1
|
Mestre-Bach G, Potenza MN. Neural mechanisms linked to treatment outcomes and recovery in substance-related and addictive disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2023; 25:75-91. [PMID: 37594217 PMCID: PMC10444012 DOI: 10.1080/19585969.2023.2242359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
The present review focuses on potential neural mechanisms underlying recovery from psychiatric conditions characterised by impaired impulse control, specifically substance use disorders, gambling disorder, and internet gaming disorder. Existing treatments (both pharmacological and psychological) for these addictions may impact brain processes, and these have been evaluated in neuroimaging studies. Medication challenge and short-term intervention administration will be considered with respect to treatment utility. Main models of addiction (e.g., dual process, reward deficiency syndrome) will be considered in the context of extant data. Additionally, advanced analytic approaches (e.g., machine-learning approaches) will be considered with respect to guiding treatment development efforts. Thus, this narrative review aims to provide directions for treatment development for addictive disorders.
Collapse
Affiliation(s)
- Gemma Mestre-Bach
- Centro de Investigación, Transferencia e Innovación (CITEI), Universidad Internacional de La Rioja, La Rioja, Spain
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Tschudi L, Fischer SKM, Perlov E, Baumgartner MR, Soyka M, Müller TJ, Seifritz E, Mutschler J. Concomitant Drug Use among Opioid-Dependent Patients with and without Attention Deficit Hyperactivity Disorder: Does Methylphenidate Merit a Trial? Eur Addict Res 2023; 29:305-312. [PMID: 37517394 DOI: 10.1159/000531008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/28/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION Concomitant drug use is common among opioid-dependent patients in maintenance therapy. Attention deficit hyperactivity disorder (ADHD), a common comorbidity among opioid users, is associated with a higher risk of concomitant drug use. Earlier studies showed that methylphenidate (MPH) can reduce cocaine consumption among patients with ADHD. The use of MPH as an agonist-replacement or maintenance therapy in cocaine-dependent patients without ADHD is also common in Switzerland, despite a lack of supporting evidence. The aim of this study was to assess concomitant cocaine, amphetamine, MDMA, MPH, and heroin use among patients in opioid maintenance therapy either with or without comorbid ADHD. We expected stimulant consumption to be higher in patients with cocaine dependence and comorbid ADHD and that use of MPH would not lead to a reduction in cocaine consumption in patients without ADHD. We therefore evaluated correlations between use of MPH and cocaine consumption and between MPH consumption and cocaine craving within the two groups. METHODS This cross-sectional study included 94 opioid-dependent patients in maintenance therapy in an outpatient department of the Psychiatric Hospital of Zurich. The patients were divided into two groups based on comorbid ADHD; a group with ADHD (N = 27) and a group without ADHD (N = 67). Drug use was assessed using 3-month hair analysis. RESULTS We did not find significant differences in the number of patients using cocaine, amphetamine, MDMA, or heroin between groups with or without ADHD. With respect to cocaine use, 85.2 percent of patients in the ADHD group and 73.1 percent in the non-ADHD group were users. The non-ADHD group showed a significant positive correlation between the concentration of MPH and cocaine in hair samples (p < 0.05), and a positive correlation between cocaine craving and the concentration of MPH in hair samples (p = 0.065). These two trends were not evident in the ADHD group. CONCLUSION Among patients without ADHD, use of MPH correlates with higher cocaine consumption and craving. Conversely, no significant correlation was found between MPH and cocaine use in patients with ADHD. Our study adds to the evidence that MPH confers negative effects in cocaine users without ADHD and should thus have no place in the treatment of these patients.
Collapse
Affiliation(s)
- Letizia Tschudi
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Sebastian Karl Maximilian Fischer
- Psychiatric Services Lucerne, Lucerne, Switzerland
- Institute of General Practice and Family Medicine, University Hospital of the Ludwig-Maximilians University of Munich, Munich, Germany
| | | | - Markus R Baumgartner
- Zurich Institute of Forensic Medicine, Center for Forensic Hair Analysis, University of Zurich, Zurich, Switzerland
| | - Michael Soyka
- Department of Psychiatry and Psychotherapy, University Hospital of Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
Fox HC, Milivojevic V, Sinha R. Therapeutics for Substance-Using Women: The Need to Elucidate Sex-Specific Targets for Better-Tailored Treatments. Handb Exp Pharmacol 2023; 282:127-161. [PMID: 37592081 DOI: 10.1007/164_2023_687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
In the last decade, alcohol consumption in the US has risen by 84% in women compared with 35% in men. Furthermore, research has shown that sex- and gender-related differences may disadvantage women in terms of developing a range of psychological, cognitive, and medical problems considerably earlier in their drinking history than men, and despite consuming a similar quantity of substances. While this "telescoping" process has been acknowledged in the literature, a concomitant understanding of the underlying biobehavioral mechanisms, and an increase in the development of specific treatments tailored to women, has not occurred. In the current chapter we focus on understanding why the need for personalized, sex-specific medications is imperative, and highlight some of the potential sex-specific gonadal and stress-related adaptations underpinning the accelerated progress from controlled to compulsive drug and alcohol seeking in women. We additionally discuss the efficacy of these mechanisms as novel targets for medications development, using exogenous progesterone and guanfacine as examples. Finally, we assess some of the challenges faced and progress made in terms of developing innovative medications in women. We suggest that agents such as exogenous progesterone and adrenergic medications, such as guanfacine, may provide some efficacy in terms of attenuating stress-induced craving for several substances, as well as improving the ability to emotionally regulate in the face of stress, preferentially in women. However, to fully leverage the potential of these therapeutics in substance-using women, greater focus needs to the placed on reducing barriers to treatment and research by encouraging women into clinical trials.
Collapse
Affiliation(s)
- Helen C Fox
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Verica Milivojevic
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Hong E, Gu SM, Kim JM, Yoon KS, Lee JM, Kim YH, Suh SK, Lee D, Eom H, Yun J, Cha HJ. The designer benzodiazepine, flubromazepam, induces reward-enhancing and cardiotoxic effects in rodents. Toxicol Res (Camb) 2022; 11:644-653. [DOI: 10.1093/toxres/tfac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The use of many benzodiazepines is controlled worldwide due to their high likelihood of abuse and potential adverse effects. Flubromazepam—a designer benzodiazepine—is a long-acting gamma-aminobutyric acid subtype A receptor agonist. There is currently a lack of scientific evidence regarding the potential for flubromazepam dependence or other adverse effects. This study aimed to evaluate the dependence potential, and cardiotoxicity via confirmation of the QT and RR intervals which are the factors on the electrical properties of the heart of flubromazepam in rodents. Using a conditioned place preference test, we discovered that mice treated intraperitoneally with flubromazepam (0.1 mg/kg) exhibited a significant preference for the flubromazepam-paired compartment, suggesting a potential for flubromazepam dependence. In addition, we observed several cardiotoxic effects of flubromazepam; 100-μM flubromazepam reduced cell viability, increased RR intervals but not QT intervals in the electrocardiography measurements, and considerably inhibited potassium channels in a human ether-à-go-go-related gene assay. Collectively, these findings suggest that flubromazepam may have adverse effects on psychological and cardiovascular health, laying the foundation for further efforts to list flubromazepam as a controlled substance at both national and international levels.
