1
|
Srivastava SP, Kopasz-Gemmen O, Thurman A, Rajendran BK, Selvam MM, Kumar S, Srivastava R, Suresh MX, Kumari R, Goodwin JE, Inoki K. The molecular determinants regulating redox signaling in diabetic endothelial cells. Front Pharmacol 2025; 16:1563047. [PMID: 40290438 PMCID: PMC12023289 DOI: 10.3389/fphar.2025.1563047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
Oxidation and reduction are vital for keeping life through several prime mechanisms, including respiration, metabolism, and other energy supplies. Mitochondria are considered the cell's powerhouse and use nutrients to produce redox potential and generate ATP and H2O through the process of oxidative phosphorylation by operating electron transfer and proton pumping. Simultaneously, mitochondria also produce oxygen free radicals, called superoxide (O2 -), non-enzymatically, which interacts with other moieties and generate reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and hydroxyl radical (OH-). These reactive oxygen species modify nucleic acids, proteins, and carbohydrates and ultimately cause damage to organs. The nutrient-sensing kinases, such as AMPK and mTOR, function as a key regulator of cellular ROS levels, as loss of AMPK or aberrant activation of mTOR signaling causes ROS production and compromises the cell's oxidant status, resulting in various cellular injuries. The increased ROS not only directly damages DNA, proteins, and lipids but also alters cellular signaling pathways, such as the activation of MAPK or PI3K, the accumulation of HIF-1α in the nucleus, and NFkB-mediated transcription of pro-inflammatory cytokines. These factors cause mesenchymal activation in renal endothelial cells. Here, we discuss the biology of redox signaling that underlies the pathophysiology of diabetic renal endothelial cells.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, United States
| | | | - Aaron Thurman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Barani Kumar Rajendran
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - M. Masilamani Selvam
- Department of Pharmaceutical Technology, Paavai Engineering College, Namakkal, Tamil Nadu, India
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Rohit Srivastava
- Laboratory of Medical Transcriptomics, Department of Endocrinology, Nephrology Services, Hadassah Hebrew-University Medical Center, Jerusalem, Israel
| | - M. Xavier Suresh
- School of Advanced Sciences and Languages, VIT Bhopal University, Sehore, Madhya Pradesh, India
| | - Reena Kumari
- Department of Physiology, Augusta University, Augusta, GA, United States
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, United States
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Park HJ, Lee SH, Kang P, Cho CK, Jang CG, Lee SY, Lee YJ, Bae JW, Choi CI. Physiologically based pharmacokinetic (PBPK) modeling of gliclazide for different genotypes of CYP2C9 and CYP2C19. Arch Pharm Res 2025; 48:234-250. [PMID: 39760829 DOI: 10.1007/s12272-024-01528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Gliclazide is a sulfonylurea hypoglycemic agent used to treat type 2 diabetes. Cytochrome P450 (CYP) 2C9 and CYP2C19 are primarily involved in the hepatic metabolism of gliclazide. The two CYP isozymes are highly polymorphic, and their genetic polymorphisms are known to significantly impact the pharmacokinetics of gliclazide. In the present study, the physiologically based pharmacokinetic (PBPK) model was developed using data from subjects whose pharmacokinetic parameters were influenced by the genetic polymorphisms of the CYP metabolic enzymes. All predicted plasma concentration-time profiles generated by the model showed visual agreement with the observed data, and the pharmacokinetic results were within the twofold error range. Individual simulation results showed additional metrics: average fold error (- 0.19 to 0.07), geometric mean fold error (1.13-1.56), and mean relative deviation (1.18-1.58) for AUC, Cmax, T1/2, Tmax, CL/F, and Vd values. These results met the standard evaluation criteria. The validation across a total of 8 studies and 7 races also satisfied the twofold error range for AUC, Cmax, and T1/2. Therefore, variations in gliclazide exposure according to individuals' CYP2C9 and CYP2C19 genotypes were properly captured through PBPK modeling in this study. This PBPK model may allow us to predict the gliclazide pharmacokinetics of patients with genetic polymorphisms in CYP2C9 and CYPC19 under various conditions, ultimately contributing to the realization of individualized drug therapy.
Collapse
Affiliation(s)
- Hye-Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Sang-Ho Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
3
|
Elsayed EW, Emam MF. Application of Response Surface Methodology Using Face-centered Central Composite Design for Studying Long-Term Stability of Gliclazide-Loaded Multiparticulate Systems. J Pharm Sci 2024; 113:2274-2285. [PMID: 38513892 DOI: 10.1016/j.xphs.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
The appropriate design of experiments (DoE) could support post-approval lean-stability approaches. A three-factor three-level face-centered design was constructed to evaluate the long-term stability of gliclazide (GLZ) alginate-gelatin beads. The formulation variables were GLZ%(X1), alginate:gelatin ratio(X2), and glutaraldehyde%(X3). The studied responses included GLZ release at predefined intervals in 0.1 N HCl (2 h) followed by phosphate buffer (pH 7.4). Model-dependent and independent approaches were utilized for comparison. DoE-model validation and reduction were implemented. All the studied formulations showed non-significant changes in the particle size (p > 0.05) and most of them showed similar release profiles before and after storage. The directions of the relationships between the factors' main effects and the responses (Y1:Q0.5h, Y2:Q2h, and Y3:Q4h) remained unchanged after storage. The optimal factor settings based on the proposed optimization criteria were defined. The optimized formulations (OP-1 and OP-2) showed non-significant changes in the particle size after storage. The release profiles and kinetics of OP-1 and OP-2 remained unchanged after storage. No chemical change was indicated (FT-IR). DSC-thermograms of OP-1 indicated GLZ conversion to a more stable polymorph after storage. While OP-2 showed a change in GLZ crystallinity. The stored and fresh beads' surfaces after GLZ release were almost similar. DoE could be utilized to evaluate, optimize, and predict the effects of different formulation variables on the long-term stability of GLZ alginate-gelatin beads.
Collapse
Affiliation(s)
- Ebtesam W Elsayed
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), P.O.12622, Affiliation ID: 10014618, Dokki, Giza, Egypt.
| | - Maha F Emam
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), P.O.12622, Affiliation ID: 10014618, Dokki, Giza, Egypt
| |
Collapse
|
4
|
Gedawy A, Al-Salami H, Dass CR. Polydimethylsiloxane Organic-Inorganic Composite Drug Reservoir with Gliclazide. Int J Mol Sci 2024; 25:3991. [PMID: 38612802 PMCID: PMC11012350 DOI: 10.3390/ijms25073991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
A novel organic-inorganic gliclazide-loaded composite bead was developed by an ionic gelation process using acidified CaCl2, chitosan and tetraethylorthosilicate (TEOS) as a crosslinker. The beads were manufactured by crosslinking an inorganic silicone elastomer (-OH terminated polydimethylsiloxane, PDMS) with TEOS at different ratios before grafting onto an organic backbone (Na-alginate) using a 32 factorial experimental design. Gliclazide's encapsulation efficiency (EE%) and drug release over 8 h (% DR 8 h) were set as dependent responses for the optimisation of a pharmaceutical formula (herein referred to as 'G op') by response surface methodology. EE % and %DR 8 h of G op were 93.48% ± 0.19 and 70.29% ± 0.18, respectively. G op exhibited a controlled release of gliclazide that follows the Korsmeyer-Peppas kinetic model (R2 = 0.95) with super case II transport and pH-dependent swelling behaviour. In vitro testing of G op showed 92.17% ± 1.18 cell viability upon testing on C2C12 myoblasts, indicating the compatibility of this novel biomaterial platform with skeletal muscle drug delivery.
