM. Striatal cholinergic receptor activation causes a rapid, selective and state-dependent rise in cortico-striatal β activity. Eur J Neurosci 2018. [PMID: 29528521 DOI: 10.1111/ejn.13906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cortico-basal ganglia-thalamic (CBT) β oscillations (15-30 Hz) are elevated in Parkinson's disease and correlated with movement disability. To date, no experimental paradigm outside of loss of dopamine has been able to specifically elevate β oscillations in the CBT loop. Here, we show that activation of striatal cholinergic receptors selectively increased β oscillations in mouse striatum and motor cortex. In individuals showing simultaneous β increases in both striatum and M1, β partial directed coherence (PDC) increased from striatum to M1 (but not in the reverse direction). In individuals that did not show simultaneous β increases, β PDC increased from M1 to striatum (but not in the reverse direction), and M1 was characterized by persistent β-high frequency oscillation phase-amplitude coupling. Finally, the direction of β PDC distinguished between β sub-bands. This suggests that (1) striatal cholinergic tone exerts state-dependent and frequency-selective control over CBT β power and coordination; (2) ongoing rhythmic dynamics can determine whether elevated β oscillations are expressed in striatum and M1; and (3) altered striatal cholinergic tone differentially modulates distinct β sub-bands.
Collapse
Affiliation(s)
| | - Allison Quach
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ali I Mohammed
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Michael Romano
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Nancy J Kopell
- Department of Mathematics & Statistics, Boston University, Boston, MA, 02215, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Michelle M McCarthy
- Department of Mathematics & Statistics, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
16
|
Zhou W, Lv C, Zhang Q, Zong S, Wang M. Pharmacokinetics, Pharmacodynamics, and Safety of Rasagiline Transdermal Patch: A Preliminary Study in Healthy Chinese Subjects. Clin Drug Investig 2017; 38:125-133. [DOI: 10.1007/s40261-017-0588-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease. J Neurosci 2017; 36:9161-72. [PMID: 27581457 DOI: 10.1523/jneurosci.0873-16.2016] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/16/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Over the last decade, striatal cholinergic interneurons (ChIs) have reemerged as key actors in the pathophysiology of basal-ganglia-related movement disorders. However, the mechanisms involved are still unclear. In this study, we address the role of ChI activity in the expression of parkinsonian-like motor deficits in a unilateral nigrostriatal 6-hydroxydopamine (6-OHDA) lesion model using optogenetic and pharmacological approaches. Dorsal striatal photoinhibition of ChIs in lesioned ChAT(cre/cre) mice expressing halorhodopsin in ChIs reduces akinesia, bradykinesia, and sensorimotor neglect. Muscarinic acetylcholine receptor (mAChR) blockade by scopolamine produces similar anti-parkinsonian effects. To decipher which of the mAChR subtypes provides these beneficial effects, systemic and intrastriatal administration of the selective M1 and M4 mAChR antagonists telenzepine and tropicamide, respectively, were tested in the same model of Parkinson's disease. The two compounds alleviate 6-OHDA lesion-induced motor deficits. Telenzepine produces its beneficial effects by blocking postsynaptic M1 mAChRs expressed on medium spiny neurons (MSNs) at the origin of the indirect striatopallidal and direct striatonigral pathways. The anti-parkinsonian effects of tropicamide were almost completely abolished in mutant lesioned mice that lack M4 mAChRs specifically in dopamine D1-receptor-expressing neurons, suggesting that postsynaptic M4 mAChRs expressed on direct MSNs mediate the antiakinetic action of tropicamide. The present results show that altered cholinergic transmission via M1 and M4 mAChRs of the dorsal striatum plays a pivotal role in the occurrence of motor symptoms in Parkinson's disease. SIGNIFICANCE STATEMENT The striatum, where dopaminergic and cholinergic systems interact, is the pivotal structure of basal ganglia involved in pathophysiological changes underlying Parkinson's disease. Here, using optogenetic and pharmacological approaches, we investigated the involvement of striatal cholinergic interneurons (ChIs) and muscarinic receptor subtypes (mAChRs) in the occurrence of a wide range of motor deficits such as akinesia, bradykinesia, motor coordination, and sensorimotor neglect after unilateral nigrostriatal 6-hydroxydopamine lesion in mice. Our results show that photoinhibition of ChIs in the dorsal striatum and pharmacological blockade of muscarinic receptors, specifically postsynaptic M1 and M4 mAChRs, alleviate lesion-induced motor deficits. The present study points to these receptor subtypes as potential targets for the symptomatic treatment of parkinsonian-like motor symptoms.
Collapse
|
18
|
Costas-Lago MC, Besada P, Rodríguez-Enríquez F, Viña D, Vilar S, Uriarte E, Borges F, Terán C. Synthesis and structure-activity relationship study of novel 3-heteroarylcoumarins based on pyridazine scaffold as selective MAO-B inhibitors. Eur J Med Chem 2017; 139:1-11. [PMID: 28797881 DOI: 10.1016/j.ejmech.2017.07.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
Abstract
Compounds of hybrid structure pyridazine-coumarin were discovered as potent, selective and reversible inhibitors of monoamine oxidase B (MAO-B). These compounds were synthesized in good yield following a multistep approach based on Knoevenagel reaction and using as key intermediate pyridazinone 16, which was obtained from maleic anhydride and furan. Compounds 9b and 9d are the most active compounds of these series, with IC50 values in the sub-micromolar range, and lack of cytotoxic effects. Theoretical calculation of ADME properties also suggested a good pharmacokinetic profile for both compounds. Docking simulations provided insights into enzyme inhibitor interactions and allowed us to rationalize the observed structure-activity relationships (SARs).