Collapse
Affiliation(s)
- Eunchong Hong
- College of Pharmacy , Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Sun Mi Gu
- College of Pharmacy , Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jin Mook Kim
- Pharmacological Research Division , National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Kyung Sik Yoon
- Pharmacological Research Division , National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Jin-Moo Lee
- Pharmacological Research Division , National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Young-Hoon Kim
- Pharmacological Research Division , National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Soo Kyung Suh
- Pharmacological Research Division , National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Dohyun Lee
- Laboratory Animal Center , Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Heejong Eom
- Laboratory Animal Center , Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy , Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Hye Jin Cha
- Deputy Director General for Narcotics Safety Planning , Pharmaceutical Safety Bureau, Ministry of Food and Drug Safety (MFDS), 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| |
Collapse
|
5
|
Zheng F, Jin Z, Deng J, Chen X, Zheng X, Wang G, Kim K, Shang L, Zhou Z, Zhan CG. Development of a Highly Efficient Long-Acting Cocaine Hydrolase Entity to Accelerate Cocaine Metabolism. Bioconjug Chem 2022; 33:1340-1349. [PMID: 35767675 DOI: 10.1021/acs.bioconjchem.2c00210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is particularly challenging to develop a truly effective pharmacotherapy for cocaine use disorder (CUD) treatment. Accelerating cocaine metabolism via hydrolysis at cocaine benzoyl ester using an efficient cocaine hydrolase (CocH) is known as a promising pharmacotherapeutic approach to CUD treatment. Preclinical and clinical studies on our first CocH (CocH1), in its human serum albumin-fused form known as TV-1380, have demonstrated the promise of a general concept of CocH-based pharmacotherapy for CUD treatment. However, the biological half-life of TV-1380 (t1/2 = 8 h in rats, associated with t1/2 = 43-77 h in humans) is not long enough for practical treatment of cocaine dependence, which requires enzyme injection for no more than once weekly. Through protein fusion of a human butyrylcholinesterase mutant (denoted as CocH5) with a mutant (denoted as Fc(M6)) of Fc from human IgG1, we have designed, prepared, and tested a new fusion protein (denoted as CocH5-Fc(M6)) for its pharmacokinetic profile and in vivo catalytic activity against (-)-cocaine. CocH5-Fc(M6) represents the currently most efficient long-acting cocaine hydrolase with both the highest catalytic activity against (-)-cocaine and the longest elimination half-life (t1/2 = 229 ± 5 h) in rats. As a result, even at a single modest dose of 3 mg/kg, CocH5-Fc(M6) can significantly and effectively accelerate the metabolism of cocaine in rats for at least 60 days. In addition, ∼70 nM CocH5-Fc(M6) in plasma was able to completely block the toxicity and physiological effects induced by intraperitoneal injection of a lethal dose of cocaine (60 mg/kg).
Collapse
|
6
|
Feng H, Gao K, Chen D, Shen L, Robison AJ, Ellsworth E, Wei GW. Machine Learning Analysis of Cocaine Addiction Informed by DAT, SERT, and NET-Based Interactome Networks. J Chem Theory Comput 2022; 18:2703-2719. [PMID: 35294204 DOI: 10.1021/acs.jctc.2c00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cocaine addiction is a psychosocial disorder induced by the chronic use of cocaine and causes a large number of deaths around the world. Despite decades of effort, no drugs have been approved by the Food and Drug Administration (FDA) for the treatment of cocaine dependence. Cocaine dependence is neurological and involves many interacting proteins in the interactome. Among them, the dopamine (DAT), serotonin (SERT), and norepinephrine (NET) transporters are three major targets. Each of these targets has a large protein-protein interaction (PPI) network, which must be considered in the anticocaine addiction drug discovery. This work presents DAT, SERT, and NET interactome network-informed machine learning/deep learning (ML/DL) studies of cocaine addiction. We collected and analyzed 61 protein targets out of 460 proteins in the DAT, SERT, and NET PPI networks that have sufficiently large existing inhibitor datasets. Utilizing autoencoder (AE) and other ML/DL algorithms, including gradient boosting decision tree (GBDT) and multitask deep neural network (MT-DNN), we built predictive models for these targets with 115 407 inhibitors to predict drug repurposing potential and possible side effects. We further screened their absorption, distribution, metabolism, and excretion, and toxicity (ADMET) properties to search for leads having potential for developing treatments for cocaine addiction. Our approach offers a new systematic protocol for artificial intelligence (AI)-based anticocaine addiction lead discovery.
Collapse
Affiliation(s)
- Hongsong Feng
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kaifu Gao
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Dong Chen
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Li Shen
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Edmund Ellsworth
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology Michigan State University, East Lansing, Michigan 48824, United States
- Department of Electrical and Computer Engineering Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Bar S, Martin M. An Efficient Synthesis of Substituted Hexahydrobenzo[f]thieno[c]quinoline; an Advanced Intermediate of Analogue of A-86929, a Dopamine D1 Full Agonist. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An efficient synthesis of substituted hexahydrobenzo[f]thieno[c]quinolines was achieved via catalytic one-pot aziridination followed by Friedel–Crafts cyclization and a mild Pictet–Spengler cyclization protocol. Cu(OTf)2 was an effective catalyst for both aziridination followed by Friedel–Crafts cyclization with excellent diastereoselectivity (dr: >99: 1) and high yield (75%).
Collapse
Affiliation(s)
- Sukanta Bar
- St Jude Children's Research Hospital, 5417, Structural Biology, 262 DANNY THOMAS PLACE MAIL STOP 312, 38105, Memphis, Tennessee, United States, 38105-3678,
| | - Max Martin
- St. Jude Children’s Research Hospital, Department of Structural Biology, Memphis, Tennessee, United States
| |
Collapse
|
8
|
Leroy C, Saba W. Contribution of TSPO imaging in the understanding of the state of gliosis in substance use disorders. Eur J Nucl Med Mol Imaging 2021; 49:186-200. [PMID: 34041563 DOI: 10.1007/s00259-021-05408-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Recent research in last years in substance use disorders (SUD) synthesized a proinflammatory hypothesis of SUD based on reported pieces of evidence of non-neuronal central immune signalling pathways modulated by drug of abuse and that contribute to their pharmacodynamic actions. Positron emission tomography has been shown to be a precious imaging technique to study in vivo neurochemical processes involved in SUD and to highlight the central immune signalling actions of drugs of abuse. METHODS In this review, we investigate the contribution of the central immune system, with a particular focus on translocator protein 18 kDa (TSPO) imaging, associated with a series of drugs involved in substance use disorders (SUD) specifically alcohol, opioids, tobacco, methamphetamine, cocaine, and cannabis. RESULTS The large majority of preclinical and clinical studies presented in this review converges towards SUD modulation of the neuroimmune responses and TSPO expression and speculated a pivotal positioning in the pathogenesis of SUD. However, some contradictions concerning the same drug or between preclinical and clinical studies make it difficult to draw a clear picture about the significance of glial state in SUD. DISCUSSION Significant disparities in clinical and biological characteristics are present between investigated populations among studies. Heterogeneity in genetic factors and other clinical co-morbidities, difficult to be reproduced in animal models, may affect findings. On the other hand, technical aspects including study designs, radioligand limitations, or PET imaging quantification methods could impact the study results and should be considered to explain discrepancies in outcomes. CONCLUSION The supposed neuroimmune component of SUD provides new therapeutic approaches in the prediction and treatment of SUD pointing to the central immune signalling.
Collapse
Affiliation(s)
- Claire Leroy
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Wadad Saba
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France.
| |
Collapse
|
9
|
Youn DH, Kim JM, Hong YK, Park SI, Lee JM, Kim YH, Park CW, Kang MS. Assessment of the abuse potential of methamnetamine in rodents: a behavioral pharmacology study. Psychopharmacology (Berl) 2021; 238:2155-2165. [PMID: 33811503 DOI: 10.1007/s00213-021-05840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Methamnetamine (MNA; PAL-1046) is a new psychoactive substance that acts as a full biogenic amine transporter (BAT) substrate. BAT substrates promote neurotransmitter release from the nerve terminal and can be abused as stimulants. However, scientific information on the abuse potential of methamnetamine is lacking. OBJECTIVE We evaluated the abuse liability of methamnetamine. METHODS The effective dose range of methamnetamine was determined using a climbing behavior test. The rewarding effect and reinforcing effect of the test compound were evaluated in mice by conditioned place preference (CPP) testing and self-administration (SA) testing at the selected doses. Dopamine level changes were analyzed using synaptosomes and in vivo microdialysis to investigate the effects of methamnetamine on the central nervous system. Drug discrimination experiments were used to examine the potential similarity of the interoceptive effects of methamnetamine and cocaine. RESULTS A significant response was observed in the climbing behavior test with 10 and 40 mg/kg intraperitoneally administered methamnetamine. In the CPP test, mice intraperitoneally administered methamnetamine (10 and 20 mg/kg) showed a significant preference for the drug-paired compartment. In the SA test, mice that intravenously received 1 mg/kg/infusion showed significant active-lever responses. Dopamine was significantly increased in synaptosomes and in in vivo microdialysis tests. Furthermore, methamnetamine showed cross-generalization with cocaine in a dose-dependent manner. CONCLUSIONS Methamnetamine exhibits interceptive stimulus properties similar to those of cocaine and induces rewarding and reinforcing effects, suggesting its dependence liability potential.
