1
|
Zheng Q, Xu SL, Guo XL, Wang CY, Ma MD, Ge JF. Effects of melatonin on the pharmacokinetics and amino acid metabolism profile of vigabatrin in rats. Toxicol Appl Pharmacol 2025; 496:117247. [PMID: 39884559 DOI: 10.1016/j.taap.2025.117247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVES Investigating the effect of melatonin (MLT) on the pharmacokinetics and related neurotransmitter and amino acid metabolism of vigabatrin (VGB) in epileptic rats in vivo. METHODS High performance liquid chromatography was used to examine the pharmacokinetics and tissue distribution of VGB after intragastric administration dosing (50,100,200) mg/kg singly or in combination with melatonin (20 mg/kg) in rats. The single-compartment model of first-order elimination was fitted with the nonlinear mixed-effect model of first-order estimation. Targeting metabolomics were used to measure and analyze the amino acid levels in the hippocampus of kainic acid (KA)-induced epileptic rats treated with VGB alone or coupled melatonin. RESULTS Melatonin significantly alters the pharmacokinetics of VGB, primarily by lengthening the elimination t1/2, Tmax, MRT and Vz/F, and decreasing the Cmax of both vigabatrin R(-) enantiomer (R-VGB) and vigabatrin S(+) enantiomer (S-VGB). Moreover, the concentrations of R-VGB and S-VGB were increased significantly in the lung and spleen of VGB + MLT group at 15 min compared with that of the VGB group. At 1 h, S-VGB levels increased significantly in spleen. At 4 h, the levels of S-VGB in the hippocampus and R-VGB in the prefrontal cortex increased significantly. Results of targeted metabolomics experiment showed that compared with control group, the level of aminobutyric acid/glutamate (GABA/Glu) in hippocampus of KA-induced epileptic rats was decreased, while glutamate/glutamine (Glu/Gln), tyrosine, dopamine, 3-methoxytyramine, tryptophan, 5-hydroxytryptamine, arginine and phenylalanine were significantly increased. These elevated levels of neurotransmitters and amino acids were decreased in VGB- and VGB + MLT treated group. CONCLUSIONS MLT affected the pharmacokinetics and tissue distribution of VGB in rats, prolonging its elimination time and improving the tissue distribution. Moreover, it might help VGB improve the imbalance of neurotransmitters and amino acids in the hippocampus of epileptic rats.
Collapse
Affiliation(s)
- Qiang Zheng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China; Shaoxing People's Hospital, Shaoxing 312000, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Song-Lin Xu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Xin-Lin Guo
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Chuan-Yu Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Meng-Die Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
2
|
Zheng Q, He S, Xu SL, Ma MD, Fan M, Ge JF. Pharmacokinetics and tissue distribution of vigabatrin enantiomers in rats. Saudi Pharm J 2024; 32:101934. [PMID: 38223203 PMCID: PMC10787297 DOI: 10.1016/j.jsps.2023.101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose To investigate the pharmacokinetics and tissue distribution of VGB racemate and its single enantiomers, and explore the potential of clinic development for single enantiomer S-VGB. Methods In the pharmacokinetics study, male Sprague-Dawley rats were gavaged with VGB racemate or its single enantiomers dosing 50, 100 or 200 mg/kg, and the blood samples were collected during 12 h at regular intervals. In the experiment of tissue distribution, VGB and its single enantiomers were administered intravenously dosing 200 mg/kg, and the tissues including heart, liver, spleen, lung and kidney, eyes, hippocampus, and prefrontal cortex were separated at different times. The concentrations of R-VGB and S-VGB in the plasma and tissues were measured using HPLC. Results Both S-VGB and R-VGB could be detected in the plasma of rats administered with VGB racemate, reaching Cmax at approximately 0.5 h with t1/2 2-3 h. There was no significant pharmacokinetic difference between the two enantiomers when VGB racemate was given 200 mg/kg and 100 mg/kg. However, when given at the dose of 50 mg/kg, S-VGB presented a shorter t1/2 and a higher Cl/F than R-VGB, indicating a faster metabolism of S-VGB. Furthermore, when single enantiomer was administered respectively, S-VGB presented a slower metabolism than R-VGB, as indicated by a longer t1/2 and MRT but a lower Cmax. Moreover, compared with the VGB racemate, the single enantiomers S-VGB and R-VGB had shorter t1/2 and MRT, higher Cmax and AUC/D, and lower Vz/F and Cl/F, indicating the stronger oral absorption and faster metabolism of single enantiomer. In addition, regardless of VGB racemate administration or single enantiomer administration, S-VGB and R-VGB had similar characteristics in tissue distribution, and the content of S-VGB in hippocampus, prefrontal cortex and liver was much higher than that of R-VGB. Conclusions Although there is no transformation between S-VGB and R-VGB in vivo, those two enantiomers display certain disparities in the pharmacokinetics and tissue distribution, and interact with each other. These findings might be a possible interpretation for the pharmacological and toxic effects of VGB and a potential direction for the development and optimization of the single enantiomer S-VGB.
Collapse
Affiliation(s)
- Qiang Zheng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Shuai He
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Song-Lin Xu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Meng-Die Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, PR China
- Anhui Provincial Laboratory of Inflammatory and Immune Disease, Anhui Institute of Innovative Drugs, Hefei, Anhui 230032, PR China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, PR China
| |
Collapse
|
3
|
Narapereddy KP, Alladi DS. Development and validation of determination of genotoxic impurity Bromoethane in Vigabatrin drug substance using head space gas chromatographic method [HS-GC]. PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e97339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
A specific HS-GC method has been developed, optimized, and validated for the determination of genotoxic impurity Bromoethane in Vigabatrin (VGB) drug substance. Chromatographic separation of genotoxic Bromoethane impurity was achieved on DB-1 column (30 m × 0.53 mm, 5.0 μm), consists of 100% dimethyl polysiloxane as stationary phase and passing nitrogen carrier gas. The performance of the method was assessed by evaluating the specificity, linearity, sensitivity, precision, and accuracy experiments. The established limit of detection and limit of quantification values for the genotoxic impurity was in the range of 3.57–10.80 μg/mL. The correlation coefficient value of the linearity experiment was 0.9880. The average recoveries for the accuracy were in the range of 95.3–106.8%. The results proved that the method is suitable for the determination of Bromoethane content in Vigabatrin.
Collapse
|
4
|
Altamirano‐Espino JA, Córdova‐Moreno R, Andrade‐Jorge E, Martínez‐Archundia M, García‐Machorro J, Trujillo‐Ferrara JG. Design, Docking Simulations, Synthesis, and in vitro and in vivo Behavioral Assessment of
m
‐Aminobenzoic Acid Analogues as GABA‐AT Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- José A. Altamirano‐Espino
- Laboratorio de Investigación en Bioquímica Sección de Estudios de Posgrado e Investigación Escuela Superior de Medicina del Instituto Politécnico Nacional Plan de San Luis y Díaz Mirón s/n Casco de Santo Tomás 11340 Mexico City México
| | - Rebeca Córdova‐Moreno
- Departamento de Sistemas Biológicos Universidad Autónoma Metropolitana-Unidad Xochimilco Mexico City 04960 México
| | - Erik Andrade‐Jorge
- Laboratorio de Investigación en Bioquímica Sección de Estudios de Posgrado e Investigación Escuela Superior de Medicina del Instituto Politécnico Nacional Plan de San Luis y Díaz Mirón s/n Casco de Santo Tomás 11340 Mexico City México
- Unidad de Investigación en Biomedicina y Carrera de enfermería Facultad de Estudios Superiores-Iztacala Universidad Nacional Autónoma de México Av. de los Barrios 1, Los Reyes Iztacala Tlalnepantla 54090, Estado de México México
| | - Marlet Martínez‐Archundia
- Laboratorio de Modelado Molecular Bioinformática y Diseño de Fármacos, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n 11340 Mexico City México
| | - Jazmín García‐Machorro
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón Mexico City 11340 México
| | - José G. Trujillo‐Ferrara
- Laboratorio de Investigación en Bioquímica Sección de Estudios de Posgrado e Investigación Escuela Superior de Medicina del Instituto Politécnico Nacional Plan de San Luis y Díaz Mirón s/n Casco de Santo Tomás 11340 Mexico City México
| |
Collapse
|
5
|
Mohammadian E, Rahimpour E, Foroumadi A, Alizadeh-Sani M, Hasanvand Z, Jouyban A. Derivatization of γ-Amino Butyric Acid Analogues for Their Determination in the Biological Samples and Pharmaceutical Preparations: A Comprehensive Review. Crit Rev Anal Chem 2021; 52:1727-1754. [PMID: 34096806 DOI: 10.1080/10408347.2021.1916733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
γ-Aminobutyric acid (GABA) plays an important role in regulating neuronal excitability. Four structurally related drugs to GABA including pregabalin (PGB), gabapentin (GBP), vigabatrin (VGB), and baclofen are used for the treatment of central nervous system disorders. These drugs are small aliphatic molecules having neither fluorescent nor strong absorbance in the ultraviolet/visible region; therefore, direct determination of these analytes by optical methods is difficult. Additionally, their high boiling point makes gas chromatography impossible. Accordingly, the amine or acid moiety in these drugs is derivatized in order to improve their selectivity and sensitivity during determination in the biological samples. This review focuses on derivatization based methods and their different reactions for determination of PGB, GBP, VGB, and baclofen in the biological samples and pharmaceutical preparations reported between 1980 and 2020. High-performance liquid chromatography methods coupled with different detectors are a commonly used methods for determination of GABA analogs after derivatization. These methods cover 38.89% of all developed methods for determination of GABA analogs.