Collapse
Affiliation(s)
- María Carmen Costas-Lago
- Departamento de Química Orgánica and Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Pedro Besada
- Departamento de Química Orgánica and Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Fernanda Rodríguez-Enríquez
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Santiago Vilar
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciencias, Universidade do Porto, 4169-007 Porto, Portugal
| | - Carmen Terán
- Departamento de Química Orgánica and Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
19
|
Babayeva M, Assefa H, Basu P, Chumki S, Loewy Z. Marijuana Compounds: A Nonconventional Approach to Parkinson's Disease Therapy. PARKINSON'S DISEASE 2016; 2016:1279042. [PMID: 28050308 PMCID: PMC5165161 DOI: 10.1155/2016/1279042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is the second most common neurological illness in United States. Neurologically, it is characterized by the selective degeneration of a unique population of cells, the nigrostriatal dopamine neurons. The current treatment is symptomatic and mainly involves replacement of dopamine deficiency. This therapy improves only motor symptoms of Parkinson's disease and is associated with a number of adverse effects including dyskinesia. Therefore, there is unmet need for more comprehensive approach in the management of PD. Cannabis and related compounds have created significant research interest as a promising therapy in neurodegenerative and movement disorders. In this review we examine the potential benefits of medical marijuana and related compounds in the treatment of both motor and nonmotor symptoms as well as in slowing the progression of the disease. The potential for cannabis to enhance the quality of life of Parkinson's patients is explored.
Collapse
Affiliation(s)
- Mariana Babayeva
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Haregewein Assefa
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Paramita Basu
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Sanjeda Chumki
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Zvi Loewy
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| |
Collapse
|
20
|
Chamberlain KA, Nanescu SE, Psachoulia K, Huang JK. Oligodendrocyte regeneration: Its significance in myelin replacement and neuroprotection in multiple sclerosis. Neuropharmacology 2016; 110:633-643. [PMID: 26474658 PMCID: PMC4841742 DOI: 10.1016/j.neuropharm.2015.10.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
Oligodendrocytes readily regenerate and replace myelin membranes around axons in the adult mammalian central nervous system (CNS) following injury. The ability to regenerate oligodendrocytes depends on the availability of neural progenitors called oligodendrocyte precursor cells (OPCs) in the adult CNS that respond to injury-associated signals to induce OPC expansion followed by oligodendrocyte differentiation, axonal contact and myelin regeneration (remyelination). Remyelination ensures the maintenance of axonal conduction, and the oligodendrocytes themselves provide metabolic factors that are necessary to maintain neuronal integrity. Recent advances in oligodendrocyte regeneration research are beginning to shed light on critical intrinsic signals, as well as extrinsic, environmental factors that regulate the distinct steps of oligodendrocyte lineage progression and myelin replacement under CNS injury. These studies may offer novel pharmacological targets for regenerative medicine in inflammatory demyelinating disorders in the CNS such as multiple sclerosis. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Kelly A Chamberlain
- Department of Biology, Georgetown University, Washington, D.C., USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, D.C., USA
| | - Sonia E Nanescu
- Department of Biology, Georgetown University, Washington, D.C., USA
| | | | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, D.C., USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, D.C., USA.
| |
Collapse
|
21
|
Central cholinergic pathway involvement in the regulation of pupil diameter, blink rate and cognitive function. Neuroscience 2016; 334:180-190. [DOI: 10.1016/j.neuroscience.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 11/17/2022]
|
22
|
Guerram M, Zhang LY, Jiang ZZ. G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. Neurochem Int 2016; 101:1-14. [PMID: 27620813 DOI: 10.1016/j.neuint.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022]
Abstract
Neurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer's disease) Parkinson's disease and stroke. These neurological disorders (NDs) occur as a result of neurodegenerative processes and represent one of the most frequent causes of death and disability worldwide with a significant clinical and socio-economic impact. Although NDs have been characterized for many years, the exact molecular mechanisms that govern these pathologies or why they target specific individuals and specific neuronal populations remain unclear. As research progresses, many similarities appear which relate these diseases to one another on a subcellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate the conditions of many diseases simultaneously. G-protein coupled receptors (GPCRs) are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many NDs. This review will highlight the potential use of neurotransmitter GPCRs as emerging therapeutic targets for neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Faculty of Exact Sciences and Nature and Life Sciences, Department of Biology, Larbi Ben M'hidi University, Oum El Bouaghi 04000, Algeria
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
23
|
Bhayye SS, Roy K, Saha A. Pharmacophore generation, atom-based 3D-QSAR, HQSAR and activity cliff analyses of benzothiazine and deazaxanthine derivatives as dual A 2A antagonists/MAO‑B inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:183-202. [PMID: 26873265 DOI: 10.1080/1062936x.2015.1136840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dual inhibition of A2A and MAO-B is an emerging strategy in neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). In this study, atom-based three-dimensional quantitative structure-activity relationship (3D-QSAR) and hologram quantitative structure-activity relationship (HQSAR) models were generated with benzothiazine and deazaxanthine derivatives. Based on activity against A2A and MAO-B, two statistically significant 3D-QSAR models (r2 = 0.96, q2 = 0.76 and r2 = 0.91, q2 = 0.63) and HQSAR models (r2 = 0.93, q2 = 0.68 and r2 = 0.97, q2 = 0.58) were developed. In an activity cliff analysis, structural outliers were identified by calculating the Mahalanobis distance for a pair of compounds with A2A and MAO-B inhibitory activities. The generated 3D-QSAR and HQSAR models, activity cliff analysis, molecular docking and dynamic studies for dual target protein inhibitors provide key structural scaffolds that serve as building blocks in designing drug-like molecules for neurodegenerative diseases.