Collapse
Affiliation(s)
- Dong-Hyun Youn
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Jin Mook Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Young-Ki Hong
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Seo-In Park
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Jin-Moo Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Chang Won Park
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea
| | - Mi Sun Kang
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi, 28159, Korea.
| |
Collapse
|
10
|
Cippitelli A, Barnes M, Zaveri NT, Toll L. Potent and selective NOP receptor activation reduces cocaine self-administration in rats by lowering hedonic set point. Addict Biol 2020; 25:e12844. [PMID: 31709687 DOI: 10.1111/adb.12844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/29/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Developing new medications for the treatment of cocaine dependence continues to be a research priority. Compelling evidence indicates that mixed opioid receptor agonists, particularly bifunctional compounds that target nociceptin/orphanin FQ peptide (NOP) and mu opioid receptors, may be useful for the treatment of cocaine addiction. Here, we verify that potent and selective pharmacological activation of NOP receptors is sufficient to reduce relevant facets of cocaine addiction in animal models. Accordingly, we determined whether systemic injections of the small molecule AT-312 (0, 1, 3 mg/kg) could reduce operant cocaine self-administration, motivation for cocaine, and vulnerability to cocaine relapse in rats. Results indicate that a potent and selective NOP receptor agonist was equally efficacious in reducing the number of cocaine infusions in short (1-hour), as well as long (6-hour) access sessions. When tested on an economic-demand reinforcement schedule, AT-312 reduced Q0 , the parameter that describes the amount of drug consumed at zero price, while leaving the parameter α, a measure of motivation for drug consumption, unaltered. Furthermore, AT-312 successfully reduced conditioned reinstatement of cocaine seeking. In contrast, the NOP receptor agonist did not modify food self-administration. Blockade of the NOP receptor with the antagonist SB-612111 prevented the effect of AT-312 in decreasing cocaine-reinforced responding under a 2-hour fixed ratio 1 schedule, suggesting a NOP receptor-mediated mechanism. This work demonstrates that potent and selective activation of NOP receptors is sufficient to decrease cocaine taking and seeking behaviors in rats.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Biomedical Science Department Charles E. Schmidt College of Medicine Florida Atlantic University Boca Raton FL United States
| | - Megan Barnes
- Biomedical Science Department Charles E. Schmidt College of Medicine Florida Atlantic University Boca Raton FL United States
| | | | - Lawrence Toll
- Biomedical Science Department Charles E. Schmidt College of Medicine Florida Atlantic University Boca Raton FL United States
| |
Collapse
|
11
|
Bennett A, Barrera E, Namballa H, Harding W, Ranaldi R. (-)-Stepholidine blocks expression, but not development, of cocaine conditioned place preference in rats. Neurosci Lett 2020; 734:135151. [PMID: 32531529 PMCID: PMC7368993 DOI: 10.1016/j.neulet.2020.135151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to investigate the effects of (-)-stepholidine (SPD), a compound with dopamine D1 partial agonist and D2/D3 antagonist properties, on the development and expression of cocaine conditioned place preference (CPP). Subjects (N = 65; male Long Evans rats) were tested using a CPP procedure consisting of 3 phases: (1) a 15-min pre-exposure session where animals could explore each compartment freely, (2) eight 30-min conditioning sessions where animals were restricted to one side or the other with cocaine (10 mg/kg) or saline, respectively, on alternating days and (3) a 15-minute preference test session where animals could explore each compartment freely. To test the effects of SPD on expression of cocaine CPP, rats were administered vehicle (distilled water with 20 % DMSO), 10, 15 or 20 mg/kg SPD (intraperitoneally) 30 min prior to the test session. We found that 20 mg/kg of SPD significantly blocked the expression of cocaine CPP. To test the effects of SPD on the development of CPP, 0 (vehicle), 10, 15 or 20mg/kg SPD were administered 30 min prior to each cocaine conditioning session and vehicle before each saline conditioning session; no treatment was given prior to the test session. A preference test showed that each SPD group maintained a CPP similar to the vehicle group. These data indicate that SPD can block the expression of a cocaine CPP but has no effect on its development, suggesting that it inhibits the effects of cocaine cues on cocaine incentive motivated behavior. These results suggest that SPD may be a potential treatment for cue-driven aspects of cocaine use disorder.
Collapse
Affiliation(s)
- A Bennett
- Queens College of the City University of New York, Department of Psychology, USA
| | - E Barrera
- Queens College of the City University of New York, Department of Psychology, USA
| | - H Namballa
- Hunter College of the City University of New York, Department of Chemistry, USA; CUNY Graduate Center, 365 5thAvenue, New York, NY 10016, USA; CUNY Graduate Center, 365 5thAvenue, New York, NY 10016, USA
| | - W Harding
- Hunter College of the City University of New York, Department of Chemistry, USA; CUNY Graduate Center, 365 5thAvenue, New York, NY 10016, USA; CUNY Graduate Center, 365 5thAvenue, New York, NY 10016, USA
| | - R Ranaldi
- Queens College of the City University of New York, Department of Psychology, USA; CUNY Graduate Center, 365 5thAvenue, New York, NY 10016, USA.
| |
Collapse
|
12
|
Clinical potential of a rationally engineered enzyme for treatment of cocaine dependence: Long-lasting blocking of the psychostimulant, discriminative stimulus, and reinforcing effects of cocaine. Neuropharmacology 2020; 176:108251. [PMID: 32710979 DOI: 10.1016/j.neuropharm.2020.108251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
It is a grand challenge to develop a truly effective treatment of substance use disorder (SUD), particularly for cocaine and other drugs without an FDA-approved treatment available, because a truly effective therapy must effectively block the drug's physiological and reinforcing effects during the entire period of treatment in order to achieve the long-time abstinence required by the FDA. Whether a biologic, such as monoclonal antibody, vaccine, or therapeutic enzyme, can be truly effective for SUD treatment or not has been the subject of extensive debate. The main debate question is whether a biologic, particularly an exogenous enzyme, can effectively block the drug's reinforcing effect. In this report, we demonstrate that a modest dose of a recently redesigned long-acting cocaine hydrolase, CocH3-Fc(M6), can be used to effectively block the psychostimulant, discriminative stimulus, and reinforcing effects of cocaine for a sufficiently long period of time. For example, a dose of 3 mg/kg CocH3-Fc(M6) completely blocked the discriminative stimulus and reinforcing effects for 24/25 days and continued to significantly attenuate/decrease the cocaine effects for at least 29 days in rats. All the animal data consistently suggest that the long-acting cocaine hydrolase is a truly promising candidate of enzyme therapy for treatment of cocaine use disorder.