Collapse
Affiliation(s)
- Esmaeil Mohammadian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh-Sani
- Student's Scientific Research Center, Department of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zaman Hasanvand
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Uekusa S, Onozato M, Sakamoto T, Umino M, Ichiba H, Fukushima T. Fluorimetric determination of the enantiomers of vigabatrin, an antiepileptic drug, by reversed-phase HPLC with a novel diastereomer derivatization reagent. Biomed Chromatogr 2021; 35:e5060. [PMID: 33377241 DOI: 10.1002/bmc.5060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/16/2023]
Abstract
Herein, determination of an antiepileptic drug, (±)-vigabatrin (VB), was performed by reversed-phase HPLC with fluorimetric detection using a newly designed and synthesized fluorescence derivatization reagent, 2,5-dioxopyrrolidin-1-yl (4-{[(2-nitrophenyl)sulfonyl]oxy}-6-(3-oxomorpholino)quinoline-2-carbonyl)prolinate [Ns-MOK-(R)- or (S)-Pro-OSu]. During the derivatization of VB with Ns-MOK-(R)-Pro-OSu at 60°C, the nosyl (Ns) group, which was introduced to protect a phenolic hydroxy group, was released within 30 min to produce MOK-(R)-Pro-VB, which was detected fluorimetrically at 448 nm with an excitation wavelength of 333 nm. The VB enantiomers were separated on an octadecylsilica (ODS) column with a resolution value of 5.57, because Ns-MOK-(R)-Pro-OSu bears an optically active D-proline structure. A complete separation of MOK-(R)-Pro-(R)- and -(S)-VB enantiomers was achieved on the ODS column within 40 min using stepwise gradient elution, and the detection limits were ~0.80 and 0.37 pmol on the column, respectively. The proposed HPLC with fluorimetric detection method was successfully used for determining VB enantiomers in VB-spiked human serum following solid-phase extraction with an anion-exchange cartridge.
Collapse
Affiliation(s)
- Shusuke Uekusa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan.,Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Tatsuya Sakamoto
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Maho Umino
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Hideaki Ichiba
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| |
Collapse
|
7
|
Títoff V, Moury HN, Títoff IB, Kelly KM. Seizures, Antiepileptic Drugs, and CKD. Am J Kidney Dis 2019; 73:90-101. [DOI: 10.1053/j.ajkd.2018.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/06/2018] [Indexed: 01/19/2023]
|
8
|
Ounissi M, Rodrigues C, Bienayme H, Duhamel P, Pons G, Dulac O, Nabbout R, Chiron C, Jullien V. Proposition of a Minimal Effective Dose of Vigabatrin for the Treatment of Infantile Spasms Using Pediatric and Adult Pharmacokinetic Data. J Clin Pharmacol 2018; 59:177-188. [DOI: 10.1002/jcph.1309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Marwa Ounissi
- INSERM U1129, Paris, France; Paris Descartes University, CEA; Gif-sur-Yvette France
| | - Christelle Rodrigues
- INSERM U1129, Paris, France; Paris Descartes University, CEA; Gif-sur-Yvette France
| | | | - Paul Duhamel
- INSERM U1129, Paris, France; Paris Descartes University, CEA; Gif-sur-Yvette France
| | - Gérard Pons
- INSERM U1129, Paris, France; Paris Descartes University, CEA; Gif-sur-Yvette France
| | - Olivier Dulac
- INSERM U1129, Paris, France; Paris Descartes University, CEA; Gif-sur-Yvette France
- Reference Centre for Rare Epilepsies; APHP; Necker-Enfants Malades Hospital; Imagine institute; Paris France
| | - Rima Nabbout
- INSERM U1129, Paris, France; Paris Descartes University, CEA; Gif-sur-Yvette France
- Reference Centre for Rare Epilepsies; APHP; Necker-Enfants Malades Hospital; Imagine institute; Paris France
| | - Catherine Chiron
- INSERM U1129, Paris, France; Paris Descartes University, CEA; Gif-sur-Yvette France
- Reference Centre for Rare Epilepsies; APHP; Necker-Enfants Malades Hospital; Imagine institute; Paris France
| | - Vincent Jullien
- INSERM U1129, Paris, France; Paris Descartes University, CEA; Gif-sur-Yvette France
- Service de pharmacologie; Hôpital Européen Georges Pompidou; Paris France
| |
Collapse
|
9
|
Abstract
Given the distinctive characteristics of both epilepsy and antiepileptic drugs (AEDs), therapeutic drug monitoring (TDM) can make a significant contribution to the field of epilepsy. The measurement and interpretation of serum drug concentrations can be of benefit in the treatment of uncontrollable seizures and in cases of clinical toxicity; it can aid in the individualization of therapy and in adjusting for variable or nonlinear pharmacokinetics; and can be useful in special populations such as pregnancy. This review examines the potential for TDM of newer AEDs such as eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, perampanel, pregabalin, rufinamide, retigabine, stiripentol, tiagabine, topiramate, vigabatrin, and zonisamide. We describe the relationships between serum drug concentration, clinical effect, and adverse drug reactions for each AED as well as the different analytical methods used for serum drug quantification. We discuss retrospective studies and prospective data on the serum drug concentration-efficacy of these drugs and present the pharmacokinetic parameters, oral bioavailability, reference concentration range, and active metabolites of newer AEDs. Limited data are available for recent AEDs, and we discuss the connection between drug concentrations in terms of clinical efficacy and nonresponse. Although we do not propose routine TDM, serum drug measurement can play a beneficial role in patient management and treatment individualization. Standardized studies designed to assess, in particular, concentration-efficacy-toxicity relationships for recent AEDs are urgently required.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutics, College of Pharmacy, Gulf Medical University, University Street, P.O.Box No.4184, Ajman, UAE.