Collapse
Affiliation(s)
- Ahmed Gedawy
- Curtin Medical School, Curtin University, Bentley 6102, Australia; (A.G.); (H.A.-S.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Hani Al-Salami
- Curtin Medical School, Curtin University, Bentley 6102, Australia; (A.G.); (H.A.-S.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Crispin R. Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia; (A.G.); (H.A.-S.)
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| |
Collapse
|
5
|
Tomlinson B, Li YH, Chan P. Evaluating gliclazide for the treatment of type 2 diabetes mellitus. Expert Opin Pharmacother 2022; 23:1869-1877. [DOI: 10.1080/14656566.2022.2141108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yan-hong Li
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
6
|
Ekong MB, Odinukaeze FN, Nwonu AC, Mbadugha CC, Nwakanma AA. BRAIN ACTIVITIES OF STREPTOZOTOCIN-INDUCED DIABETIC WISTAR RATS TREATED WITH GLICLAZIDE: BEHAVIOURAL, BIOCHEMICAL AND HISTOMORPHOLOGY STUDIES. IBRO Neurosci Rep 2022; 12:271-279. [PMID: 35746981 PMCID: PMC9210456 DOI: 10.1016/j.ibneur.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Gliclazide (GLD), a sulphonylurea is efficacious in the treatment of diabetes type-2. However, there is limited information on its activity in the brain, especially in diabetics. This research investigated the brain activities of GLD following streptozotocin-induced diabetes in Wistar rats. Twenty five adult male Wistar rats (200–250 g) were grouped (n = 5) as: Control (distilled water, 5 mL/kg) and GLD (150 mg/kg) groups; and the diabetic groups, untreated streptozotocin (STZ, 35 mg/kg), and STZ (35 mg/kg) treated with GLD (150 mg/kg) for two and four weeks, and already on high fat diet. The animals’ body weights and blood glucose levels were checked weekly. After the experimental duration, spontaneous alternation and novel object recognition tests were carried out and the animals sacrificed. Perfusion with phosphate buffered saline preceded brain excision for biochemical analyses, with halves fixed in 10% neutral buffered formalin for histology. Compared with the control, results showed (p < 0.05) declined spontaneous alternation and exploratory activities with no preference for familiar or novel objects, body weights loss, raised blood glucose, increased malondialdehyde with decreased superoxide dismutase concentrations, and no apparent adverse effect on hippocampal and prefrontal cortical Nissl substance in the untreated diabetic group. The adverse observations were attenuated in the GLD treated diabetic groups; although the spontaneous alternation in the four weeks GLD treated diabetic group improved (p < 0.05), exploration of objects increased (p < 0.05) without preference. The present results showed that treatment with GLD for two and four weeks mitigated STZ activities, even though there was less improvement in neurocognitive activities.
Collapse
Affiliation(s)
- Moses B. Ekong
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
- Corresponding author.
| | - Francis N. Odinukaeze
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Amaobi C. Nwonu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | | | - Agnes A. Nwakanma
- Department of Anatomy, Faculty of Basic Medical Sciences, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
| |
Collapse
|
7
|
Tomlinson B, Patil NG, Fok M, Chan P, Lam CWK. The role of sulfonylureas in the treatment of type 2 diabetes. Expert Opin Pharmacother 2021; 23:387-403. [PMID: 34758676 DOI: 10.1080/14656566.2021.1999413] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Type 2 diabetes (T2D) is increasingly prevalent and associated with increased risk for cardiovascular and renal disease. After lifestyle modification, metformin is usually the first-line pharmacotherapy and sulfonylureas are traditionally added after metformin failure. However, with newer glucose lowering drugs that may have less risk of hypoglycemia or that may reduce cardiovascular and renal events, the position of sulfonylureas is being reevaluated. AREAS COVERED In this article, the authors review relevant publications related to the use of sulfonylureas. EXPERT OPINION Sulfonylureas are potent glucose lowering drugs. The risk of hypoglycemia varies with different drugs within the class and can be minimized by using the safer drugs, possibly in lower doses. Cardiovascular events do not appear to be increased with some of the newer generation drugs. The durability of glycemic control also appears comparable to other newer agents. Sulfonylureas are the preferred treatment for some types of monogenic diabetes and selection of T2D patients who may have greater benefit from sulfonylureas based on certain phenotypes and genotypes is likely to be refined further by precision medicine. Sulfonylureas are inexpensive and readily available everywhere and they are still the most frequently used second-line treatment for T2D in many parts of the world.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | | | - Manson Fok
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | | |
Collapse
|
8
|
Mégarbane B, Chevillard L, Khoudour N, Declèves X. Gliclazide disposition in overdose - a case report with pharmacokinetic modeling. Clin Toxicol (Phila) 2021; 60:541-542. [PMID: 34698608 DOI: 10.1080/15563650.2021.1993245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology, APHP, Paris, France.,Paris University, Paris, France
| | | | - Nihel Khoudour
- Laboratory of Pharmacology and Toxicology, Cochin Hospital, APHP, Paris, France
| | - Xavier Declèves
- Paris University, Paris, France.,Laboratory of Pharmacology and Toxicology, Cochin Hospital, APHP, Paris, France
| |
Collapse
|
9
|
Cordiner RLM, Mari A, Tura A, Pearson ER. The Impact of Low-dose Gliclazide on the Incretin Effect and Indices of Beta-cell Function. J Clin Endocrinol Metab 2021; 106:2036-2046. [PMID: 33693776 PMCID: PMC8692237 DOI: 10.1210/clinem/dgab151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/02/2022]
Abstract
AIMS/HYPOTHESIS Studies in permanent neonatal diabetes suggest that sulphonylureas lower blood glucose without causing hypoglycemia, in part by augmenting the incretin effect. This mechanism has not previously been attributed to sulphonylureas in patients with type 2 diabetes (T2DM). We therefore aimed to evaluate the impact of low-dose gliclazide on beta-cell function and incretin action in patients with T2DM. METHODS Paired oral glucose tolerance tests and isoglycemic infusions were performed to evaluate the difference in the classical incretin effect in the presence and absence of low-dose gliclazide in 16 subjects with T2DM (hemoglobin A1c < 64 mmol/mol, 8.0%) treated with diet or metformin monotherapy. Beta-cell function modeling was undertaken to describe the relationship between insulin secretion and glucose concentration. RESULTS A single dose of 20 mg gliclazide reduced mean glucose during the oral glucose tolerance test from 12.01 ± 0.56 to 10.82 ± 0.5mmol/l [P = 0.0006; mean ± standard error of the mean (SEM)]. The classical incretin effect was augmented by 20 mg gliclazide, from 35.5% (lower quartile 27.3, upper quartile 61.2) to 54.99% (34.8, 72.8; P = 0.049). Gliclazide increased beta-cell glucose sensitivity by 46% [control 22.61 ± 3.94, gliclazide 33.11 ± 7.83 (P = 0.01)] as well as late-phase incretin potentiation [control 0.92 ± 0.05, gliclazide 1.285 ± 0.14 (P = 0.038)]. CONCLUSIONS/INTERPRETATION Low-dose gliclazide reduces plasma glucose in response to oral glucose load, with concomitant augmentation of the classical incretin effect. Beta-cell modeling shows that low plasma concentrations of gliclazide potentiate late-phase insulin secretion and increase glucose sensitivity by 50%. Further studies are merited to explore whether low-dose gliclazide, by enhancing incretin action, could effectively lower blood glucose without risk of hypoglycemia.