Collapse
|
13
|
Zheng F, Chen X, Kim K, Zhang T, Huang H, Zhou S, Zhang J, Jin Z, Zhan CG. Structure-Based Design and Discovery of a Long-Acting Cocaine Hydrolase Mutant with Improved Binding Affinity to Neonatal Fc Receptor for Treatment of Cocaine Abuse. AAPS JOURNAL 2020; 22:62. [PMID: 32189158 DOI: 10.1208/s12248-020-00442-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/28/2020] [Indexed: 01/06/2023]
Abstract
Despite decades of efforts to develop a pharmacotherapy for cocaine abuse treatment, there is still no FDA-approved treatment of diseases associated with this commonly abused drug. Our previously designed highly efficient cocaine hydrolases (CocHs) and the corresponding Fc-fusion proteins (e.g., CocH3-Fc) are recognized as potentially promising therapeutic enzyme candidates for cocaine abuse treatment, but all with limited biological half-lives. In order to prolong the biological half-life and, thus, decrease the required frequency of the enzyme administration for cocaine abuse treatment, we have modeled the Fc-fusion CocH binding with neonatal Fc receptor (FcRn) in the present study. This approach led to the design and testing of CocH3-Fc(M6), a CocH3-Fc mutant with nearly 100-fold increased binding affinity: from Kd = ~ 4 μM to Kd = 43 nM. As a result, CocH3-Fc(M6) indeed revealed a markedly prolonged biological half-life (t1/2 = 206 ± 7 h or ~ 9 days) in rats, longer than other known Fc-fusion protein drugs such as abatacept and alefacept (for other therapeutic purposes) in the same species (rats). It has been demonstrated that a single dose of 3 mg/kg CocH3-Fc(M6) effectively blocked 20 mg/kg cocaine-induced hyperactivity on day 18 after CocH3-Fc(M6) administration. This is the first attempt to rationally design long-acting Fc-fusion enzyme mutant based on combined computational modeling and experimental measurement of the Fc-fusion CocH binding with FcRn. The similar structure-based design strategy may be used to prolong the biological half-lives of other Fc-fusion protein drugs.
Collapse
Affiliation(s)
- Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Xiabin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Kyungbo Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Ting Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Haifeng Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Shuo Zhou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Jinling Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Zhenyu Jin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky, 40536, USA.
| |
Collapse
|
14
|
Cheng J, Wang S, Lin W, Wu N, Wang Y, Chen M, Xie XQ, Feng Z. Computational Systems Pharmacology-Target Mapping for Fentanyl-Laced Cocaine Overdose. ACS Chem Neurosci 2019; 10:3486-3499. [PMID: 31257858 DOI: 10.1021/acschemneuro.9b00109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The United States of America is fighting against one of its worst-ever drug crises. Over 900 people a week die from opioid- or heroin-related overdoses, while millions more suffer from opioid prescription addiction. Recently, drug overdoses caused by fentanyl-laced cocaine specifically are on the rise. Due to drug synergy and an increase in side effects, polydrug addiction can cause more risk than addiction to a single drug. In the present work, we systematically analyzed the overdose and addiction mechanism of cocaine and fentanyl. First, we applied our established chemogenomics knowledgebase and machine-learning-based methods to map out the potential and known proteins, transporters, and metabolic enzymes and the potential therapeutic target(s) for cocaine and fentanyl. Sequentially, we looked into the detail of (1) the addiction to cocaine and fentanyl by binding to the dopamine transporter and the μ opioid receptor (DAT and μOR, respectively), (2) the potential drug-drug interaction of cocaine and fentanyl via p-glycoprotein (P-gp) efflux, (3) the metabolism of cocaine and fentanyl in CYP3A4, and (4) the physiologically based pharmacokinetic (PBPK) model for two drugs and their drug-drug interaction at the absorption, distribution, metabolism, and excretion (ADME) level. Finally, we looked into the detail of JWH133, an agonist of cannabinoid 2-receptor (CB2) with potential as a therapy for cocaine and fentanyl overdose. All these results provide a better understanding of fentanyl and cocaine polydrug addiction and future drug abuse prevention.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, China
| | - Siyi Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Weiwei Lin
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Nan Wu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yuanqiang Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Maozi Chen
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
15
|
Rewarding effects of 2-desoxypipradrol in mice. Neurosci Lett 2019; 705:46-50. [DOI: 10.1016/j.neulet.2019.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 11/24/2022]
|
16
|
Friedel–Crafts chemistry 56*. Unprecedented construction of functionalized polycyclic quinolines via Friedel–Crafts cycliacylation and Beckmann rearrangement. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Jeon SY, Kim YH, Kim SJ, Suh SK, Cha HJ. Abuse potential of 2-(4-iodo-2, 5-dimethoxyphenyl)N-(2-methoxybenzyl)ethanamine (25INBOMe); in vivo and ex vivo approaches. Neurochem Int 2019; 125:74-81. [PMID: 30769030 DOI: 10.1016/j.neuint.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 01/08/2023]
Abstract
25INBOMe ("25-I", "N-Bomb"), one of new psychoactive substances (NPSs), is being abused for recreational purpose. However, the liability for abuse or dependence has not been systematically studied yet. The objective of the present study was to evaluate rewarding and reinforcing effects of 25INBOMe using conditioned place preference (CPP) and self-administration (SA) paradigms. In addition, ultrasonic vocalizations (USVs) were measured to investigate relationships between USVs and emotional state regarding dependence on psychoactive substances. To understand molecular mechanism involved in its action, dopamine (DA) level changes were analyzed using synaptosomes extracted from the striatal region of the brain. Expression level changes of SGK1 (serum/glucocorticoid regulated kinase 1) and PER2 (period circadian protein homolog 2), two putative biomarkers for drug dependence, were also analyzed. Results showed that 25INBOMe increased both CPP (0.3 mg/kg) and SA (0.03 mg/kg/infusion) and produced higher frequencies in USVs analysis. It also increased DA levels in the striatal region and changed expression levels of SGK1 and PER2. Results of the present study suggest that 25INBOMe might produce rewarding and reinforcing effects, indicating its dependence liability. In addition, frequencies of USV might be associated with emotional state of mice induced by psychoactive substances regarding substance dependence. This is the first systemic preclinical report on the dependence liability of 25INBOMe and the first attempt to introduce a possible relationship between USVs and emotional state of mice regarding substance dependency. Further studies are needed to clarify the mechanism involved in 25INBOMe dependency and determine the usefulness of USV measurement as a method for evaluating dependence liability.
Collapse
Affiliation(s)
- Seo Young Jeon
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea
| | - Young-Hoon Kim
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea
| | - Sung Jin Kim
- Cosmetics Policy Division, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea
| | - Soo Kyung Suh
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea
| | - Hye Jin Cha
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| |
Collapse
|
18
|
Wan X, Yao Y, Fang L, Liu J. Unexpected protonation state of Glu197 discovered from simulations of tacrine in butyrylcholinesterase. Phys Chem Chem Phys 2018; 20:14938-14946. [PMID: 29786716 DOI: 10.1039/c8cp01566j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Butyrylcholinesterase (BChE) has been actively involved in drug discoveries from many fields for decades. In the crystal structure of the BChE-tacrine complex, there is an unanticipated formyl-proline molecule resolved very close to tacrine, raising an essential question on how reliable it is to apply the binding pose in a crystal structure to analyze related experimental observations, in which no formyl-proline is actually involved. In this study, by performing a series of 100 ns molecular dynamics simulations, we demonstrate that it is safe to employ the structural information from this crystal structure to analyze related experimental observations. Surprisingly, Glu197 needs to be protonated to have the structures simulated appropriately. It should be noted that Glu197 has been commonly considered as deprotonated in diverse analyses due to its low pKa in aqueous solution, for which some interpretations are inconsistent or unclear. Our further investigation shows that the protonated Glu197 plays a very important role in preserving His438 within the catalytic triad through stabilizing a highly conserved water molecule. Interestingly, the catalytic triad and Glu197 have been long recognized for possibly deviating largely from the crystal structure, which might be catalytically deficient and is generally considered to result from the difference between the crystal and aqueous environment. Herein, our results suggest that the large deviations of the catalytic triad and Glu197 from the crystal structure are caused by the inappropriate protonation state of Glu197. This finding shall provide an important clue that has been long missing for a better understanding of BChE-related puzzles or even reconsideration of some BChE-catalyzed reaction mechanisms.