Collapse
Affiliation(s)
- S S Bhayye
- a Department of Chemical Technology , University of Calcutta , Kolkata , West Bengal , India
| | - K Roy
- b Department of Pharmaceutical Technology , Jadavpur University , Kolkata , West Bengal , India
| | - A Saha
- a Department of Chemical Technology , University of Calcutta , Kolkata , West Bengal , India
| |
Collapse
|
24
|
Shin EJ, Nam Y, Lee JW, Nguyen PKT, Yoo JE, Tran TV, Jeong JH, Jang CG, Oh YJ, Youdim MBH, Lee PH, Nabeshima T, Kim HC. N-Methyl, N-propynyl-2-phenylethylamine (MPPE), a Selegiline Analog, Attenuates MPTP-induced Dopaminergic Toxicity with Guaranteed Behavioral Safety: Involvement of Inhibitions of Mitochondrial Oxidative Burdens and p53 Gene-elicited Pro-apoptotic Change. Mol Neurobiol 2015; 53:6251-6269. [PMID: 26563498 DOI: 10.1007/s12035-015-9527-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/05/2015] [Indexed: 12/12/2022]
Abstract
Selegiline is a monoamine oxidase-B (MAO-B) inhibitor with anti-Parkinsonian effects, but it is metabolized to amphetamines. Since another MAO-B inhibitor N-Methyl, N-propynyl-2-phenylethylamine (MPPE) is not metabolized to amphetamines, we examined whether MPPE induces behavioral side effects and whether MPPE affects dopaminergic toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Multiple doses of MPPE (2.5 and 5 mg/kg/day) did not show any significant locomotor activity and conditioned place preference, whereas selegiline (2.5 and 5 mg/kg/day) significantly increased these behavioral side effects. Treatment with MPPE resulted in significant attenuations against decreases in mitochondrial complex I activity, mitochondrial Mn-SOD activity, and expression induced by MPTP in the striatum of mice. Consistently, MPPE significantly attenuated MPTP-induced oxidative stress and MPPE-mediated antioxidant activity appeared to be more pronounced in mitochondrial-fraction than in cytosolic-fraction. Because MPTP promoted mitochondrial p53 translocation and p53/Bcl-xL interaction, it was also examined whether mitochondrial p53 inhibitor pifithrin-μ attenuates MPTP neurotoxicity. MPPE, selegiline, or pifithrin-μ significantly attenuated mitochondrial p53/Bcl-xL interaction, impaired mitochondrial transmembrane potential, cytosolic cytochrome c release, and cleaved caspase-3 in wild-type mice. Subsequently, these compounds significantly ameliorated MPTP-induced motor impairments. Neuroprotective effects of MPPE appeared to be more prominent than those of selegiline. MPPE or selegiline did not show any additional protective effects against the attenuation by p53 gene knockout, suggesting that p53 gene is a critical target for these compounds. Our results suggest that MPPE possesses anti-Parkinsonian potentials with guaranteed behavioral safety and that the underlying mechanism of MPPE requires inhibition of mitochondrial oxidative stress, mitochondrial translocation of p53, and pro-apoptotic process.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yunsung Nam
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Ji Won Lee
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea.,Hutecs Korea Pharm Co., Ltd., Osan, 18111, Republic of Korea
| | - Phuong-Khue Thi Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Ji Eun Yoo
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - The-Vinh Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, Republic of Korea
| | - Moussa B H Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Phil Ho Lee
- National Creative Research Initiative Center for Catalytic Organic Reactions, Department of Chemistry, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care and Sciences, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503, Japan.,NPO, Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-8503, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea.
| |
Collapse
|
25
|
Synthesis of a series of unsaturated ketone derivatives as selective and reversible monoamine oxidase inhibitors. Bioorg Med Chem 2015; 23:6486-96. [DOI: 10.1016/j.bmc.2015.08.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/08/2023]
|
26
|
Tzvetkov NT, Hinz S, Küppers P, Gastreich M, Müller CE. Indazole- and Indole-5-carboxamides: Selective and Reversible Monoamine Oxidase B Inhibitors with Subnanomolar Potency. J Med Chem 2014; 57:6679-703. [DOI: 10.1021/jm500729a] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nikolay T. Tzvetkov
- Pharmaceutical Institute, Pharmaceutical
Chemistry I, PharmaCenter Bonn, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Sonja Hinz
- Pharmaceutical Institute, Pharmaceutical
Chemistry I, PharmaCenter Bonn, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Petra Küppers
- Pharmaceutical Institute, Pharmaceutical
Chemistry I, PharmaCenter Bonn, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Marcus Gastreich
- BioSolveIT GmbH, An der Ziegelei 79, 53757 St. Augustin, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical
Chemistry I, PharmaCenter Bonn, University of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| |
Collapse
|
27
|
Hiranita T, Wilkinson DS, Hong WC, Zou MF, Kopajtic TA, Soto PL, Lupica CR, Newman AH, Katz JL. 2-isoxazol-3-phenyltropane derivatives of cocaine: molecular and atypical system effects at the dopamine transporter. J Pharmacol Exp Ther 2014; 349:297-309. [PMID: 24518035 PMCID: PMC3989806 DOI: 10.1124/jpet.113.212738] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/11/2014] [Indexed: 11/22/2022] Open
Abstract
The present study examined RTI-371 [3β-(4-methylphenyl)-2β-[3-(4-chlorophenyl)-isoxazol-5-yl]tropane], a phenyltropane cocaine analog with effects distinct from cocaine, and assessed potential mechanisms for those effects by comparison with its constitutional isomer, RTI-336 [3β-(4-chlorophenyl)-2β-[3-(4-methylphenyl)-isoxazol-5-yl]tropane]. In mice, RTI-371 was less effective than cocaine and RTI-336 in stimulating locomotion, and incompletely substituted (∼60% maximum at 5 minutes or 1 hour after injection) in a cocaine (10 mg/kg i.p.)/saline discrimination procedure; RTI-336 completely substituted. In contrast to RTI-336, RTI-371 was not self-administered, and its pretreatment (1.0-10 mg/kg i.p.) dose-dependently decreased maximal cocaine self-administration more potently than food-maintained responding. RTI-336 pretreatment dose-dependently left-shifted the cocaine self-administration dose-effect curve. Both RTI-336 and RTI-371 displaced [(3)H]WIN35,428 [[(3)H](-)-3β-(4-fluorophenyl)-tropan-2β-carboxylic acid methyl ester tartrate] binding to striatal dopamine transporters (DATs) with Ki values of 10.8 and 7.81 nM, respectively, and had lower affinities at serotonin or norepinephrine transporters, or muscarinic and σ receptors. The relative low affinity at these sites suggests the DAT as the primary target of RTI-371 with minimal contributions from these other targets. In biochemical assays probing the outward-facing DAT conformation, both RTI-371 and RTI-336 had effects similar to cocaine, suggesting little contribution of DAT conformation to the unique pharmacology of RTI-371. The locomotor-stimulant effects of RTI-371 (3.0-30 mg/kg i.p.) were comparable in wild-type and knockout cannabinoid CB1 receptor (CB1R) mice, indicating that previously reported CB1 allosteric effects do not decrease cocaine-like effects of RTI-371. DAT occupancy in vivo was most rapid with cocaine and least with RTI-371. The slow apparent association rate may allow compensatory actions that in turn dampen cocaine-like stimulation, and give RTI-371 its unique pharmacologic profile.
