1
|
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem 2023; 90:117368. [PMID: 37331175 DOI: 10.1016/j.bmc.2023.117368] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, caused by a physical insult damaging the brain. Growth factor-based therapies have the potential to reduce the effects of secondary injury and improve outcomes by providing neuroprotection against glutamate excitotoxicity, oxidative damage, hypoxia, and ischemia, as well as promoting neurite outgrowth and the formation of new blood vessels. Despite promising evidence in preclinical studies, few neurotrophic factors have been tested in clinical trials for TBI. Translation to the clinic is not trivial and is limited by the short in vivo half-life of the protein, the inability to cross the blood-brain barrier and human delivery systems. Synthetic peptide mimetics have the potential to be used in place of recombinant growth factors, activating the same downstream signalling pathways, with a decrease in size and more favourable pharmacokinetic properties. In this review, we will discuss growth factors with the potential to modulate damage caused by secondary injury mechanisms following a traumatic brain injury that have been trialled in other indications including spinal cord injury, stroke and neurodegenerative diseases. Peptide mimetics of nerve growth factor (NGF), hepatocyte growth factor (HGF), glial cell line-derived growth factor (GDNF), brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) will be highlighted, most of which have not yet been tested in preclinical or clinical models of TBI.
Collapse
Affiliation(s)
- Emily Atkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Rachael Dickman
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
2
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
3
|
Rhea EM, Logsdon AF, Banks WA, Erickson ME. Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics 2020; 12:pharmaceutics12111120. [PMID: 33233734 PMCID: PMC7699866 DOI: 10.3390/pharmaceutics12111120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
This review highlights the pre-clinical and clinical work performed to use intranasal delivery of various compounds from growth factors to stem cells to reduce neuroimmune interactions. We introduce the concept of intranasal (IN) delivery and the variations of this delivery method based on the model used (i.e., rodents, non-human primates, and humans). We summarize the literature available on IN delivery of growth factors, vitamins and metabolites, cytokines, immunosuppressants, exosomes, and lastly stem cells. We focus on the improvement of neuroimmune interactions, such as the activation of resident central nervous system (CNS) immune cells, expression or release of cytokines, and detrimental effects of signaling processes. We highlight common diseases that are linked to dysregulations in neuroimmune interactions, such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-764-2938
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William A. Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michelle E. Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Turner CA, Lyons DM, Buckmaster CL, Aurbach EL, Watson SJ, Schatzberg AF, Akil H. Neural cell adhesion molecule peptide mimetics modulate emotionality: pharmacokinetic and behavioral studies in rats and non-human primates. Neuropsychopharmacology 2019; 44:356-363. [PMID: 29703997 PMCID: PMC6300554 DOI: 10.1038/s41386-018-0052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Abstract
Recent evidence highlights the fibroblast growth factor (FGF) family in emotion modulation. Although ligands that activate FGF receptors have antidepressant and anxiolytic effects in animal models, FGF ligands have a broad range of actions both in the brain and the periphery. Therefore, identifying molecular partners that may function as allosteric modulators could offer new avenues for drug development. Since neural cell adhesion molecule (NCAM) activates FGF receptors, we asked whether peripherally administered NCAM peptide mimetics penetrate the brain and alter the behavior of standardized tests that have predictive validity for drug treatments of anxiety or depression. The NCAM peptide mimetic, plannexin, acutely increased and chronically decreased anxiety, but did not have antidepressant effects in rats. Another NCAM peptide mimetic, FGLL, had acute anxiogenic effects and chronic antidepressant effects in rats. A related NCAM peptide mimetic, FGLS, had antidepressant effects without modulating anxiety-like behavior, and these antidepressant effects were blocked by an AMPA receptor antagonist. Cisternal cerebrospinal fluid (CSF) levels of FGLs correlated with blood plasma levels in rats and non-human primates, and CSF-to-blood ratios of FGLS were comparable in both species. Results indicate that NCAM peptide mimetics penetrate the brain and support the suggestion that FGLS may be a candidate for further development as a novel treatment for major depressive disorder in humans.