| | - Anroop B Nair
- Department of Pharmaceutics, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
10
|
Selva E, Sempere Y, Ruiz-Martínez D, Pablo Ó, Guijarro D. Synthesis of Allylic Amines by Asymmetric Transfer Hydrogenation of α,β-Unsaturated N-(tert-Butylsulfinyl)imines. J Org Chem 2017; 82:13693-13699. [DOI: 10.1021/acs.joc.7b02472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Elisabet Selva
- Departamento de Química
Orgánica, Facultad de Ciencias and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Yeshua Sempere
- Departamento de Química
Orgánica, Facultad de Ciencias and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Débora Ruiz-Martínez
- Departamento de Química
Orgánica, Facultad de Ciencias and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Óscar Pablo
- Departamento de Química
Orgánica, Facultad de Ciencias and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - David Guijarro
- Departamento de Química
Orgánica, Facultad de Ciencias and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
11
|
Tolbert D, Reid S, Harris S, Bekersky I. Vigabatrin Lacks Proarrhythmic Potential: Results from a Thorough QT/QTc Study in Healthy Volunteers. Clin Ther 2017; 39:1639-1648. [DOI: 10.1016/j.clinthera.2017.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022]
|
12
|
Brecht EJ, Barsz K, Gross B, Walton JP. Increasing GABA reverses age-related alterations in excitatory receptive fields and intensity coding of auditory midbrain neurons in aged mice. Neurobiol Aging 2017; 56:87-99. [PMID: 28532644 DOI: 10.1016/j.neurobiolaging.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 03/18/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
Abstract
A key feature of age-related hearing loss is a reduction in the expression of inhibitory neurotransmitters in the central auditory system. This loss is partially responsible for changes in central auditory processing, as inhibitory receptive fields play a critical role in shaping neural responses to sound stimuli. Vigabatrin (VGB), an antiepileptic agent that irreversibly inhibits γ-amino butyric acid (GABA) transaminase, leads to increased availability of GABA throughout the brain. This study used multi-channel electrophysiology measurements to assess the excitatory frequency response areas in old CBA mice to which VGB had been administered. We found a significant post-VGB reduction in the proportion of V-type shapes, and an increase in primary-like excitatory frequency response areas. There was also a significant increase in the mean maximum driven spike rates across the tonotopic frequency range of all treated animals, consistent with observations that GABA buildup within the central auditory system increases spike counts of neural receptive fields. This increased spiking is also seen in the rate-level functions and seems to explain the improved low-frequency thresholds.
Collapse
Affiliation(s)
- Elliott J Brecht
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA; Global Center of Speech and Hearing Research, University of South Florida, Tampa, FL, USA
| | - Kathy Barsz
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Benjamin Gross
- Global Center of Speech and Hearing Research, University of South Florida, Tampa, FL, USA; Department of Physics, University of South Florida, Tampa, FL, USA
| | - Joseph P Walton
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA; Global Center of Speech and Hearing Research, University of South Florida, Tampa, FL, USA; Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
13
|
Santoro GC, Shukla S, Patel K, Kaczmarzyk J, Agorastos S, Scherrer S, Choi YY, Veith C, Carrion J, Silverman R, Mullin D, Ahmed M, Schiffer WK, Brodie JD, Dewey SL. A Novel Strategy for Attenuating Opioid Withdrawal in Neonates. JOURNAL OF ADDICTION RESEARCH & THERAPY 2017; 7. [PMID: 28078167 PMCID: PMC5222617 DOI: 10.4172/2155-6105.1000291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rate of Neonatal Abstinence Syndrome (NAS) has drastically increased over the past decade. The average hospital expense per NAS patient has tripled, while the number of babies born to opioid-dependent mothers has increased to 5 in 1000 births. Current treatment options are limited to opioid replacement and tapering. Consequently, we examined the efficacy of prenatal, low-dose and short-term vigabatrin (γ-vinyl GABA, GVG) exposure for attenuating these symptoms as well as the metabolic changes observed in the brains of these animals upon reaching adolescence. Pregnant Sprague-Dawley rats were treated in one of four ways: 1) saline; 2) morphine alone; 3) morphine+GVG at 25 mg/kg; 4) morphine+GVG at 50 mg/kg. Morphine was administered throughout gestation, while GVG administration occurred only during the last 5 days of gestation. On post-natal day 1, naloxone-induced withdrawal behaviours were recorded in order to obtain a gross behaviour score. Approximately 28 days following birth, 18FDG microPET scans were obtained on these same animals (Groups 1, 2, and 4). Morphine-treated neonates demonstrated significantly higher withdrawal scores than saline controls. However, GVG at 50 but not 25 mg/kg/day significantly attenuated them. Upon reaching adolescence, morphine treated animals showed regionally specific changes in 18FDG uptake. Again, prenatal GVG exposure blocked them. These data demonstrate that low-dose, short-term prenatal GVG administration blocks naloxone-induced withdrawal in neonates. Taken together, these preliminary findings suggest that GVG may provide an alternative and long-lasting pharmacologic approach for the management of neonatal and adolescent symptoms associated with NAS.
Collapse
Affiliation(s)
- Giovanni C Santoro
- Center for Neurosciences, Laboratory for Molecular and Behavioural Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Samarth Shukla
- Center for Neurosciences, Laboratory for Molecular and Behavioural Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center of NY, New Hyde Park, NY, USA
| | - Krishna Patel
- Center for Neurosciences, Laboratory for Molecular and Behavioural Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Jakub Kaczmarzyk
- Center for Neurosciences, Laboratory for Molecular and Behavioural Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Stergiani Agorastos
- Center for Neurosciences, Laboratory for Molecular and Behavioural Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Sandra Scherrer
- Center for Neurosciences, Laboratory for Molecular and Behavioural Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Yoon Young Choi
- Center for Neurosciences, Laboratory for Molecular and Behavioural Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Christina Veith
- Center for Neurosciences, Laboratory for Molecular and Behavioural Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Joseph Carrion
- Center for Neurosciences, Laboratory for Molecular and Behavioural Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
| | - Rebecca Silverman
- Center for Neurosciences, Laboratory for Molecular and Behavioural Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Danielle Mullin
- Center for Neurosciences, Laboratory for Molecular and Behavioural Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mohamed Ahmed
- Division of Neonatal-Perinatal Medicine, Cohen Children's Medical Center of NY, New Hyde Park, NY, USA
| | - Wynne K Schiffer
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan D Brodie
- Psychiatry Department, New York University School of Medicine, NY, USA
| | - Stephen L Dewey
- Center for Neurosciences, Laboratory for Molecular and Behavioural Neuroimaging, Feinstein Institute for Medical Research, Manhasset, NY, USA; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA; Psychiatry Department, New York University School of Medicine, NY, USA
| |
Collapse
|
14
|
Shannon RJ, Timofeev I, Nortje J, Hutchinson PJ, Carpenter KLH. Monitoring vigabatrin in head injury patients by cerebral microdialysis: obtaining pharmacokinetic measurements in a neurocritical care setting. Br J Clin Pharmacol 2015; 78:981-95. [PMID: 24802902 PMCID: PMC4243872 DOI: 10.1111/bcp.12414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/28/2014] [Indexed: 01/16/2023] Open
Abstract
Aims The aims were to determine blood–brain barrier penetration and brain extracellular pharmacokinetics for the anticonvulsant vigabatrin (VGB; γ-vinyl-γ-aminobutyric acid) in brain extracellular fluid and plasma from severe traumatic brain injury (TBI) patients, and to measure the response of γ-aminobutyric acid (GABA) concentration in brain extracellular fluid. Methods Severe TBI patients (n = 10) received VGB (0.5 g enterally, every 12 h). Each patient had a cerebral microdialysis catheter; two patients had a second catheter in a different region of the brain. Plasma samples were collected 0.5 h before and 2, 4 and 11.5 h after the first VGB dose. Cerebral microdialysis commenced before the first VGB dose and continued through at least three doses of VGB. Controls were seven severe TBI patients with microdialysis, without VGB. Results After the first VGB dose, the maximum concentration of VGB (Cmax) was 31.7 (26.9–42.6) μmol l−1 (median and interquartile range for eight patients) in plasma and 2.41 (2.03–5.94) μmol l−1 in brain microdialysates (nine patients, 11 catheters), without significant plasma–brain correlation. After three doses, median Cmax in microdialysates increased to 5.22 (4.24–7.14) μmol l−1 (eight patients, 10 catheters). Microdialysate VGB concentrations were higher close to focal lesions than in distant sites. Microdialysate GABA concentrations increased modestly in some of the patients after VGB administration. Conclusions Vigabatrin, given enterally to severe TBI patients, crosses the blood–brain barrier into the brain extracellular fluid, where it accumulates with multiple dosing. Pharmacokinetics suggest delayed uptake from the blood.