Collapse
Affiliation(s)
- Takato Hiranita
- Psychobiology (T.H., D.S.W., T.A.K., J.L.K.), Cellular Pathobiology Section (W.C.H.), Medicinal Chemistry (M.F.Z., A.H.N.), and Electrophysiology (C.R.L.) Sections, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland; and Texas Tech University, College of Education, Lubbock, Texas (P.L.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia (LID) is a debilitating side effect of long-term dopamine replacement therapy in Parkinson's Disease. At present, there are few therapeutic options for treatment of LID and mechanisms contributing to the development and maintenance of these drug-induced motor complications are not well understood. We have previously shown that pharmacological reduction of cholinergic tone attenuates the expression of LID in parkinsonian mice with established dyskinesia after chronic L-DOPA treatment. The present study was undertaken to provide anatomically specific evidence for the role of striatal cholinergic interneurons by ablating them before initiation of L-DOPA treatment and determining whether it decreases LID. We used a novel approach to ablate striatal cholinergic interneurons (ChIs) via Cre-dependent viral expression of the diphtheria toxin A subunit (DT-A) in hemiparkinsonian transgenic mice expressing Cre recombinase under control of the choline acetyltransferase promoter. We show that Cre recombinase-mediated DT-A ablation selectively eliminated ChIs when injected into striatum. The depletion of ChIs markedly attenuated LID without compromising the therapeutic efficacy of L-DOPA. These results provide evidence that ChIs play a key and selective role in LID and that strategies to reduce striatal cholinergic tone may represent a promising approach to decreasing L-DOPA-induced motor complications in Parkinson's disease.
Collapse
|
29
|
Martínez-Martín P, Hernández B, Ricart J. Factors determining when to start levodopa/carbidopa/entacapone treatment in Spanish patients with Parkinson's disease. NEUROLOGÍA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.nrleng.2012.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Smith KM, Browne SE, Jayaraman S, Bleickardt CJ, Hodge LM, Lis E, Yao L, Rittle SL, Innocent N, Mullins DE, Boykow G, Reynolds IJ, Hill D, Parker EM, Hodgson RA. Effects of the selective adenosine A2A receptor antagonist, SCH 412348, on the parkinsonian phenotype of MitoPark mice. Eur J Pharmacol 2014; 728:31-8. [PMID: 24486705 DOI: 10.1016/j.ejphar.2014.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/24/2022]
Abstract
Adenosine A2A receptors are predominantly localized on striatopallidal gamma-aminobutyric acid (GABA) neurons, where they are colocalized with dopamine D2 receptors and are involved in the regulation of movement. Adenosine A2A receptor antagonists have been evaluated as a novel treatment for Parkinson's disease and have demonstrated efficacy in a broad spectrum of pharmacological and toxicological rodent and primate models. Fewer studies have been performed to evaluate the efficacy of adenosine A2A receptor antagonists in genetic models of hypodopaminergic states. SCH 412348 is a potent and selective adenosine A2A receptor antagonist that shows efficacy in rodent and primate models of movement disorders. Here we evaluated the effects of SCH 412348 in the MitoPark mouse, a genetic model that displays a progressive loss of dopamine neurons. The dopamine cell loss is associated with a profound akinetic phenotype that is sensitive to levodopa (l-dopa). SCH 412348 (0.3-10mg/kg administered orally) dose dependently increased locomotor activity in the mice. Moreover, SCH 412348 retained its efficacy in the mice as motor impairment progressed (12-22 weeks of age), demonstrating that the compound was efficacious in mild to severe Parkinson's disease-like impairment in the mice. Additionally, SCH 412348 fully restored lost functionality in a measure of hind limb bradykinesia and partially restored functionality in a rotarod test. These findings provide further evidence of the anti-Parkinsonian effects of selective adenosine A2A receptor antagonists and predict that they will retain their efficacy in both mild and severe forms of motor impairment.
Collapse
Affiliation(s)
- Karen M Smith
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Susan E Browne
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Srinivasan Jayaraman
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Carina J Bleickardt
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Lisa M Hodge
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Edward Lis
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Leon Yao
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Sunday L Rittle
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Nathalie Innocent
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Deborra E Mullins
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - George Boykow
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Ian J Reynolds
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - David Hill
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Eric M Parker
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Robert A Hodgson
- Department of In Vivo Pharmacology-Neuroscience, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA.
| |
Collapse
|
31
|
Abstract
Rasagiline is a monoamine oxidase type-B inhibitor used as monotherapy or in addition to levodopa in the treatment of Parkinson's disease. Once daily administration of rasagiline makes it easy to use, and allows good compliance by patients and adherence to therapy. Several multicenter studies have noted the effectiveness of rasagiline on both motor and non-motor symptoms, which require a complex pharmacologic approach, such as cognitive disorders. A recent study also reported a rapid action of rasagiline on motor symptoms. Positive findings have been highlighted by an economic model study. This review analyzes the main studies of rasagiline, with particular attention to the effectiveness of the drug on motor symptoms.
Collapse
|
32
|
Stössel A, Schlenk M, Hinz S, Küppers P, Heer J, Gütschow M, Müller CE. Dual targeting of adenosine A(2A) receptors and monoamine oxidase B by 4H-3,1-benzothiazin-4-ones. J Med Chem 2013; 56:4580-96. [PMID: 23631427 DOI: 10.1021/jm400336x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Blockade of A2A adenosine receptors (A2AARs) and inhibition of monoamine oxidase B (MAO-B) in the brain are considered attractive strategies for the treatment of neurodegenerative diseases such as Parkinson's disease (PD). In the present study, benzothiazinones, e.g., 2-(3-chlorophenoxy)-N-(4-oxo-4H-3,1-benzothiazin-2-yl)acetamide (13), were identified as a novel class of potent MAO-B inhibitors (IC50 human MAO-B: 1.63 nM). Benzothiazinones with large substituents in the 2-position, e.g., methoxycinnamoylamino, phenylbutyrylamino, or chlorobenzylpiperazinylbenzamido residues (14, 17, 27, and 28), showed high affinity and selectivity for A2AARs (Ki human A2AAR: 39.5-69.5 nM). By optimizing benzothiazinones for both targets, the first potent, dual-acting A2AAR/MAO-B inhibitors with a nonxanthine structure were developed. The best derivative was N-(4-oxo-4H-3,1-benzothiazin-2-yl)-4-phenylbutanamide (17, Ki human A2A, 39.5 nM; IC50 human MAO-B, 34.9 nM; selective versus other AR subtypes and MAO-A), which inhibited A2AAR-induced cAMP accumulation and showed competitive, reversible MAO-B inhibition. The new compounds may be useful tools for validating the A2AAR/MAO-B dual target approach in PD.
