1
|
Nash A, Dinh CN, Kawedia J, McCall D, Weinman S, Garcia M, Roth M, Nunez C, Cuglievan B, Gibson A. Calasparagase Pegol Induced Hemolytic Anemia. Pediatr Blood Cancer 2025; 72:e31519. [PMID: 39757556 DOI: 10.1002/pbc.31519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Affiliation(s)
- Ariel Nash
- Department of Pediatrics, The University of Texas MD Anderson Cancer Hospital, Houston, Texas, USA
| | - Christine Nguyen Dinh
- Department of Pharmacy, The University of Texas Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Jitesh Kawedia
- Department of Pharmacy Pharmacology Research, The University of Texas MD Anderson Cancer Hospital, Houston, Texas, USA
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Hospital, Houston, Texas, USA
| | - Stacy Weinman
- Department of Pediatrics, The University of Texas MD Anderson Cancer Hospital, Houston, Texas, USA
| | - Miriam Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Hospital, Houston, Texas, USA
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Hospital, Houston, Texas, USA
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Hospital, Houston, Texas, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Hospital, Houston, Texas, USA
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Hospital, Houston, Texas, USA
| |
Collapse
|
2
|
R Guru F, Akhter R, Bashir S, Nisar SA, Mir MH, Zahir Z, Ara Wani U, Bharat S, Tripathi R. Efficacy and Safety Profile of Biosimilar Polyethylene Glycol (PEG)-Asparaginase (Asviia) in Patients With Acute Leukemia: A Retrospective Study From Kashmir. Cureus 2024; 16:e73727. [PMID: 39677089 PMCID: PMC11646325 DOI: 10.7759/cureus.73727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Biosimilar pegylated L-asparaginase offers a promising alternative to the innovator molecule for treating acute lymphoblastic leukemia (ALL) in Indian children. It addresses challenges associated with drug availability and cost while providing similar therapeutic advantages. This biosimilar ensures wider access to essential treatment in resource-limited settings such as India. MATERIALS AND METHODS A retrospective study was conducted at the Pediatric Oncology unit of the Department of Medical Oncology, Sher-I-Kashmir Institute of Medical Sciences (SKIMS) Srinagar. The study evaluated the efficacy and safety of biosimilar polyethylene glycol-asparaginase (PEG-ASP) (Asviia) in newly diagnosed pediatric ALL patients treated between January 2021 and December 2023. Each patient received two induction doses of PEG-ASP. RESULTS The study included 45 patients (29 boys, 16 girls) with a median age of 7.5 years (range: 1-16 years), with most patients diagnosed with Pre-B ALL. The median PEG-ASP dose administered intravenously was 1175 IU (range: 1125-3750 IU). Significant improvements in hemoglobin and platelet counts were observed following the first dose of PEG-ASP. The biosimilar PEG-ASP was well tolerated, with no life-threatening events reported. At the end of the induction phase, 40 patients (88.89%) achieved complete remission with minimal residual disease (MRD) negativity, while five patients had MRD positivity. CONCLUSION The study provides valuable insights into the efficacy and safety of biosimilar PEG-ASP for pediatric ALL in resource-limited settings, with strong data on remission rates and minimal adverse events.
Collapse
Affiliation(s)
- Faisal R Guru
- Department of Medical Oncology, Sher-i-Kashmir Institute of Medical Sciences, Soura, IND
| | - Rukhsana Akhter
- Department of Pathology, Sher-i-Kashmir Institute of Medical Sciences, Soura, IND
| | - Shumail Bashir
- Department of Chest Medicine, Government Medical College (GMC) Baramulla, Baramulla, IND
| | - Syed Ahmed Nisar
- Department of Medical Oncology, Sher-i-Kashmir Institute of Medical Sciences, Soura, IND
| | - Mohmad Hussain Mir
- Department Of Medical Oncology, Sher-i-Kashmir Institute of Medical Sciences, Soura, IND
| | - Zafirah Zahir
- Department of Pathology, Sher-i-Kashmir Institute of Medical Sciences, Soura, IND
| | - Ulfat Ara Wani
- Department of Medical Oncology, Sher-i-Kashmir Institute of Medical Sciences, Soura, IND
| | - Suyash Bharat
- Medical Affairs, Zydus Lifesciences LTD, Ahmedabad, IND
| | | |
Collapse
|
3
|
Hayashi H, Morikawa Y, Akahoshi S, Ikegawa K, Matsui M, Makimoto A, Yuza Y. Octreotide as prophylaxis against asparaginase-associated pancreatitis: a case series study. Leuk Lymphoma 2024; 65:1366-1369. [PMID: 38767292 DOI: 10.1080/10428194.2024.2352085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Hiroshi Hayashi
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
- Clinical Research Support Center, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Yoshihiko Morikawa
- Clinical Research Support Center, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Shogo Akahoshi
- Clinical Research Support Center, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Kento Ikegawa
- Clinical Research Support Center, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Motohiro Matsui
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Atsushi Makimoto
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
- Clinical Research Support Center, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Yuki Yuza
- Department of Hematology/Oncology, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| |
Collapse
|
4
|
INAZUMI H, TOYODA H, SHIMANO S, SAKUMA H, SAKAMOTO M, NAKAGAWA T, FUKUOKA R, OHMI A, CHAMBERS JK, UCHIDA K, GOTO-KOSHINO Y, TOMIYASU H. Efficacy and adverse events of L-Asparaginase administration as a first-line treatment for feline large-cell gastrointestinal lymphoma. J Vet Med Sci 2024; 86:727-736. [PMID: 38825481 PMCID: PMC11251808 DOI: 10.1292/jvms.23-0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
L-Asparaginase (L-Asp) is often used to induce remission in feline large-cell gastrointestinal lymphoma (LCGIL). However, no study has evaluated the efficacy and adverse events following the initial use of this drug as a first-line treatment in feline LCGIL. We retrospectively reviewed medical records of cats with LCGIL treated with L-Asp to induce remission. This study included 43 cats. The response rate (RR) after the first administration of L-Asp was 37.2% (Complete remission: 7.0%, partial remission: 30.2%). RR was significantly higher in cases with primary gastric lesions (64.3%) than in those with primary intestinal lesions (24.1%) (P=0.018), and it was also higher in cases without anemia (57.1%) than those with anemia (15.0%) (P=0.009). The most common adverse event was hyperammonemia, which occurred in 10 of 12 cases where we could compare plasma ammonia concentrations before and after the first dose of L-Asp. Plasma phosphate concentrations were also significantly increased (P<0.001) within 24 hr after the first dose. Decreased appetite, vomiting, and diarrhea were also observed in five, three, and seven cases, respectively, and Grade 3 or higher gastrointestinal signs were observed as adverse events in three cases. The median overall survival of all cats was 150 days (range, 5-1,065 days), and the median progression-free survival was 104 days (range, 2-978 days). In conclusion, L-Asp was effective to induce remission, and severe adverse events were uncommon in feline LCGIL.
Collapse
Affiliation(s)
- Haruka INAZUMI
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroto TOYODA
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shotaro SHIMANO
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki SAKUMA
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Megumi SAKAMOTO
- Veterinary Medical Center, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke NAKAGAWA
- Veterinary Medical Center, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Ray FUKUOKA
- Veterinary Medical Center, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Aki OHMI
- Veterinary Medical Center, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - James K CHAMBERS
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki UCHIDA
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko GOTO-KOSHINO
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hirotaka TOMIYASU
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Vergov B, Sbirkov Y, Minchev D, Todorova T, Baldzhieva A, Burnusuzov H, Spasova МI, Sarafian V. Implementation of plate reader-based indooxine and Nessler protocols for monitoring L-asparaginase serum activity in childhood acute lymphoblastic leukaemia. Biol Methods Protoc 2024; 9:bpae042. [PMID: 39539388 PMCID: PMC11557903 DOI: 10.1093/biomethods/bpae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 11/16/2024] Open
Abstract
Monitoring the blood serum activity of L-asparaginase in children with acute lymphoblastic leukaemia (ALL) has been highly recommended to detect enzyme inactivation that can cause relapse and to avoid unwanted toxicity. Nevertheless, perhaps at least partially due to the lack of clinically approved commercially available kits or standardized and independently reproduced and validated in-house protocols, laboratory assay-based determination of the optimal doses of L-asparaginase is not carried out routinely. In this study, we adapted previously published protocols for two plate reader-based colorimetric methods, indooxine and Nessler, to measure asparaginase activity. Mock samples with dilutions of the enzyme for initial optimization steps, and patient samples were used as a proof of principle and to compare the two protocols. For the first time the indooxine and the Nessler methods are adapted for a plate reader and L-asparaginase serum activity levels are compared by both protocols. Passing-Bablok and Bland-Altman's statistical analyses found very little difference, strong correlation (r = 0.852), and bias of only 6% between the data from the two methods when used for fresh patient samples. Furthermore, we demonstrate that the Nessler method could also be applied for frozen sera as the results, compared to fresh samples, showed little difference, strong correlation (r = 0.817), and small bias (9%). We successfully adapted and validated two methods for measuring L-asparaginase activity in cALL and provided the most detailed description to date on how to reproduce and implement them in other clinical laboratories.
Collapse
Affiliation(s)
- Bozhidar Vergov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
- Research Institute at Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
- Research Institute at Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Danail Minchev
- Department of Human Anatomy and Physiology, University of Plovdiv ‘Paisii Hilendarski’, 24 Tzar Asen St, Plovdiv 4000, Bulgaria
| | - Tatyana Todorova
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
- Research Institute at Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Alexandra Baldzhieva
- Research Institute at Medical University of Plovdiv, Plovdiv 4000, Bulgaria
- Department of Medical Microbiology and Immunology ‘Prof. Dr Elissay Yanev’, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Hasan Burnusuzov
- Research Institute at Medical University of Plovdiv, Plovdiv 4000, Bulgaria
- Department of Pediatrics, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
- Pediatric Clinic, St George University Hospital, Plovdiv 4000, Bulgaria
| | - Мariya I Spasova
- Department of Pediatrics, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
- Research Institute at Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| |
Collapse
|
6
|
Brigitha LJ, Mondelaers V, Liu Y, Albertsen BK, Zalewska-Szewczyk B, Rizzari C, Kotecha RS, Pieters R, Huitema ADR, van der Sluis IM. Pharmacokinetics of PEGasparaginase in Infants with Acute Lymphoblastic Leukemia. Pharm Res 2024; 41:711-720. [PMID: 38538970 DOI: 10.1007/s11095-024-03693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/14/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND PEGasparaginase is known to be a critical drug for treating pediatric acute lymphoblastic leukemia (ALL), however, there is insufficient evidence to determine the optimal dose for infants who are less than one year of age at diagnosis. This international study was conducted to identify the pharmacokinetics of PEGasparaginase in infants with newly diagnosed ALL and gather insight into the clearance and dosing of this population. METHODS Infants with ALL who received treatment with PEGasparaginase were included in our population pharmacokinetic assessment employing non-linear mixed effects modelling (NONMEM). RESULTS 68 infants with ALL, with a total of 388 asparaginase activity samples, were included. PEGasparaginase doses ranging from 400 to 3,663 IU/m2 were administered either intravenously or intramuscularly. A one-compartment model with time-dependent clearance, modeled using a transit model, provided the best fit to the data. Body weight was significantly correlated with clearance and volume of distribution. The final model estimated a half-life of 11.7 days just after administration, which decreased to 1.8 days 14 days after administration. Clearance was 19.5% lower during the post-induction treatment phase compared to induction. CONCLUSION The pharmacokinetics of PEGasparaginase in infants diagnosed under one year of age with ALL is comparable to that of older children (1-18 years). We recommend a PEGasparaginase dosing at 1,500 IU/m2 for infants without dose adaptations according to age, and implementing therapeutic drug monitoring as standard practice.