Collapse
Affiliation(s)
- Richard J Shannon
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
15
|
Dried blood spots for monitoring and individualization of antiepileptic drug treatment. Eur J Pharm Sci 2015; 75:25-39. [DOI: 10.1016/j.ejps.2015.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/21/2022]
|
16
|
Nøhr M, Juul R, Thale Z, Holm R, Kreilgaard M, Nielsen C. Is oral absorption of vigabatrin carrier-mediated? Eur J Pharm Sci 2015; 69:10-8. [DOI: 10.1016/j.ejps.2014.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/17/2014] [Accepted: 12/25/2014] [Indexed: 01/28/2023]
|
17
|
Anderson GD, Hakimian S. Pharmacokinetic of antiepileptic drugs in patients with hepatic or renal impairment. Clin Pharmacokinet 2014; 53:29-49. [PMID: 24122696 DOI: 10.1007/s40262-013-0107-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many factors influence choice of antiepileptic drugs (AEDs), including efficacy of the drug for the indication (epilepsy, neuropathic pain, affective disorder, migraine), tolerability, and toxicity. The first-generation AEDs and some newer AEDs are predominately eliminated by hepatic metabolism. Other recent AEDs are eliminated by renal excretion of unchanged drug or a combination of hepatic metabolism and renal excretion. The effect of renal and hepatic disease on the dosing will depend on the fraction of the AED eliminated by hepatic and/or renal excretion, the metabolic isozymes involved, as well as the extent of protein binding, if therapeutic drug monitoring is used. For drugs that are eliminated by renal excretion, methods of estimating creatinine clearance can be used to determine dose adjustments. For drugs eliminated by hepatic metabolism, there are no specific markers of liver function that can be used to provide guidance in dosage adjustments. Based on studies with probe drugs, the hepatic metabolic enzymes are differentially affected depending on the cause and severity of hepatic disease, which can aid in predicting dose adjustment when clinical data are not available. Several AEDs are also associated with laboratory markers of mild hepatic dysfunction and, rarely, more severe hepatic injury. In contrast, the risk of renal injury from AEDs is generally low. In general, co-morbid hepatic or renal diseases influence the decision for the selection of an AED. For some patients dosing changes to their existing AEDs may be appropriate. For others, a change to another AED may be a better option.
Collapse
|
18
|
Pharmacokinetic aspects of the anti-epileptic drug substance vigabatrin: focus on transporter interactions. Ther Deliv 2014; 5:927-42. [DOI: 10.4155/tde.14.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Drug transporters in various tissues, such as intestine, kidney, liver and brain, are recognized as important mediators of absorption, distribution, metabolism and excretion of drug substances. This review gives a current status on the transporter(s) mediating the absorption, distribution, metabolism and excretion properties of the anti-epileptic drug substance vigabatrin. For orally administered drugs, like vigabatrin, the absorption from the intestine is a prerequisite for the bioavailability. Therefore, transporter(s) involved in the intestinal absorption of vigabatrin in vitro and in vivo are discussed in detail. Special focus is on the contribution of the proton-coupled amino acid transporter 1 (PAT1) for intestinal vigabatrin absorption. Furthermore, the review gives an overview of the pharmacokinetic parameters of vigabatrin across different species and drug–food and drug–drug interactions involving vigabatrin.
Collapse
|
19
|
Kostić N, Dotsikas Y, Jović N, Stevanović G, Malenović A, Medenica M. Vigabatrin in dried plasma spots: Validation of a novel LC–MS/MS method and application to clinical practice. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 962:102-108. [DOI: 10.1016/j.jchromb.2014.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/12/2014] [Accepted: 05/17/2014] [Indexed: 11/28/2022]
|
20
|
Krasowski MD, McMillin GA. Advances in anti-epileptic drug testing. Clin Chim Acta 2014; 436:224-36. [PMID: 24925169 DOI: 10.1016/j.cca.2014.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 12/12/2022]
Abstract
In the past twenty-one years, 17 new antiepileptic drugs have been approved for use in the United States and/or Europe. These drugs are clobazam, ezogabine (retigabine), eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, perampanel, pregabalin, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide. Therapeutic drug monitoring is often used in the clinical dosing of the newer anti-epileptic drugs. The drugs with the best justifications for drug monitoring are lamotrigine, levetiracetam, oxcarbazepine, stiripentol, and zonisamide. Perampanel, stiripentol and tiagabine are strongly bound to serum proteins and are candidates for monitoring of the free drug fractions. Alternative specimens for therapeutic drug monitoring are saliva and dried blood spots. Therapeutic drug monitoring of the new antiepileptic drugs is discussed here for managing patients with epilepsy.
Collapse
Affiliation(s)
- Matthew D Krasowski
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, United States.
| | - Gwendolyn A McMillin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States; ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories Inc., Salt Lake City, UT, United States
| |
Collapse
|
21
|
Italiano D, Perucca E. Clinical pharmacokinetics of new-generation antiepileptic drugs at the extremes of age: an update. Clin Pharmacokinet 2014; 52:627-45. [PMID: 23640503 DOI: 10.1007/s40262-013-0067-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Epilepsies occur across the entire age range, and their incidence peaks in the first years of life and in the elderly. Therefore, antiepileptic drugs (AEDs) are commonly used at the extremes of age. Rational prescribing in these age groups requires not only an understanding of the drugs' pharmacodynamic properties, but also careful consideration of potential age-related changes in their pharmacokinetic profile. The present article, which updates a review published in 2006 in this journal, focuses on recent findings on the pharmacokinetics of new-generation AEDs in neonates, infants, children, and the elderly. Significant new information on the pharmacokinetics of new AEDs in the perinatal period has been acquired, particularly for lamotrigine and levetiracetam. As a result of slow maturation of the enzymes involved in glucuronide conjugation, lamotrigine elimination occurs at a particularly slow rate in neonates, and becomes gradually more efficient during the first months of life. In the case of levetiracetam, elimination occurs primarily by renal excretion and is also slow at birth, but drug clearance increases rapidly thereafter and can even double within 1 week. In general, infants older than 2-3 months and children show higher drug clearance (normalized for body weight) than adults. This pattern was confirmed in recent studies that investigated the pediatric pharmacokinetics of several new AEDs, including levetiracetam, rufinamide, stiripentol, and eslicarbazepine acetate. At the other extreme of age, in the elderly, drug clearance is generally reduced compared with younger adults because of less efficient drug-metabolizing activity, decreased renal function, or both. This general pattern, described previously for several AEDs, was confirmed in recent studies on the effect of old age on the clearance of felbamate, levetiracetam, pregabalin, lacosamide, and retigabine. For those drugs which are predominantly eliminated by renal excretion, aging-related pharmacokinetic changes could be predicted by measuring creatinine clearance (CLCR). Overall, most recent findings confirm that age is a major factor influencing the pharmacokinetic profile of AEDs. However, pharmacokinetic variability at any age can be considerable, and the importance of other factors should not be disregarded. These include genetic factors, co-morbidities, and drug interactions, particularly those caused by concomitantly administered AEDs which induce or inhibit drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Domenico Italiano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | |
Collapse
|
22
|
Nøhr MK, Hansen SH, Brodin B, Holm R, Nielsen CU. The absorptive flux of the anti-epileptic drug substance vigabatrin is carrier-mediated across Caco-2 cell monolayers. Eur J Pharm Sci 2014; 51:1-10. [DOI: 10.1016/j.ejps.2013.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/19/2013] [Accepted: 08/25/2013] [Indexed: 01/10/2023]
|
23
|
Wlodarczyk BJ, Palacios AM, George TM, Finnell RH. Antiepileptic drugs and pregnancy outcomes. Am J Med Genet A 2012; 158A:2071-90. [PMID: 22711424 PMCID: PMC3402584 DOI: 10.1002/ajmg.a.35438] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 03/16/2012] [Indexed: 11/09/2022]
Abstract
The treatment of epilepsy in women of reproductive age remains a clinical challenge. While most women with epilepsy (WWE) require anticonvulsant drugs for adequate control of their seizures, the teratogenicity associated with some antiepileptic drugs (AEDs) is a risk that needs to be carefully addressed. Antiepileptic medications are also used to treat an ever broadening range of medical conditions such as bipolar disorder, migraine prophylaxis, cancer, and neuropathic pain. Despite the fact that the majority of pregnancies of WWE who are receiving pharmacological treatment are normal, studies have demonstrated that the risk of having a pregnancy complicated by a major congenital malformation is doubled when comparing the risk of untreated pregnancies. Furthermore, when AEDs are used in polytherapy regimens, the risk is tripled, especially when valproic acid (VPA) is included. However, it should be noted that the risks are specific for each anticonvulsant drug. Some investigations have suggested that the risk of teratogenicity is increased in a dose-dependent manner. More recent studies have reported that in utero exposure to AEDs can have detrimental effects on the cognitive functions and language skills in later stages of life. In fact, the FDA just issued a safety announcement on the impact of VPA on cognition (Safety Announcement 6-30-2011). The purpose of this document is to review the most commonly used compounds in the treatment of WWE, and to provide information on the latest experimental and human epidemiological studies of the effects of AEDs in the exposed embryos.