Collapse
Affiliation(s)
- Xiao Wan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P. R. China.
| | | | | | | |
Collapse
|
19
|
Chen X, Deng J, Cui W, Hou S, Zhang J, Zheng X, Ding X, Wei H, Zhou Z, Kim K, Zhan CG, Zheng F. Development of Fc-Fused Cocaine Hydrolase for Cocaine Addiction Treatment: Catalytic and Pharmacokinetic Properties. AAPS JOURNAL 2018; 20:53. [PMID: 29556863 DOI: 10.1208/s12248-018-0214-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/27/2018] [Indexed: 11/30/2022]
Abstract
Cocaine abuse is a worldwide public health and social problem without a US Food and Drug Administration (FDA)-approved medication. Accelerating cocaine metabolism that produces biologically inactive metabolites by administration of an efficient cocaine hydrolase (CocH) has been recognized as a promising strategy for cocaine abuse treatment. However, the therapeutic effects of CocH are limited by its short biological half-life (e.g., 8 h or shorter in rats). In this study, we designed and prepared a set of Fc-fusion proteins constructed by fusing Fc(M3) with CocH3 at the N-terminus of CocH3. A linker between the two protein domains was optimized to improve both the biological half-life and catalytic activity against cocaine. It has been concluded that Fc(M3)-G6S-CocH3 not only has fully retained the catalytic efficiency of CocH3 against cocaine but also has the longest biological half-life (e.g., ∼ 136 h in rats) among all of the long-acting CocHs identified so far. A single dose (0.2 mg/kg, IV) of Fc(M3)-G6S-CocH3 was able to significantly attenuate 15 mg/kg cocaine-induced hyperactivity for at least 11 days (268 h) after the Fc(M3)-G6S-CocH3 administration.
Collapse
Affiliation(s)
- Xiabin Chen
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jing Deng
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Wenpeng Cui
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Shurong Hou
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jinling Zhang
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Xirong Zheng
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Xin Ding
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Huimei Wei
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Ziyuan Zhou
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Kyungbo Kim
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center (MMBC) and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
20
|
Kitanaka J, Kitanaka N, Takemura M. Modification of Monoaminergic Activity by MAO Inhibitors Influences Methamphetamine Actions. Drug Target Insights 2017. [DOI: 10.1177/117739280600100001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Junichi Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Nobue Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Motohiko Takemura
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
21
|
Yun J, Lee KW, Eom JH, Kim YH, Shin J, Han K, Park HK, Kim HS, Cha HJ. Potential for Dependence on Lisdexamfetamine - In vivo and In vitro Aspects. Biomol Ther (Seoul) 2017; 25:659-664. [PMID: 28190317 PMCID: PMC5685436 DOI: 10.4062/biomolther.2016.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/30/2016] [Accepted: 11/15/2016] [Indexed: 11/18/2022] Open
Abstract
Although lisdexamfetamine is used as a recreational drug, little research exists regarding its potential for dependence or its precise mechanisms of action. This study aims to evaluate the psychoactivity and dependence profile of lisdexamfetamine using conditioned place preference and self-administration paradigms in rodents. Additionally, biochemical techniques are used to assess alterations in the dopamine levels in striatal synaptosomes following administration of lisdexamfetamine. Lisdexamfetamine increased both conditioned place preference and self-administration. Moreover, after administration of the lisdexamfetamine, dopamine levels in the striatal synaptosomes were significantly increased. Although some modifications should be made to the analytical methods, performing high performance liquid chromatography studies on synaptosomes can aid in predicting dependence liability when studying new psychoactive substances in the future. Collectively, lisdexamfetamine has potential for dependence possible via dopaminergic pathway.
Collapse
Affiliation(s)
- Jaesuk Yun
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Kwang-Wook Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Jang-Hyeon Eom
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Jisoon Shin
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Kyoungmoon Han
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Hye-Kyung Park
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Hyung Soo Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| | - Hye Jin Cha
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Republic of Korea
| |
Collapse
|
22
|
de Guglielmo G, Matzeu A, Kononoff J, Mattioni J, Martin-Fardon R, George O. Cebranopadol Blocks the Escalation of Cocaine Intake and Conditioned Reinstatement of Cocaine Seeking in Rats. J Pharmacol Exp Ther 2017; 362:378-384. [PMID: 28645915 PMCID: PMC5539589 DOI: 10.1124/jpet.117.241042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/21/2017] [Indexed: 11/22/2022] Open
Abstract
Cebranopadol is a novel agonist of nociceptin/orphanin FQ peptide (NOP) and opioid receptors with analgesic properties that is being evaluated in clinical Phase 2 and Phase 3 trials for the treatment of chronic and acute pain. Recent evidence indicates that the combination of opioid and NOP receptor agonism may be a new treatment strategy for cocaine addiction. We sought to extend these findings by examining the effects of cebranopadol on cocaine self-administration (0.5 mg/kg/infusion) and cocaine conditioned reinstatement in rats with extended access to cocaine. Oral administration of cebranopadol (0, 25, and 50 μg/kg) reversed the escalation of cocaine self-administration in rats that were given extended (6 hour) access to cocaine, whereas it did not affect the self-administration of sweetened condensed milk (SCM). Cebranopadol induced conditioned place preference but did not affect locomotor activity during the conditioning sessions. Finally, cebranopadol blocked the conditioned reinstatement of cocaine seeking. These results show that oral cebranopadol treatment prevented addiction-like behaviors (i.e., the escalation of intake and reinstatement), suggesting that it may be a novel strategy for the treatment of cocaine use disorder. However, the conditioned place preference that was observed after cebranopadol administration suggests that this compound may have some intrinsic rewarding effects.
Collapse
Affiliation(s)
| | - Alessandra Matzeu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Jenni Kononoff
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Julia Mattioni
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Rémi Martin-Fardon
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
23
|
Blum K, Febo M, Fried L, Li M, Dushaj K, Braverman ER, McLaughlin T, Steinberg B, Badgaiyan RD. Hypothesizing That Neuropharmacological and Neuroimaging Studies of Glutaminergic-Dopaminergic Optimization Complex (KB220Z) Are Associated With "Dopamine Homeostasis" in Reward Deficiency Syndrome (RDS). Subst Use Misuse 2017; 52:535-547. [PMID: 28033474 PMCID: PMC5589271 DOI: 10.1080/10826084.2016.1244551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is need for better treatments of addictive behaviors, both substance and non-substance related, termed Reward Deficiency Syndrome (RDS). While the FDA has approved pharmaceuticals under the umbrella term Medication Assisted Treatment (MAT), these drugs are not optimal. OBJECTIVES It is our contention that these drugs work well in the short-term by blocking dopamine function leading to psychological extinction. However, use of buprenorphine/Naloxone over a long period of time results in unwanted addiction liability, reduced emotional affect, and mood changes including suicidal ideation. METHODS We are thus proposing a paradigm shift in addiction treatment, with the long-term goal of achieving "Dopamine Homeostasis." While this may be a laudable goal, it is very difficult to achieve. Nevertheless, this commentary briefly reviews past history of developing and subsequently, utilizing a glutaminergic-dopaminergic optimization complex [Kb220Z] shown to be beneficial in at least 20 human clinical trials and in a number of published and unpublished studies. RESULTS It is our opinion that, while additional required studies could confirm these findings to date, the cited studies are indicative of achieving enhanced resting state functional connectivity, connectivity volume, and possibly, neuroplasticity. Conclusions/Importance: We are proposing a Reward Deficiency Solution System (RDSS) that includes: Genetic Addiction Risk Score (GARS); Comprehensive Analysis of Reported Drugs (CARD); and a glutaminergic-dopaminergic optimization complex (Kb220Z). Continued investigation of this novel strategy may lead to a better-targeted approach in the long-term, causing dopamine regulation by balancing the glutaminergic-dopaminergic pathways. This may potentially change the landscape of treating all addictions leading us to the promised land.