Collapse
Affiliation(s)
- Ruth L M Cordiner
- Division of Population Health and Genomics, School of Medicine, University of Dundee, UK
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Andrea Tura
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Ewan R Pearson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, UK
- Correspondence: Professor Ewan Pearson, Head of Division, Population Health & Genomics, School of Medicine, University of Dundee, DD1 9SY, UK.
| |
Collapse
|
10
|
Bala CG, Rusu A, Ciobanu D, Bucsa C, Roman G. Amino Acid Signature of Oxidative Stress in Patients with Type 2 Diabetes: Targeted Exploratory Metabolomic Research. Antioxidants (Basel) 2021; 10:610. [PMID: 33921149 PMCID: PMC8071553 DOI: 10.3390/antiox10040610] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress plays a key role in the development of chronic diabetes-related complications. Previous metabolomic studies showed a positive association of diabetes and insulin resistance with branched-chain amino acids (AAs) and aromatic AAs. The purpose of this research is to identify distinct metabolic changes associated with increased oxidative stress, as assessed by nitrotyrosine levels, in type 2 diabetes (T2DM). Serum samples of 80 patients with insulin-treated T2DM are analyzed by AA-targeted metabolomics using ultrahigh-performance liquid chromatography/mass spectrometry. Patients are divided into two groups based on their nitrotyrosine levels: the highest level of oxidative stress (Q4 nitrotyrosine) and lower levels (Q1-Q3 nitrotyrosine). The identification of biomarkers is performed in MetaboAnalyst version 5.0 using a t-test corrected for false discovery rate, unsupervised principal component analysis and supervised partial least-squares discriminant analysis (PLS-DA). Four AAs have significantly different levels between the groups for highest and lower oxidative stress. Cysteine, phenylalanine and tyrosine are substantially increased while citrulline is decreased (p-value <0.05 and variable importance in the projection [VIP] >1). Corresponding pathways that might be disrupted in patients with high oxidative stress are phenylalanine, tyrosine and tryptophan biosynthesis, arginine biosynthesis, phenylalanine metabolism, cysteine and methionine metabolism and tyrosine metabolism.
Collapse
Affiliation(s)
- Cornelia G. Bala
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (C.G.B.); (D.C.); (G.R.)
| | - Adriana Rusu
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (C.G.B.); (D.C.); (G.R.)
| | - Dana Ciobanu
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (C.G.B.); (D.C.); (G.R.)
| | - Camelia Bucsa
- Drug Information Research Centre, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Gabriela Roman
- Department of Diabetes and Nutrition Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (C.G.B.); (D.C.); (G.R.)
| |
Collapse
|
11
|
Modulating Gliclazide Release and Bioavailability Utilizing Multiparticulate Drug Delivery Systems. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09542-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Khunti K, Hassanein M, Lee MK, Mohan V, Amod A. Role of Gliclazide MR in the Management of Type 2 Diabetes: Report of a Symposium on Real-World Evidence and New Perspectives. Diabetes Ther 2020; 11:33-48. [PMID: 32440835 PMCID: PMC7415040 DOI: 10.1007/s13300-020-00833-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
In patients with type 2 diabetes mellitus (T2DM) who require additional glucose-lowering on top of first-line metformin monotherapy, sulfonylureas are the most common choice for second-line therapy followed by dipeptidyl peptidase inhibitors (DPP-4i). This article summarises presentations at a symposium entitled "Real-World Evidence and New Perspectives with Gliclazide MR" held at the International Diabetes Federation Congress in Busan, South Korea on 4 December 2019. Although guideline recommendations vary between countries, the guidelines with the highest quality ratings include sulfonylureas as one of the preferred choices as second-line therapy for T2DM. Data from randomised controlled trials (RCTs) have consistently demonstrated that sulfonylureas are effective glucose-lowering agents and that the risk of severe hypoglycaemia with these agents is low. In addition, both RCTs and real-world observational studies have shown no increased risk of mortality or cardiovascular disease with the use of newer-generation sulfonylureas compared with other classes of glucose-lowering treatments. However, differences between sulfonylureas do exist, with gliclazide being associated with a significantly lower risk of mortality or cardiovascular mortality compared with glibenclamide, as well as the lowest incidence of severe hypoglycaemia compared with other agents in this class. Recent real-world studies into the effectiveness and safety of gliclazide appear to confirm these findings, and publication of new data from these studies in patients with T2DM in the UK, and in Muslim patients who are fasting during Ramadan, are awaited with interest. Another study being undertaken with gliclazide is a pan-India study in patients with maturity-onset diabetes of the young (MODY) subtypes 1, 3 and 12. Patients with these MODY subtypes respond particularly well to sulfonylurea treatment, and sulfonylureas are the first-line agents of choice in these patients. These new and ongoing studies will add to the cumulative data on the efficacy and safety of certain sulfonylureas in patients with diabetes.