Collapse
Affiliation(s)
- Anne Stössel
- PharmaCenter Bonn, University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Martínez-Martín P, Hernández B, Ricart J. Factors determining when to start levodopa/carbidopa/entacapone treatment in Spanish patients with Parkinson's disease. Neurologia 2013; 29:153-60. [PMID: 23465686 DOI: 10.1016/j.nrl.2012.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Several therapeutic options are available for the symptomatic treatment of Parkinson's disease (PD).There is no reliable information about which factors are involved in the choice of treatment. OBJECTIVE To identify factors contributing to the decision to start treatment with levodopa/carbidopa/entacapone (LCE) in patients with PD. PATIENTS AND METHODS We completed a descriptive cross-sectional retrospective multicentre study of patients with idiopathic PD receiving LCE. Clinical data were collected with special attention to factors that could potentially determine when to initiate treatment with LCE in normal clinical practice. RESULTS We studied 1050 patients with a mean age of 71.3±8.7 years (58.2% men). Average time from onset of symptoms to diagnosis was 13.8±12.9 months, with a latency time of 74.5±53.6 months before starting LCE treatment. The most common initial symptoms were tremor (70.6%), reduced dexterity (43.2%) and slowness of movement (41.5%). At the start of LCE treatment, most patients were in Hoehn and Yahr stage 2 (57.5%), with an average rating of 73.4% on the Schwab & England scale. Eight hundred twenty two patients (78.3%) received treatment with other drugs before starting LCE (mean time between starting any PD treatment and starting LCE was 40.5±47.2 months). Clinical factors with a moderate, marked, or crucial effect on the decision to start LCE treatment were bradykinesia (84.7%), daytime rigidity (72.2%), general decline (72.2%), difficulty walking (66.4%), tremor (62.7%), nocturnal rigidity (56.1%), and postural instability (53%). Difficulty performing activities of daily living was the only psychosocial factor identified as having an influence on the decision (84.3%). CONCLUSIONS The decision to start patients with idiopathic PD on LCE treatment is mainly determined by motor deficits and disabilities associated with disease progression.
Collapse
Affiliation(s)
- P Martínez-Martín
- Unidad de Investigación, Centro Alzheimer Fundación Reina Sofía y CIBERNED, Instituto de Salud Carlos III, Madrid, España.
| | - B Hernández
- Departamento Médico, Novartis Farmacéutica SA, Barcelona, España
| | - J Ricart
- Departamento Médico, Novartis Farmacéutica SA, Barcelona, España
| | | |
Collapse
|
34
|
Martin A, Mills J. Parkinson's Disease Nurse Specialists and the King's College Hospital model of care. ACTA ACUST UNITED AC 2013. [DOI: 10.12968/bjnn.2013.9.1.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anne Martin
- King's College Hospital, Denmark Hill, London, SE5 9RS, England
| | | |
Collapse
|
35
|
Brkicic LS, Godman B, Voncina L, Sovic S, Relja M. Initiatives to improve prescribing efficiency for drugs to treat Parkinson's disease in Croatia: influence and future directions. Expert Rev Pharmacoecon Outcomes Res 2012; 12:373-84. [PMID: 22812560 DOI: 10.1586/erp.12.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second most common neurological disease affecting older adults. Consequently, this disease should be a focus among payers, with increasing utilization of newer premium-priced patent-protected add-on therapies to stabilize or even improve motor function over time. However, expenditure can be moderated by reforms. Consequently, there is a need to assess the influence of these reforms on the prescribing efficiency for drugs to treat PD in Croatia before proposing additional measures. Prescribing efficiency is defined as increasing the use of add-on therapies for similar expenditure. An observational retrospective study of the Croatian Institute for Health Insurance database of drugs to treat patients with PD in Croatia from 2000 to 2010 was carried out, with utilization measured in defined daily doses (defined as the average maintenance dose of a drug when used in its major indication in adults). The study years were chosen to reflect recent reforms. Only reimbursed expenditure is measured from a health insurance perspective. Utilization of drugs to treat PD increased by 218% between 2000 and 2010. Reimbursed expenditure increased by 360%, principally driven by increasing utilization of premium-priced patent-protected add-on therapies, including ropinirole and pramipexole. However, following recent reforms, reducing expenditure/defined daily dose for the different drugs, as well as overall expenditure, stabilized reimbursed expenditure between 2005 and 2010. Treatment of PD is complex, and add-on therapies are needed to improve care. Reimbursed expenditure should now fall following stabilization, despite increasing volumes, as successive add-on therapies lose their patents, further increasing prescribing efficiency.
Collapse
|
36
|
Abstract
Oral rasagiline (Azilect®) as monotherapy or as an adjunct to levodopa provides a useful option in the symptomatic treatment of adult patients with Parkinson's disease. In patients with early Parkinson's disease, monotherapy with rasagiline 1 mg/day improved symptoms of the disease relative to placebo. As adjunctive therapy to levodopa in patients with advanced Parkinson's disease, rasagiline 0.5 or 1 mg/day significantly reduces the total daily 'off' time. Rasagiline is generally well tolerated when administered as monotherapy or as adjunctive therapy.