Collapse
Affiliation(s)
- Cortney A. Turner
- 0000000086837370grid.214458.eMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - David M. Lyons
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305 USA
| | - Christine L. Buckmaster
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305 USA
| | - Elyse L. Aurbach
- 0000000086837370grid.214458.eMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Stanley J. Watson
- 0000000086837370grid.214458.eMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA ,0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI 48109 USA
| | - Alan F. Schatzberg
- 0000000419368956grid.168010.eDepartment of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305 USA
| | - Huda Akil
- 0000000086837370grid.214458.eMolecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA ,0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
5
|
Xu J, Wang K, Yuan Y, Li H, Zhang R, Guan S, Wang L. A Novel Peroxidase Mimics and Ameliorates Alzheimer's Disease-Related Pathology and Cognitive Decline in Mice. Int J Mol Sci 2018; 19:ijms19113304. [PMID: 30352982 PMCID: PMC6274722 DOI: 10.3390/ijms19113304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly, which is characterized by the accumulation of amyloid β (Aβ) plaques, oxidative stress, and neuronal loss. Therefore, clearing Aβ aggregates and reducing oxidative stress could be an effective therapeutic strategy for AD. Deuterohemin-AlaHisThrValGluLys (DhHP-6), a novel deuterohemin-containing peptide mimetic of the natural microperoxidase-11 (MP-11), shows higher antioxidant activity and stability compared to the natural microperoxidases. DhHP-6 possesses the ability of extending lifespan and alleviating paralysis in the Aβ1-42 transgenic Caenorhabditis elegans CL4176 model of AD, as shown in our previous study. Therefore, this study was aimed at exploring the neuroprotective effect of DhHP-6 in the APPswe/PSEN1dE9 transgenic mouse model of AD. DhHP-6 reduced the diameter and fiber structure of Aβ1-42 aggregation in vitro, as shown by dynamic light scattering and transmission electron microscope. DhHP-6 exerted its neuroprotective effect by inhibiting Aβ aggregation and plaque formation, and by reducing Aβ1-42 oligomers-induced neurotoxicity on HT22 (mouse hippocampal neuronal) and SH-SY5Y (human neuroblastoma) cells. In the AD mouse model, DhHP-6 significantly ameliorated cognitive decline and improved spatial learning ability in behavioral tests including the Morris water maze, Y-maze, novel object recognition, open field, and nest-building test. Moreover, DhHP-6 reduced the deposition of Aβ plaques in the cerebral cortex and hippocampus. More importantly, DhHP-6 restored the morphology of astrocytes and microglia, and significantly reduced the levels of pro-inflammatory cytokines. Our findings provide a basis for considering the non-toxic, peroxidase mimetic DhHP-6 as a new candidate drug against AD.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Kai Wang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Ye Yuan
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Hui Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Ruining Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Shuwen Guan
- School of Life Sciences, Jilin University, Changchun 130012, China.
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin Universtiy, Changchun 130012, China.
| | - Liping Wang
- School of Life Sciences, Jilin University, Changchun 130012, China.
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin Universtiy, Changchun 130012, China.
| |
Collapse
|
6
|
NCAM Mimetic Peptides: Potential Therapeutic Target for Neurological Disorders. Neurochem Res 2018; 43:1714-1722. [DOI: 10.1007/s11064-018-2594-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/27/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
7
|
Asua D, Bougamra G, Calleja-Felipe M, Morales M, Knafo S. Peptides Acting as Cognitive Enhancers. Neuroscience 2017; 370:81-87. [PMID: 29030286 DOI: 10.1016/j.neuroscience.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
The aim of this paper is to present an overview of three peptides that, by improving synaptic function, enhance learning and memory in laboratory rodents. We summarize their structure, their mechanisms of action, and their effects on synaptic and cognitive function. First we describe FGL, a peptide derived from the neural cell adhesion molecule which improves cognition by the activation of the PKC pathway that triggers an activity-dependent delivery of AMPA receptors to the synapses. Then we describe PTD4-PI3KAc peptide that by activating PI3K signaling pathway it promotes synapse and spine formation and enhances hippocampal dependent memory. Lastly, we describe a new peptide derived from the well-known tumor suppressor PTEN that prevents pathological interactions between PTEN and PDZ proteins at synapses during exposure to Amyloid beta. This action prevents memory deterioration in mouse model of Alzheimer's disease. Together, this review indicates how learning and memory can be improved by manipulating synaptic function and number through pharmacological treatment with peptides, and it establishes synaptic function as a valid target for cognitive enhancement.