Collapse
Affiliation(s)
- Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Mohamed Hassanein
- Department of Endocrinology, Dubai Hospital, Dubai, United Arab Emirates
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Gumi Hospital-Soonchunhyang University School of Medicine, Gumi, Kyungsangbuk-do, 39371, South Korea
| | | | - Aslam Amod
- Life Chatsmed Garden Hospital and Nelson R. Mandela School of Medicine, Durban, South Africa
| |
Collapse
|
13
|
Easy to Swallow “Instant” Jelly Formulations for Sustained Release Gliclazide Delivery. J Pharm Sci 2020; 109:2474-2484. [DOI: 10.1016/j.xphs.2020.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022]
|
14
|
Jović J, Milijašević B, Vukmirović S, Vasović V, Mikov M, Mooranian A, Al-Salami H, Golocorbin-Kon S. Pharmacokinetic and drug absorption profiles of the anti-hyperglycaemic agent gliclazide in oral tissue-targeted microcapsules in rats. SCRIPTA MEDICA 2020. [DOI: 10.5937/scriptamed51-25521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
15
|
Panda BP, Krishnamoorthy R, Bhattamisra SK, Shivashekaregowda NKH, Seng LB, Patnaik S. Fabrication of Second Generation Smarter PLGA Based Nanocrystal Carriers for Improvement of Drug Delivery and Therapeutic Efficacy of Gliclazide in Type-2 Diabetes Rat Model. Sci Rep 2019; 9:17331. [PMID: 31758056 PMCID: PMC6874704 DOI: 10.1038/s41598-019-53996-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022] Open
Abstract
Drug delivery and therapeutic challenges of gliclazide, a BCS class II drug used in type 2 diabetes mellitus (T2DM) can be overcome by exploring smarter carriers of second-generation nanocrystals (SGNCs). A combined method of emulsion diffusion, high-pressure homogenization and solvent evaporation method were employed in the preparation of gliclazide loaded poly (D, L-lactide-co-glycolide) (PLGA) SGNCs. Taguchi experimental design was adopted in fabrication of Gliclazide SGNc using Gliclazide -PLGA ratio at 1:0.5, 1:0.75, 1:1 with stabilizer (Poloxamer-188, PEG 4000, HPMC E15 at 0.5, 0.75, 1% w/v). The formulated gliclazide of SGNCs were investigated for physicochemical properties, in vitro drug release, and in vivo performance studies using type-2 diabetes rat model. The formulation (SGNCF1) with Drug: PLGA 1: 0.5 ratio with 0.5% w/v Poloxamer-188 produced optimized gliclazide SGNCs. SGNCF1 showed spherical shape, small particle size (106.3 ± 2.69 nm), good zeta potential (−18.2 ± 1.30 mV), small PDI (0.222 ± 0.104) and high entrapment efficiency (86.27 ± 0.222%). The solubility, dissolution rate and bioavailability of gliclazide SGNCs were significantly improved compared to pure gliclazide. The findings emphasize gliclazide SGNCs produce faster release initially, followed by delayed release with improved bioavailability, facilitate efficient delivery of gliclazide in T2DM with better therapeutic effect.
Collapse
Affiliation(s)
- Bibhu Prasad Panda
- Department of Pharmaceutical Technology, School of Pharmacy, Taylor's University, Lakeside Campus, No 1, Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Rachna Krishnamoorthy
- Department of Pharmaceutical Technology, School of Pharmacy, Taylor's University, Lakeside Campus, No 1, Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | | | - Low Bin Seng
- School of Medicine, Taylor's University, Lakeside Campus, No 1, Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia
| | - Sujata Patnaik
- University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, India
| |
Collapse
|
16
|
Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J Clin Med 2019; 8:jcm8091385. [PMID: 31487953 PMCID: PMC6780404 DOI: 10.3390/jcm8091385] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia and insulin resistance in which oxidative stress is thought to be a primary cause. Considering that mitochondria are the main source of ROS, we have set out to provide a general overview on how oxidative stress is generated and related to T2D. Enhanced generation of reactive oxygen species (ROS) and oxidative stress occurs in mitochondria as a consequence of an overload of glucose and oxidative phosphorylation. Endoplasmic reticulum (ER) stress plays an important role in oxidative stress, as it is also a source of ROS. The tight interconnection between both organelles through mitochondrial-associated membranes (MAMs) means that the ROS generated in mitochondria promote ER stress. Therefore, a state of stress and mitochondrial dysfunction are consequences of this vicious cycle. The implication of mitochondria in insulin release and the exposure of pancreatic β-cells to hyperglycemia make them especially susceptible to oxidative stress and mitochondrial dysfunction. In fact, crosstalk between both mechanisms is related with alterations in glucose homeostasis and can lead to the diabetes-associated insulin-resistance status. In the present review, we discuss the current knowledge of the relationship between oxidative stress, mitochondria, ER stress, inflammation, and lipotoxicity in T2D.
Collapse
|
17
|
Choi SW, Ho CK. Antioxidant properties of drugs used in Type 2 diabetes management: could they contribute to, confound or conceal effects of antioxidant therapy? Redox Rep 2018; 23:1-24. [PMID: 28514939 PMCID: PMC6748682 DOI: 10.1080/13510002.2017.1324381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This is a narrative review, investigating the antioxidant properties of drugs used in the management of diabetes, and discusses whether these antioxidant effects contribute to, confound, or conceal the effects of antioxidant therapy. METHODS A systematic search for articles reporting trials, or observational studies on the antioxidant effect of drugs used in the treatment of diabetes in humans or animals was performed using Web of Science, PubMed, and Ovid. Data were extracted, including data on a number of subjects, type of treatment (and duration) received, and primary and secondary outcomes. The primary outcomes were reporting on changes in biomarkers of antioxidants concentrations and secondary outcomes were reporting on changes in biomarkers of oxidative stress. RESULTS Diabetes Mellitus is a disease characterized by increased oxidative stress. It is often accompanied by a spectrum of other metabolic disturbances, including elevated plasma lipids, elevated uric acid, hypertension, endothelial dysfunction, and central obesity. This review shows evidence that some of the drugs in diabetes management have both in vivo and in vitro antioxidant properties through mechanisms such as scavenging free radicals and upregulating antioxidant gene expression. CONCLUSION Pharmaceutical agents used in the treatment of type 2 diabetes has been shown to exert an antioxidant effect..
Collapse
Affiliation(s)
- Siu Wai Choi
- Department of Anesthesiology, Queen Mary
Hospital, The University of Hong Kong, Pokfulam, Hong
Kong SAR
| | - Cyrus K. Ho
- Faculty of Veterinary and Agricultural
Sciences, The University of Melbourne, Melbourne,
Australia
- Faculty of Health and Social Sciences,
School of Nursing, The Hong Kong Polytechnic University,
Kowloon, Hong Kong SAR
| |
Collapse
|
18
|
Czyrski A, Resztak M, Hermann T. Determination of gliclazide minimum concentration in type 2 diabetes mellitus patients. Biomed Pharmacother 2018; 106:1267-1270. [PMID: 30119196 DOI: 10.1016/j.biopha.2018.07.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/02/2018] [Accepted: 07/14/2018] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a worldwide health problem. Many drugs can be used in its treatment. One of them is gliclazide - the sulfonylurea derivative. It is dosed in modified release tablets. The study aimed to determine the minimum steady-state concentration of gliclazide at patients taking modified release tablets. Fasting plasma glucose, insulin level, and glycated hemoglobin were also assayed in this study. Ten patients of the primary care physician clinic took 30-90 mg of gliclazide daily. The statistical analysis proved that there is a statistically significant correlation between insulin level and body weight (p = 0.044) as well as between the dose and gliclazide concentrations (p = 0.015) and also between insulin level and minimum concentration of the drug (p = 0.0074). The linear correlation between dose and gliclazide's minimum steady state concentration proved its linear pharmacokinetics. The correlation between the minimum concentration of gliclazide and insulin level might be a potential predictor of patients compliance.
Collapse
Affiliation(s)
- Andrzej Czyrski
- Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland.