Collapse
|
37
|
Hoy SM, Keating GM. Rasagiline: a review of its use in the treatment of idiopathic Parkinson's disease. Drugs 2012; 72:643-69. [PMID: 22439669 DOI: 10.2165/11207560-000000000-00000] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rasagiline (Azilect®), a selective, irreversible, monoamine oxidase-B inhibitor, is available in the EU, the US and in several other countries worldwide, including Canada and Israel. It is indicated for the treatment of idiopathic Parkinson's disease as monotherapy or as adjunctive therapy to levodopa in patients [corrected]with end-of-dose fluctuations in the EU and for the treatment of adult patients with the signs and symptoms of idiopathic Parkinson's disease in the US. This article reviews the pharmacological properties, therapeutic efficacy and tolerability of rasagiline as monotherapy or as adjunctive therapy to levodopa in patients with Parkinson's disease. Oral rasagiline as monotherapy or as adjunctive therapy to levodopa was effective in the symptomatic treatment of adult patients with Parkinson's disease participating in double-blind, placebo-controlled, multinational studies. In patients with early Parkinson's disease, monotherapy with rasagiline 1 mg/day (recommended dosage) significantly slowed the rate of worsening (i.e. an increase in the Unified Parkinson's Disease Rating Scale [UPDRS] score) in the ADAGIO and TEMPO studies, with the results from the ADAGIO study for rasagiline 1 mg/day suggesting a slowing of clinical progression. However, at the higher dosage of 2 mg/day, rasagiline met the primary endpoint in the TEMPO study and the first, but not the second, of three hierarchical primary endpoints in the ADAGIO study. Compared with delayed-start rasagiline monotherapy, early initiation was associated with a slower long-term progression of the clinical signs and symptoms of Parkinson's disease in the TEMPO study. As adjunctive therapy to levodopa in the LARGO and PRESTO studies, rasagiline 0.5 and/or 1 mg/day significantly reduced the total daily 'off' time (primary efficacy endpoint) and significantly improved the Clinical Global Impression score, the UPDRS activities of daily living subscale score during 'off' time and the UPDRS motor subscale score during 'on' time compared with placebo in patients with advanced Parkinson's disease. Although rasagiline showed neuroprotective properties both in vitro and in vivo, identifying its potential to slow clinical progression in the clinical setting has been elusive to date and was not definitively demonstrated in the studies discussed in this article. Additional rasagiline studies specifically designed to assess the clinical progression of Parkinson's disease while addressing the potentially confounding factors of the delayed-start study design would therefore be of interest. As monotherapy or as adjunctive therapy to levodopa, rasagiline was generally well tolerated, with the frequency and nature of treatment-emergent adverse events generally similar across clinical studies and between rasagiline and placebo groups. Therapy with rasagiline appears to be associated with a low incidence of cognitive and behavioural adverse events. Thus, oral rasagiline as monotherapy or as adjunctive therapy to levodopa provides a useful option in the treatment of adult patients with Parkinson's disease.
Collapse
|
38
|
Elmer L, Hauser RA. Strategies for Parkinson’s disease care: prevention and management of motor fluctuations. Neurodegener Dis Manag 2011. [DOI: 10.2217/nmt.11.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Parkinson’s disease (PD) is characterized clinically by the hallmark motor signs of bradykinesia, rest tremor and rigidity. Current pharmacological management goals include control of motor symptoms as well as prevention and management of motor complications including motor fluctuations and dyskinesias. While the use of levodopa revolutionized the pharmacological management of PD, multiple other agents and strategies have emerged with many demonstrable, albeit sometimes controversial, advantages to a ‘levodopa’ only approach. Despite these developments, the progressive nature of PD requires vigilance and creativity from clinicians as both motor and nonmotor complications grow in number and severity over time.
Collapse
Affiliation(s)
- Lawrence Elmer
- University of Toledo College of Medicine, Toledo, OH, USA
| | | |
Collapse
|
39
|
Wang Y. 4-[(1-Adamantyl)carbamoyl]pyridinium chloride. Acta Crystallogr Sect E Struct Rep Online 2011; 67:o210. [PMID: 21522711 PMCID: PMC3050416 DOI: 10.1107/s1600536810052499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/14/2010] [Indexed: 11/15/2022]
Abstract
In the title compound, C16H21N2O+·Cl−, the amide group makes a dihedral angle of 25.9 (1)° with respect to the pyridine ring. In the crystal, intermolecular N—H⋯Cl bonds and weak C—H⋯Cl and C—H⋯O contacts link the cations and the anions into layers parallel to the ac plane. The layers are packed along [010] by hydrophobic interactions between adamantane units.
Collapse
|
40
|
Idiopathic Parkinson disease effect of levodopa on apparent diffusion coefficient value of the brain. Acad Radiol 2011; 18:70-3. [PMID: 21145029 DOI: 10.1016/j.acra.2010.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 08/17/2010] [Accepted: 08/22/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE To evaluate the effect of levodopa on apparent diffusion coefficient (ADC) value of the brain parenchyma in patients with idiopathic Parkinson disease (PD). MATERIAL AND METHODS Prospective study was conducted on native PD without treatment (n = 25) and patients receiving levodopa (L-Dopa) (n = 25). Diffusion magnetic resonance-weighted imaging was done using a single-shot spin echo type of echo planar imaging. The apparent diffusion coefficient (ADC) value at different regions of the brain on both sides was calculated. RESULTS The ADC value of the putamen in patients with native PD was 0.732 ± 0.15 × 10-3 mm2/seconds and in patients receiving levodopa was 0.789 ± 0.24 × 10-3 mm2/second. There was a statistically significant difference in the ADC value at the putamen (P = .001) between patients with native PD and patients receiving levodopa. When ADC value of the putamen at 0.745 × 10-3 mm2/second was used as a threshold value for differentiating native PD patients and patients receiving L-Dopa, the best results were obtained with an accuracy of 82%, sensitivity of 92%, specificity of 72%, positive predictive value of 77%, negative predictive value of 90%, and area under the curve of 0.955. CONCLUSION ADC value of the putamen is a promising parameter for predication of effect of levodopa on brain parenchyma in patients with PD.