Collapse
Affiliation(s)
- Diego Asua
- Molecular Cognition Laboratory, Biophysics Institute, CSIC-UPV/EHU, Campus Universidad del País Vasco, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ghassen Bougamra
- Molecular Cognition Laboratory, Biophysics Institute, CSIC-UPV/EHU, Campus Universidad del País Vasco, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - María Calleja-Felipe
- Molecular Cognition Laboratory, Biophysics Institute, CSIC-UPV/EHU, Campus Universidad del País Vasco, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Miguel Morales
- Molecular Cognition Laboratory, Biophysics Institute, CSIC-UPV/EHU, Campus Universidad del País Vasco, Barrio Sarriena s/n, 48940 Leioa, Spain; Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Shira Knafo
- Molecular Cognition Laboratory, Biophysics Institute, CSIC-UPV/EHU, Campus Universidad del País Vasco, Barrio Sarriena s/n, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Basque Country, Spain; Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
8
|
Bachurin SO, Bovina EV, Ustyugov AA. Drugs in Clinical Trials for Alzheimer's Disease: The Major Trends. Med Res Rev 2017; 37:1186-1225. [PMID: 28084618 DOI: 10.1002/med.21434] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/18/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by a chronic and progressive neurodegenerative process resulting from the intracellular and extracellular accumulation of fibrillary proteins: beta-amyloid and hyperphosphorylated Tau. Overaccumulation of these aggregates leads to synaptic dysfunction and subsequent neuronal loss. The precise molecular mechanisms of AD are still not fully understood but it is clear that AD is a multifactorial disorder and that advanced age is the main risk factor. Over the last decade, more than 50 drug candidates have successfully passed phase II clinical trials, but none has passed phase III. Here, we summarize data on current "anti-Alzheimer's" agents currently in clinical trials based on findings available in the Thomson Reuters «Integrity» database, on the public website www.clinicaltrials.gov, and on database of the website Alzforum.org. As a result, it was possible to outline some major trends in AD drug discovery: (i) the development of compounds acting on the main stages of the pathogenesis of the disease (the so-called "disease-modifying agents") - these drugs could potentially slow the development of structural and functional abnormalities in the central nervous system providing sustainable improvements of cognitive functions, which persist even after drug withdrawal; (ii) focused design of multitargeted drugs acting on multiple molecular targets involved in the pathogenesis of the disease; (3) finally, the repositioning of old drugs for new (anti-Alzheimer's) application offers a very attractive approach to facilitate the completion of clinical trials.