Collapse
Affiliation(s)
- Bogdan J Wlodarczyk
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas 78723, USA.
| | | | | | | |
Collapse
|
24
|
Effects of vigabatrin, an irreversible GABA transaminase inhibitor, on ethanol reinforcement and ethanol discriminative stimuli in mice. Behav Pharmacol 2012; 23:178-90. [PMID: 22336593 DOI: 10.1097/fbp.0b013e3283512c56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We tested the hypothesis that the irreversible γ-amino butyric acid transaminase inhibitor, γ-vinyl γ-amino butyric acid [vigabatrin (VGB)], would reduce ethanol reinforcement and enhance the discriminative-stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity, and ethanol discrimination procedures to comprehensively examine the effects of VGB on ethanol-supported behaviors. VGB dose-dependently reduced operant responding for ethanol and ethanol consumption for long periods of time. Importantly, a low dose (200 mg/kg) of VGB was selective for reducing ethanol responding without altering the intake of food or water reinforcement. Higher VGB doses (>200mg/kg) reduced ethanol intake, but also significantly increased water consumption and, more modestly, increased food consumption. Although not affecting locomotor activity on its own, VGB interacted with ethanol to reduce the stimulatory effects of ethanol on locomotion. Finally, VGB (200 mg/kg) significantly enhanced the discriminative-stimulus effects of ethanol as evidenced by significant leftward and upward shifts in ethanol generalization curves. Interestingly, VGB treatment was associated with slight increases in blood ethanol concentrations. The reduction in ethanol intake by VGB appears to be related to the ability of VGB to potentiate the pharmacological effects of ethanol.
Collapse
|
25
|
Johannessen Landmark C, Johannessen SI, Tomson T. Host factors affecting antiepileptic drug delivery-pharmacokinetic variability. Adv Drug Deliv Rev 2012; 64:896-910. [PMID: 22063021 DOI: 10.1016/j.addr.2011.10.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/11/2011] [Accepted: 10/14/2011] [Indexed: 01/16/2023]
Abstract
Antiepileptic drugs (AEDs) are the mainstay in the treatment of epilepsy, one of the most common serious chronic neurological disorders. AEDs display extensive pharmacological variability between and within patients, and a major determinant of differences in response to treatment is pharmacokinetic variability. Host factors affecting AED delivery may be defined as the pharmacokinetic characteristics that determine the AED delivery to the site of action, the epileptic focus. Individual differences may occur in absorption, distribution, metabolism and excretion. These differences can be determined by genetic factors including gender and ethnicity, but the pharmacokinetics of AEDs can also be affected by age, specific physiological states in life, such as pregnancy, or pathological conditions including hepatic and renal insufficiency. Pharmacokinetic interactions with other drugs are another important source of variability in response to AEDs. Pharmacokinetic characteristics of the presently available AEDs are discussed in this review as well as their clinical implications.
Collapse
|
26
|
Rectal Absorption of Vigabatrin, a Substrate of the Proton Coupled Amino Acid Transporter (PAT1, Slc36a1), in Rats. Pharm Res 2012; 29:1134-42. [DOI: 10.1007/s11095-012-0673-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/03/2012] [Indexed: 01/16/2023]
|
27
|
Tolman JA, Faulkner MA. Treatment options for refractory and difficult to treat seizures: focus on vigabatrin. Ther Clin Risk Manag 2011; 7:367-75. [PMID: 21941443 PMCID: PMC3176170 DOI: 10.2147/tcrm.s8519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Complex partial seizures are often refractory to current pharmacological therapies. These difficult to treat seizures are typically managed using multiple antiepileptic drugs (AEDs). AEDs as a group are frequently associated with significant adverse drug effects, multiple drug interactions, and numerous potential clinical complications due to their individual pharmacokinetic profiles and unique drug properties. Recently, the approval of vigabatrin by the US Food and Drug Administration has necessitated that clinicians re-evaluate these risk-benefit relationships and determine where the drug fits within the treatment scheme for the management of complex partial seizures. This review will facilitate that re-evaluation through a brief review of AEDs used in the treatment of complex partial seizures, followed by a focused discussion on vigabatrin.
Collapse
Affiliation(s)
- Justin A Tolman
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, NE, USA
| | | |
Collapse
|
28
|
Kang J, Park YS, Kim SH, Kim SH, Jun MY. Modern methods for analysis of antiepileptic drugs in the biological fluids for pharmacokinetics, bioequivalence and therapeutic drug monitoring. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:67-81. [PMID: 21660146 DOI: 10.4196/kjpp.2011.15.2.67] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/10/2011] [Accepted: 04/15/2011] [Indexed: 12/20/2022]
Abstract
Epilepsy is a chronic disease occurring in approximately 1.0% of the world's population. About 30% of the epileptic patients treated with availably antiepileptic drugs (AEDs) continue to have seizures and are considered therapy-resistant or refractory patients. The ultimate goal for the use of AEDs is complete cessation of seizures without side effects. Because of a narrow therapeutic index of AEDs, a complete understanding of its clinical pharmacokinetics is essential for understanding of the pharmacodynamics of these drugs. These drug concentrations in biological fluids serve as surrogate markers and can be used to guide or target drug dosing. Because early studies demonstrated clinical and/or electroencephalographic correlations with serum concentrations of several AEDs, It has been almost 50 years since clinicians started using plasma concentrations of AEDs to optimize pharmacotherapy in patients with epilepsy. Therefore, validated analytical method for concentrations of AEDs in biological fluids is a necessity in order to explore pharmacokinetics, bioequivalence and TDM in various clinical situations. There are hundreds of published articles on the analysis of specific AEDs by a wide variety of analytical methods in biological samples have appears over the past decade. This review intends to provide an updated, concise overview on the modern method development for monitoring AEDs for pharmacokinetic studies, bioequivalence and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Juseop Kang
- Pharmacology & Clinical Pharmacology Lab, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Abstract
The last 2 decades have witnessed an unprecedented period of new antiepileptic drug (AED) development. Newer-generation AEDs have been developed with the intention of improving the ease of use, decreasing drug interactions, decreasing adverse side effects, and identifying drugs with unique mechanisms of action, some of which may bear relevance to potential neuroprotective activity. Drug trials have also been refined in some cases to evaluate AED efficacy in children and against distinct epilepsy syndromes. This progress provides many new treatment options for the child neurologist facing children with epilepsy but also introduces the burden of determining appropriate AED choices. Here we highlight 6 new antiepileptic medications recently approved or pending approval for use in the United States: lacosamide, rufinamide, vigabatrin, retigabine, brivaracetam, and clobazam. For each of these medications, we present information regarding the history of drug development, proposed mechanism(s) of action, pharmacokinetics and recommended dosing, evidence for clinical efficacy, tolerability, and when, available, any unique features that are relevant for the pediatric population.