Collapse
Affiliation(s)
- Kenneth Blum
- a Department of Psychiatry & McKnight Brain Institute , University of Florida College of Medicine , Gainesville , Florida , USA.,b Departments of Psychiatry & Behavioral Sciences , Keck School of Medicine of USC , Los Angeles , California , USA.,c Department of Clinical Neurology , PATH Foundation NY , New York , New York , USA.,d Human Integrated Services Unit , University of Vermont Centre for Clinical & Translational Science , Burlington , Vermont , USA.,e Division of Addiction Services , Dominion Diagnostics, LLC , North Kingstown , Rhode Island , USA.,f Division of Neuroscience-Based Therapy , Summit Estate Recovery Center , Los Gatos , California , USA.,g Division of Neuroscience Research and Addiction Therapy , The Shores Treatment and Recovery Center , Port Saint Lucie , Florida , USA.,h Institute of Psychology , Eötvös Loránd University , Budapest , Hungary.,i Department of Psychiatry , Wright State University Boonshoft School of Medicine , Dayton , Ohio, USA
| | - Marcelo Febo
- a Department of Psychiatry & McKnight Brain Institute , University of Florida College of Medicine , Gainesville , Florida , USA
| | - Lyle Fried
- g Division of Neuroscience Research and Addiction Therapy , The Shores Treatment and Recovery Center , Port Saint Lucie , Florida , USA
| | - Mona Li
- b Departments of Psychiatry & Behavioral Sciences , Keck School of Medicine of USC , Los Angeles , California , USA
| | - Kristina Dushaj
- b Departments of Psychiatry & Behavioral Sciences , Keck School of Medicine of USC , Los Angeles , California , USA
| | - Eric R Braverman
- b Departments of Psychiatry & Behavioral Sciences , Keck School of Medicine of USC , Los Angeles , California , USA
| | - Thomas McLaughlin
- j Center for Psychiatric Medicine , North Andover , Massachusetts , USA
| | - Bruce Steinberg
- k Department of Psychology , Curry College , Milton , Massachusetts , USA
| | - Rajendra D Badgaiyan
- i Department of Psychiatry , Wright State University Boonshoft School of Medicine , Dayton , Ohio, USA
| |
Collapse
|
24
|
Chen X, Zheng X, Ding K, Zhou Z, Zhan CG, Zheng F. A quantitative LC-MS/MS method for simultaneous determination of cocaine and its metabolites in whole blood. J Pharm Biomed Anal 2017; 134:243-251. [PMID: 27923200 PMCID: PMC5196007 DOI: 10.1016/j.jpba.2016.11.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
Abstract
As new metabolic pathways of cocaine were recently identified, a high performance liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to simultaneously determine cocaine and nine cocaine-related metabolites in whole blood samples. One-step solid phase extraction was used to extract all of the ten compounds and corresponding internal standards from blood samples. All compounds and internal standards extracted were separated on an Atlantis T3 (100Å, 3μm, 2.1mm×150mm I.D) column and detected in positive ion and high sensitivity mode with multiple reaction monitoring. This method was validated for its sensitivity, linearity, specificity, accuracy, precision, recovery, and stability. All of the ten compounds were quantifiable ranging from the lower limit of quantification (LLOQs) of ∼10nM (1.9-3.2ng/ml) to ∼1000nM (190-320ng/ml) without any interfering substance. Accuracy and precision were determined, and both of them were within the acceptance criteria of the United States (US) Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines. The recovery was above 66.7% for all compounds. Stability tests demonstrated the stability of compounds under different storage conditions in whole blood samples. The method was successfully applied to a pharmacokinetic study with co-administration of cocaine and alcohol in rats.
Collapse
Affiliation(s)
- Xiabin Chen
- Molecular Modeling and Biopharmaceutical Center, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Xirong Zheng
- Molecular Modeling and Biopharmaceutical Center, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Kai Ding
- Molecular Modeling and Biopharmaceutical Center, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Ziyuan Zhou
- Molecular Modeling and Biopharmaceutical Center, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States.
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, United States.
| |
Collapse
|
25
|
Xi ZX, Song R, Li X, Lu GY, Peng XQ, He Y, Bi GH, Sheng SP, Yang HJ, Zhang H, Li J, Froimowitz M, Gardner EL. CTDP-32476: A Promising Agonist Therapy for Treatment of Cocaine Addiction. Neuropsychopharmacology 2017; 42:682-694. [PMID: 27534265 PMCID: PMC5240176 DOI: 10.1038/npp.2016.155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/19/2016] [Accepted: 07/31/2016] [Indexed: 11/09/2022]
Abstract
Agonist-replacement therapies have been successfully used for treatment of opiate and nicotine addiction, but not for cocaine addiction. One of the major obstacles is the cocaine-like addictive potential of the agonists themselves. We report here an atypical dopamine (DA) transporter (DAT) inhibitor, CTDP-32476, that may have translational potential for treating cocaine addiction. In vitro ligand-binding assays suggest that CTDP-32476 is a potent and selective DAT inhibitor and a competitive inhibitor of cocaine binding to the DAT. Systemic administration of CTDP-32476 alone produced a slow-onset, long-lasting increase in extracellular nucleus accumbens DA, locomotion, and brain-stimulation reward. Drug-naive rats did not self-administer CTDP-32476. In a substitution test, cocaine self-administration rats displayed a progressive reduction in CTDP-32476 self-administration with an extinction pattern of drug-taking behavior, suggesting significantly lower addictive potential than cocaine. Pretreatment with CTDP-32476 inhibited cocaine self-administration, cocaine-associated cue-induced relapse to drug seeking, and cocaine-enhanced extracellular DA in the nucleus accumbens. These findings suggest that CTDP-32476 is a unique DAT inhibitor that not only could satisfy 'drug hunger' through its slow-onset long-lasting DAT inhibitor action, but also render subsequent administration of cocaine ineffectual-thus constituting a novel and unique compound with translational potential as an agonist therapy for treatment of cocaine addiction.
Collapse
Affiliation(s)
- Zheng-Xiong Xi
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Rui Song
- State Key Laboratory of Toxicology and Medical Countermeasures and Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xia Li
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Guan-Yi Lu
- State Key Laboratory of Toxicology and Medical Countermeasures and Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao-Qing Peng
- Department of Behavioral Health, Saint Elizabeth's Hospital, Washington, DC, USA
| | - Yi He
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Guo-Hua Bi
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Siyuan Peter Sheng
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Hong-Ju Yang
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Haiying Zhang
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures and Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Mark Froimowitz
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Eliot L Gardner
- Neuropsychopharmacology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| |
Collapse
|
26
|
Urban KR, Li YC, Xing B, Gao WJ. A Clinically-Relevant Dose of Methylphenidate Enhances Synaptic Inhibition in the Juvenile Rat Prefrontal Cortex. ACTA ACUST UNITED AC 2017; 2:69-77. [PMID: 30221243 PMCID: PMC6136665 DOI: 10.17756/jrdsas.2016-030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Methylphenidate (MPH) is perhaps the most commonly prescribed psychoactive substance for young children and adolescents; however, its effects on the immature brain are not well understood. MPH is increasingly abused by adolescents and prescriptions are being issued to increasingly younger children without rigorous psychological testing, raising the potential for misdiagnosis; it is therefore crucial to understand how this drug might impact a healthy, developing brain. Recently, we have shown that a clinically-relevant dose of MPH depresses the activity of pyramidal neurons in the prefrontal cortex of normal juvenile rats, but its effects on inhibitory synaptic transmission remain to be explored. We therefore recorded spontaneous (s), miniature (m), and evoked (e) inhibitory postsynaptic currents (IPSCs) in layer 5 pyramidal neurons in juvenile rat prefrontal cortex. We found a dose-dependent effect of MPH on sIPSC frequency but not amplitude, where 0.3 mg/kg significantly decreased frequency, but 1 mg/kg significantly increased frequency. Moreover, mIPSCs were not affected by either dose of MPH, whereas the amplitudes, as well as paired-pulse ratios and coefficient of variations of evoked IPSCs were significantly increased after MPH treatment, indicating a presynaptic action. Tonic GABA current was also not affected by MPH treatment. Taken together, these results suggest that MPH administration to a healthy juvenile may enhance excitation of GABAergic interneurons; thus shifting the excitation-inhibition balance in the prefrontal cortex towards inhibition, and depressing overall prefrontal cortical activity. Our findings also indicate that the adolescent brain is more sensitive to MPH than previously thought, and dose ranges need to be reconsidered for age as well as size.