Collapse
Affiliation(s)
- Sergey O Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severny proezd 1, Chernogolovka, Moscow region, 142432, Russia
| | - Elena V Bovina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severny proezd 1, Chernogolovka, Moscow region, 142432, Russia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severny proezd 1, Chernogolovka, Moscow region, 142432, Russia
| |
Collapse
|
9
|
Gulisano W, Bizzoca A, Gennarini G, Palmeri A, Puzzo D. Role of the adhesion molecule F3/Contactin in synaptic plasticity and memory. Mol Cell Neurosci 2016; 81:64-71. [PMID: 28038945 DOI: 10.1016/j.mcn.2016.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Cell adhesion molecules (CAMs) have a pivotal role in building and maintaining synaptic structures during brain development participating in axonal elongation and pathfinding, glial guidance of neuronal migration, as well as myelination. CAMs expression persists in the adult brain particularly in structures undergoing postnatal neurogenesis and involved in synaptic plasticity and memory as the hippocampus. Among the neural CAMs, we have recently focused on F3/Contactin, a glycosylphosphatidyl inositol-anchored glycoprotein belonging to the immunoglobulin superfamily, involved in neuronal development, synaptic maintenance and organization of neuronal networks. Here, we discuss our recent data suggesting that F3/Contactin exerts a role in hippocampal synaptic plasticity and memory in adult and aged mice. In particular, we have studied long-term potentiation (LTP), spatial and object recognition memory, and phosphorylation of the transcription factor cAMP-Responsive-Element Binding protein (CREB) in a transgenic mouse model of F3/Contactin overexpression. We also investigated whether F3/Contactin might influence neuronal apoptosis and the production of amyloid-beta peptide (Aβ), known to be one of the main pathogenetic hallmarks of Alzheimer's disease (AD). In conclusion, a further understanding of F3/Contactin role in synaptic plasticity and memory might have interesting clinical outcomes in cognitive disorders, such as aging and AD, offering innovative therapeutic opportunities.
Collapse
Affiliation(s)
- Walter Gulisano
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonella Bizzoca
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Gianfranco Gennarini
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Agostino Palmeri
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Daniela Puzzo
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
10
|
Makani V, Jang YG, Christopher K, Judy W, Eckstein J, Hensley K, Chiaia N, Kim DS, Park J. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS One 2016; 11:e0149715. [PMID: 26939023 PMCID: PMC4777489 DOI: 10.1371/journal.pone.0149715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 02/04/2016] [Indexed: 12/19/2022] Open
Abstract
An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer’s disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB-permeability, long plasma half-life, and strong neuroprotective and neurotrophic effects has a great therapeutic potential for the treatment of neurodegenerative diseases, especially AD.
Collapse
Affiliation(s)
- Vishruti Makani
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Yong-gil Jang
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Kevin Christopher
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Wesley Judy
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Jacob Eckstein
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Kenneth Hensley
- Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Nicolas Chiaia
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Dong-Shik Kim
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, Ohio, United States of America
| | - Joshua Park
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
Bachurin SO. A review of drugs for treatment of Alzheimer’s disease in clinical trials: main trends. Zh Nevrol Psikhiatr Im S S Korsakova 2016. [DOI: 10.17116/jnevro20161168177-87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Puzzo D, Bizzoca A, Loreto C, Guida CA, Gulisano W, Frasca G, Bellomo M, Castorina S, Gennarini G, Palmeri A. Role of F3/contactin expression profile in synaptic plasticity and memory in aged mice. Neurobiol Aging 2015; 36:1702-1715. [PMID: 25659859 DOI: 10.1016/j.neurobiolaging.2015.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 12/30/2014] [Accepted: 01/03/2015] [Indexed: 12/14/2022]
Abstract
We have recently shown that overexpression of the F3/contactin adhesive glycoprotein (also known as Contactin-1) promotes neurogenesis in adult hippocampus, which correlates with improved synaptic plasticity and memory. Because F3/contactin levels physiologically decrease with age, here, we aim at investigating whether its overexpression might counteract the cognitive decline in aged animals. For this we use 20- to 24-month-old TAG/F3 transgenic mice in which F3/contactin overexpression is driven by regulatory sequences from the gene encoding the transient axonal glycoprotein TAG-1 throughout development. We show that aged TAG/F3 mice display improved hippocampal long-term potentiation and memory compared with wild-type littermates. The same mice undergo a decrease of neuronal apoptosis at the hippocampal level, which correlated to a decrease of active caspase-3; by contrast, procaspase-3 and Bax as well as the anti-apoptotic and plasticity-related pathway BDNF/CREB/Bcl-2 were rather increased. Interestingly, amyloid-precursor protein processing was shifted toward sAPPα generation, with a decrease of sAPPβ and amyloid-beta levels. Our data confirm that F3/contactin plays a role in hippocampal synaptic plasticity and memory also in aged mice, suggesting that it acts on molecular pathways related to apoptosis and amyloid-beta production.