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland
| | - Tadeusz Hermann
- Department of Physical Pharmacy and Pharmacokinetics, Poznań University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland
| |
Collapse
|
19
|
Skripnik KKS, Riekes MK, Pezzini BR, Cardoso SG, Stulzer HK. Investigation of the Dissolution Profile of Gliclazide Modified-Release Tablets Using Different Apparatuses and Dissolution Conditions. AAPS PharmSciTech 2017; 18:1785-1794. [PMID: 27800567 DOI: 10.1208/s12249-016-0651-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
In the absence of an official dissolution method for modified-release tablets of gliclazide, dissolution parameters, such as apparatuses (1, 2, and 3), rotation speeds, pH, and composition of the dissolution medium were investigated. The results show that although the drug presents a pH-mediated solubility (pH 7.0 > 6.8 > 6.4 > 6.0 > 5.5 > 4.5), the in vitro release of the studied tablets was not dependent on this parameter, despite of the apparatus tested. On the other hand, the rotation speed demonstrated a greater influence (100 rpm >50 rpm). Using similar hydrodynamic conditions, the three different apparatuses were compared in pH 6.8 and provided the following trend: apparatus 1 at 100 rpm >2 at 50 rpm ≈3 at 10 dpm. As a complete, but slow release is expected from modified-release formulations, apparatus 2, in phosphate buffer pH 6.8 and 100 rpm, were selected as the optimized dissolution method. In comparison to apparatus 1 under the same conditions, the paddle avoids the stickiness of formulation excipients at the mesh of the basket, which could prejudice the release of gliclazide. Results obtained with biorelevant medium through the developed dissolution method were similar to the buffer solution pH 6.8. The application of the optimized method as a quality control test between two different brands of gliclazide modified-release tablets showed that both dissolution profiles were considered similar by the similarity factor (f2 = 51.8). The investigation of these dissolution profiles indicated a dissolution kinetic following first-order model.
Collapse
|
20
|
Abstract
Gliclazide is a second-generation oral hypoglycemic drug used for the treatment of noninsulin-dependent diabetes mellitus. It belongs to the sulfonylurea class that stimulates insulin secretion from pancreatic β-cells by inhibiting ATP-dependent potassium channels. Gliclazide also possesses unique antioxidant properties and other beneficial hemobiological effects. This profile represents a comprehensive description of the physical properties, chemical synthesis, spectroscopic characterization (FTIR, 1H NMR, 13C NMR, UV, and single-crystal X-ray), methods of analysis, pharmacological actions, and pharmacokinetic and pharmacodynamic properties of the title drug.
Collapse
|
21
|
Adam AMA, Refat MS, Hegab MS, Saad HA. Spectrophotometric and thermodynamic studies on the 1:1 charge transfer interaction of several clinically important drugs with tetracyanoethylene in solution-state: Part one. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Vynckier AK, Voorspoels J, Remon JP, Vervaet C. Co-extrusion as a processing technique to manufacture a dual sustained release fixed-dose combination product. ACTA ACUST UNITED AC 2016; 68:721-7. [PMID: 26751978 DOI: 10.1111/jphp.12521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/13/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study aimed to design a fixed-dose combination dosage form which provides a sustained release profile for both the freely water-soluble metformin HCl and the poorly soluble gliclazide, two antidiabetic compounds used to treat diabetes mellitus. METHODS Hot-melt co-extrusion was used as an innovative manufacturing technique for a pharmaceutical fixed-dose combination product. In this way, a matrix formulation that sustained metformin release could be developed, despite the high drug load in the formulation and the freely soluble nature of the drug. KEY FINDINGS It was clear that co-extrusion was perfectly suited to produce a fixed-dose combination product with adequate properties for each of the incorporated APIs. A coat layer, containing at least 30% CAPA(®) 6506 as a hydrophobic polymer, was necessary to adequately sustain the release of the highly dosed freely soluble drug from the 70% metformin HCl-loaded CAPA(®) 6506 core of the co-extrudate. To obtain a complete gliclazide release over 24-h solubilization in Kollidon(®) VA, added as a second polymer to the CAPA(®) 6506 in the coat, was needed. CONCLUSIONS Both active pharmaceutical ingredients (APIs), which have different physicochemical characteristics, were formulated in a single dosage form, using co-extrusion.
Collapse
Affiliation(s)
| | | | - Jean Paul Remon
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Karakaya M, Kürekçi M, Eskiyurt B, Sert Y, Çırak Ç. Experimental and computational study on molecular structure and vibrational analysis of an antihyperglycemic biomolecule: gliclazide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:137-146. [PMID: 25062059 DOI: 10.1016/j.saa.2014.06.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/20/2014] [Accepted: 06/29/2014] [Indexed: 06/03/2023]
Abstract
In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm(-1)) and Laser-Raman spectra (100-4000 cm(-1)) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found.
Collapse
Affiliation(s)
- Mustafa Karakaya
- Department of Energy Systems, Faculty of Engineering & Architecture, Sinop University, Sinop 57000, Turkey.
| | - Mehmet Kürekçi
- Department of Physics, Faculty of Art & Sciences, Erzincan University, Erzincan 24100, Turkey
| | - Buse Eskiyurt
- Department of Physics, Faculty of Art & Sciences, Erzincan University, Erzincan 24100, Turkey
| | - Yusuf Sert
- Department of Physics, Faculty of Art & Sciences, Bozok University, Yozgat 66100, Turkey; Sorgun Vocational School, Bozok University, Yozgat 66100, Turkey
| | - Çağrı Çırak
- Department of Physics, Faculty of Art & Sciences, Erzincan University, Erzincan 24100, Turkey
| |
Collapse
|
24
|
Simultaneous determination of oral antidiabetic drugs in human plasma using microextraction by packed sorbent and high-performance liquid chromatography. J Pharm Biomed Anal 2014; 96:241-8. [DOI: 10.1016/j.jpba.2014.03.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/10/2014] [Accepted: 03/25/2014] [Indexed: 12/12/2022]
|
25
|
CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients. Eur J Clin Pharmacol 2014; 70:421-8. [PMID: 24442125 DOI: 10.1007/s00228-014-1641-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/01/2014] [Indexed: 01/11/2023]
Abstract
PURPOSE Sulphonylureas (SU) are widely used in the management of type 2 diabetes. We investigated the influence of CYP2C9, KCNJ11 and ABCC8 polymorphisms on the response to SU currently used in everyday clinical practice. METHODS Patients treated for type 2 diabetes with sulphonylurea in monotherapy (n = 21) or in combination with metformin (n = 135) were provided with glucose-monitoring devices and instructed to measure fasting blood glucose levels once per week and additionally at any signs and symptoms suggesting low blood glucose for a period of three months. All patients were genotyped for CYP2C9 rs1799853 and rs1057910 (*2 and *3 allele, respectively), KCNJ11 rs5219 and rs5215, and ABCC8 rs757110. RESULTS The average duration of diabetes in the study group was 10.6 ± 7.1 years. Most of the patients achieved relatively good blood glucose control (HbA1c 7.0 ± 0.9). In total, 76 hypoglycemia events were observed (mean 0.48 ± 1.3). No severe hypoglycemia was reported; the lowest blood glucose was 2.1 mmol/l. Although 124 (79.5 %) patients never experienced hypoglycemia, 32 (20.5 %) patients experienced from one to eight events. None of the investigated polymorphisms influenced HbA1c levels or risk for hypoglycemia episodes in the whole group of patients. CYP2C9 genotype significantly influenced the occurrence of hypoglycemia events among the elderly patients (aged 60 years and over; n = 103). Among them, carriers of two wild-type alleles suffered 0.36 ± 0.98 events, while patients with one or two polymorphic alleles had 0.79 ± 1.7 or 2.67 ± 4.6 events, respectively (p = 0.014). CONCLUSIONS Our results indicate that the CYP2C9 genotype may influence the risk for hypoglycemia events in elderly patients, but not in the overall population of type 2 diabetes patients.