Collapse
Affiliation(s)
- Leiah J Brigitha
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, Netherlands
- Pediatric Oncology and Hematology, Erasmus MC-Sophia Children's Hospital, Dr. Molewaterplein 40, 3015 GD, Rotterdam, Netherlands
| | - Veerle Mondelaers
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Yiwei Liu
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, USA
| | - Birgitte K Albertsen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus, Denmark
| | - Beata Zalewska-Szewczyk
- Department of Pediatrics, Medical University of Lodz, Oncology & Hematology, 91-738, Lodz, Poland
| | - Carmelo Rizzari
- Department of Pediatrics, University of Milano-Bicocca, Piazza Dell'Ateneo Nuovo, 1, Milano, Italy
- Fondazione IRCCS San Gerardo Dei Tintori, Via G.B. Pergolesi 33, Monza, Italy
| | - Rishi S Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
- Curtin Medical School, Curtin University, Perth, Australia
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, Netherlands
| | - Alwin D R Huitema
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Inge M van der Sluis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, Netherlands.
| |
Collapse
|
7
|
Alanazi IM, Alzahrani AR, Alsaad MA, Moqeem AL, Hamdi AM, Taher MM, Watson DG, Helen Grant M. The effect of mephedrone on human neuroblastoma and astrocytoma cells. Saudi Pharm J 2024; 32:102011. [PMID: 38454918 PMCID: PMC10918268 DOI: 10.1016/j.jsps.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Mephedrone is an illegal drug that is used recreationally. Few studies have been conducted to investigate the mechanisms by which mephedrone is harming cells. In this research, we investigated the effect of mephedrone using toxicology coupled with LC-MS/MS based metabolomics in the two CNS derived cell lines. Methods of assessment such as neutral red (NR) assay, dimethylthiazolyl diphenyltetrazolium bromide (MTT), lactose dehydrogenase (LDH) measurement, and morphology were performed to identify the effect on cell viability and to identify the best concentration to be used in a metabolomics study. A concentration of 100 μM of mephedrone was used in the metabolomic experiment because at this concentration mephedrone had induced several intracellular changes. Although there no clear indicators of cellular damage caused by mephedrone. In astrocytes there was a clear indication that cell membrane function might be impaired by depletion of ether lipids.
Collapse
Affiliation(s)
- Ibrahim M. Alanazi
- Department of Pharmacology and Toxicology, College of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O.Box 13578, Makkah 21955, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, College of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O.Box 13578, Makkah 21955, Saudi Arabia
| | - Mohammad A. Alsaad
- Department of Parasitology, College of Medicine, Umm AL Qura University, Al-Abidiyah, P.O.Box 13578, Makkah 21955, Saudi Arabia
| | - Abdulaziz L. Moqeem
- Home Health Care,Directorate of Health Affairs Jeddah, Ministry of Health, P.O.Box11176, Ryiadh, Saudi Arabia
| | - Abdulmohsen M. Hamdi
- Home Health Care,Directorate of Health Affairs Jeddah, Ministry of Health, P.O.Box11176, Ryiadh, Saudi Arabia
| | - Mohiuddin M. Taher
- Science and Technology Unit, Deanship of Scientific Research, and Department of Medical Genetics, College of Medicine, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - David G. Watson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - M. Helen Grant
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, UK
| |
Collapse
|
8
|
Coe-Eisenberg TD, Perissinotti AJ, Marini BL, Pettit KM, Bixby DL, Burke PW, Benitez L. Evaluating the efficacy and toxicity of dose adjusted pegylated L-asparaginase in combination with therapeutic drug monitoring. Ann Hematol 2023; 102:3133-3141. [PMID: 37480389 DOI: 10.1007/s00277-023-05373-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
The incorporation of pediatric-inspired regimens in the adolescent-young-adult (AYA) and adult populations have resulted improved survival outcomes (Stock et al. Blood 133(14):1548-1559 2019; Dunsmore et al. J Clin Oncol 38(28):3282-3293 2020; DeAngelo et al. Leukemia 29(3):526-534 2015). Nonetheless incorporation of such regimens is limited by increased toxicity to asparaginase. Dosing strategies that reduce the weight-based dose of pegylated-L-asparaginase (PEG-asparaginase) utilizing activity monitoring have been shown to result in better tolerability of these regimens. The purpose of this study was to analyze the efficacy and safety of treating adults with Philadelphia chromosome negative (Ph-) ALL with pediatric-inspired regimens that incorporate PEG-asparaginase dose adjustments and asparaginase activity level monitoring. Patients aged 18-65 years initiated on pediatric-inspired regimens utilizing dose-reduced PEG-asparaginase with therapeutic drug monitoring-guided adjustments were included. The screening of 122 patients treated between 2015 and 2021 resulted in the inclusion of 54 patients. The median age of the cohort was 35 years (16-65 years), and median body mass index (BMI) was 30 kg/m2 (18.3-53.4 kg/m2). The 36-month survival estimate was 62.1% (95% CI 48.1-77.7%), and the median overall survival (OS) was 62.2 months (95% CI 35.1-89.3 months). In the AYA cohort, the 36-month survival was 71.2% (95% CI 55.8-91%) and the median overall survival was not reached. Survival was not significantly affected by immunophenotype or BMI. Discontinuation due to toxicity or hypersensitivity reactions was low at 11% and 9% respectively. The encouraging survival outcomes and favorable tolerability of this older population in the real-world setting support the use of individualized PEG-asparaginase dosing with PharmD-guided therapeutic drug monitoring.
Collapse
Affiliation(s)
| | | | - Bernard L Marini
- Michigan Medicine, Ann Arbor, MI, USA
- Department of Pharmacy Services Michigan Medicine, University of Michigan College of Pharmacy, 1540 E. Hospital Dr, Ann Arbor, MI, 48109, USA
| | | | | | | | - Lydia Benitez
- Michigan Medicine, Ann Arbor, MI, USA.
- Department of Pharmacy Services Michigan Medicine, University of Michigan College of Pharmacy, 1540 E. Hospital Dr, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Odaman Al I, Özdemir N, Zengin Ersoy G, Bayram C, Vupa Çilengiroğlu Ö, Arslantaş E, Paslı Uysalol E, Ayçiçek A. A comparison of hypersensitivity reactions between intravenous and intramuscular applications of native E. coli asparaginase in children with acute lymphoblastic leukemia. J Oncol Pharm Pract 2023; 29:1454-1460. [PMID: 36942380 DOI: 10.1177/10781552231164503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Asparaginase is an indispensable drug in treating childhood acute lymphoblastic leukemia (ALL). Hypersensitivity reactions (HSR) are the most common side effects and interfere with the antineoplastic activity of the drug. This study aims to compare the intramuscular (IM) and intravenous (IV) administration routes of Native Escherichia coli Lasparaginase (L-ASNase) in terms of hypersensitive reactions. METHODS L-ASNase was randomly administered IV or IM to newly diagnosed ALL patients and HSR was monitored in all patients for 1 h following the end of the IV infusion and for 2 h following the end of the IM administration of L-ASNase. Based on a retrospective review of clinical charts, reactions were identified. In order to determine the severity of each allergic reaction, we used the Common Terminology Criteria for Adverse Events (CTCAE) version 4.03 for allergic reactions. RESULTS A total of 1032 doses of L-ASNase were administered to 85 patients (42 males and 43 females) during the study period. Among 85 patients, 30 reactions were recorded, which means that 35% of the patients reacted. According to the CTCAE, twenty-nine out of 30 reactions (97%) were grade 2, while one (3%) was grade 4. In terms of individual doses, there was a non-significant trend toward increased incidence of reactions with IV administration (3.8% versus 0.9%, p = 0.064). The rate of reactions was higher in patients who received all IV doses (n: 60) as compared to those who received all IM doses (n: 25) (31.7% vs. 3.5%; chi-square= 8.415, p value=0.04). Based on the risk groups and HSR incidence, it was found that high risk group (HRG) patients were significantly more likely to develop HSR compared to the standart risk group (SRG) and intermediate risk group (MRG) patients (chi-square p = 0.003, CI: 95%; odds ratio: 3.12 and 5.91, respectively). CONCLUSIONS In conclusion, IM administration of L-ASNase causes significantly less HSR to L-ASNase than the IV route. Patients with HRGALL have a higher risk of HSR. Since L-ASNase is still used in many developing countries and there are problems in the supply of Erwinia chrysanthemi ASNase (Erwinia), LASNase can be administered IM to reduce the frequency of HSR.
Collapse
Affiliation(s)
- Işık Odaman Al
- Department of Pediatric Hematology and Oncology, İstanbul Medipol University Medical Faculty, İstanbul, Turkey
| | - Nihal Özdemir
- Department of Pediatric Hematology and Oncology, İstinye University Medical Faculty, İstanbul, Turkey
| | - Gizem Zengin Ersoy
- Department of Pediatric Hematology and Oncology, Altınbaş University Medical Faculty, İstanbul, Turkey
| | - Cengiz Bayram
- Department of Pediatric Hematology and Oncology, Çam and Sakura City Hospital, İstanbul, Turkey
| | | | - Esra Arslantaş
- Department of Pediatric Hematology and Oncology, Çam and Sakura City Hospital, İstanbul, Turkey
| | - Ezgi Paslı Uysalol
- Department of Pediatric Hematology and Oncology, Çam and Sakura City Hospital, İstanbul, Turkey
| | - Ali Ayçiçek
- Department of Pediatric Hematology and Oncology, Çam and Sakura City Hospital, İstanbul, Turkey
| |
Collapse
|
10
|
Bik CA, Ruijter BR, Van den Bossche L, Teske E, Niessen SJM, Forcada Y. Pegylated-l-asparaginase therapy for feline large cell lymphoma: 82 cases (2017-2020). J Feline Med Surg 2023; 25:1098612X231193536. [PMID: 37713175 PMCID: PMC10812027 DOI: 10.1177/1098612x231193536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
OBJECTIVES The present study aimed to investigate pegylated-l-asparaginase monotherapy for feline large cell lymphoma as a potential alternative to palliative corticosteroids treatment in animals whose owners declined cytotoxic chemotherapy. METHODS A retrospective, descriptive case series of cats treated initially with pegylated-l-asparaginase as a sole therapy for feline large cell lymphoma is reported. The treatment protocol consisted of 12 intramuscular injections of pegylated-l-asparaginase with increasing intervals. If cats were unresponsive to pegylated-l-asparaginase monotherapy, a second-line treatment was initiated. Signalment, origin of lymphoma, staging, treatment, possible adverse events and follow-up data were extracted from the medical records. Responses and survival data were analysed. RESULTS Eighty-two cats with lymphoma of five different anatomic types were included: alimentary, abdominal extra-alimentary, peripheral nodal, nasal/nasopharyngeal and other (mediastinal, renal [solitary] and miscellaneous combined in one group for analytical purposes). The response rate was 74.1% (95% confidence interval = 63.4-83.5) with 38.3% (95% confidence interval = 27.8-48.8) in complete remission. The median disease-free period and calculated overall survival time were 70 days (12-1702+) and 79 days (1-1715+), respectively. The response rate was significantly correlated with the origin of the lymphoma and the combined group had a significantly lower response rate (P = 0.035). Twenty-four cats were also treated with corticosteroids. There was no significant difference in outcomes between the group treated with or without corticosteroids. Adverse events were present in a small number of cats (14/82). The majority of these adverse events were mild to moderate in 5/14 cats; however, the adverse events were severe enough to cause discontinuation of therapy. CONCLUSIONS AND RELEVANCE Based on the response rate and median disease-free period, treatment with pegylated-l-asparaginase is inferior when compared with historical chemotherapy protocols. However, some cats demonstrated an exceptional long disease-free period. Therefore, pegylated-l-asparaginase could be offered as an alternative to corticosteroid therapy alone. Further studies are needed to evaluate the additional benefit over palliative corticosteroid monotherapy.
Collapse
Affiliation(s)
- Céline A Bik
- Medisch centrum voor dieren Amsterdam, Amsterdam, The Netherlands
| | - Bart R Ruijter
- Medisch centrum voor dieren Amsterdam, Amsterdam, The Netherlands
| | | | - Erik Teske
- Department of Clinical Sciences, Veterinary Faculty, University of Utrecht, Utrecht, The Netherlands
| | | | - Yaiza Forcada
- Veterinary Specialist Consultations, Hilversum, The Netherlands
| |
Collapse
|
11
|
Müller J, Egyed P, Erdelyi D, Kovacs K, Mudra K, Szabo S, Egyed B, Gabor K. Our Experiences with Asparaginase Activity Measurements in Children with Lymphoblastic Diseases. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1160. [PMID: 37508657 PMCID: PMC10378469 DOI: 10.3390/children10071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Asparaginase is a key component of chemotherapy protocols for the treatment of lymphoblastic malignancies among children. Adequate asparagine depletion is an important factor to achieve optimal therapeutic outcomes. METHODS Over a 3.5 year period, 106 patients were monitored for asparaginase activity (329 samples) in a single center of the Hungarian Pediatric Oncology-Hematology Group. In Hungary, three asparaginase products are available: native E. coli ASNase (Kidrolase), a pegylated form of this enzyme (Pegaspargase) and another native product from Erwinia chrysanthemi (Erwinase). A retrospective data analysis was performed. RESULTS In 81% (268/329) of our patients, AEA levels were in the optimal therapeutic range of over 100 IU/L. Of 106 patients, 13 (12%) were diagnosed with 'silent inactivation'. CONCLUSIONS Monitoring of AEA can help to identify patients with 'silent inactivation' and their asparaginase therapy can thus be optimized.