Collapse
Affiliation(s)
- Daniela Puzzo
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonella Bizzoca
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy
| | - Carla Loreto
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Chiara A Guida
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Walter Gulisano
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppina Frasca
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Bellomo
- Faculty of Psychology and Educational Sciences, University "Kore", Enna, Italy
| | - Sergio Castorina
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gianfranco Gennarini
- Section of Physiology, Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Bari, Italy.
| | - Agostino Palmeri
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
13
|
Zellinger C, Salvamoser JD, Seeger N, Russmann V, Potschka H. Impact of the neural cell adhesion molecule-derived peptide FGL on seizure progression and cellular alterations in the mouse kindling model. ACS Chem Neurosci 2014; 5:185-93. [PMID: 24456603 DOI: 10.1021/cn400153g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The neural cell adhesion molecule peptide mimetic fibroblast growth loop (FGL) proved to exert neuroprotective, neurotrophic, and anti-inflammatory effects in different in vitro and in vivo experiments. Based on this beneficial efficacy profile, it is currently in clinical development for neurodegenerative diseases and brain insults. Here, we addressed the hypothesis that the peptide might affect development of seizures in a kindling paradigm, as well as associated behavioral and cellular alterations. Both doses tested, 2 and 10 mg/kg FGL, significantly reduced the number of stimulations necessary to induce a generalized seizure. FGL did not exert relevant effects on the behavioral patterns of kindled animals. As expected, kindling increased the hippocampal cell proliferation rate. Whereas the low dose of FGL did not affect this kindling-associated alteration, 10 mg/kg FGL proved to attenuate the expansion of the doublecortin-positive cell population. These data suggest that FGL administration might have an impact on disease-associated alterations in the hippocampal neuronal progenitor cell population. In conclusion, the effects of the peptide mimetic FGL in the kindling model do not confirm a disease-modifying effect with a beneficial impact on the development or course of epilepsy. The results obtained with FGL rather raise some concern regarding a putative effect, which might promote the formation of a hyperexcitable network. Future studies are required to further assess the risks in models with development of spontaneous seizures.
Collapse
Affiliation(s)
- Christina Zellinger
- Institute
of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | - Josephine D. Salvamoser
- Institute
of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | - Natalie Seeger
- Institute
of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | - Vera Russmann
- Institute
of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | - Heidrun Potschka
- Institute
of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| |
Collapse
|
14
|
Nagao K, Sowa N, Inoue K, Tokunaga M, Fukuchi K, Uchiyama K, Ito H, Hayashi F, Makita T, Inada T, Tanaka M, Kimura T, Ono K. Myocardial expression level of neural cell adhesion molecule correlates with reduced left ventricular function in human cardiomyopathy. Circ Heart Fail 2013; 7:351-8. [PMID: 24365773 DOI: 10.1161/circheartfailure.113.000939] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recently, we screened for cardiac genes induced by metabolic stress and identified neural cell adhesion molecule (NCAM) as a candidate. This study aimed to clarify the expression pattern of NCAM in human cardiomyopathy. METHODS AND RESULTS A total of 64 cardiac tissue samples of patients with dilated cardiomyopathy were dichotomized according to the immunohistochemically determined signal intensity of NCAM staining (NCAM-high and NCAM-low groups). Clinical and hemodynamic data of the patients were compared between the 2 groups. Fibrosis area, left ventricular end-diastolic volume index, and left ventricular diastolic pressure were greater in the NCAM-high group (22.8% versus 11.6%, P<0.05; 130.3±57.6 versus 104.8±31.7 mL/m(2), P<0.05; 14.3±8.0 versus 8.8±4.7 mm Hg, P<0.005; respectively). Incidence of cardiac death and admission for worsening heart failure was higher in the NCAM-high group during a follow-up of 6.3 years (log-rank P<0.05). Another 18 tissue samples were analyzed to determine the relationships between expression level of NCAM and major metabolic genes as well as hemodynamic parameters. The mRNA level of NCAM correlated with the serum (r=0.58; P=0.01) and mRNA levels (r=0.61; P=0.008) of brain-derived natriuretic peptides. It was also correlated with the mRNA levels of proliferator-activated receptor-γ coactivator-1 α (r=0.69; P=0.002) and the nuclear respiratory factor 1 (r=0.74; P<0.001). CONCLUSIONS Expression of NCAM was associated with worsening hemodynamic parameters and major metabolic genes. Together with our previous findings, these data support the involvement of NCAM in left ventricular remodeling, revealing new insights into the pathophysiology of heart failure.