Collapse
|
41
|
The anti-Parkinsonian drug selegiline delays the nucleation phase of α-synuclein aggregation leading to the formation of nontoxic species. J Mol Biol 2010; 405:254-73. [PMID: 21050861 DOI: 10.1016/j.jmb.2010.10.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 08/28/2010] [Accepted: 10/16/2010] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) is a movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of intraneuronal inclusions called Lewy bodies, which are composed mainly of α-synuclein (α-syn). Selegiline (Sel) is a noncompetitive monoamino oxidase B inhibitor that has neuroprotective effects and has been administered to PD patients as monotherapy or in combination with l-dopa. Besides its known effect of increasing the level of dopamine (DA) by monoamino oxidase B inhibition, Sel induces other effects that contribute to its action against PD. We evaluated the effects of Sel on the in vitro aggregation of A30P and wild-type α-syn. Sel delays fibril formation by extending the lag phase of aggregation. In the presence of Sel, electron microscopy reveals amorphous heterogeneous aggregates, including large annular species, which are innocuous to a primary culture enriched in dopaminergic neurons, while their age-matched counterparts are toxic. The inhibitory effect displayed by Sel is abolished when seeds (small fibril pieces) are added to the aggregation reaction, reinforcing the hypothesis that Sel interferes with early nuclei formation and, to a lesser extent, with fibril elongation. NMR experiments indicate that Sel does not interact with monomeric α-syn. Interestingly, when added in combination with DA (which favors the formation of toxic protofibrils), Sel overrides the inhibitory effect of DA and favors fibrillation. Additionally, Sel blocks the formation of smaller toxic aggregates by perturbing DA-dependent fibril disaggregation. These effects might be beneficial for PD patients, since the sequestration of protofibrils into fibrils or the inhibition of fibril dissociation could alleviate the toxic effects of protofibrils on dopaminergic neurons. In nondopaminergic neurons, Sel might slow the fibrillation, giving rise to the formation of large nontoxic aggregates.
Collapse
|
42
|
Cubo E. Pharmacotherapy in the management of early Parkinson's disease: cost-effectiveness and patient acceptability. CLINICOECONOMICS AND OUTCOMES RESEARCH 2010; 2:127-34. [PMID: 21935322 PMCID: PMC3169957 DOI: 10.2147/ceor.s11996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Indexed: 11/23/2022] Open
Abstract
In the absence of a cure, the primary goals in managing Parkinson's disease (PD) are to preserve functionality and health-related quality of life (HRQoL). Current therapeutic strategies for PD include symptomatic treatment and are primarily focused on replacing dopamine in the brain. Dopamine agonists can be used as an alternative initial levodopa therapy, to delay the onset of motor complications, but at the expense of more dopaminergic adverse effects; poorer control of motor symptoms; and increased cost. In PD, treatment effects and costs accumulate over time; hence the choice of time horizon in cost-effectiveness analysis can be particularly important. Pharmaceutical expenditures have grown rapidly in recent decades and now total nearly 10% of all health care costs. The main approach to treat PD at the present time is to advance knowledge of the efficacy, to reduce long-term complications associated with treatment, and to improve patient HRQoL and society burden. The implementation of cost-effectiveness studies, including the societal perspective, should be considered as an outcome of new therapy strategies, which would be helpful to health care decision makers.
Collapse
Affiliation(s)
- Esther Cubo
- Neurology Department, Hospital General Yagüe, Burgos, Spain
| |
Collapse
|
43
|
Wei YJJ, Stuart B, Zuckerman IH. Use of antiparkinson medications among elderly Medicare beneficiaries with Parkinson's disease. ACTA ACUST UNITED AC 2010; 8:384-94. [DOI: 10.1016/j.amjopharm.2010.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2010] [Indexed: 11/27/2022]
|
44
|
Lester DB, Rogers TD, Blaha CD. Acetylcholine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2010; 16:137-62. [PMID: 20370804 PMCID: PMC6493877 DOI: 10.1111/j.1755-5949.2010.00142.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic neurons in the substantia nigra pars compacta and ventral tegmental area of the midbrain form the nigrostriatal and mesocorticolimbic dopaminergic pathways that, respectively, project to dorsal and ventral striatum (including prefrontal cortex). These midbrain dopaminergic nuclei and their respective forebrain and cortical target areas are well established as serving a critical role in mediating voluntary motor control, as evidenced in Parkinson's disease, and incentive-motivated behaviors and cognitive functions, as exhibited in drug addiction and schizophrenia, respectively. Although it cannot be disputed that excitatory and inhibitory amino acid-based neurotransmitters, such as glutamate and GABA, play a vital role in modulating activity of midbrain dopaminergic neurons, recent evidence suggests that acetylcholine may be as important in regulating dopaminergic transmission. Midbrain dopaminergic cell tonic and phasic activity is closely dependent upon projections from hindbrain pedunculopontine and the laterodorsal tegmental nuclei, which comprises the only known cholinergic inputs to these neurons. In close coordination with glutamatergic and GABAergic activity, these excitatory cholinergic projections activate nicotinic and muscarinic acetylcholine receptors within the substantia nigra and ventral tegmental area to modulate dopamine transmission in the dorsal/ventral striatum and prefrontal cortex. Additionally, acetylcholine-containing interneurons in the striatum also constitute an important neural substrate to provide further cholinergic modulation of forebrain striatal dopaminergic transmission. In this review, we examine neurological and psychopathological conditions associated with dysfunctions in the interaction of acetylcholine and dopamine and conventional and new pharmacological approaches to treat these disorders.
Collapse
Affiliation(s)
- Deranda B Lester
- Department of Psychology, The University of Memphis, Memphis, TN, USA
| | - Tiffany D. Rogers
- Department of Psychology, The University of Memphis, Memphis, TN, USA
| | - Charles D. Blaha
- Department of Psychology, The University of Memphis, Memphis, TN, USA
| |
Collapse
|
45
|
Antonini A, Chaudhuri KR, Martinez-Martin P, Odin P. Oral and infusion levodopa-based strategies for managing motor complications in patients with Parkinson's disease. CNS Drugs 2010; 24:119-29. [PMID: 20088619 DOI: 10.2165/11310940-000000000-00000] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Levodopa is the most effective treatment for Parkinson's disease (PD) signs and symptoms, and patients invariably will require it during the course of the disease. It also provides benefits in activities of daily living, quality of life and life expectancy. However, after a few years of levodopa treatment the majority of patients will experience motor fluctuations and dyskinesia. Initial use of a dopamine receptor agonist may delay the emergence of motor fluctuations but at the cost of reduced symptomatic control compared with the use of levodopa in some cases. Adequate management of motor fluctuations and dyskinesia is essential to maintaining satisfactory quality of life at the advanced stage of disease. Various levodopa-based strategies are currently available that aim to control motor complications (wearing-off and dyskinesia) in PD and each approach has its own unique benefit and risk profile. Strategies such as dose fragmentation (smaller, more frequent dosing) or the use of orally administered, liquid levodopa formulations or melevodopa can reduce off-time intervals or facilitate absorption. More recently introduced, continuous delivery of dopaminergic medications may represent a more effective approach to treat motor complications in advanced PD and its effect can be perceived from improvement in clinical scales, as well as in health-related items. Indeed, continuous levodopa delivery by duodenal infusion may stabilize and significantly improve motor function as well as patients' quality of life. We propose a treatment algorithm that takes into account all currently available levodopa-based treatment strategies for motor complications in patients with PD.