Collapse
Affiliation(s)
- Judit Müller
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary
| | - Petra Egyed
- County Hospital Fejer, Szent Gyorgy Hospital, 8000 Szekesfehervar, Hungary
| | - Daniel Erdelyi
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary
| | - Krisztian Kovacs
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Katalin Mudra
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary
| | - Sandor Szabo
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary
| | - Balint Egyed
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary
| | - Kovacs Gabor
- 2nd Department of Pediatrics, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
12
|
Lynggaard LS, Rank CU, Als-Nielsen B, Hoejfeldt SG, Heyman M, Schmiegelow K, Albertsen BK. PEG-asparaginase treatment regimens for acute lymphoblastic leukaemia in children: a network meta-analysis. Cochrane Database Syst Rev 2023; 5:CD014570. [PMID: 37260073 PMCID: PMC10230854 DOI: 10.1002/14651858.cd014570.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Asparaginase has played a crucial role in the improvement of survival in children with acute lymphoblastic leukaemia (ALL), which is the commonest cancer among children. Survival rates have steadily increased over decades since the introduction of asparaginase to ALL therapy, and overall survival rates reach 90% with the best contemporary protocols. Currently, polyethylene glycolated native Escherichia coli-derived L-asparaginase (PEG-asparaginase) is the preferred first-line asparaginase preparation. Besides its clinical benefits, PEG-asparaginase is well known for severe toxicities. Agreement on the optimal dose, treatment duration, and frequency of administration has never been reached among clinicians. OBJECTIVES Primary objective To assess the effect of the number of PEG-asparaginase doses on survival and relapse in children and adolescents with ALL. Secondary objectives To assess the association between the number of doses of PEG-asparaginase and asparaginase-associated toxicities (e.g. hypersensitivity, thromboembolism, pancreatitis and osteonecrosis). To undertake a network meta-analysis at dose-level in order to generate rankings of the number of doses of PEG-asparaginase used in the treatment for ALL, according to their benefits (survival and relapse) and harms (toxicity). SEARCH METHODS We searched CENTRAL, PubMed, Embase, Web of Science databases and three trials registers in November 2021, together with reference checking, citation searching and contact with study authors to identify additional studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing different PEG-asparaginase treatment regimens in children and adolescents (< 18 years of age) with first-line ALL treated with multiagent chemotherapy including PEG-asparaginase. DATA COLLECTION AND ANALYSIS Using a standardised data collection form, two review authors independently screened and selected studies, extracted data, assessed risk of bias for each outcome using a standardised tool (RoB 2.0) and assessed the certainty of evidence for each outcome using the GRADE approach. Primary outcomes included overall survival, event-free survival and leukaemic relapse. Secondary outcomes included asparaginase-associated toxicities (hypersensitivity, thromboembolism, pancreatitis, sinusoidal obstruction syndrome and osteonecrosis as well as overall asparaginase-associated toxicity). We conducted the review and performed the analyses in accordance with the guidelines of the Cochrane Handbook for Systematic Reviews of Interventions. MAIN RESULTS We included three RCTs in the review, and identified an additional four ongoing studies. We judged outcomes of two RCTs to be at low risk of bias in all the Cochrane risk of bias (RoB 2) domains. We rated the remaining study as having some concerns regarding bias. Due to concerns about imprecision, we rated all outcomes as having low- to moderate-certainty evidence. One study compared intermittent PEG-asparaginase treatment (eight doses of PEG-asparaginase, 1000 IU/m2, intramuscular (IM) administration) versus continuous PEG-asparaginase treatment (15 doses of PEG-asparaginase, 1000 IU/m2, IM) in 625 participants with non-high risk ALL aged 1.0 to 17.9 years. We found that treatment with eight doses probably results in little to no difference in event-free survival compared to treatment with 15 doses (RR 1.01, 95% CI 0.97 to 1.06; moderate-certainty evidence). Compared to treatment with 15 doses, treatment with eight doses may result in either no difference or a slight reduction in hypersensitivity (RR 0.64, 95% CI 0.21 to 1.93; low-certainty evidence), thromboembolism (RR 0.55, 95% CI 0.22 to 1.36; low-certainty evidence) or osteonecrosis (RR 0.68, 95% CI 0.35 to 1.32; low-certainty evidence). Furthermore, we found that treatment with eight doses probably reduces pancreatitis (RR 0.31, 95% CI 0.12 to 0.75; moderate-certainty evidence) and asparaginase-associated toxicity (RR 0.53, 95% CI 0.35 to 0.78; moderate-certainty evidence) compared to treatment with 15 doses. One study compared low-risk standard treatment with additional PEG-asparaginase (six doses, 2500 IU/m2, IM) versus low-risk standard treatment (two doses, 2500 IU/m2, IM) in 1857 participants aged one to nine years old with standard low-risk ALL. We found that, compared to treatment with two doses, treatment with six doses probably results in little to no difference in overall survival (RR 0.99, 95% CI 0.98 to 1.00; moderate-certainty evidence) and event-free survival (RR 1.01, 95% CI 0.99 to 1.04; moderate-certainty evidence), and may result in either no difference or a slight increase in osteonecrosis (RR 1.65, 95% CI 0.91 to 3.00; low-certainty evidence). Furthermore, we found that treatment with six doses probably increases hypersensitivity (RR 12.05, 95% CI 5.27 to 27.58; moderate-certainty evidence), pancreatitis (RR 4.84, 95% CI 2.15 to 10.85; moderate-certainty evidence) and asparaginase-associated toxicity (RR 4.49, 95% CI 3.05 to 6.59; moderate-certainty evidence) compared to treatment with two doses. One trial compared calaspargase (11 doses, 2500 IU/m2, intravenous (IV)) versus PEG-asparaginase (16 doses, 2500 IU/m2, IV) in 239 participants aged one to 21 years with standard- and high-risk ALL and lymphoblastic lymphoma. We found that treatment with 11 doses of calaspargase probably results in little to no difference in event-free survival compared to treatment with 16 doses of PEG-asparaginase (RR 1.06, 95% CI 0.97 to 1.16; moderate-certainty evidence). However, treatment with 11 doses of calaspargase probably reduces leukaemic relapse compared to treatment with 16 doses of PEG-asparaginase (RR 0.32, 95% CI 0.12 to 0.83; moderate-certainty evidence). Furthermore, we found that treatment with 11 doses of calaspargase results in either no difference or a slight reduction in hypersensitivity (RR 1.17, 95% CI 0.64 to 2.13; low-certainty evidence), pancreatitis (RR 0.85, 95% CI 0.47 to 1.52; low-certainty evidence), thromboembolism (RR 0.83, 95% CI 0.48 to 1.42; low-certainty evidence), osteonecrosis (RR 0.63, 95% CI 0.15 to 2.56; low-certainty evidence) and asparaginase-associated toxicity (RR 1.00, 95% CI 0.71 to 1.40; low-certainty evidence) compared to treatment with 16 doses of PEG-asparaginase. AUTHORS' CONCLUSIONS We were not able to conduct a network meta-analysis, and could not draw clear conclusions because it was not possible to rank the interventions. Overall, we found that different numbers of doses of PEG-asparaginase probably result in little to no difference in event-free survival across all studies. In two studies, we found that a higher number of PEG-asparaginase doses probably increases pancreatitis and asparaginase-associated toxicities.
Collapse
Affiliation(s)
- Line Stensig Lynggaard
- Department of Child and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Cecilie U Rank
- Department of Haematology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Bodil Als-Nielsen
- Department of Paediatric Haematology/Oncology (5054), The Child and Youth Clinic, Copenhagen, Denmark
| | - Sofie G Hoejfeldt
- Department of Child and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mats Heyman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Birgitte K Albertsen
- Department of Child and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Blachier J, Cleret A, Guerin N, Gil C, Fanjat JM, Tavernier F, Vidault L, Gallix F, Rama N, Rossignol R, Piedrahita D, Andrivon A, Châlons-Cottavoz M, Aguera K, Gay F, Horand F, Laperrousaz B. L-asparaginase anti-tumor activity in pancreatic cancer is dependent on its glutaminase activity and resistance is mediated by glutamine synthetase. Exp Cell Res 2023; 426:113568. [PMID: 36967104 DOI: 10.1016/j.yexcr.2023.113568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
l-Asparaginase is a cornerstone of acute lymphoblastic leukemia (ALL) therapy since lymphoblasts lack asparagine synthetase (ASNS) and rely on extracellular asparagine availability for survival. Resistance mechanisms are associated with increased ASNS expression in ALL. However, the association between ASNS and l-Asparaginase efficacy in solid tumors remains unclear, thus limiting clinical development. Interestingly, l-Asparaginase also has a glutaminase co-activity that is crucial in pancreatic cancer where KRAS mutations activate glutamine metabolism. By developing l-Asparaginase-resistant pancreatic cancer cells and using OMICS approaches, we identified glutamine synthetase (GS) as a marker of resistance to l-Asparaginase. GS is the only enzyme able to synthesize glutamine, and its expression also correlates with l-Asparaginase efficacy in 27 human cell lines from 11 cancer indications. Finally, we further demonstrated that GS inhibition prevents cancer cell adaptation to l-Asparaginase-induced glutamine starvation. These findings could pave the way to the development of promising drug combinations to overcome l-Asparaginase resistance.
Collapse
|
14
|
Alqahtani A, Alhousari D, Ali A, Yaghmour G, Orgel E, Curran E, Stock W, Bhojwani D, Alachkar H. Asparaginase toxicity in Hispanic adult and pediatric patients with acute lymphoblastic leukemia: current understanding. Expert Opin Drug Metab Toxicol 2023; 19:357-366. [PMID: 37410014 PMCID: PMC11516125 DOI: 10.1080/17425255.2023.2233412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Asparaginase is essential to chemotherapy regimens for acute lymphoblastic leukemia (ALL). Survival of patients with ALL has improved since incorporating asparaginase into chemotherapy backbones. Hispanic patients have a higher incidence of ALL than other ethnicities and suffer inferior outcomes. The inferior outcome of Hispanics is due to several factors, including the increased incidence of high-risk genetic subtypes and susceptibility to treatment-related toxicity. AREAS COVERED We summarize the current knowledge of asparaginase-related toxicity by comparing their incidence between Hispanic and non-Hispanic patients. These toxicities include hypersensitivity, hepatotoxicity, pancreatitis, thrombosis, and hypertriglyceridemia. The PubMed database and Google Scholar were used to search for this review from October 2022 to June 2023. EXPERT OPINION Except for hepatotoxicity and hypertriglyceridemia secondary to asparaginase-based treatments, which may develop more frequently among Hispanic patients with ALL, other toxicities were comparable between Hispanic and non-Hispanic patients. Nevertheless, studies with larger cohorts and more accurate capturing of Hispanic ethnicity should be conducted to fill the gaps in the current knowledge.
Collapse
Affiliation(s)
- Amani Alqahtani
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
- Department of Clinical pharmacy, School of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Diala Alhousari
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Amir Ali
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - George Yaghmour
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Etan Orgel
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
- Cancer and Blood Disease Institute, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
| | - Emily Curran
- The Department of Medicine, Section of Hematology & Oncology at the University of Cincinnati College of Medicine
| | - Wendy Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Deepa Bhojwani
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
- Cancer and Blood Disease Institute, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
| | - Houda Alachkar
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| |
Collapse
|
15
|
Chang W, Li H, Wu C, Zhong L, Zhu T, Chang Z, Ou W, Wang S. Identification of an Amino Acid Metabolism-Related Gene Signature for Predicting Prognosis in Lung Adenocarcinoma. Genes (Basel) 2022; 13:genes13122295. [PMID: 36553562 PMCID: PMC9778477 DOI: 10.3390/genes13122295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of amino acid metabolism (AAM) is an important factor in cancer progression. This study intended to study the prognostic value of AAM-related genes in lung adenocarcinoma (LUAD). Methods: The mRNA expression profiles of LUAD datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were applied as the training and validation sets. After identifying the differentially expressed AAM-related genes, an AAM-related gene signature (AAMRGS) was constructed and validated. Additionally, we systematically analyzed the differences in immune cell infiltration, biological pathways, immunotherapy response, and drug sensitivity between the two AAMRGS subgroups. Results: The prognosis-related signature was constructed on the grounds of key AAM-related genes. LUAD patients were divided into AAMRGS-high and -low groups. Patients in the two subgroups differed in prognosis, tumor microenvironment (TME), biological pathways, and sensitivity to chemotherapy and immunotherapy. The area under the receiver operating characteristics (ROC) and calibration curves showed good predictive ability for the nomogram. Analysis of immune cell infiltration revealed that the TME of the AAMRGS-low group was in a state of immune activation. Conclusion: We constructed an AAMRGS that could effectively predict prognosis and guide treatment strategies for patients with LUAD.