Collapse
Affiliation(s)
- Kazuya Nagao
- Department of Cardiovascular Center, Osaka Red Cross Hospital, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Woodbury ME, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol 2013; 9:92-101. [PMID: 24057103 DOI: 10.1007/s11481-013-9501-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/11/2013] [Indexed: 11/26/2022]
Abstract
Fibroblast growth factor-2 (FGF2), also known as basic FGF, is a multi-functional growth factor. One of the 22-member FGF family, it signals through receptor tyrosine kinases encoding FGFR1-4. FGF2 activates FGFRs in cooperation with heparin or heparin sulfate proteoglycan to induce its pleiotropic effects in different tissues and organs, which include potent angiogenic effects and important roles in the differentiation and function of the central nervous system (CNS). FGF2 is crucial to development of the CNS, which explains its importance in adult neurogenesis. During development, high levels of FGF2 are detected from neurulation onwards. Moreover, developmental expression of FGF2 and its receptors is temporally and spatially regulated, concurring with development of specific brain regions including the hippocampus and substantia nigra pars compacta. In adult neurogenesis, FGF2 has been implicated based on its expression and regulation of neural stem and progenitor cells in the neurogenic niches, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. FGFR1 signaling also modulates inflammatory signaling through the surface glycoprotein CD200, which regulates microglial activation. Because of its importance in adult neurogenesis and neuroinflammation, manipulation of FGF2/FGFR1 signaling has been a focus of therapeutic development for neurodegenerative disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and traumatic brain injury. Novel strategies include intranasal administration of FGF2, administration of an NCAM-derived FGFR1 agonist, and chitosan-based nanoparticles for the delivery of FGF2 in pre-clinical animal models. In this review, we highlight current research towards therapeutic interventions targeting FGF2/FGFR1 in neurodegenerative disorders.
Collapse
Affiliation(s)
- Maya E Woodbury
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA, 02118, USA
| | | |
Collapse
|
16
|
NCAM function in the adult brain: lessons from mimetic peptides and therapeutic potential. Neurochem Res 2013; 38:1163-73. [PMID: 23494903 DOI: 10.1007/s11064-013-1007-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 01/22/2023]
Abstract
Neural cell adhesion molecules (NCAMs) are complexes of transmembranal proteins critical for cell-cell interactions. Initially recognized as key players in the orchestration of developmental processes involving cell migration, cell survival, axon guidance, and synaptic targeting, they have been shown to retain these functions in the mature adult brain, in relation to plastic processes and cognitive abilities. NCAMs are able to interact among themselves (homophilic binding) as well as with other molecules (heterophilic binding). Furthermore, they are the sole molecule of the central nervous system undergoing polysialylation. Most interestingly polysialylated and non-polysialylated NCAMs display opposite properties. The precise contributions each of these characteristics brings in the regulations of synaptic and cellular plasticity in relation to cognitive processes in the adult brain are not yet fully understood. With the aim of deciphering the specific involvement of each interaction, recent developments led to the generation of NCAM mimetic peptides that recapitulate identified binding properties of NCAM. The present review focuses on the information such advances have provided in the understanding of NCAM contribution to cognitive function.