Collapse
|
46
|
Nanhoe-Mahabier W, de Laat KF, Visser JE, Zijlmans J, de Leeuw FE, Bloem BR. Parkinson disease and comorbid cerebrovascular disease. Nat Rev Neurol 2009; 5:533-41. [PMID: 19724249 DOI: 10.1038/nrneurol.2009.136] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Optimal management of chronic diseases not only requires tackling of the primary disease processes, but also necessitates timely recognition and treatment of comorbid conditions. In this article, we illustrate this two-pronged approach for two common age-related disorders: Parkinson disease (PD) and cerebrovascular disease (CVD). We first discuss the pathophysiological mechanisms that could provide a link between PD and CVD. Patients with PD have a series of risk factors that could promote development of CVD, but also have several protective factors. We then review the available clinical, radiological and neuropathological evidence to support an association between these two conditions. We conclude by discussing the potential implications for clinical practice, highlighting how comorbid CVD could alter the clinical presentation of PD and reviewing the possibilities for prevention and secondary prophylaxis. Additional research will be needed to fully evaluate the prevalence and clinical relevance of comorbid CVD in PD. Pending further evidence, we recommend that cerebral neuroimaging should be considered if patients with initially uncomplicated PD develop-either acutely or chronically-prominent and/or treatment-resistant gait impairment, postural instability, depression, cognitive decline, or urinary incontinence. Finding comorbid CVD in such patients could have prognostic implications, and could necessitate treatment to arrest further progression of CVD.
Collapse
Affiliation(s)
- Wandana Nanhoe-Mahabier
- Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Di Giovanni G, Shi WX. Effects of scopolamine on dopamine neurons in the substantia nigra: role of the pedunculopontine tegmental nucleus. Synapse 2009; 63:673-80. [PMID: 19360852 DOI: 10.1002/syn.20650] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous neurochemical and behavioral studies suggest that muscarinic receptor antagonism has an excitatory effect on the nigrostriatal dopamine (DA) system. Using in vivo extracellular single unit recording, this study examined whether blockade of the muscarinic receptor by scopolamine alters the firing properties of DA neurons in the substantia nigra (SN). Scopolamine was administered either systemically or locally to DA neurons using microiontophoresis. Surprisingly, scopolamine did not cause any significant change in either the firing rate or pattern of the spontaneously active DA neurons. However, systemic injection of scopolamine significantly increased the number of active DA neurons in the SN. Local infusion of scopolamine into the pedunculopontine tegmental nucleus (PPT) mimicked the effect induced by systemically administered scopolamine, significantly increasing the number of active DA neurons without altering the firing rate and pattern. These results suggest that the reported increase in striatal DA release induced by scopolamine is in part mediated by activation of silent nigral DA neurons. The experiments with PPT local infusion further suggest that part of the effect of scopolamine may be due to its blockade of the inhibitory muscarinic autoreceptors on PPT cholinergic cells. The latter effect may lead to activation of quiescent DA neurons by increasing acetylcholine (ACh) release in the SN or in other brain areas providing inputs to DA neurons. Further understanding of the mechanism of action of scopolamine may help us further understand the role of ACh in both the pathophysiology and treatment of DA-related disorders including schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana G Pagano, Università degli Studi di Palermo, Palermo, Italy.
| | | |
Collapse
|
48
|
Czuczwar M, Cięszczyk J, Czuczwar K, Kiś J, Saran T, Turski WA. Influence of orphenadrine upon the protective activity of various antiepileptics in the maximal electroshock-induced convulsions in mice. Pharmacol Rep 2009; 61:732-6. [DOI: 10.1016/s1734-1140(09)70127-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 07/01/2009] [Indexed: 10/25/2022]
|
49
|
Truong DD. Tolcapone: review of its pharmacology and use as adjunctive therapy in patients with Parkinson's disease. Clin Interv Aging 2009; 4:109-13. [PMID: 19503773 PMCID: PMC2685232 DOI: 10.2147/cia.s3787] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Levodopa has been the gold standard therapy for the motor symptoms of Parkinson’s disease for more than three decades. Although it remains the most effective treatment, its long-term use is associated with motor fluctuations and dyskinesias that can be disabling for patients and difficult for physicians to manage medically. In the last 10 years, the catechol-O-methyltransferase (COMT) inhibitor tolcapone has been studied for its efficacy as an adjunctive treatment to levodopa plus a dopa decarboxylase inhibitor. Adjunctive therapy with tolcapone can significantly reduce the dose of levodopa required. Moreover, treatment with tolcapone significantly reduces wearing off and on-off periods in fluctuating patients and improves ‘on’ time in patients with stable disease. Tolcapone has assumed a new place in the arsenal of medications for Parkinson’s disease. This paper reviews the pharmacology, safety and efficacy of tolcapone in patients with advanced Parkinson’s disease. After some initial concerns about its safety, tolcapone has been shown to be safe if used and monitored according to guidelines regarding liver function. Tolcapone produces expected dopaminergic side effects, including headache, nausea, insomnia, as well as diarrhea; however, these side effects are generally mild and as a rule do not result in discontinuation of therapy.
Collapse
Affiliation(s)
- Daniel D Truong
- The Parkinson's and Movement Disorder Institute, Fountain Valley, CA 92708, USA.
| |
Collapse
|
50
|
Di Stefano A, Sozio P, Iannitelli A, Cerasa LS. New drug delivery strategies for improved Parkinson's disease therapy. Expert Opin Drug Deliv 2009; 6:389-404. [DOI: 10.1517/17425240902870405] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|