Collapse
|
16
|
Aldoss I, Pourhassan H, Douer D. SOHO State of the Art Updates and Next Questions | Asparaginase-Understanding and Overcoming Toxicities in Adults with ALL. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:787-794. [PMID: 36114134 DOI: 10.1016/j.clml.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The adoption of pediatric-inspired regimens in young adults with newly diagnosed acute lymphoblastic leukemia (ALL) has significantly improved their survival outcomes. Pediatric-inspired regimens in ALL rely profoundly on delivering adequate dosing of non-myelosuppressive drugs of which asparaginase, a bacterial derived agent, is a key component. Asparaginase therapy is associated with a spectrum of unique toxicities that are observed more frequently in adult patients compared to children with ALL, and this observation has contributed to the reluctance of adult oncologists to administer the drug to their patients. Understanding the breadth of asparaginase toxicity and the associated risk factors may help in preventing severe manifestations and allow safer treatment for adults with ALL. In this review, we will discuss the different formulations of asparaginase and the appropriate dosing in adults with ALL. We will further discuss the frequency and risk factors for individual toxicities of asparaginase along with strategies for their prevention and management.
Collapse
Affiliation(s)
| | | | - Dan Douer
- University of Southern California, Los Angeles, CA
| |
Collapse
|
17
|
Gourzoulidis G, Koulentaki M, Kattamis A, Bouzani M, Giatra C, Chotzagiannoglou V, Beletsi A, Kourlaba G. Cost-Utility Analysis of Pegaspargase for the Treatment of Acute Lymphoblastic Leukemia in Greece. Clin Drug Investig 2022; 42:999-1008. [PMID: 36227415 DOI: 10.1007/s40261-022-01207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Acute lymphoblastic leukemia (ALL) is an acute, rapidly progressing and life-threatening form of cancer involving immature lymphocytes called lymphoblasts. ALL is the most common subtype of leukemia in children and adolescents. The aim of the present study was to assess the cost-utility of pegaspargase versus L-asparaginase, both followed by Erwinase in the therapy sequence, as a treatment option for pediatric, adolescent, and adult patients with ALL in Greece. METHODS A published cost-utility model comprising a decision tree and a state-transition Markov model was adapted from a public payer perspective to compare a pegaspargase treatment sequence with an L-asparaginase sequence. Efficacy and safety data, as well as utility values, were extracted from the published literature. Direct costs pertaining to drug acquisition, administration, and management of hypersensitivity were considered in the analysis (€2020). Model-extrapolated outcomes included quality-adjusted life-years (QALYs), costs, and incremental cost-effectiveness ratios (ICER). All future outcomes were discounted at 3.5% per annum. Sensitivity analyses were used to explore the impact of changing input data. RESULTS The analysis showed that the pegaspargase sequence was estimated to produce 0.05 additional QALYs (18.12 vs. 18.07) and lower cost of - €1698 compared with L-asparaginase, indicating that the pegaspargase sequence was a dominant treatment strategy (improved outcomes with reduced costs) compared with L-asparaginase. Deterministic sensitivity analysis confirmed the cost-effective profile of pegaspargase. At the defined willingness-to-pay threshold of €54,000/QALY gained, probabilistic sensitivity analysis showed that pegaspargase had a 100% probability of being cost effective relative to the L-asparaginase sequence. CONCLUSION The pegaspargase sequence was found to be less costly and more effective (in terms of QALYs) in relation to the L-asparaginase sequence, representing a dominant strategic option for Greek public payers in ALL.
Collapse
Affiliation(s)
| | | | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Maria Bouzani
- Hematology and Lymphoma Department, "Evangelismos" Athens General Hospital, Athens, Greece
| | - Chara Giatra
- Hematology and Lymphoma Department, "Evangelismos" Athens General Hospital, Athens, Greece
| | | | | | | |
Collapse
|
18
|
Johnson S, Dhamne C, Sankaran H, Gandhi KA, Rane P, Moulik NR, Jadhav SM, Gurjar M, Narula G, Banavali S, Gota V. A prospective, open-label, randomised, parallel design study of 4 generic formulations of intramuscular L-asparaginase in childhood precursor B-cell acute lymphoblastic leukaemia (ALL). Cancer Chemother Pharmacol 2022; 90:445-453. [PMID: 36251032 DOI: 10.1007/s00280-022-04482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022]
Abstract
AIMS L-asparaginase is an essential medicine for childhood ALL. The quality of generic L-asparaginase available in India is a matter of concern. We compared four commonly used generic formulations of L-asparaginase in India. MATERIALS AND METHODS We conducted a prospective, open-label, randomised trial of four generic formulations of asparaginase for the treatment of patients with newly diagnosed intermediate-risk B-ALL. Patients were randomly assigned in a 1:1:1:1 ratio to receive generic asparaginase at a dose of at 10,000 IU/m 2 on days 9, 12, 15, and 18 of a 35-day cycle (Induction treatment). The primary end points were to determine the difference in the asparaginase activity and asparagine depletion. Historical patients who received L-asparaginase Medac (innovator) served as controls. RESULTS A total of 48 patients underwent randomization; 12 patients each in the four arms. Failure to achieve predefined activity threshold of 100 IU/L was observed in 9/40 samples of Generic A (22·5%), 23/40 of Generic B (57·5%), and 43/44 (98%) each of Generic C and D. All 27 samples from seven historical patients who were administered Medac had activity > 100 IU/L. The average activity was significantly higher for Genericm A, 154 (70·3, 285·4) IU/L followed by Generic B 84·5(44·2, 289·1) IU/L, Generic C 45(14·4, 58·4) IU/L, and Generic D 20·4(13, 35) IU/L. Only 6 patients had asparaginase activity > 100 IU/L on each of the four occasions (Generic A = 5; Generic B = 1), and none of them developed Anti-Asparaginase Antibodies (AAA). On the other hand, AAA was observed in 12/36 patients who had at least one level < 100 IU/L (P < 0·05): Generic A 3/5, Generic B = 3/9, Generic D (4/11), and Generic C (5/11). CONCLUSION Generic A and B had better trough asparaginase activity compared to Generic D and C. Overall, generic formulations had lower asparaginase activity which raises serious clinical concerns regarding their quality. Until strict regulatory enforcement improves the quality of these generics, dose adaptive approaches coupled with therapeutic drug monitoring need to be considered.
Collapse
Affiliation(s)
- Suja Johnson
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Chetan Dhamne
- Department of Paediatric Oncology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Hari Sankaran
- Department of Paediatric Oncology, Tata Memorial Centre, Mumbai, India
| | - Khushboo A Gandhi
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Pallavi Rane
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Nirmaly Roy Moulik
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
- Department of Paediatric Oncology, Tata Memorial Centre, Mumbai, India
| | - Shraddha Mahesh Jadhav
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Murari Gurjar
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Gaurav Narula
- Department of Paediatric Oncology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Shripad Banavali
- Department of Paediatric Oncology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Vikram Gota
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
19
|
Thermostability Improvement of L-Asparaginase from Acinetobacter soli via Consensus-Designed Cysteine Residue Substitution. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196670. [PMID: 36235209 PMCID: PMC9572581 DOI: 10.3390/molecules27196670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
To extend the application range of L-asparaginase in food pre-processing, the thermostability improvement of the enzyme is essential. Herein, two non-conserved cysteine residues with easily oxidized free sulfhydryl groups, Cys8 and Cys283, of Acinetobacter soli L-asparaginase (AsA) were screened out via consensus design. After saturation mutagenesis and combinatorial mutation, the mutant C8Y/C283Q with highly improved thermostability was obtained with a half-life of 361.6 min at 40 °C, an over 34-fold increase compared with that of the wild-type. Its melting temperature (Tm) value reaches 62.3 °C, which is 7.1 °C higher than that of the wild-type. Molecular dynamics simulation and structure analysis revealed the formation of new hydrogen bonds of Gln283 and the aromatic interaction of Tyr8 formed with adjacent residues, resulting in enhanced thermostability. The improvement in the thermostability of L-asparaginase could efficiently enhance its effect on acrylamide inhibition; the contents of acrylamide in potato chips were efficiently reduced by 86.50% after a mutant C8Y/C283Q treatment, which was significantly higher than the 59.05% reduction after the AsA wild-type treatment. In addition, the investigation of the mechanism behind the enhanced thermostability of AsA could further direct the modification of L-asparaginases for expanding their clinical and industrial applications.
Collapse
|
20
|
Van Trimpont M, Schalk AM, De Visser Y, Nguyen HA, Reunes L, Vandemeulebroecke K, Peeters E, Su Y, Lee H, Lorenzi PL, Chan WK, Mondelaers V, De Moerloose B, Lammens T, Goossens S, Van Vlierberghe P, Lavie A. In vivo stabilization of a less toxic asparaginase variant leads to a durable antitumor response in acute leukemia. Haematologica 2022; 108:409-419. [PMID: 35979719 PMCID: PMC9890011 DOI: 10.3324/haematol.2022.281390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2002] [Indexed: 02/03/2023] Open
Abstract
Asparagine is a non-essential amino acid since it can either be taken up via the diet or synthesized by asparagine synthetase. Acute lymphoblastic leukemia (ALL) cells do not express asparagine synthetase or express it only minimally, which makes them completely dependent on extracellular asparagine for their growth and survival. This dependency makes ALL cells vulnerable to treatment with L-asparaginase, an enzyme that hydrolyzes asparagine. To date, all clinically approved L-asparaginases have significant L-glutaminase co-activity, associated with non-immune related toxic side effects observed during therapy. Therefore, reduction of L-glutaminase co-activity with concomitant maintenance of its anticancer L-asparaginase effect may effectively improve the tolerability of this unique drug. Previously, we designed a new alternative variant of Erwinia chrysanthemi (ErA; Erwinaze) with decreased L-glutaminase co-activity, while maintaining its L-asparaginase activity, by the introduction of three key mutations around the active site (ErA-TM). However, Erwinaze and our ErA-TM variant have very short half-lives in vivo. Here, we show that the fusion of ErA-TM with an albumin binding domain (ABD)-tag significantly increases its in vivo persistence. In addition, we evaluated the in vivo therapeutic efficacy of ABD-ErA-TM in a B-ALL xenograft model of SUP-B15. Our results show a comparable long-lasting durable antileukemic effect between the standard-of-care pegylated-asparaginase and ABD-ErA-TM L-asparaginase, but with fewer co-glutaminase-related acute side effects. Since the toxic side effects of current L-asparaginases often result in treatment discontinuation in ALL patients, this novel ErA-TM variant with ultra-low L-glutaminase co-activity and long in vivo persistence may have great clinical potential.
Collapse
Affiliation(s)
- Maaike Van Trimpont
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Amanda M. Schalk
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Yanti De Visser
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium,Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Hien Anh Nguyen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lindy Reunes
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katrien Vandemeulebroecke
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Evelien Peeters
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Ying Su
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, IL, USA,Biophysics Core at Research Resources Center, University of Illinois at Chicago (UIC), Chicago, IL, USA
| | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wai-Kin Chan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Veerle Mondelaers
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium,#PVV and AL contributed equally as co-senior authors
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, USA; The Jesse Brown VA Medical Center, Chicago, IL.
| |
Collapse
|
21
|
Krupa A, de Vos J, Van Eetvelde L, Teske E. Pegylated asparaginase in feline high-grade lymphoma: clinical results of single injection and continued incorporation into a modified COP regimen. J Feline Med Surg 2022; 24:e203-e213. [PMID: 35748790 PMCID: PMC10812256 DOI: 10.1177/1098612x221101533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The aim of this retrospective study was to determine the response to a single injection of pegylated asparaginase ('pegaspargase') and to assess the tolerability and outcome of prolonged incorporation of pegaspargase into a modified COP (cyclophosphamide, vincristine, prednisolone) regimen in pegaspargase sensitive cats. METHODS Fifty-six client-owned cats with confirmed macroscopic high-grade lymphoma at any anatomical site were included. Treatment was commenced with a single pegaspargase injection. Cats showing an objective response were eligible to continue therapy with pegaspargase incorporated into a modified COP protocol and had their survival analysed using the Kaplan-Meier method and log-rank test. RESULTS Objective response to pegaspargase was reported in 46 cats (82%), including 21 (38%) complete and 25 (44%) partial responses. Thirty-four responders continued therapy with pegaspargase-COP as the first-line treatment. Of these, 31 cats (92%) achieved complete remission with a median duration of the first remission (disease-free survival [DFS]) of 816 days. The median overall survival time (OST) for all 34 cats treated with pegaspargase-COP was 181 days. Response to the initial pegaspargase injection before COP initiation was significantly associated with DFS (P = 0.04) and OST (P = 0.001). Median DFS/OST for cats with complete response to initial pegaspargase injection was significantly longer compared with those with partial remission (>1273 days/>2066 days vs 77 days/108 days, respectively). Cats with gastric lymphoma showed a significantly longer survival (OST 854 days, 1- and 2-year survival rate 57.1%) compared with cats with intestinal lymphoma (OST 102 days, 1-year survival rate 0%). The pegaspargase-COP protocol was generally well tolerated, but two deaths were likely attributable to treatment-related toxicity during the maintenance phase. Importantly, none of the cats experienced hypersensitivity, despite multiple repeated treatments with pegaspargase. CONCLUSION AND RELEVANCE Pegaspargase is an effective agent for feline lymphoma. Its incorporation into a COP chemotherapy protocol may confer a survival benefit, especially in cats with complete response to pegaspargase. Treatment is generally well tolerated, but careful monitoring is recommended. Further studies are required to assess the benefits of pegaspargase as monotherapy or as part of different multi-agent chemotherapy regimens.