Collapse
Affiliation(s)
- Kimberly R Urban
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.,Department of General Anesthesia, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Bo Xing
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
27
|
Castells X, Cunill R, Pérez‐Mañá C, Vidal X, Capellà D. Psychostimulant drugs for cocaine dependence. Cochrane Database Syst Rev 2016; 9:CD007380. [PMID: 27670244 PMCID: PMC6457633 DOI: 10.1002/14651858.cd007380.pub4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cocaine dependence is a severe disorder for which no medication has been approved. Like opioids for heroin dependence, replacement therapy with psychostimulants could be an effective therapy for treatment. OBJECTIVES To assess the effects of psychostimulants for cocaine abuse and dependence. Specific outcomes include sustained cocaine abstinence and retention in treatment. We also studied the influence of type of drug and comorbid disorders on psychostimulant efficacy. SEARCH METHODS This is an update of the review previously published in 2010. For this updated review, we searched the Cochrane Drugs and Alcohol Group Trials Register, CENTRAL, MEDLINE, Embase and PsycINFO up to 15 February 2016. We handsearched references of obtained articles and consulted experts in the field. SELECTION CRITERIA We included randomised parallel group controlled clinical trials comparing the efficacy of a psychostimulant drug versus placebo. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included 26 studies involving 2366 participants. The included studies assessed nine drugs: bupropion, dexamphetamine, lisdexamfetamine, methylphenidate, modafinil, mazindol, methamphetamine, mixed amphetamine salts and selegiline. We did not consider any study to be at low risk of bias for all domains included in the Cochrane 'Risk of bias' tool. Attrition bias was the most frequently suspected potential source of bias of the included studies. We found very low quality evidence that psychostimulants improved sustained cocaine abstinence (risk ratio (RR) 1.36, 95% confidence interval (CI) 1.05 to 1.77, P = 0.02), but they did not reduce cocaine use (standardised mean difference (SMD) 0.16, 95% CI -0.02 to 0.33) among participants who continued to use it. Furthermore, we found moderate quality evidence that psychostimulants did not improve retention in treatment (RR 1.00, 95% CI 0.93 to 1.06). The proportion of adverse event-induced dropouts and cardiovascular adverse event-induced dropouts was similar for psychostimulants and placebo (RD 0.00, 95% CI -0.01 to 0.01; RD 0.00, 95% CI -0.02 to 0.01, respectively). When we included the type of drug as a moderating variable, the proportion of patients achieving sustained cocaine abstinence was higher with bupropion and dexamphetamine than with placebo. Psychostimulants also appeared to increase the proportion of patients achieving sustained cocaine and heroin abstinence amongst methadone-maintained, dual heroin-cocaine addicts. Retention to treatment was low, though, so our results may be compromised by attrition bias. We found no evidence of publication bias. AUTHORS' CONCLUSIONS This review found mixed results. Psychostimulants improved cocaine abstinence compared to placebo in some analyses but did not improve treatment retention. Since treatment dropout was high, we cannot rule out the possibility that these results were influenced by attrition bias. Existing evidence does not clearly demonstrate the efficacy of any pharmacological treatment for cocaine dependence, but substitution treatment with psychostimulants appears promising and deserves further investigation.
Collapse
Affiliation(s)
- Xavier Castells
- Universitat de GironaUnit of Clinical Pharmacology, TransLab Research Group, Department of Medical SciencesEmili Grahit, 77GironaCataloniaSpain17071
| | - Ruth Cunill
- Parc Sanitari Sant Joan de DéuParc Sanitari Sant Joan de Déu‐NumanciaBarcelonaCatalunyaSpain08735
| | - Clara Pérez‐Mañá
- Universitat Autònoma de BarcelonaIntegrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Research Institute‐IMIM, Parc de Salut Mar, and Department of Pharmacology, Therapeutics and ToxicologyDoctor Aiguader 88BarcelonaCataloniaSpain08003
| | - Xavier Vidal
- Hospital Universitari Vall d'Hebron, Universitat Autònoma de BarcelonaDepartment of Clinical PharmacologyPasseig Vall d'Hebron 119‐129BarcelonaCataloniaSpain08035
| | - Dolors Capellà
- Faculty of Medicine, Universitat de GironaUnit of Clinical Pharmacology, TransLab Research Group, Department of Medical SciencesGironaSpain
| | | |
Collapse
|
28
|
Reward deficiency and anti-reward in pain chronification. Neurosci Biobehav Rev 2016; 68:282-297. [DOI: 10.1016/j.neubiorev.2016.05.033] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022]
|
29
|
Cha HJ, Lee KW, Eom JH, Kim YH, Shin J, Yun J, Han K, Kim HS. 5-(2-Aminopropyl)benzofuran and phenazepam demonstrate the possibility of dependence by increasing dopamine levels in the brain. Pharmacol Biochem Behav 2016; 149:17-22. [PMID: 27502147 DOI: 10.1016/j.pbb.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/02/2016] [Accepted: 08/05/2016] [Indexed: 12/31/2022]
Abstract
Although 5-(2-aminopropyl)benzofuran (5-APB) and 7-bromo-5-(2-chlorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one (phenazepam) are being used as recreational drugs, research on their dependence liability or mechanisms of action is lacking. The present study aimed to evaluate the behavioral effects and dependence liability of these drugs using conditioned place preference and self-administration paradigms in rodents. Additionally, biochemical techniques were used to assess the substance-induced alterations in synaptosome-released dopamine. While both of the tested substances elicited increases in conditioned place preference and dopamine, neither of them facilitated self-administration, suggesting that 5-APB and phenazepam have rewarding effects, rather than reinforcing effects.
Collapse
Affiliation(s)
- Hye Jin Cha
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea.
| | - Kwang-Wook Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Jang-Hyeon Eom
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Jisoon Shin
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Jaesuk Yun
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Kyoungmoon Han
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| | - Hyung Soo Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, 187 Osong Saengmyeong 2-ro, Heungdeok-gu, Chungju-shi 28159, Republic of Korea
| |
Collapse
|
30
|
Selective activation of the trace amine-associated receptor 1 decreases cocaine's reinforcing efficacy and prevents cocaine-induced changes in brain reward thresholds. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:70-5. [PMID: 26048337 DOI: 10.1016/j.pnpbp.2015.05.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 01/09/2023]
Abstract
The newly discovered trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for medication development in stimulant addiction due to its ability to regulate dopamine (DA) function and modulate stimulants' effects. Recent findings indicate that TAAR1 activation blocks some of the abuse-related physiological and behavioral effects of cocaine. However, findings from existing self-administration studies are inconclusive due to the very limited range of cocaine unit doses tested. Here, in order to shed light on the influence of TAAR1 on cocaine's reward and reinforcement, we studied the effects of partial and full activation of TAAR1on (1) the dose-response curve for cocaine self-administration and (2) cocaine-induced changes in intracranial self-stimulation (ICSS). In the first experiment, we examined the effects of the selective full and partial TAAR1 agonists, RO5256390 and RO5203648, on self-administration of five unit-injection doses of cocaine (0.03, 0.1, 0.2, 0.45, and 1mg/kg/infusion). Both agonists induced dose-dependent downward shifts in the cocaine dose-response curve, indicating that both partial and full TAAR1 activation decrease cocaine, reinforcing efficacy. In the second experiment, RO5256390 and the partial agonist, RO5263397, dose-dependently prevented cocaine-induced lowering of ICSS thresholds. Taken together, these data demonstrated that TAAR1 stimulation effectively suppresses the rewarding and reinforcing effects of cocaine in self-administration and ICSS models, supporting the candidacy of TAAR1 as a drug discovery target for cocaine addiction.