Collapse
Affiliation(s)
- Catherine J Chu-Shore
- Pediatric Epilepsy Program, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
31
|
Krasowski MD. Therapeutic Drug Monitoring of the Newer Anti-Epilepsy Medications. Pharmaceuticals (Basel) 2010; 3:1909-1935. [PMID: 20640233 PMCID: PMC2904466 DOI: 10.3390/ph3061909] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/11/2010] [Accepted: 06/09/2010] [Indexed: 11/16/2022] Open
Abstract
In the past twenty years, 14 new antiepileptic drugs have been approved for use in the United States and/or Europe. These drugs are eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, pregabalin, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide. In general, the clinical utility of therapeutic drug monitoring has not been established in clinical trials for these new anticonvulsants, and clear guidelines for drug monitoring have yet to be defined. The antiepileptic drugs with the strongest justifications for drug monitoring are lamotrigine, oxcarbazepine, stiripentol, and zonisamide. Stiripentol and tiagabine are strongly protein bound and are candidates for free drug monitoring. Therapeutic drug monitoring has lower utility for gabapentin, pregabalin, and vigabatrin. Measurement of salivary drug concentrations has potential utility for therapeutic drug monitoring of lamotrigine, levetiracetam, and topiramate. Therapeutic drug monitoring of the new antiepileptic drugs will be discussed in managing patients with epilepsy.
Collapse
Affiliation(s)
- Matthew D Krasowski
- Department of Pathology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, RCP 6233, Iowa City, IA 52242
| |
Collapse
|
32
|
Abstract
In the past twenty years, 14 new antiepileptic drugs have been approved for use in the United States and/or Europe. These drugs are eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, pregabalin, rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide. In general, the clinical utility of therapeutic drug monitoring has not been established in clinical trials for these new anticonvulsants, and clear guidelines for drug monitoring have yet to be defined. The antiepileptic drugs with the strongest justifications for drug monitoring are lamotrigine, oxcarbazepine, stiripentol, and zonisamide. Stiripentol and tiagabine are strongly protein bound and are candidates for free drug monitoring. Therapeutic drug monitoring has lower utility for gabapentin, pregabalin, and vigabatrin. Measurement of salivary drug concentrations has potential utility for therapeutic drug monitoring of lamotrigine, levetiracetam, and topiramate. Therapeutic drug monitoring of the new antiepileptic drugs will be discussed in managing patients with epilepsy.
Collapse
|
33
|
|
34
|
Bentué-Ferrer D, Tribut O, Verdier MC. Suivi thérapeutique pharmacologique du vigabatrin. Therapie 2010; 65:23-7. [DOI: 10.2515/therapie/2009067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/01/2009] [Indexed: 11/20/2022]
|
35
|
Tolman JA, Faulkner MA. Vigabatrin: a comprehensive review of drug properties including clinical updates following recent FDA approval. Expert Opin Pharmacother 2009; 10:3077-89. [DOI: 10.1517/14656560903451690] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Pharmacokinetics and Therapeutic Drug Monitoring of Psychotropic Drugs in Pediatrics. Ther Drug Monit 2009; 31:283-318. [DOI: 10.1097/ftd.0b013e31819f3328] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Patsalos PN, Berry DJ, Bourgeois BFD, Cloyd JC, Glauser TA, Johannessen SI, Leppik IE, Tomson T, Perucca E. Antiepileptic drugs--best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia 2008; 49:1239-76. [PMID: 18397299 DOI: 10.1111/j.1528-1167.2008.01561.x] [Citation(s) in RCA: 731] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although no randomized studies have demonstrated a positive impact of therapeutic drug monitoring (TDM) on clinical outcome in epilepsy, evidence from nonrandomized studies and everyday clinical experience does indicate that measuring serum concentrations of old and new generation antiepileptic drugs (AEDs) can have a valuable role in guiding patient management provided that concentrations are measured with a clear indication and are interpreted critically, taking into account the whole clinical context. Situations in which AED measurements are most likely to be of benefit include (1) when a person has attained the desired clinical outcome, to establish an individual therapeutic concentration which can be used at subsequent times to assess potential causes for a change in drug response; (2) as an aid in the diagnosis of clinical toxicity; (3) to assess compliance, particularly in patients with uncontrolled seizures or breakthrough seizures; (4) to guide dosage adjustment in situations associated with increased pharmacokinetic variability (e.g., children, the elderly, patients with associated diseases, drug formulation changes); (5) when a potentially important pharmacokinetic change is anticipated (e.g., in pregnancy, or when an interacting drug is added or removed); (6) to guide dose adjustments for AEDs with dose-dependent pharmacokinetics, particularly phenytoin.
Collapse
Affiliation(s)
- Philip N Patsalos
- Institute of Neurology/The National Hospital for Neurology and Neurosurgery, London and The Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Luszczki JJ, Ratnaraj N, Patsalos PN, Czuczwar SJ. Isobolographic and behavioral characterizations of interactions between vigabatrin and gabapentin in two experimental models of epilepsy. Eur J Pharmacol 2008; 595:13-21. [PMID: 18708046 DOI: 10.1016/j.ejphar.2008.07.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/11/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
The aim of this study was to characterize the pharmacodynamic, pharmacokinetic and adverse-effect profiles of vigabatrin and gabapentin. Isobolographic analysis was used in two mouse experimental models of epilepsy: the maximal electroshock seizure threshold test and pentylenetetrazole-induced seizures. In the maximal electroshock seizure threshold test, electroconvulsions were produced by a current with various intensities whilst in the pentylenetetrazole test a CD(97) dose (100 mg/kg) was used. Potential adverse-effect profiles of interactions of vigabatrin with gabapentin at three fixed-ratios of 1:3, 1:1 and 3:1 from both seizure tests were evaluated in the chimney (motor performance) and grip-strength (skeletal muscular strength) tests. Vigabatrin and gabapentin total brain concentrations were determined with high performance liquid chromatography. Vigabatrin and gabapentin administered singly increased the electroconvulsive threshold (TID(20) - 226.2 and 70.0 mg/kg, respectively). With isobolography, the combination of vigabatrin with gabapentin at the fixed-ratio of 1:3 exerted supra-additive (synergistic) interactions whilst at 1:1 and 3:1 additivity occurred. Similarly, vigabatrin and gabapentin administered singly suppressed the pentylenetetrazole-induced seizures (ED(50) values - 622.5 and 201.1 mg/kg, respectively). Isobolography revealed that vigabatrin with gabapentin in combination at the fixed-ratio of 1:1 produced supra-additive (synergistic) interaction whilst at 1:3 and 3:1 additivity occurred. In combination neither motor coordination nor skeletal muscular strength was affected. Total vigabatrin and gabapentin brain concentrations revealed that neither drug affected the pharmacokinetics of the other. Vigabatrin and gabapentin have a favorable pharmacodynamic interaction in animal seizure models in the absence of acute adverse effects or concurrent pharmacokinetic changes.