Collapse
Affiliation(s)
- Adriana Krupa
- Small Animal Department, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
- Collaborative Veterinary Cancer Centers (SDK) of The Netherlands and Belgium, AR Terneuzen, the Netherlands
| | - Johan de Vos
- Collaborative Veterinary Cancer Centers (SDK) of The Netherlands and Belgium, AR Terneuzen, the Netherlands
| | - Lynn Van Eetvelde
- Small Animal Department, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Erik Teske
- Department of Clinical Sciences, Veterinary Faculty, Utrecht University, CM Utrecht, the Netherlands
| |
Collapse
|
22
|
dos Santos AC, dos Santos JMB, da Costa Lima E, Land MGP. L-asparaginase doses number as a prognostic factor in childhood acute lymphoblastic leukemia: A survival analysis study. Cancer Rep (Hoboken) 2022; 5:e1533. [PMID: 34431241 PMCID: PMC9351670 DOI: 10.1002/cnr2.1533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The survival of children with acute lymphoblastic leukemia (ALL) has improved due to changes in the treatment and the disease diagnosis. A significant advance was the incorporation of asparaginase. However, hypersensitivity reactions are a common cause of early discontinuation of this drug. AIM The proposed study aims to evaluate early interruptions and the influence of the number of asparaginase doses effectively administered on the prognosis of patients with ALL. METHODS AND RESULTS An observational cohort study was carried out, with retrospective data collection, in medical records. The prognostic variables indicated in the protocol applied were used, and the principal outcomes were 5 years event-free survival (EFS) and 5 years of overall survival (OS) probability. Statistical analyzes were performed using SPPS 20.0 and R. In Cox's proportional hazards model for EFS and OS, variables of prognostic importance (n = 126 children) were: high-risk group (HGR), by the protocol classification, and less than 10 doses of asparaginase. The increased risk of events and death in HGR, who did less than 10 doses, was 3.6 and 7 times, respectively. The study did not show statistical significance for the number of asparaginase doses in patients who were not at high risk. CONCLUSIONS We demonstrated that the early interruption of asparaginase treatment could negatively impact the prognosis of patients with ALL, especially HGR, reinforcing the need for careful diagnosis of reactions and the availability of alternative types of asparaginase.
Collapse
Affiliation(s)
- Amanda Cabral dos Santos
- Instituto de Puericultura e Pediatria Martagão Gesteira ‐ Federal University of Rio de Janeiro, PPGCM – FM (Graduate Program in Medical Clinic –Medical School)Rio de JaneiroBrazil
- PPGCM – FM (Graduate Program in Medical Clinic –Medical School)Rio de JaneiroBrazil
| | | | | | - Marcelo Gerardin Poirot Land
- Instituto de Puericultura e Pediatria Martagão Gesteira ‐ Federal University of Rio de Janeiro, PPGCM – FM (Graduate Program in Medical Clinic –Medical School)Rio de JaneiroBrazil
- PPGCM – FM (Graduate Program in Medical Clinic –Medical School)Rio de JaneiroBrazil
| |
Collapse
|
23
|
Feenstra LR, Gehring R, van Geijswijk IM, König T, Prinsen HCMT, Vandemeulebroecke K, Lammens T, Krupa A, Teske E. Evaluation of PEG-L-asparaginase in asparagine suppression and anti-drug antibody development in healthy Beagle dogs: A multi-phase preclinical study. Vet J 2022; 286:105854. [PMID: 35781075 DOI: 10.1016/j.tvjl.2022.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
L-asparaginase is a frequently used drug in the treatment of canine malignant lymphoma. Since production and availability of native E. coli-derived L-asparaginase are limited, PEG-L-asparaginase (PEG-ASP) is an alternative. However, recommended doses and dosing intervals are mainly empirically determined. A multi-phase clinical dose-finding study with seven healthy Beagle dogs was conducted to find the minimum effective dose and, potentially, a dosing interval for PEG-ASP in dogs. Plasma concentrations of amino acids and PEG-ASP activity were measured at various time points after administration of different doses of PEG-ASP. Anti-PEG and anti-asparaginase antibody titres were measured. Administration of 10 IU/kg PEG-ASP resulted in asparagine depletion in all dogs, albeit for various durations: for 9 days in all dogs, 15 days in five dogs, 21 days in three dogs and 29 days in one dog. Asparagine suppression occurred at PEG-ASP plasma concentrations < 25 IU/L. Subsequent administrations of a second and third dose of 20 IU/kg and 40 IU/kg PEG-ASP resulted in asparagine suppression at < 9 days in five dogs, accompanied by the development of antibodies against PEG and L-asparaginase. Two dogs with prolonged asparagine suppression after the second and third administration did not develop antibodies. Marked individual variation in the mechanism and duration of response to PEG-ASP was noted. Antibody formation against PEG-ASP was frequently observed and sometimes occurred after one injection. This study suggests that PEG-ASP doses as high as the currently used dose of 40 IU/kg might not be needed in treatment of canine malignant lymphoma.
Collapse
Affiliation(s)
- L R Feenstra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, the Netherlands.
| | - R Gehring
- Institute for Risk Assessment Sciences, Division of Toxicology and Pharmacology, Utrecht University, Utrecht, the Netherlands
| | - I M van Geijswijk
- Institute for Risk Assessment Sciences, Division of Toxicology and Pharmacology, Utrecht University, Utrecht, the Netherlands; Pharmacy Department, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - T König
- Diagnostics Development Department, medac GmbH, Wedel, Germany
| | - H C M T Prinsen
- Department of Genetics, section Metabolic Diagnostics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - K Vandemeulebroecke
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - T Lammens
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - A Krupa
- AniCura Veterinary Hospital Zeeuws-Vlaanderen, Terneuzen, the Netherlands
| | - E Teske
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 108, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
24
|
Thiruvalluvan M, Billet S, Bhowmick NA. Antagonizing Glutamine Bioavailability Promotes Radiation Sensitivity in Prostate Cancer. Cancers (Basel) 2022; 14:cancers14102491. [PMID: 35626095 PMCID: PMC9139225 DOI: 10.3390/cancers14102491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Radiation is the standard of care for prostate cancer, but almost half the patients develop resistant disease. It is imperative to understand the reasons behind disease progression to develop more effective strategies of treatment. We determined that glutamine is a crucial nutrient in driving prostate cancer tumors as people with more glutamine have poorer outcomes. We hypothesized that directly depriving cancer cells of this precious resource will further sensitize them to radiation. We sought to repurpose the drug L-asparaginase, which has been used extensively to treat leukemia patients, to complement radiation therapy for prostate cancer patients. This drug depletes glutamine in the blood and hinders an aspect of cell growth that makes cancer cells that are otherwise resistant vulnerable to irradiation. Ultimately, mouse models of prostate cancer given L-asparaginase in combination with irradiation were more effective at reducing tumor size than radiation alone. Abstract Nearly half of localized prostate cancer (PCa) patients given radiation therapy develop recurrence. Here, we identified glutamine as a key player in mediating the radio-sensitivity of PCa. Glutamine transporters and glutaminase are upregulated by radiation therapy of PCa cells, but respective inhibitors were ineffective in radio-sensitization. However, targeting glutamine bioavailability by L-asparaginase (L-ASP) led to a significant reduction in clonogenicity when combined with irradiation. L-ASP reduced extracellular asparagine and glutamine, but the sensitization effects were driven through its depletion of glutamine. L-ASP led to G2/M cell cycle checkpoint blockade. As evidence, there was a respective delay in DNA repair associated with RAD51 downregulation and upregulation of CHOP, contributing to radiation-induced cell death. A radio-resistant PCa cell line was developed, was found to bypass radiation-induced mitotic catastrophe, and was sensitive to L-ASP/radiation combination treatment. Previously, PCa-associated fibroblasts were reported as a glutamine source supporting tumor progression. As such, glutamine-free media were not effective in promoting radiation-induced PCa cell death when co-cultured with associated primary fibroblasts. However, the administration L-ASP catalyzed glutamine depletion with irradiated co-cultures and catalyzed tumor volume reduction in a mouse model. The clinical history of L-ASP for leukemia patients supports the viability for its repurposing as a radio-sensitizer for PCa patients.
Collapse
Affiliation(s)
- Manish Thiruvalluvan
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.T.); (S.B.)
| | - Sandrine Billet
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.T.); (S.B.)
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Neil A. Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.T.); (S.B.)
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Correspondence: ; Tel.: +1-310-871-4697
| |
Collapse
|
25
|
Ci T, Zhang W, Qiao Y, Li H, Zang J, Li H, Feng N, Gu Z. Delivery strategies in treatments of leukemia. Chem Soc Rev 2022; 51:2121-2144. [PMID: 35188506 DOI: 10.1039/d1cs00755f] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leukemia is a hematological malignancy associated with the uncontrolled proliferation of mutant progenitors, suppressing the production of normal blood cells. Current treatments, including chemotherapy, radiotherapy, and immunotherapy, still lead to unsatisfactory results with a 5 year survival rate of only 30-50%. The poor prognosis is related to both disease relapse and treatment-associated toxicity. Delivery strategies can improve the in vivo pharmacokinetics of drugs, navigating the therapeutics to target cells or the tumor microenvironment and reversing drug resistance, which maximizes tumor elimination and alleviates systematic adverse effects. This review discusses available FDA-approved anti-leukemia drugs and therapies with a focus on the advances in the development of anti-leukemia drug delivery systems. Additionally, challenges in clinical translation of the delivery strategies and future research opportunities in leukemia treatment are also included.
Collapse
Affiliation(s)
- Tianyuan Ci
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wentao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yingyu Qiao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Huangjuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Jing Zang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongjun Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
26
|
Van Trimpont M, Peeters E, De Visser Y, Schalk AM, Mondelaers V, De Moerloose B, Lavie A, Lammens T, Goossens S, Van Vlierberghe P. Novel Insights on the Use of L-Asparaginase as an Efficient and Safe Anti-Cancer Therapy. Cancers (Basel) 2022; 14:cancers14040902. [PMID: 35205650 PMCID: PMC8870365 DOI: 10.3390/cancers14040902] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary L-asparaginase (L-ASNase) therapy is key for achieving the very high cure rate of pediatric acute lymphoblastic leukemia (ALL), yet its use is mostly confined to this indication. One main reason preventing the expansion of today’s FDA-approved L-ASNases to solid cancers is their high toxicity and side effects, which become especially challenging in adult patients. The design of optimized L-ASNase molecules provides opportunities to overcome these unwanted toxicities. An additional challenge to broader application of L-ASNases is how cells can counter the pharmacological effect of this drug and the identification of L-ASNases resistance mechanisms. In this review, we discuss recent insights into L-ASNase adverse effects, resistance mechanisms, and how novel L-ASNase variants and drug combinations can expand its clinical applicability, with a focus on both hematological and solid tumors. Abstract L-Asparaginase (L-ASNase) is an enzyme that hydrolyses the amino acid asparagine into aspartic acid and ammonia. Systemic administration of bacterial L-ASNase is successfully used to lower the bioavailability of this non-essential amino acid and to eradicate rapidly proliferating cancer cells with a high demand for exogenous asparagine. Currently, it is a cornerstone drug in the treatment of the most common pediatric cancer, acute lymphoblastic leukemia (ALL). Since these lymphoblasts lack the expression of asparagine synthetase (ASNS), these cells depend on the uptake of extracellular asparagine for survival. Interestingly, recent reports have illustrated that L-ASNase may also have clinical potential for the treatment of other aggressive subtypes of hematological or solid cancers. However, immunogenic and other severe adverse side effects limit optimal clinical use and often lead to treatment discontinuation. The design of optimized and novel L-ASNase formulations provides opportunities to overcome these limitations. In addition, identification of multiple L-ASNase resistance mechanisms, including ASNS promoter reactivation and desensitization, has fueled research into promising novel drug combinations to overcome chemoresistance. In this review, we discuss recent insights into L-ASNase adverse effects, resistance both in hematological and solid tumors, and how novel L-ASNase variants and drug combinations can expand its clinical applicability.