Collapse
|
26
|
Scheen AJ. Pharmacokinetic considerations for the treatment of diabetes in patients with chronic kidney disease. Expert Opin Drug Metab Toxicol 2013; 9:529-50. [PMID: 23461781 DOI: 10.1517/17425255.2013.777428] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION People with chronic kidney disease (CKD) of stages 3 - 5 (creatinine clearance < 60 ml/min) represent ≈ 25% of patients with type 2 diabetes mellitus (T2DM), but the problem is underrecognized or neglected in clinical practice. However, most oral antidiabetic agents have limitations in case of renal impairment (RI), either because they require a dose adjustment or because they are contraindicated for safety reasons. AREAS COVERED The author performed an extensive literature search to analyze the influence of RI on the pharmacokinetics (PK) of glucose-lowering agents and the potential consequences for clinical practice. EXPERT OPINION As a result of PK interferences and for safety reasons, the daily dose should be reduced according to glomerular filtration rate (GFR) or even the drug is contraindicated in presence of severe CKD. This is the case for metformin (risk of lactic acidosis) and for many sulfonylureas (risk of hypoglycemia). At present, however, the exact GFR cutoff for metformin use is controversial. New antidiabetic agents are better tolerated in case of CKD, although clinical experience remains quite limited for most of them. The dose of DPP-4 inhibitors should be reduced (except for linagliptin), whereas both the efficacy and safety of SGLT2 inhibitors are questionable in presence of CKD.
Collapse
Affiliation(s)
- André J Scheen
- University of Liège, Division of Diabetes, Nutrition and Metabolic Disorders, Division of Clinical Pharmacology, Department of Medicine, CHU Sart Tilman (B35), Liège, Belgium.
| |
Collapse
|
27
|
Rojanasthien N, Autsavakitipong T, Kumsorn B, Manorot M, Teekachunhatean S. Bioequivalence Study of Modified-Release Gliclazide Tablets in Healthy Volunteers. ISRN PHARMACOLOGY 2012; 2012:375134. [PMID: 23029622 PMCID: PMC3458286 DOI: 10.5402/2012/375134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/16/2012] [Indexed: 11/25/2022]
Abstract
This study was aimed to investigate bioequivalence of modified-release 30 mg gliclazide tablets in 18 healthy Thai volunteers. A test product, Glycon MR (Siam Bheasach, TH), was compared with a reference product, Diamicron MR (Servier, France). The study was performed under a single-dose, two-treatment, two-period, and two-sequence crossover design in fasted and fed conditions with a washout period of 2 weeks. Blood samples were collected for 72 h after drug administration. Drug plasma concentrations were determined by HPLC with a UV detector. Analysis of pharmacokinetic characteristics was based on a non-compartmental model. The logarithmically transformed data of Cmax and AUCs were analyzed for 90% confidence intervals using ANOVA. The test product gave slightly higher Cmax in both conditions and shorter Tmax in the fed condition. However, there is no significant difference in pharmacokinetic characteristics between both products under fasted and fed conditions. Effect of food was not significantly observed. The 90% confidence intervals were within the acceptance criteria of 0.80–1.25 regardless of the food effect, indicating bioequivalence between the two products on the rate and extent of gliclazide MR absorption without regard to meals.
Collapse
Affiliation(s)
- Noppamas Rojanasthien
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thatree Autsavakitipong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Boonyium Kumsorn
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Maleeya Manorot
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | |
Collapse
|
28
|
Comparison of metformin, gliclazide MR and rosiglitazone in monotherapy and in combination for type 2 diabetes. ACTA ACUST UNITED AC 2010; 54:311-8. [PMID: 20520962 DOI: 10.1590/s0004-27302010000300010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 09/24/2009] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To compare the efficacy and tolerability of metformin, rosiglitazone and gliclazide MR as monotherapy and in combination in the treatment of type 2 diabetes. SUBJECTS AND METHODS 250 patients treated with oral antidiabetic agents for at least 24 weeks in monotherapy or in combination therapy were included in this retrospective study. RESULTS As monotherapy the reduction of fasting plasma glucose (FPG), postprandial glycemia (PPG) and HbA1c was similar with the three drugs after 24 weeks. Among patients on combination therapy, the reduction in HbA1c, FPG and PPG was significantly lower with rosiglitazone plus metformin, as compared to metformin plus gliclazide MR or gliclazide MR plus rosiglitazone. Patients treated with rosiglitazone achieved less favorable changes in lipid profile. CONCLUSION In monotherapy all drugs were equally effective in improving glycemic control, whereas the combination of metformin plus gliclazide MR provided the best results concerning the improvement of both, glycemic control and lipid profile.
Collapse
|
29
|
M'guil M, Ragala M, El Guessabi L, Fellat S, Chraibi A, Chebraoui L, Israili Z, Lyoussi B. Is Ramadan Fasting Safe in Type 2 Diabetic Patients in View of the Lack of Significant Effect of Fasting on Clinical and Biochemical Parameters, Blood Pressure, and Glycemic Control? Clin Exp Hypertens 2009; 30:339-57. [DOI: 10.1080/10641960802272442] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
JIN X, ZHANG Y, XIAO L, ZHAO Z. Optimization of Extended Zero-order Release Gliclazide Tablets Using D-optimal Mixture Design. YAKUGAKU ZASSHI 2008; 128:1475-83. [DOI: 10.1248/yakushi.128.1475] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xinghua JIN
- College of Pharmaceuticals and Biotechnology, Tianjin University
| | - Yunhui ZHANG
- College of Pharmaceuticals and Biotechnology, Tianjin University
| | - Li XIAO
- College of Pharmaceuticals and Biotechnology, Tianjin University
| | - Zhenyu ZHAO
- College of Pharmaceuticals and Biotechnology, Tianjin University
| |
Collapse
|
31
|
Blicklé JF, Doucet J, Krummel T, Hannedouche T. Diabetic nephropathy in the elderly. DIABETES & METABOLISM 2007; 33 Suppl 1:S40-55. [PMID: 17702098 DOI: 10.1016/s1262-3636(07)80056-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Renal impairment is frequent in aged diabetic patients, notably with type 2 diabetes. It results from a multifactorial pathogeny, particularly the combined actions of hyperglycaemia, arterial hypertension and ageing. Diabetic nephropathy (DN) is associated with an increased cardiovascular mortality. DN often leads to end stage renal failure (ESRF) which causes specific problems of decision and practical organization of extra-renal epuration in diabetic and aged patients. In the absence of renal biopsy, clinical signs are often insufficient to assess the diabetic origin of a nephropathy in an elderly diabetic patient. Prevention of DN is principally based on tight glycaemic and blood pressure control. The progression of renal lesions can be retarded by strict blood pressure control, notably by blocking of the renin-angiotensin system, if well tolerated in aged patients. It is absolutely necessary to avoid the worsening of renal lesions by potentially nephrotoxic products, notably non steroidal anti-inflammatory drugs (NSAIDs) and iodinated contrast media. At the stage of renal failure, it is important to adapt the antidiabetic treatment, and in the majority of the cases, to switch to insulin when glomerular filtration rate (GFR) is below 30 ml/mn/1.73 m2.