Collapse
|
39
|
Fluorescent high-performance liquid chromatographic analysis of vigabatrin enantiomers after derivatizing with naproxen acyl chloride. J Chromatogr A 2008; 1178:166-70. [DOI: 10.1016/j.chroma.2007.11.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/09/2007] [Accepted: 11/28/2007] [Indexed: 11/18/2022]
|
40
|
Tong X, Ratnaraj N, Patsalos PN. The pharmacokinetics of vigabatrin in rat blood and cerebrospinal fluid. Seizure 2007; 16:43-9. [PMID: 17118677 DOI: 10.1016/j.seizure.2006.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 10/03/2006] [Accepted: 10/23/2006] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Data on the blood pharmacokinetics of vigabatrin, an antiepileptic drug with a unique and novel mechanism of action, in the rat are sparse. Additionally, little is known of the kinetics of vigabatrin in the central cerebrospinal fluid (CSF) compartment. We therefore investigated the rate of penetration into and the inter-relationship between serum and CSF compartments following systemic administration of vigabatrin in the rat. METHODS Sprague-Dawley rats were implanted with a jugular vein catheter and a cisterna magna catheter for blood and CSF sampling, respectively. Vigabatrin was administered by intraperitonial injection at three different doses (250, 500 and 1000mg/kg) and blood and CSF collected at timed intervals up to 8h. Vigabatrin concentrations in sera and CSF were determined by high performance liquid chromatography. RESULTS Vigabatrin concentrations in blood and CSF rose linearly and dose-dependently and the time to maximum concentration (Tmax) was 0.4 and 1.0h, respectively. Vigabatrin is not protein bound in serum and its elimination from serum (mean t1/2 values, 1.1-1.4 h) is rapid and dose-independent. The efflux of vigabatrin from CSF was significantly slower than that seen for serum (mean t1/2 values, 2.2-3.3h). CONCLUSIONS The kinetics of vigabatrin are linear with rapid entry into CSF. However, although vigabatrin CSF kinetics parallel that seen in serum, CSF vigabatrin concentrations represent only 2% of concentrations seen in serum and do not reflect free drug concentrations in serum.
Collapse
Affiliation(s)
- X Tong
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | | | | |
Collapse
|
41
|
|
42
|
Vinogradova LV, Kuznetsova GD, Shatskova AB, van Rijn CM. Vigabatrin in Low Doses Selectively Suppresses the Clonic Component of Audiogenically Kindled Seizures in Rats. Epilepsia 2005; 46:800-10. [PMID: 15946321 DOI: 10.1111/j.1528-1167.2005.52604.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The effect of systemic administration of the gamma-aminobutyric acid (GABA)-transaminase inhibitor vigabatrin (VGB) on different components of convulsions was tested in the model of audiogenically kindled seizures, which consist of brainstem (running, tonus) and forebrain (clonus) elements. METHODS Audiogenically susceptible rats of Krushinsky-Molodkina (KM), Wistar, and WAG/Rij strains received repeated sound stimulation (60 dB, 10-80 kHz) until kindled audiogenic seizures were reliably elicited. Kindled audiogenic seizures consisted of running, tonic, and generalized clonic phases in KM rats (severe audiogenic seizures) and of running and Racine stage 5 facial/forelimb clonus in Wistar and WAG/Rij rats (moderate seizures). Vehicle, 100, or 200 mg/kg of VGB was intraperitoneally injected 2, 4 and 24 h before the induction of kindled audiogenic seizures. RESULTS At both doses, VGB did not change the seizure latency and the duration of running and tonic convulsions, but suppressed clonic ones in all rat strains. In KM rats, the mean duration of posttonic clonus was significantly reduced at 24 h after 100 mg/kg and from 4 h after 200 mg/kg. In Wistar and WAG/Rij rats, the mean duration of facial/forelimb clonus was reduced from 4 and 2 h after 100- and 200-mg/kg administration, respectively; 24 h after the high-dose injection, clonus was completely blocked in all rats of both strains. No difference in efficacy of VGB between Wistar and WAG/Rij rats was observed. CONCLUSIONS VGB more effectively suppresses clonic convulsions than running and tonic ones in audiogenically kindled rats. It is supposed that this selective anticonvulsive effect of VGB results from different sensitivities of forebrain and brainstem epileptic networks to the presumed GABA enhancement.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Anticonvulsants/administration & dosage
- Anticonvulsants/pharmacology
- Anticonvulsants/therapeutic use
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Epilepsy, Reflex/diagnosis
- Epilepsy, Reflex/prevention & control
- Female
- Injections, Intraperitoneal
- Kindling, Neurologic/drug effects
- Kindling, Neurologic/physiology
- Male
- Motor Activity/drug effects
- Motor Activity/physiology
- Rats
- Rats, Inbred Strains
- Rats, Wistar
- Seizures/prevention & control
- Severity of Illness Index
- Species Specificity
- Vigabatrin/administration & dosage
- Vigabatrin/pharmacology
- Vigabatrin/therapeutic use
Collapse
Affiliation(s)
- Ludmilla V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
43
|
Luszczki JJ, Wojcik-Cwikla J, Andres MM, Czuczwar SJ. Pharmacological and behavioral characteristics of interactions between vigabatrin and conventional antiepileptic drugs in pentylenetetrazole-induced seizures in mice: an isobolographic analysis. Neuropsychopharmacology 2005; 30:958-73. [PMID: 15525996 DOI: 10.1038/sj.npp.1300602] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To characterize the anticonvulsant effects and types of interactions exerted by mixtures of vigabatrin (VGB) and conventional antiepileptic drugs (valproate (VPA), ethosuximide (ESM), phenobarbital (PB), and clonazepam (CZP)) in pentylenetetrazole (PTZ)-induced seizures in mice, the isobolographic analysis for three fixed-ratio combinations of 1 : 3, 1 : 1, and 3 : 1 was used. The adverse-effect profile of the combinations tested, at the doses corresponding to their median effective doses (ED(50)) at the fixed-ratio of 1 : 1 against PTZ-induced seizures, was determined by the chimney (motor performance), step-through passive avoidance (long-term memory), pain threshold (pain sensitivity), and Y-maze (general explorative locomotor activity) tests in mice. Additionally, the observed isobolographic interactions were verified in terms of a pharmacokinetic interaction existence. VGB combined with PB or ESM exerted supra-additive (synergistic) interactions against the clonic phase of PTZ-induced seizures, which was associated with the increment of PB or ESM concentrations in the brains of examined animals. The remaining combinations tested (ie VGB+VPA and VGB+CZP) occurred additive in the PTZ test, which was associated with no significant changes in the brain concentrations of VPA and CZP. None of the examined combinations exerted motor impairment in the chimney test in mice. In the standard variant of passive avoidance task (current of 0.6 mA; 2 s of stimulus duration), the combinations of VGB+CZP and VGB+VPA significantly affected long-term memory in mice. Moreover, VGB in a dose-dependent manner lengthened the latency to the first pain reaction in the pain threshold test in mice. The modified variant of step-through passive avoidance task (current of 0.6 mA; stimulus duration based on the latency from the pain threshold test) revealed no significant changes in the long-term memory of animals for the combinations of VGB+VPA and VGB+CZP; so the observed effects in the standard variant of passive avoidance task were a result of the antinociceptive effects produced by VGB. In the Y-maze test, VGB also, in a dose-dependent manner, increased the general explorative locomotor activity of the animals tested. Similarly, the total number of arm entries in the Y-maze was significantly increased for the combinations of VGB+CZP and VGB+ESM, but not for VGB+PB and VGB+VPA. The application of VGB in combination with PB, ESM, CZP, and VPA suppressed the clonic phase of PTZ-induced seizures, having no harmful or deleterious effects on behavioral functioning of the animals tested, which might be advantageous in further clinical practice.
Collapse
|
44
|
Pucci V, Raggi MA. Analysis of antiepileptic drugs in biological fluids by means of electrokinetic chromatography. Electrophoresis 2005; 26:767-782. [PMID: 15714570 DOI: 10.1002/elps.200410207] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An overview of the electrokinetic chromatographic methods for the analysis of antiepileptic drug levels in biological samples is presented. In particular, micellar electrokinetic capillary chromatography is a very suitable method for the determination of these drugs, because it allows a rapid, selective, and accurate analysis. In addition to the electrokinetic chromatographic studies on the determination of antiepileptic drugs, some information regarding sample pretreatment will also be reported: this is a critical step when the analysis of biological fluids is concerned. The electrokinetic chromatographic methods for the determination of recent antiepileptic drugs (e.g., lamotrigine, levetiracetam) and classical anticonvulsants (e.g., carbamazepine, phenytoin, ethosuximide, valproic acid) will be discussed in depth, and their pharmacological profiles will be briefly described as well.