Collapse
Affiliation(s)
- Maaike Van Trimpont
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Evelien Peeters
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Yanti De Visser
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Amanda M. Schalk
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; (A.M.S.); (A.L.)
| | - Veerle Mondelaers
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; (A.M.S.); (A.L.)
- The Jesse Brown VA Medical Center, Chicago, IL 60607, USA
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
27
|
A Targeted Catalytic Nanobody (T-CAN) with Asparaginolytic Activity. Cancers (Basel) 2021; 13:cancers13225637. [PMID: 34830793 PMCID: PMC8616244 DOI: 10.3390/cancers13225637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The therapy of Acute Lymphoblastic Leukemia (ALL) is based on Escherichia coli (E. coli) L-asparaginase, which is a very effective drug in most cases. However, its side effects sometimes prevent its usage or impose its interruption. The main issues derive from its bacterial origin, which elicits a strong immune response in the patient, and from its generalized action on all body compartments. In this work, we describe how we generated a fully active and miniaturized form of L-asparaginase starting from a camel single domain antibody, a class of antibodies known to have a very limited immunogenicity in humans. We also targeted it onto tumor cells by attaching it to an antibody fragment directed onto the CD19 B-cell surface receptor, expressed on ALL cells. We named this new molecule “Targeted Catalytic Nanobody” (T-CAN). The T-CAN is active and successfully binds to CD19 expressing cells in vitro. Thanks to its reduced immunogenic potential, it represents a new tool which deserves further development. Abstract E. coli L-asparaginase is an amidohydrolase (EC 3.5.1.1) which has been successfully used for the treatment of Acute Lymphoblastic Leukemia for over 50 years. Despite its efficacy, its side effects, and especially its intrinsic immunogenicity, hamper its usage in a significant subset of cases, thus limiting therapeutic options. Innovative solutions to improve on these drawbacks have been attempted, but none of them have been truly successful so far. In this work, we fully replaced the enzyme scaffold, generating an active, miniaturized form of L-asparaginase by protein engineering of a camel single domain antibody, a class of antibodies known to have a limited immunogenicity in humans. We then targeted it onto tumor cells by an antibody scFv fragment directed onto the CD19 B-cell surface receptor expressed on ALL cells. We named this new type of nanobody-based antibody-drug conjugate “Targeted Catalytic Nanobody” (T-CAN). The new molecule retains the catalytic activity and the binding capability of the original modules and successfully targets CD19 expressing cells in vitro. Thanks to its theoretically reduced immunogenic potential compared to the original molecule, the T-CAN can represent a novel approach to tackle current limitations in L-asparaginase usage.
Collapse
|
28
|
Douer D, Gökbuget N, Stock W, Boissel N. Optimizing use of L-asparaginase–based treatment of adults with acute lymphoblastic leukemia. Blood Rev 2021; 53:100908. [DOI: 10.1016/j.blre.2021.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/19/2023]
|
29
|
Revealing Escherichia coli type II L-asparaginase active site flexible loop in its open, ligand-free conformation. Sci Rep 2021; 11:18885. [PMID: 34556749 PMCID: PMC8460627 DOI: 10.1038/s41598-021-98455-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/30/2021] [Indexed: 11/08/2022] Open
Abstract
Since 1993, when the structure of Escherichia coli type II L-asparaginase (EcAII) in complex with L-aspartate was firstly reported, many structures of the wild type and mutated enzyme have been deposited in the Protein Data Bank. None of them report the full structure of the monomer in its ligand-free, open conformation, mainly because of the high dynamic and flexibility of the active site flexible loop. Here we report for the first time the structure of EcAII wild type in its open conformation comprising, for at least one protomer, clear electron density for the active site flexible loop (PDB ID: 6YZI). The structural element is highly mobile and it is transposed onto the rigid part of the active site upon substrate binding to allow completion of the enzyme catalytic center, thanks to key residues that serve as hinges and anchoring points. In the substrate binding pocket, several highly conserved water molecules are coordinated by residues involved in substrate binding, comprising two water molecules very likely involved in the enzyme catalytic process. We also describe, by molecular dynamics simulations, how the transposition of the loop, besides providing the proximity of residues needed for catalysis, causes a general stabilization of the protein.
Collapse
|
30
|
Li X, Zhu H, Sun W, Yang X, Nie Q, Fang X. Role of glutamine and its metabolite ammonia in crosstalk of cancer-associated fibroblasts and cancer cells. Cancer Cell Int 2021; 21:479. [PMID: 34503536 PMCID: PMC8427881 DOI: 10.1186/s12935-021-02121-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs), the most abundant cells in the tumor microenvironment, play an indispensable role in cancer initiation, progression, metastasis, and metabolism. The limitations of traditional treatments can be partly attributed to the lack of understanding of the role of the tumor stroma. For this reason, CAF targeting is gradually gaining attention, and many studies are trying to overcome the limitations of tumor treatment with CAF as a breakthrough. Glutamine (GLN) has been called a “nitrogen reservoir” for cancer cells because of its role in supporting anabolic processes such as fuel proliferation and nucleotide synthesis, but ammonia is a byproduct of the metabolism of GLN and other nitrogenous compounds. Moreover, in some studies, GLN has been reported as a fundamental nitrogen source that can support tumor biomass. In this review, we discuss the latest findings on the role of GLN and ammonia in the crosstalk between CAFs and cancer cells as well as the potential therapeutic implications of nitrogen metabolism.
Collapse
Affiliation(s)
- Xiao Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hongming Zhu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Weixuan Sun
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xingru Yang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Qing Nie
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
31
|
Guimarães AVF, Frota NF, Lourenzoni MR. Molecular dynamics simulations of human L-asparaginase1: Insights into structural determinants of enzymatic activity. J Mol Graph Model 2021; 109:108007. [PMID: 34461521 DOI: 10.1016/j.jmgm.2021.108007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The l-asparaginase enzyme is used in cancer therapy, mainly acute lymphoid leukemia (ALL). Commercial enzymes (EcASNase2) cause adverse reactions during treatment, such as immunogenicity. A human enzyme could be a non-immunogenic substitute. However, no candidate was found showing efficient kinetic properties. HASNase1 is an l-asparaginase that comes from the N-terminal domain of a protein called 60 kDa-lysophospholipase and its 3D structure has not been resolved. HASNase1 is homologous to EcASNase1 and gpASNase1, and this last one has shown efficient kinetic properties. Homology modeling was used to find the 3D structure of hASNase1, so one could submit it to Molecular Dynamics (MD), in order to understand structural differences that lead to different catalytic efficiency compared to EcASNase2 and gpASNase1. The interaction potential between L-Asn and active site residues showed that the substrate can rotate in the site when Region1 is open. Region1 residues sequence favors deformations and movements as shown in MD. Region2-A is linear in gpASNase1, and it features a helix portion in hASNase1, which leaves the Tyr308 position projected to the active site ratifying its role in catalytic efficiency. Analysis of Lys188 orientation and movement showed the effect of positive cooperativity in hASNase1. It was found that the presence of Asn at the allosteric site helps, not only in Region1 stabilization, but also in Lys188 stabilization for the maintenance of the triad. Despite structural similarities in hASNase1, gpASNase1, and EcASNase2, there are differences in structural determinants that, in addition to allosterism, may explain the different kinetic properties.
Collapse
Affiliation(s)
- Ana Virginia Frota Guimarães
- Programa de Pós Graduação em Biotecnologia de Recursos Naturais, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici, 825, zip-code: 60356-000, Fortaleza, CE, Brazil; Fundação Oswaldo Cruz - Ceará, Fiocruz - CE, Protein Engineering and Health Solutions Group - GEPeSS, zip-code: 60175-047, Fortaleza, CE, Brazil
| | - Natália Fernandes Frota
- Fundação Oswaldo Cruz - Ceará, Fiocruz - CE, Protein Engineering and Health Solutions Group - GEPeSS, zip-code: 60175-047, Fortaleza, CE, Brazil
| | - Marcos Roberto Lourenzoni
- Fundação Oswaldo Cruz - Ceará, Fiocruz - CE, Protein Engineering and Health Solutions Group - GEPeSS, zip-code: 60175-047, Fortaleza, CE, Brazil.
| |
Collapse
|
32
|
Cioni P, Gabellieri E, Campanini B, Bettati S, Raboni S. Use of Exogenous Enzymes in Human Therapy: Approved Drugs and Potential Applications. Curr Med Chem 2021; 29:411-452. [PMID: 34259137 DOI: 10.2174/0929867328666210713094722] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
The development of safe and efficacious enzyme-based human therapies has increased greatly in the last decades, thanks to remarkable advances in the understanding of the molecular mechanisms responsible for different diseases, and the characterization of the catalytic activity of relevant exogenous enzymes that may play a remedial effect in the treatment of such pathologies. Several enzyme-based biotherapeutics have been approved by FDA (the U.S. Food and Drug Administration) and EMA (the European Medicines Agency) and many are undergoing clinical trials. Apart from enzyme replacement therapy in human genetic diseases, which is not discussed in this review, approved enzymes for human therapy find applications in several fields, from cancer therapy to thrombolysis and the treatment, e.g., of clotting disorders, cystic fibrosis, lactose intolerance and collagen-based disorders. The majority of therapeutic enzymes are of microbial origin, the most convenient source due to fast, simple and cost-effective production and manipulation. The use of microbial recombinant enzymes has broadened prospects for human therapy but some hurdles such as high immunogenicity, protein instability, short half-life and low substrate affinity, still need to be tackled. Alternative sources of enzymes, with reduced side effects and improved activity, as well as genetic modification of the enzymes and novel delivery systems are constantly searched. Chemical modification strategies, targeted- and/or nanocarrier-mediated delivery, directed evolution and site-specific mutagenesis, fusion proteins generated by genetic manipulation are the most explored tools to reduce toxicity and improve bioavailability and cellular targeting. This review provides a description of exogenous enzymes that are presently employed for the therapeutic management of human diseases with their current FDA/EMA-approved status, along with those already experimented at the clinical level and potential promising candidates.
Collapse
Affiliation(s)
- Patrizia Cioni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Edi Gabellieri
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma. Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| | - Samanta Raboni
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124 Pisa. Italy
| |
Collapse
|
33
|
Lynggaard LS, Rank CU, Als-Nielsen B, Hoejfeldt SG, Heyman M, Schmiegelow K, Albertsen BK. PEG-asparaginase treatment for acute lymphoblastic leukaemia in children: a network meta-analysis. Hippokratia 2021. [DOI: 10.1002/14651858.cd014570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Cecilie U Rank
- Department of Hematology; Rigshospitalet, University Hospital of Copenhagen; Copenhagen Denmark
| | - Bodil Als-Nielsen
- Department of Paediatric Haematology/Oncology (5054); The Child and Youth Clinic; Copenhagen Denmark
| | - Sofie G Hoejfeldt
- Child and Adolescent Health; Aarhus University Hospital; Aarhus Denmark
| | - Mats Heyman
- Childhood Cancer Research Unit, Dpt of Women’s and Children’s Health; Karolinska Institutet and Karolinska University Hospital; Stockholm Sweden
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine; Rigshospitalet, University Hospital of Copenhagen; Copenhagen Denmark
| | | |
Collapse
|
34
|
Circumventing the side effects of L-asparaginase. Biomed Pharmacother 2021; 139:111616. [PMID: 33932739 DOI: 10.1016/j.biopha.2021.111616] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
L-asparaginase is an enzyme that catalyzes the degradation of asparagine and successfully used in the treatment of acute lymphoblastic leukemia. L-asparaginase toxicity is either related to hypersensitivity to the foreign protein or to a secondary L-glutaminase activity that causes inhibition of protein synthesis. PEGylated versions have been incorporated into the treatment protocols to reduce immunogenicity and an alternative L-asparaginase derived from Dickeya chrysanthemi is used in patients with anaphylactic reactions to the E. coli L-asparaginase. Alternative approaches commonly explore new sources of the enzyme as well as the use of protein engineering techniques to create less immunogenic, more stable variants with lower L-glutaminase activity. This article reviews the main strategies used to overcome L-asparaginase shortcomings and introduces recent tools that can be used to create therapeutic enzymes with improved features.