Collapse
Affiliation(s)
- J F Blicklé
- Service de médecine interne, diabète et maladies métaboliques, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | | | | | | |
Collapse
|
32
|
Del Guerra S, Grupillo M, Masini M, Lupi R, Bugliani M, Torri S, Boggi U, Del Chiaro M, Vistoli F, Mosca F, Del Prato S, Marchetti P. Gliclazide protects human islet beta-cells from apoptosis induced by intermittent high glucose. Diabetes Metab Res Rev 2007; 23:234-8. [PMID: 16952202 DOI: 10.1002/dmrr.680] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Decreased beta-cell mass, mainly due to apoptosis, is crucial for the development and progression of type 2 diabetes. Chronic exposure to high glucose levels is a probable underlying mechanism, whereas the role of oral anti-diabetic agents (sulphonylureas in particular) is still unsettled. METHODS To directly investigate more on such issues, we prepared isolated human islets, which were then cultured for 5 days in continuous normal glucose concentration (NG, 5.5 mmol/L) or normal and high (HG, 16.7 mmol/L) glucose levels (alternating every 24 h), with or without the addition of therapeutical concentration (10 micromol L) of gliclazide or glibenclamide. RESULTS Intermittent high glucose caused a significant decrease of glucose-stimulated insulin secretion, which was not further affected by either sulphonylurea. Apoptosis, as assessed by electron microscopy, was also significantly increased by alternating high glucose exposure, which was accompanied by altered mitochondria morphology and density volume, and increased concentrations of nitrotyrosine, a marker of oxidative stress. Gliclazide, but not glibenclamide, was able to significantly reduce high glucose induced apoptosis, mitochondrial alterations, and nitrotyrosine concentration increase. CONCLUSION Therefore, gliclazide protected human beta-cells from apoptosis induced by intermittent high glucose, and this effect was likely to be due, at least in part, to the anti-oxidant properties of the molecule.
Collapse
Affiliation(s)
- S Del Guerra
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang Y, Si D, Chen X, Lin N, Guo Y, Zhou H, Zhong D. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics of gliclazide MR in Chinese subjects. Br J Clin Pharmacol 2007; 64:67-74. [PMID: 17298483 PMCID: PMC2000619 DOI: 10.1111/j.1365-2125.2007.02846.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS To investigate the influence of CYP2C9 and CYP2C19 genetic polymorphisms on the pharmacokinetics of gliclazide modified release (MR) in healthy Chinese subjects. METHODS In a single-dose pharmacokinetic study, 24 healthy male subjects with various CYP2C9 and CYP2C19 genotypes received an oral dose of 30 mg gliclazide MR and plasma was sampled for 72 h postdose. In a multiple-dose pharmacokinetic study, 17 other CYP2C9*1 homozygotes with various CYP2C19 genotypes received 30 mg gliclazide MR once daily for 6 days and plasma was sampled after the last dose. The plasma concentrations of gliclazide were measured using a validated LC/MS/MS method. CYP2C9 and CYP2C19 genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism analysis. RESULTS In the single-dose study, no significant difference in any pharmacokinetic parameters was found in CYP2C9*1/*1, *1/*3 and *1/*13 subjects. In contrast, the AUC(0-infinity) of gliclazide was significantly increased by 3.4-fold [95% confidence interval (CI) 2.5, 4.7; P < 0.01] in CYP2C19 poor metabolizer (PM) subjects compared with CYP2C19*1 homozygotes. The half-life (t(1/2)) was prolonged from 15.1 to 44.5 h (P < 0.01). Similar differences were found in the multiple-dose study. The parameters of gliclazide AUC(ss), AUC(0-infinity) and C(max) were 3.4-fold (95% CI 2.9, 4.0), 4.5-fold (95% CI 3.8, 5.4) and 2.9-fold (95% CI 2.4, 3.4) increased (P < 0.01) in CYP2C19 PM subjects, respectively, compared with CYP2C19*1 homozygotes, and t(1/2) was increased from 13.5 to 24.6 h (P < 0.01). CONCLUSIONS The pharmacokinetics of gliclazide MR are affected mainly by CYP2C19 genetic polymorphism instead of CYP2C9 genetic polymorphism.
Collapse
Affiliation(s)
- Yifan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Because management of type 2 diabetes mellitus usually involves combined pharmacological therapy to obtain adequate glucose control and treatment of concurrent pathologies (especially dyslipidaemia and arterial hypertension), drug-drug interactions must be carefully considered with antihyperglycaemic drugs. Additive glucose-lowering effects have been extensively reported when combining sulphonylureas (or the new insulin secretagogues, meglitinide derivatives, i.e. nateglinide and repaglinide) with metformin, sulphonylureas (or meglitinide derivatives) with thiazolidinediones (also called glitazones) and the biguanide compound metformin with thiazolidinediones. Interest in combining alpha-glucosidase inhibitors with either sulphonylureas (or meglitinide derivatives), metformin or thiazolidinediones has also been demonstrated. These combinations result in lower glycosylated haemoglobin (HbA(1c)), fasting glucose and postprandial glucose levels than with either monotherapy. Even if modest pharmacokinetic interferences have been reported with some combinations, they do not appear to have important clinical consequences. No significant adverse effects, except a higher risk of hypoglycaemic episodes that may be attributed to better glycaemic control, occur with any combination. Challenging the classical dual therapy with sulphonylurea plus metformin, there is a recent trend to use alternative dual combinations (sulphonylurea plus thiazolidinedione or metformin plus thiazolidinedione). In addition, triple therapy with the addition of a thiazolidinedione to the metformin-sulphonylurea combination has been recently evaluated and allows glucose targets to be reached before insulin therapy is considered. This triple therapy appears to be safe, with no deleterious drug-drug interactions being reported so far.Potential interferences may also occur between glucose-lowering agents and other drugs, and such drug-drug interactions may have important clinical implications. Relevant pharmacological agents are those that are widely coadministered in diabetic patients (e.g. lipid-lowering agents, antihypertensive agents); those that have a narrow efficacy/toxicity ratio (e.g. digoxin, warfarin); or those that are known to induce (rifampicin [rifampin]) or inhibit (fluconazole) the cytochrome P450 (CYP) system. Metformin is currently a key compound in the pharmacological management of type 2 diabetes, used either alone or in combination with other antihyperglycaemics. There are no clinically relevant metabolic interactions with metformin, because this compound is not metabolised and does not inhibit the metabolism of other drugs. In contrast, sulphonylureas, meglitinide derivatives and thiazolidinediones are extensively metabolised in the liver via the CYP system and thus, may be subject to drug-drug metabolic interactions. Many HMG-CoA reductase inhibitors (statins) are also metabolised via the CYP system. Even if modest pharmacokinetic interactions may occur, it is not clear whether drug-drug interactions between oral antihyperglycaemic agents and statins may have clinical consequences regarding both efficacy and safety. In contrast, a marked pharmacokinetic interference has been reported between gemfibrozil and repaglinide and, to a lesser extent, between gemfibrozil and rosiglitazone. This leads to a drastic increase in plasma concentrations of each antihyperglycaemic agent when they are coadministered with the fibric acid derivative, and an increased risk of adverse effects. Some antihypertensive agents may favour hypoglycaemic episodes when co-prescribed with sulphonylureas or meglitinide derivatives, especially ACE inhibitors, but this effect seems to result from a pharmacodynamic drug-drug interaction rather than from a pharmacokinetic drug-drug interaction. No, or only modest, interferences have been described with glucose-lowering agents and other pharmacological compounds such as digoxin or warfarin. The effects of inducers or inhibitors of CYP isoenzymes on the metabolism and pharmacokinetics of the glucose-lowering agents of each pharmacological class has been tested. Significantly increased (with CYP inhibitors) or decreased (with CYP inducers) plasma levels of sulphonylureas, meglitinide derivatives and thiazolidinediones have been reported in healthy volunteers, and these pharmacokinetic changes may lead to enhanced or reduced glucose-lowering action, and thus hypoglycaemia or worsening of metabolic control, respectively. In addition, some case reports have evidenced potential drug-drug interactions with various antihyperglycaemic agents that are usually associated with a higher risk of hypoglycaemia.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Sart Tilman, Liège, Belgium.