Collapse
Affiliation(s)
- Vincenzo Pucci
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | |
Collapse
|
45
|
Cetin SM, Atmaca S. Determination of vigabatrin in human plasma and urine by high-performance liquid chromatography with UV-Vis detection. J Chromatogr A 2004; 1031:237-42. [PMID: 15058588 DOI: 10.1016/j.chroma.2003.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A simple and reliable high-performance liquid chromatographic (HPLC) method with UV-Vis detection has been developed and validated for the determination of vigabatrin (VG) in human plasma and urine. The samples were pre-column derivatizated with 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS). A good chromatographic separation was achieved on a C18 column with a mobile phase consisting of acetonitrile and 10 mM orthophosphoric acid (pH 2.5) gradient elution. Tranexamic acid was used as an internal standard (I.S.). The method was linear over the concentration range of 0.8-30.0 microg/ml for both samples. The method is precise (relative standard deviation (R.S.D.) <9.13%) and accurate (relative mean error (RME) <-8.75%); analytical recoveries were 81.07% for plasma and 83.05% for urine. The assay was applied to pharmacokinetic study in a healthy volunteer after a single oral administration of 1 g of vigabatrin.
Collapse
Affiliation(s)
- Sevil Müge Cetin
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Beyazit, 34116 Istanbul, Turkey.
| | | |
Collapse
|
46
|
Chang SY, Lin WC. Determination of vigabatrin by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 794:17-22. [PMID: 12888194 DOI: 10.1016/s1570-0232(03)00396-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new analytical method for vigabatrin based on capillary electrophoretic separation and laser-induced fluorescence detection has been developed. 5-Carboxytetramethylrhodamine succinimidyl ester was used for precolumn derivatization of the non-fluorescent drug. Optimal separation and detection were obtained with an electrophoretic buffer of 50 mM sodium borate (pH9.5) containing 10 mM sodium dodecyl sulfate and a green He-Ne laser (excitation at 543.5 nm, emission at 589 nm). The concentration limit of detection in aqueous solution was 24 nM. Combined with a simple cleanup procedure, this method can be applied to the determination of vigabatrin in human plasma. A calibration curve ranging from 1.5 to 200 microM shown to be linear. Both the within-day and day-to-day reproducibilities and accuracies were less then 14.3% and 4.9% respectively. The limit of detection of vigabatrin in plasma was about 0.13 microM
Collapse
Affiliation(s)
- Sarah Y Chang
- Department of Applied Chemistry, Chaoyang University of Technology, County, Wufeng, Taichung, Taiwan 413.
| | | |
Collapse
|
47
|
Gerasimov M, Dewey S. Development of a GABAergic treatment for substance abuse using PET. Drug Dev Res 2003. [DOI: 10.1002/ddr.10222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Madden K, Clark W, Lessov N. Failure of ischemic neuroprotection by potentiators of gamma-aminobutyric acid. Clin Med Res 2003; 1:119-24. [PMID: 15931298 PMCID: PMC1069034 DOI: 10.3121/cmr.1.2.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2003] [Accepted: 03/04/2003] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Potentiators of inhibitory neurotransmission may provide a neuroprotective effect on cerebral tissue exposed to ischemia, without inducing toxic side effects. Topiramate and vigabatrin enhance the action of gamma-aminobutyric acid (GABA), and each has side effect profiles known to be well tolerated through their clinical use as anticonvulsant medications. We assessed the potential benefit through GABA activation by these drugs on infarct size and functional recovery following focal cerebral ischemia in mice. METHODS Silicon-coated suture was advanced through the internal carotid artery of 89 halothane-anesthetized mice to temporarily occlude the right middle cerebral artery for either 45 minutes (topiramate), or 120 minutes (vigabatrin). Animals were treated either at the time of reperfusion with topiramate (100 mg/kg, 40 mg/kg, or saline control), or two hours before arterial occlusion with vigabatrin, (1000 mg/kg, 500 mg/kg, or saline control). Neurological outcome was measured 24 hours after ischemia using a 28-point functional examination score. Infarct volume was estimated by summing area maps of stained slices of infarcted hemispheres. RESULTS Functional examination scores at 24 hours were similar between the high dose topiramate group, the low dose topiramate group, and the control group. Similarly, no differences were noted between examination scores of high dose vigabatrin, low dose vigabatrin, and control. Consistent sized right hemisphere infarcts were noted within each group on histological examination. Mean infarct volumes did not differ between groups treated with high dose topiramate, low dose topiramate, or control. Infarct volumes of animals treated with saline control were slightly larger than that of high dose vigabatrin and low dose vigabatrin groups, but the difference did not reach significance. CONCLUSION Treatment with these two potentiators of GABA did not result in significant differences in outcome following focal cerebral ischemia, by either functional or histological measures. These results do not support a substantial neuroprotective role of GABA following ischemia in this mouse suture model.
Collapse
Affiliation(s)
- Ken Madden
- Department of Neurology, Marshfield Clinic, Marshfield, Wisconsin 54449, USA.
| | | | | |
Collapse
|
49
|
Sánchez-Alcaraz A, Quintana MB, López E, Rodríguez I, Llopis P. Effect of vigabatrin on the pharmacokinetics of carbamazepine. J Clin Pharm Ther 2002; 27:427-30. [PMID: 12472982 DOI: 10.1046/j.1365-2710.2002.00441.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate a possible interaction between vigabatrin and carbamazepine in epileptic patients. METHODS Steady-state serum concentrations of carbamazepine with and without vigabatrin were compared. The study group consisted of 15 patients (eight females, seven males, and mean age 31 +/- 12 years), with refractory partial epilepsy. They received vigabatrin as add-on therapy. Patients received carbamazepine monotherapy for at least 6 months and the carbamazepine-vigabatrin combination for at least 3 months. Blood samples were obtained in the morning, before the first daily dose and the carbamazepine plasma concentrations were analysed by fluorescence polarization immunoassay (TDx System). RESULTS No statistically significant differences were found in mean carbamazepine daily dose. Mean trough concentrations were 7.9 +/- 1.4 microg/mL with carbamazepine alone, and 6.5 +/- 2.0 microg/mL with carbamazepine-vigabatrin association (P < 0.03). The mean values of pharmacokinetic parameters were: level/dose ratio (L/D) = 0.59 +/- 0.20 vs. 0.45 +/- 0.15 (P < 0.05) and plasma clearance (Cl) = 78.5 +/- 25.8 vs. 105.8 +/- 38.9 mL/h/kg (P < 0.05), with carbamazepine alone and carbamazepine-vigabatrin combination, respectively. CONCLUSION Vigabatrin produced a statistically significant increase in the plasma clearance of carbamazepine when the two drugs were given simultaneously.
Collapse
Affiliation(s)
- A Sánchez-Alcaraz
- Departament of Pharmacy, Hospital de La Ribera, Alzira, Valencia, Spain.
| | | | | | | | | |
Collapse
|
50
|
Abstract
During the Past decade, nine new antiepileptic drugs (AEDs) namely, Felbamate, Gabapentin, Levetiracetam, Lamotrigine, Oxcarbazepine, Tiagabine, Topiramate, Vigabatrin and Zonisamide have been marketed worldwide. The introduction of these drugs increased appreciably the number of therapeutic combinations used in the treatment of epilepsy and with it, the risk of drug interactions. In general, these newer antiepileptic drugs exhibit a lower potential for drug interactions than the classic AEDs, like phenytoin, carbamazepine and valproic acid, mostly because of their pharmacokinetic characteristics. For example, vigabatrin, levetiracetam and gabapentin, exhibit few or no interactions with other AEDs. Felbamate, tiagabine, topiramate and zonisamide are sensitive to induction by known anticonvulsants with inducing effects but are less vulnerable to inhibition by common drug inhibitors. Felbamate, topiramate and oxcarbazepine are mild inducers and may affect the disposition of oral contraceptives with a risk of failure of contraception. These drugs also inhibit CYP2C19 and may affect the disposition of phenytoin. Lamotrigine is eliminated mostly by glucuronidation and is susceptible to inhibition by valproic acid and induction by classic AEDs such as phenytoin, carbamazepine, phenobarbital and primidone.
Collapse
Affiliation(s)
- Houda Hachad
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|