Collapse
|
35
|
Bender C, Maese L, Carter-Febres M, Verma A. Clinical Utility of Pegaspargase in Children, Adolescents and Young Adult Patients with Acute Lymphoblastic Leukemia: A Review. Blood Lymphat Cancer 2021; 11:25-40. [PMID: 33907490 PMCID: PMC8064615 DOI: 10.2147/blctt.s245210] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/12/2021] [Indexed: 01/19/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogenous hematological malignancy representing 25% of all cancers in children less than 15 years of age. Significant improvements in survival and cure rates have been made over the past four decades in pediatric ALL treatment. Asparaginases, derived from Escherichia coli and Erwinia chrysanthemi, have become a critical component of ALL therapy since the 1960s. Asparaginases cause depletion of serum asparagine, leading to deprivation of this critical amino acid for protein synthesis, and hence limit survival of lymphoblasts. Pegaspargase, a conjugate of monomethoxypolyethylene glycol (mPEG) and L-asparaginase, has become an integral component of pediatric upfront and relapsed ALL protocols due to its longer half-life and improved immunogenicity profile compared to native asparaginase preparations. Over the past two decades great strides have been made in outcomes for pediatric ALL due to risk stratification, incorporation of multiagent chemotherapy protocols, and central nervous system prophylaxis with pegaspargase having played an important role in this success. However, adolescents and young adults (AYA) with ALL when treated on contemporaneous trials using adult ALL regimens, continue to have poor outcomes. There is increasing realization of adapting pediatric trial regimens for treating AYAs, especially those incorporating higher intensity of chemotherapeutic agents with pegaspargase being one such agent. Dose or treatment-limiting toxicity is observed in 25-30% of patients, most notable being hypersensitivity reactions. Other toxicities include asparaginase-associated pancreatitis, thrombosis, liver dysfunction, osteonecrosis, and dyslipidemia. Discontinuation or subtherapeutic levels of asparaginase are associated with inferior disease-free survival leading to higher risk of relapse, and in cases of relapse, a higher risk for remission failure. This article provides an overview of available evidence for use of pegaspargase in pediatric acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Cynthia Bender
- Department of Pharmacy, Primary Children’s Hospital, Salt Lake City, UT, USA
| | - Luke Maese
- Division of Hematology/Oncology, Department of Pediatrics, University of Utah and Primary Children’s Hospital, Salt Lake City, UT, USA
| | - Maria Carter-Febres
- Division of Hematology/Oncology, Department of Pediatrics, University of Utah and Primary Children’s Hospital, Salt Lake City, UT, USA
| | - Anupam Verma
- Division of Hematology/Oncology, Department of Pediatrics, University of Utah and Primary Children’s Hospital, Salt Lake City, UT, USA
| |
Collapse
|
36
|
Khalil A, Würthwein G, Golitsch J, Hempel G, Fobker M, Gerss J, Möricke A, Zimmermann M, Smisek P, Zucchetti M, Nath C, Attarbaschi A, Von Stackelberg A, Gökbuget N, Rizzari C, Conter V, Schrappe M, Boos J, Lanvers-Kaminsky C. Pre-existing antibodies against polyethylene glycol reduce asparaginase activities on first administration of pegylated E. coli asparaginase in children with acute lymphocytic leukemia. Haematologica 2020; 107:49-57. [PMID: 33299233 PMCID: PMC8719085 DOI: 10.3324/haematol.2020.258525] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 11/09/2022] Open
Abstract
Antibodies against polyethylene glycol (PEG) in healthy subjects raise concerns about the efficacy of pegylated drugs. We evaluated the prevalence of antibodies against PEG among patients with acute lymphoblastic leukemia (ALL) prior to and/or immediately after their first dose of pegylated E.coli asparaginase (PEG-ASNase). Serum samples of 701 children, 673 with primary ALL, 28 with relapsed ALL, and 188 adults with primary ALL were analyzed for anti-PEG IgG and IgM. Measurements in 58 healthy infants served as reference to define cut-points for antibody-positive and -negative samples. Anti-PEG antibodies were detected in ALL patients prior the first PEG-ASNase with a prevalence of 13.9% (anti-PEG IgG) and 29.1% (anti-PEG IgM). After administration of PEG-ASNase the prevalence of anti-PEG antibodies decreased to 4.2% for anti-PEG IgG and to 4.5% for anti-PEG IgM. Pre-existing anti-PEG antibodies did not inhibit PEG-ASNase activity but significantly reduced PEGASNase activity levels in a concentration dependent manner. Although pre-existing anti-PEG antibodies did not boost, pre-existing anti-PEG IgG were significantly associated with firstexposure hypersensitivity reactions (CTCAE grade 2) (p
Collapse
Affiliation(s)
- Alaeddin Khalil
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster
| | - Gudrun Würthwein
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster
| | - Jana Golitsch
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster
| | - Georg Hempel
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster
| | - Manfred Fobker
- Center of Laboratory Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster
| | - Joachim Gerss
- Institute of Biostatistics and Clinical Research, University of Muenster
| | - Anja Möricke
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover
| | - Petr Smisek
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Praha, Czech Republic
| | - Massimo Zucchetti
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan
| | - Christa Nath
- Departments of Biochemistry and Oncology, The Children's Hospital at Westmead, Sydney Pharmacy School, University of Sydney, Sydney
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna
| | - Arend Von Stackelberg
- Departments of Pediatric Oncology/Hematology and of General Pediatrics, Charité - University Medicine Berlin, Berlin
| | | | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, University of Milano-Bicocca, MBBM Foundation, ASST-Monza, Monza
| | - Valentino Conter
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, University of Milano-Bicocca, MBBM Foundation, ASST-Monza, Monza
| | - Martin Schrappe
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel
| | - Joachim Boos
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster
| | | |
Collapse
|
37
|
Guillaumond F, Vasseur S. Nutriments et cancer : alliés ou ennemis ? CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2020; 55:276-294. [DOI: 10.1016/j.cnd.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
38
|
|
39
|
Li J, Eu JQ, Kong LR, Wang L, Lim YC, Goh BC, Wong ALA. Targeting Metabolism in Cancer Cells and the Tumour Microenvironment for Cancer Therapy. Molecules 2020; 25:molecules25204831. [PMID: 33092283 PMCID: PMC7588013 DOI: 10.3390/molecules25204831] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting altered tumour metabolism is an emerging therapeutic strategy for cancer treatment. The metabolic reprogramming that accompanies the development of malignancy creates targetable differences between cancer cells and normal cells, which may be exploited for therapy. There is also emerging evidence regarding the role of stromal components, creating an intricate metabolic network consisting of cancer cells, cancer-associated fibroblasts, endothelial cells, immune cells, and cancer stem cells. This metabolic rewiring and crosstalk with the tumour microenvironment play a key role in cell proliferation, metastasis, and the development of treatment resistance. In this review, we will discuss therapeutic opportunities, which arise from dysregulated metabolism and metabolic crosstalk, highlighting strategies that may aid in the precision targeting of altered tumour metabolism with a focus on combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK;
| | - Jie Qing Eu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
| | - Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Yaw Chyn Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Pathology, National University Health System, Singapore 119074, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore
| | - Andrea L. A. Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
40
|
Lussana F, Minetto P, Ferrara F, Chiaretti S, Specchia G, Bassan R. National Italian Delphi panel consensus: which measures are indicated to minimize pegylated-asparaginase associated toxicity during treatment of adult acute lymphoblastic leukemia? BMC Cancer 2020; 20:956. [PMID: 33008391 PMCID: PMC7532578 DOI: 10.1186/s12885-020-07461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND L-asparaginase (L-ASP) is a key component of acute lymphoblastic leukemia (ALL) treatment, but its use in clinical practice raises challenges to clinicians due to a relatively high incidence of drug-related adverse events, mainly in adult patients. In the past years the use of ASP in adult population has been mainly limited due to a poor knowledge of its safety profile and to an approximate management of ASP-related toxicity. Recently the development of pediatric-inspired treatment protocols for adult ALL has led to a wider use of ASP and since 2010 in Italy three national treatment protocols including Pegylated asparaginase (Peg-ASP) have been sequentially developed for adolescents, young adults and adults with Philadelphia-negative (Ph-) ALL. METHODS With the aim to better understand the approach adopted in Italian centers for the management and prevention of Peg-ASP toxicity in adult ALL and to provide practical, consensus-based recommendations, a board of 6 Italian clinicians, with known expertise in adult ALL, designed 41 consensus statements on current challenges on the management of Peg-ASP associated toxicity. A group of 19 clinical experts in the field then rated these statements using the 5-point Likert-type scale (1 = strongly disagree; 5 = strongly agree). RESULTS The main Peg-ASP related issues identified by the board included: 1) clinician's attitudes; 2) toxicity profile; 3) hypersensitivity reactions; 4) hepatic toxicity; 5) hepatic and/or metabolic toxicity; 6) hemorrhagic/thrombotic toxicity; 7) pancreatitis; 8) metabolic toxicity management and prevention; 9) activity levels monitoring. Overall, participants agreed on most statements, except those addressing the potential contraindications to the treatment with Peg-ASP, such as patients with a diagnosis of chronic liver disease or the subsequent administrations of the drug in patients who had previously developed chemical pancreatitis or severe metabolic toxicity. Participants agreed that adult patients with ALL should receive Peg-Asp because this drug is essential to improve treatment results. CONCLUSIONS The panel agreed that a critical evaluation of specific risk factors for each patient is crucial in order to reduce the risk of adverse events and specific advices in the management of Peg-ASP toxicities are reported.
Collapse
Affiliation(s)
- Federico Lussana
- Hematology and Bone Marrow Transplant Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Piazza OMS, 1, 24127, Bergamo, Italy.
| | - Paola Minetto
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy.,IRCCS, Ospedale Policlinico San Martino, Genova, Italy
| | | | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| | - Renato Bassan
- Complex Operative Unit of Haematology, dell'Angelo Hospital and Santissimi Giovanni and Paolo Hospital, Mestre and Venice, Italy
| |
Collapse
|
41
|
Costa-Silva T, Costa I, Biasoto H, Lima G, Silva C, Pessoa A, Monteiro G. Critical overview of the main features and techniques used for the evaluation of the clinical applicability of L-asparaginase as a biopharmaceutical to treat blood cancer. Blood Rev 2020; 43:100651. [DOI: 10.1016/j.blre.2020.100651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/14/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
|
42
|
Nookala Krishnamurthy M, Narula G, Gandhi K, Awase A, Pandit R, Raut S, Singh R, Gota V, Banavali SD. Randomized, Parallel Group, Open-Label Bioequivalence Trial of Intramuscular Pegaspargase in Patients With Relapsed Acute Lymphoblastic Leukemia. JCO Glob Oncol 2020; 6:1009-1016. [PMID: 32628582 PMCID: PMC7392740 DOI: 10.1200/go.20.00113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Pegylated asparaginase is comparatively safer than native asparaginase in the management of acute lymphoblastic leukemia (ALL). However, the high price and nonavailability in low- and middle-income countries limits its use. In 2014, the first generic of pegaspargase (Hamsyl) was approved in India for use as a second-line treatment option for ALL. The aim of this study was to assess whether the generic pegaspargase (the test product) was bioequivalent with the reference product (Oncaspar). PATIENTS AND METHODS This study was an open-label, parallel-group, comparative pharmacokinetic study in pediatric patients with relapsed ALL receiving their first dose (1,000 IU/m2) of pegaspargase administered intramuscularly. Patients were randomly assigned 1-to-1 to either the test or the reference product. The 2 formulations were considered equivalent if the 90% CIs for area under the plasma asparaginase activity–time curve (AUC0-t) geometric mean test-to-reference ratio was within 75% to 133%. RESULTS Twenty-nine patients (6-18 years of age) were enrolled in this study, of whom 24 completed the study criteria and were considered for safety analysis (5 patients were ineligible for the assessment). Three patients were excluded from analysis, because of presence of anti-asparaginase antibodies, leaving 21 patients who were considered for bioequivalence pharmacokinetics data. The point estimate of AUC0-t for the test-to-reference ratio was 95.05 (90% CI, 75.07% to 120.33%). Maximum plasma concentration, trough concentrations (day 14), half-life, volume of distribution, drug clearance, and changes in the asparagine and glutamine levels were not significantly different between products. Adverse events were comparable in both groups. CONCLUSION Generic and reference pegaspargase had equivalent pharmacokinetics with comparable safety. This could be a safe and cost-effective alternative for patients with ALL, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Manjunath Nookala Krishnamurthy
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Hospital, Mumbai, India.,Homi Bhabha National Institute, Anushakthi Nagar, Mumbai, Maharashtra, India
| | - Gaurav Narula
- Homi Bhabha National Institute, Anushakthi Nagar, Mumbai, Maharashtra, India.,Tata Memorial Hospital, Mumbai, India
| | - Khushboo Gandhi
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Hospital, Mumbai, India
| | - Ankita Awase
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Hospital, Mumbai, India
| | - Ruta Pandit
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Hospital, Mumbai, India
| | - Sunil Raut
- Gennova Biopharmaceuticals Ltd, Pune, India
| | - Ritu Singh
- Gennova Biopharmaceuticals Ltd, Pune, India
| | - Vikram Gota
- Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Hospital, Mumbai, India.,Homi Bhabha National Institute, Anushakthi Nagar, Mumbai, Maharashtra, India
| | - Shripad Dinanath Banavali
- Homi Bhabha National Institute, Anushakthi Nagar, Mumbai, Maharashtra, India.,Tata Memorial Hospital, Mumbai, India
| |
Collapse
|
43
|
Development and Validation of a Hydrophilic Interaction Liquid Chromatography Tandem Mass Spectrometry Method for the Determination of Asparagine in Human Serum. Int J Anal Chem 2020; 2020:6980392. [PMID: 32180807 PMCID: PMC7064832 DOI: 10.1155/2020/6980392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/03/2022] Open
Abstract
L-Asparagine (ASN) is the catalyze substrate of L-asparaginase (ASNase), which is an important drug for acute lymphoblastic leukemia (ALL) patients. The ASN level is found to be closely associated with the effectiveness of ASNase treatment. In this study, a hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC-MS/MS) method was developed for the determination of ASN in the human serum using a stable isotope-labeled internal standard (ASN-D3). Serum samples were prepared by a one-step precipitation procedure using methanol and separated by an Agilent HILIC Plus column with the mobile phase of methanol-water (95 : 5, v/v, containing 5 mM ammonium formate and 0.1% formic acid), at a constant flow rate of 0.3 mL/min. Mass spectrometric analysis was conducted using multiple-reaction monitoring in the positive electrospray ionization mode. Serum ASN concentrations were determined over a linear calibration curve range of 2–200 μM, with acceptable accuracies and precisions. The validated HILIC-MS/MS method was successfully applied to the quantification of ASN levels in the serum from patients with ALL. Collectively, the research may shed new light on an alternative rapid, simple, and convenient quantitative method for determination of serum ASN in ALL patients treated with ASNase.