Collapse
|
17
|
Neural cell adhesion molecules in brain plasticity and disease. Mult Scler Relat Disord 2012; 2:13-20. [PMID: 25877450 DOI: 10.1016/j.msard.2012.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 12/14/2022]
Abstract
Neural cell adhesion molecule (NCAM) has been studied extensively. But it is only in recent times that interest in this molecule has shifted to conditions such as Alzheimer's disease, Multiple Sclerosis and Schizophrenia, focusing on its role in neurodegeneration and abnormal neurodevelopment. NCAM is important in neurite outgrowth, long-term potentiation in the hippocampus and synaptic plasticity. Reduced as well as increased levels in NCAM have been linked to pathology in the brain suggesting that a shift in the equilibrium may be the key. Hence, increasing our understanding of the role of NCAM in health and disease should clear some of the ambiguity surrounding the molecule and even lead to newer potential therapeutic targets. This review consolidates our current understanding of NCAM, focusing on the consequences of dysregulation, its role in neurodegenerative and neurodevelopmental disorders, and the future of NCAM plus potential options for therapy.
Collapse
|
18
|
Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL. Brain Behav Immun 2012; 26:778-88. [PMID: 21986303 DOI: 10.1016/j.bbi.2011.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 12/21/2022] Open
Abstract
Altered synaptic morphology, progressive loss of synapses and glial (astrocyte and microglial) cell activation are considered as characteristic hallmarks of aging. Recent evidence suggests that there is a concomitant age-related decrease in expression of the presynaptic protein, synaptophysin, and the neuronal glycoprotein CD200, which, by interacting with its receptor, plays a role in maintaining microglia in a quiescent state. These age-related changes may be indicative of reduced neuroglial support of synapses. FG Loop (FGL) peptide synthesized from the second fibronectin type III module of neural cell adhesion molecule (NCAM), has previously been shown to attenuate age-related glial cell activation, and to 'restore' cognitive function in aged rats. The mechanisms by which FGL exerts these neuroprotective effects remain unclear, but could involve regulation of CD200, modifying glial-synaptic interactions (affecting neuroglial 'support' at synapses), or impacting directly on synaptic function. Light and electron microscopic (EM) analyses were undertaken to investigate whether systemic treatment with FGL (i) alters CD200, synaptophysin (presynaptic) and PSD-95 (postsynaptic) immunohistochemical expression levels, (ii) affects synaptic number, or (iii) exerts any effects on glial-synaptic interactions within young (4 month-old) and aged (22 month-old) rat hippocampus. Treatment with FGL attenuated the age-related loss of synaptophysin immunoreactivity (-ir) within CA3 and hilus (with no major effect on PSD-95-ir), and of CD200-ir specifically in the CA3 region. Ultrastructural morphometric analyses showed that FGL treatment (i) prevented age-related loss in astrocyte-synaptic contacts, (ii) reduced microglia-synaptic contacts in the CA3 stratum radiatum, but (iii) had no effect on the mean number of synapses in this region. These data suggest that FGL mediates its neuroprotective effects by regulating glial-synaptic interaction.
Collapse
|
19
|
A neural cell adhesion molecule-derived peptide, FGL, attenuates glial cell activation in the aged hippocampus. Exp Neurol 2011; 232:318-28. [DOI: 10.1016/j.expneurol.2011.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/10/2011] [Accepted: 09/15/2011] [Indexed: 01/09/2023]
|
20
|
Zou Z, Zheng Q, Wu Y, Guo X, Yang S, Li J, Pan H. Biocompatibility and bioactivity of designer self-assembling nanofiber scaffold containing FGL motif for rat dorsal root ganglion neurons. J Biomed Mater Res A 2010; 95:1125-31. [PMID: 20878982 DOI: 10.1002/jbm.a.32910] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 05/25/2010] [Accepted: 06/07/2010] [Indexed: 11/07/2022]
Abstract
We report here a designer self-assembling peptide nanofiber scaffold developed specifically for nerve tissue engineering. We synthesized a peptide FGL-RADA containing FGL (EVYVVAENQQGKSKA), the motif of neural cell adhesion molecule (NCAM), and then attended to make a FGL nanofiber scaffold (FGL-NS) by assembling FGL-RADA with the peptide RADA-16 (AcN-RADARADARADARADA-CONH2). The microstructures of the scaffolds were tested using atomic force microscopy (AFM), and rheological properties of materials were accessed. Then we demonstrated the biocompatibility and bioactivity of FGL-NS for rat dorsal root ganglion neurons (DRGn). We found that the designer self-assembling peptide scaffold was noncytotoxic to neurons and able to promote adhesion and neurite sprouting of neurons. Our results indicate that the designer peptide scaffold containing FGL had excellent biocompatibility and bioactivity with adult sensory neurons and could be used for neuronal regeneration.