| |
Collapse
|
35
|
|
36
|
Ling G, Sun J, Tang J, Xu X, Sun Y, He Z. Liquid Chromatography‐Electrospray Ionization Mass Spectrometric Method for Determination of Gliclazide in Human Plasma. ANAL LETT 2006. [DOI: 10.1080/00032710600668541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Abstract
Sulfonylureas are still largely used for treatment of type 2 diabetic patients, and they still occupy a central position in many international therapy guidelines. More recently concern has been raised with respect to possible adverse effects associated with the use of these agents. Sulfonylureas are, indeed, believed to favor the development of hypoglycemia, to accelerate beta cell apoptosis and beta-cell exhaustion, and to impair endothelial function with increased risk for ischemic complications. However, because of the intrinsic pathogenetic heterogeneity of type 2 diabetes, sulfonylureas are likely to remain a therapeutic option. Careful choice of a specific sulfonylurea should be made on the basis of efficacy, safety, convenience, tissue specificity, and neutrality with respect to the beta cell. In this review the advantage:disadvantage ratio of available sulfonylureas is analyzed with the purpose of providing a critical clinical appraisal of the role of sulfonylureas in the modern treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Stefano Del Prato
- Department of Endocrinology and Metabolism, Section of Diabetes and Metabolic Diseases, University of Pisa, Italy.
| | | |
Collapse
|
38
|
Abstract
The sulphonylureas act by triggering insulin release from the pancreatic beta cell. A specific site on the adenosine triphosphate (ATP)-sensitive potassium channels is occupied by sulphonylureas leading to closure of the potassium channels and subsequent opening of calcium channels. This results in exocytosis of insulin. The meglitinides are not sulphonylureas but also occupy the sulphonylurea receptor unit coupled to the ATP-sensitive potassium channel. Glibenclamide (glyburide), gliclazide, glipizide and glimepiride are the primary sulphonylureas in current clinical use for type 2 diabetes mellitus. Glibenclamide has a higher frequency of hypoglycaemia than the other agents. With long-term use, there is a progressive decrease in the effectiveness of sulphonylureas. This loss of effect is the result of a reduction in insulin-producing capacity by the pancreatic beta cell and is also seen with other antihyperglycaemic agents. The major adverse effect of sulphonylureas is hypoglycaemia. There is a theoretical concern that sulphonylureas may affect cardiac potassium channels resulting in a diminished response to ischaemia. There are now many choices for initial therapy of type 2 diabetes in addition to sulphonylureas. Metformin and thiazolidinediones affect insulin sensitivity by independent mechanisms. Disaccharidase inhibitors reduce rapid carbohydrate absorption. No single agent appears capable of achieving target glucose levels in the majority of patients with type 2 diabetes. Combinations of agents are successful in lowering glycosylated haemoglobin levels more than with a single agent. Sulphonylureas are particularly beneficial when combined with agents such as metformin that decrease insulin resistance. Sulphonylureas can also be given with a basal insulin injection to provide enhanced endogenous insulin secretion after meals. Sulphonylureas will continue to be used both primarily and as part of combined therapy for most patients with type 2 diabetes.
Collapse
Affiliation(s)
- Marc Rendell
- Creighton Diabetes Center, 601 North 30th Street, Omaha, NE 68131, USA.
| |
Collapse
|
39
|
Schernthaner G, Grimaldi A, Di Mario U, Drzewoski J, Kempler P, Kvapil M, Novials A, Rottiers R, Rutten GEHM, Shaw KM. GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Invest 2004; 34:535-42. [PMID: 15305887 DOI: 10.1111/j.1365-2362.2004.01381.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Progressive beta-cell failure is a characteristic feature of type 2 diabetes; consequently, beta-cell secretagogues are useful for achieving sufficient glycaemic control. The European GUIDE study is the first large-scale head-to-head comparison of two sulphonylureas designed for once-daily administration used under conditions of everyday clinical practice. DESIGN Eight hundred and forty-five type 2 diabetic patients were randomized to either gliclazide modified release (MR) 30-120 mg daily or glimepiride 1-6 mg daily as monotherapy or in combination with their current treatment (metformin or an alpha-glucosidase inhibitor) according to a double-blind, 27-week, parallel-group design. Efficacy was evaluated by HbA1c and safety by hypoglycaemic episodes using the European Agency definition. RESULTS HbA1c decreased similarly in both groups from 8.4% to 7.2% on gliclazide MR and from 8.2% to 7.2% on glimepiride. Approximately 50% of the patients achieved HbA1c levels less than 7%, and 25% less than 6.5%. The mean difference between groups of the final HbA1c was -0.06% (noninferiority test P < 0.0001). No hypoglycaemia requiring external assistance occurred. Hypoglycaemia with blood glucose level < 3 mmol L(-1) occurred significantly less frequently (P = 0.003) with gliclazide MR (3.7% of patients) compared with glimepiride (8.9% of patients). The distribution of the sulphonylurea doses was similar in both groups. CONCLUSIONS This study provides new insights into therapeutic strategies using sulphonylureas. It shows that gliclazide MR is at least as effective as glimepiride, either as monotherapy or in combination. The safety of gliclazide MR was significantly better, demonstrating approximately 50% fewer confirmed hypoglycaemic episodes in comparison with glimepiride.
Collapse
|
40
|
Krentz AJ. Sulfonylureas in the prevention of vascular complications: from UKPDS to the ADVANCE study. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0531-5131(02)01278-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|