Collapse
|
44
|
Derman BA, Streck M, Wynne J, Christ TN, Curran E, Stock W, Knoebel RW. Efficacy and toxicity of reduced vs. standard dose pegylated asparaginase in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia. Leuk Lymphoma 2020; 61:614-622. [PMID: 31680584 PMCID: PMC7028458 DOI: 10.1080/10428194.2019.1680839] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/21/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
Incorporation of asparaginase (ASNase) and pegylated asparaginase (PEG-ASP) into pediatric-inspired regimens for adults with acute lymphoblastic leukemia (ALL) has led to improved treatment outcomes albeit with increased toxicities. This study compared the efficacy and safety of the Children's Oncology Group standard PEG-ASP (SD) dosing (>1000, median 2500 IU/m2/dose) in adult Philadelphia chromosome-negative ALL patients receiving multiagent chemotherapy vs reduced dose PEG-ASP (RED) (≤1000, median 500 IU/m2/dose) during induction. 51 patients were included, 26 in RED and 25 in SD (median age 49 vs 37 years, p = .027). Median day 7 ASNase activity level for RED was 0.16 IU/mL. All 11 patients who received PEG-ASP 1000 IU/m2 and 9/11 patients who received 500 IU/m2 achieved an ASNase level ≥0.1 IU/mL. Patients receiving RED experienced fewer total grade 3/4 toxicities during induction compared to SD (p = .02) while still attaining therapeutic ASNase levels. RED permits safer ASNase use in adults with ALL and should be tested in a larger cohort prospectively.
Collapse
Affiliation(s)
| | - Mitchell Streck
- Simon Cancer Center, Indiana University Health, Indianapolis, IN
| | - Joseph Wynne
- Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Trevor N Christ
- Department of Pharmacy, University of Chicago, Chicago, IL
- Rush University Medical Center, Chicago, IL
| | - Emily Curran
- Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Wendy Stock
- Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | | |
Collapse
|
45
|
Chand S, Mahajan RV, Prasad JP, Sahoo DK, Mihooliya KN, Dhar MS, Sharma G. A comprehensive review on microbial l-asparaginase: Bioprocessing, characterization, and industrial applications. Biotechnol Appl Biochem 2020; 67:619-647. [PMID: 31954377 DOI: 10.1002/bab.1888] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
l-Asparaginase (E.C.3.5.1.1.) is a vital enzyme that hydrolyzes l-asparagine to l-aspartic acid and ammonia. This property of l-asparaginase inhibits the protein synthesis in cancer cells, making l-asparaginase a mainstay of pediatric chemotherapy practices to treat acute lymphoblastic leukemia (ALL) patients. l-Asparaginase is also recognized as one of the important food processing agent. The removal of asparagine by l-asparaginase leads to the reduction of acrylamide formation in fried food items. l-Asparaginase is produced by various organisms including animals, plants, and microorganisms, however, only microorganisms that produce a substantial amount of this enzyme are of commercial significance. The commercial l-asparaginase for healthcare applications is chiefly derived from Escherichia coli and Erwinia chrysanthemi. A high rate of hypersensitivity and adverse reactions limits the long-term clinical use of l-asparaginase. Present review provides thorough information on microbial l-asparaginase bioprocess optimization including submerged fermentation and solid-state fermentation for l-asparaginase production, downstream purification, its characterization, and issues related to the clinical application including toxicity and hypersensitivity. Here, we have highlighted the bioprocess techniques that can produce improved and economically viable yields of l-asparaginase from promising microbial sources in the current scenario where there is an urgent need for alternate l-asparaginase with less adverse effects.
Collapse
Affiliation(s)
- Subhash Chand
- National Institute of Biologicals (Ministry of Health & Family Welfare, Government of India), Noida, Uttar Pradesh, India.,Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Richi V Mahajan
- National Institute of Biologicals (Ministry of Health & Family Welfare, Government of India), Noida, Uttar Pradesh, India
| | - Jai Prakash Prasad
- National Institute of Biologicals (Ministry of Health & Family Welfare, Government of India), Noida, Uttar Pradesh, India
| | - Debendra K Sahoo
- Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Kanti Nandan Mihooliya
- Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology, Chandigarh, India
| | - Mahesh S Dhar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Girish Sharma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.,Amity Centre for Cancer Epidemiology & Cancer Research, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
46
|
Fakhri S, Moradi SZ, Farzaei MH, Bishayee A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Semin Cancer Biol 2020; 80:276-305. [PMID: 32081639 DOI: 10.1016/j.semcancer.2020.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Several signaling pathways and basic metabolites are responsible for the control of metabolism in both normal and cancer cells. As emerging hallmarks of cancer metabolism, the abnormal activities of these pathways are of the most noticeable events in cancer. This altered metabolism expedites the survival and proliferation of cancer cells, which have attracted a substantial amount of interest in cancer metabolism. Nowadays, targeting metabolism and cross-linked signaling pathways in cancer has been a hot topic to investigate novel drugs against cancer. Despite the efficiency of conventional drugs in cancer therapy, their associated toxicity, resistance, and high-cost cause limitations in their application. Besides, considering the numerous signaling pathways cross-linked with cancer metabolism, discovery, and development of multi-targeted and safe natural compounds has been a high priority. Natural secondary metabolites have exhibited promising anticancer effects by targeting dysregulated signaling pathways linked to cancer metabolism. The present review reveals the metabolism and cross-linked dysregulated signaling pathways in cancer. The promising therapeutic targets in cancer, as well as the critical role of natural secondary metabolites for significant anticancer enhancements, have also been highlighted to find novel/potential therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
47
|
Mondelaers V, Ferster A, Uyttebroeck A, Brichard B, van der Werff Ten Bosch J, Norga K, Francotte N, Piette C, Vandemeulebroecke K, Verbeke C, Schmidt S, Benoit Y, Lammens T, De Moerloose B. Prospective, real-time monitoring of pegylated Escherichia coli and Erwinia asparaginase therapy in childhood acute lymphoblastic leukaemia and non-Hodgkin lymphoma in Belgium. Br J Haematol 2020; 190:105-114. [PMID: 32057100 DOI: 10.1111/bjh.16495] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022]
Abstract
Asparaginase (ASNase) is an important anti-leukaemic drug in the treatment of childhood acute lymphoblastic leukaemia (ALL) and non-Hodgkin lymphoma (NHL). A substantial proportion of patients develop hypersensitivity reactions with anti-ASNase neutralising antibodies, resulting in allergic reactions or silent inactivation (SI), and characterised by inactivation and rapid clearance of ASNase. We report results of a prospective, real-time therapeutic drug monitoring of pegylated Escherichia coli (PEG-)ASNase and Erwinia ASNase in children treated for ALL and NHL in Belgium. Erwinia ASNase was given as second-line after hypersensitivity to PEG-ASNase. In total, 286 children were enrolled in the PEG-ASNase cohort. Allergy was seen in 11·2% and SI in 5·2% of patients. Of the 42 patients treated with Erwinia ASNase, 7·1% experienced allergy and 2·4% SI. The median trough PEG-ASNase activity was high in all patients without hypersensitivity. After Erwinia administration significantly more day 3 samples had activities <100 IU/l (62·5% vs. 10% at day 2 (D2)). The median D2 activity was significantly higher for intramuscular (IM; 347 IU/l) than for intravenous Erwinia administrations (159 IU/l). This prospective, multicentre study shows that monitoring of ASNase activity during treatment of children with ALL and NHL is feasible and informative. Treatment with Erwinia ASNase warrants close monitoring and optimally adherence to a 2-day interval of IM administrations.
Collapse
Affiliation(s)
- Veerle Mondelaers
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital and Cancer Research Institute Ghent, Ghent, Belgium
| | - Alina Ferster
- Pediatric Hematology-Oncology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF-UKZKF), Brussels, Belgium
| | - Anne Uyttebroeck
- Pediatric Hematology-Oncology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Bénédicte Brichard
- Pediatric Hematology-Oncology, Cliniques Universitaires Saint-Luc (UCL), Brussels, Belgium
| | | | - Koenraad Norga
- Pediatric Hematology-Oncology, University Hospital Antwerp, Antwerp, Belgium
| | - Nadine Francotte
- Department of Pediatric Oncology, CHC- Hospital of Hope, Montegnée, Belgium
| | - Caroline Piette
- Department of Pediatric Oncology, CHR Citadelle, Liège, Belgium
| | - Katrien Vandemeulebroecke
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Charlotte Verbeke
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Susanne Schmidt
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Yves Benoit
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital and Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital and Cancer Research Institute Ghent, Ghent, Belgium
| | - Barbara De Moerloose
- Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital and Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
48
|
d'Avanzo N, Celia C, Barone A, Carafa M, Di Marzio L, Santos HA, Fresta M. Immunogenicity of Polyethylene Glycol Based Nanomedicines: Mechanisms, Clinical Implications and Systematic Approach. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nicola d'Avanzo
- Department of Health SciencesUniversity of Catanzaro “Magna Græcia” Campus Universitario “S. Venuta”, Viale Europa I‐88100 Catanzaro Italy
| | - Christian Celia
- Department of PharmacyUniversity of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 I‐66100 Chieti Italy
| | - Antonella Barone
- Department of Health SciencesUniversity of Catanzaro “Magna Græcia” Campus Universitario “S. Venuta”, Viale Europa I‐88100 Catanzaro Italy
| | - Maria Carafa
- Department of Drug Chemistry and TechnologyUniversity of Rome “Sapienza” 00185 Rome Italy
| | - Luisa Di Marzio
- Department of PharmacyUniversity of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 I‐66100 Chieti Italy
| | - Hélder A. Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy; and Helsinki Institute of Life Science (HiLIFE)University of Helsinki FI‐00014 Helsinki Finland
| | - Massimo Fresta
- Department of Health SciencesUniversity of Catanzaro “Magna Græcia” Campus Universitario “S. Venuta”, Viale Europa I‐88100 Catanzaro Italy
| |
Collapse
|
49
|
Immunogenicity assessment of fungal l-asparaginases: an in silico approach. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
50
|
Hashmi SK, Navai SA, Chambers TM, Scheurer ME, Hicks MJ, Rau RE, Gramatges MM. Incidence and predictors of treatment-related conjugated hyperbilirubinemia during early treatment phases for children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2020; 67:e28063. [PMID: 31736183 PMCID: PMC7382403 DOI: 10.1002/pbc.28063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 11/12/2022]
Abstract
Conjugated hyperbilirubinemia (CHB) and liver transaminase elevation are known complications of acute lymphoblastic leukemia (ALL) therapy, but host risk factors are poorly understood. Among 373 children diagnosed with ALL between 2011 and 2016, clinically significant CHB and transaminase elevation were observed in 15 (4.0%) and 12 (3.2%) children, respectively, during induction and consolidation. Body mass index ≥95th percentile (odds ratio 9.20, 95% confidence interval 2.56-32.96) was the only host factor independently associated with CHB, and no host factors were associated with transaminase elevation. Obese patients warrant closer monitoring of hepatic function to facilitate early intervention prior to the development of severe, adverse hepatic events.
Collapse
Affiliation(s)
- Saman K. Hashmi
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | - Shoba A. Navai
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | - Tiffany M. Chambers
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | - Michael E. Scheurer
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | - M. John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Rachel E. Rau
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| | - Maria M. Gramatges
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX
| |
Collapse
|