Collapse
Affiliation(s)
- Zhenwei Zou
- Department of Orthopaedics, Union Hospital, Tongji Medical College of Huazhong, University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Neuritogenic and neuroprotective properties of peptide agonists of the fibroblast growth factor receptor. Int J Mol Sci 2010; 11:2291-305. [PMID: 20640153 PMCID: PMC2904917 DOI: 10.3390/ijms11062291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 05/21/2010] [Indexed: 11/17/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) interact with their cognate ligands, FGFs, and with a number of cell adhesion molecules (CAMs), such as the neural cell adhesion molecule (NCAM), mediating a wide range of events during the development and maintenance of the nervous system. Determination of protein structure, in silico modeling and biological studies have recently resulted in the identification of FGFR binding peptides derived from various FGFs and NCAM mimicking the effects of these molecules with regard to their neuritogenic and neuroprotective properties. This review focuses on recently developed functional peptide agonists of FGFR with possible therapeutic potential.
Collapse
|
22
|
A novel anti-inflammatory role of NCAM-derived mimetic peptide, FGL. Neurobiol Aging 2010; 31:118-28. [DOI: 10.1016/j.neurobiolaging.2008.03.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/03/2008] [Accepted: 03/20/2008] [Indexed: 11/22/2022]
|
23
|
Synthetic NCAM-derived ligands of the fibroblast growth factor receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:355-72. [PMID: 20017033 DOI: 10.1007/978-1-4419-1170-4_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
|
25
|
Downer EJ, Cowley TR, Cox F, Maher FO, Berezin V, Bock E, Lynch MA. A synthetic NCAM-derived mimetic peptide, FGL, exerts anti-inflammatory properties via IGF-1 and interferon-γ modulation. J Neurochem 2009; 109:1516-25. [DOI: 10.1111/j.1471-4159.2009.06076.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Burgess A, Saini S, Weng YQ, Aubert I. Stimulation of choline acetyltransferase by C3d, a neural cell adhesion molecule ligand. J Neurosci Res 2009; 87:609-16. [DOI: 10.1002/jnr.21888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Abstract
Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14-3-3 protein members, implicating these chaperone proteins and the neurotransmitter pathways they support as possible drug targets. Brains from persons with major depressive disorder reveal decreased expression for genes in glutamate transport and metabolism, neurotrophic signaling (eg, FGF, BDNF and VGF), and MAP kinase pathways. Increases in these pathways in the brains of animals exposed to electroconvulsive shock and antidepressant treatments identify neurotrophic and angiogenic growth factors and second messenger stimulation as therapeutic approaches for the treatment of depression.
Collapse
|
28
|
Chekhonin VP, Shepeleva II, Gurina OI. Disturbances in the expression Of neuronal cell adhesion proteins NCAM. Clinical aspects. NEUROCHEM J+ 2008. [DOI: 10.1134/s1819712408040028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Hansen SM, Li S, Bock E, Berezin V. WITHDRAWN: Synthetic NCAM-derived Ligands of the Fibroblast Growth Factor Receptor. Neurochem Res 2008. [PMID: 18427984 DOI: 10.1007/s11064-008-9707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
|
30
|
Current awareness: Pharmacoepidemiology and drug safety. Pharmacoepidemiol Drug Saf 2007. [DOI: 10.1002/pds.1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|