Collapse
|
31
|
Barr JL, Deliu E, Brailoiu GC, Zhao P, Yan G, Abood ME, Unterwald EM, Brailoiu E. Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor-inositol 1,4,5-trisphosphate-transient receptor potential canonical channel pathways. Cell Calcium 2015; 58:196-207. [PMID: 26077147 PMCID: PMC4501893 DOI: 10.1016/j.ceca.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/05/2015] [Accepted: 05/17/2015] [Indexed: 01/22/2023]
Abstract
Cocaine promotes addictive behavior primarily by blocking the dopamine transporter, thus increasing dopamine transmission in the nucleus accumbens (nAcc); however, additional mechanisms are continually emerging. Sigma-1 receptors (σ1Rs) are known targets for cocaine, yet the mechanisms underlying σ1R-mediated effects of cocaine are incompletely understood. The present study examined direct effects of cocaine on dissociated nAcc neurons expressing phosphatidylinositol-linked D1 receptors. Endoplasmic reticulum-located σ1Rs and inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) were targeted using intracellular microinjection. IP3 microinjection robustly elevated intracellular Ca(2+) concentration, [Ca(2+)]i. While cocaine alone was devoid of an effect, the IP3-induced response was σ1R-dependently enhanced by cocaine co-injection. Likewise, cocaine augmented the [Ca(2+)]i increase elicited by extracellularly applying an IP3-generating molecule (ATP), via σ1Rs. The cocaine-induced enhancement of the IP3/ATP-mediated Ca(2+) elevation occurred at pharmacologically relevant concentrations and was mediated by transient receptor potential canonical channels (TRPC). IP3 microinjection elicited a slight, transient depolarization, further converted to a greatly enhanced, prolonged response, by cocaine co-injection. The cocaine-triggered augmentation was σ1R-dependent, TRPC-mediated and contingent on [Ca(2+)]i elevation. ATP-induced depolarization was similarly enhanced by cocaine. Thus, we identify a novel mechanism by which cocaine promotes activation of D1-expressing nAcc neurons: enhancement of IP3R-mediated responses via σ1R activation at the endoplasmic reticulum, resulting in augmented Ca(2+) release and amplified depolarization due to subsequent stimulation of TRPC. In vivo, intra-accumbal blockade of σ1R or TRPC significantly diminished cocaine-induced hyperlocomotion and locomotor sensitization, endorsing a physio-pathological significance of the pathway identified in vitro.
Collapse
Affiliation(s)
- Jeffrey L Barr
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Elena Deliu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA 19107, USA
| | - Pingwei Zhao
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Guang Yan
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA 19107, USA
| | - Mary E Abood
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
32
|
Urban KR, Gao WJ. Evolution of the Study of Methylphenidate and Its Actions on the Adult Versus Juvenile Brain. J Atten Disord 2015; 19:603-19. [PMID: 22923783 DOI: 10.1177/1087054712455504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Methylphenidate (MPH) is the most often prescribed medication for treatment of ADHD. However, many of its specific cellular and molecular mechanisms of action, as well as developmental consequences of treatment, are largely unknown. This review provides an overview of current understanding of MPH efficacy, safety, and dosage in adult and pediatric ADHD patients, as well as adult animal studies and pioneering studies in juvenile animals treated with MPH. METHOD A thorough review of the current literature on MPH efficacy and safety in children, adults, and animal models was included. Results of studies were compared and contrasted. RESULTS While MPH is currently considered safe, there is a lack of knowledge of potential developmental consequences of early treatment, as well as differences in drug actions in the developing versus mature brain system. CONCLUSION This review emphasizes the need for further research into the age-dependent activities and potency of MPH, and a need for tighter control and clinical relevance in future studies.
Collapse
Affiliation(s)
| | - Wen-Jun Gao
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
33
|
Dürsteler KM, Berger EM, Strasser J, Caflisch C, Mutschler J, Herdener M, Vogel M. Clinical potential of methylphenidate in the treatment of cocaine addiction: a review of the current evidence. Subst Abuse Rehabil 2015; 6:61-74. [PMID: 26124696 PMCID: PMC4476488 DOI: 10.2147/sar.s50807] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Cocaine use continues to be a public health problem, yet there is no proven effective pharmacotherapy for cocaine dependence. A promising approach to treating cocaine dependence may be agonist-replacement therapy, which is already used effectively in the treatment of opioid and tobacco dependence. The replacement approach for cocaine dependence posits that administration of a long-acting stimulant medication should normalize the neurochemical and behavioral perturbations resulting from chronic cocaine use. One potential medication to be substituted for cocaine is methylphenidate (MPH), as this stimulant possesses pharmacobehavioral properties similar to those of cocaine. Aim To provide a qualitative review addressing the rationale for the use of MPH as a cocaine substitute and its clinical potential in the treatment of cocaine dependence. Methods We searched MEDLINE for clinical studies using MPH in patients with cocaine abuse/dependence and screened the bibliographies of the articles found for pertinent literature. Results MPH, like cocaine, increases synaptic dopamine by inhibiting dopamine reuptake. The discriminative properties, reinforcing potential, and subjective effects of MPH and cocaine are almost identical and, importantly, MPH has been found to substitute for cocaine in animals and human volunteers under laboratory conditions. When taken orally in therapeutic doses, its abuse liability, however, appears low, which is especially true for extended-release MPH preparations. Though there are promising data in the literature, mainly from case reports and open-label studies, the results of randomized controlled trials have been disappointing so far and do not corroborate the use of MPH as a substitute for cocaine dependence in patients without attention deficit hyperactivity disorder. Conclusion Clinical studies evaluating MPH substitution for cocaine dependence have provided inconsistent findings. However, the negative findings may be explained by specific study characteristics, among them dosing, duration of treatment, or sample size. This needs to be considered when discussing the potential of MPH as replacement therapy for cocaine dependence. Finally, based on the results, we suggest possible directions for future research.
Collapse
Affiliation(s)
- Kenneth M Dürsteler
- Center for Addictive Disorders, Psychiatric University Clinics Basel, Basel, Switzerland ; Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Eva-Maria Berger
- Center for Addictive Disorders, Psychiatric University Clinics Basel, Basel, Switzerland
| | - Johannes Strasser
- Center for Addictive Disorders, Psychiatric University Clinics Basel, Basel, Switzerland
| | - Carlo Caflisch
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Jochen Mutschler
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Marcus Herdener
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Marc Vogel
- Center for Addictive Disorders, Psychiatric University Clinics Basel, Basel, Switzerland
| |
Collapse
|
34
|
Minozzi S, Amato L, Pani PP, Solimini R, Vecchi S, De Crescenzo F, Zuccaro P, Davoli M. Dopamine agonists for the treatment of cocaine dependence. Cochrane Database Syst Rev 2015; 2015:CD003352. [PMID: 26014366 PMCID: PMC6999795 DOI: 10.1002/14651858.cd003352.pub4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cocaine misuse is a disorder for which no pharmacological treatment of proven efficacy exists. Advances in neurobiology could guide future medication development. OBJECTIVES To investigate the efficacy and acceptability of dopamine agonists alone or in combination with any psychosocial intervention for the treatment of of people who misuse cocaine. SEARCH METHODS We run the search on 12 January 2015. We searched the Cochrane Drugs and Alcohol Group (CDAG) Specialized Register, PubMed, EMBASE, CINAHL, PsycINFO, ICTRP, clinicaltrials.gov and screened reference lists. SELECTION CRITERIA Randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing dopamine agonists alone or associated with psychosocial intervention with placebo, no treatment or other pharmacological interventions. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures. MAIN RESULTS Twenty four studies, including 2147 participants, met the inclusion criteria. Comparing any dopamine agonist versus placebo, we found no differences for any of the outcomes considered: dropout (moderate quality of evidence), abstinence (low quality of evidence), severity of dependence (low quality of evidence), adverse events (moderate quality of evidence). This was also observed when single dopamine agonists were compared against placebo. Comparing amantadine versus antidepressants, we found low quality of evidence that antidepressants performed better for abstinence (RR 0.25, 95% CI 0.12 to 0.53) based on two studies with 44 participants. No differences were found for dropout or adverse events, for both moderate quality of evidence.The major flaws of the included studies concerned selection bias because most studies did not report information about sequence generation (80%) and allocation concealment methods (86%): half of the included studies were judged at unclear risk of performance bias and 62.5% at unclear risk of detection bias for what concerns subjective outcomes. AUTHORS' CONCLUSIONS Current evidence from RCTs does not support the use of dopamine agonists for treating cocaine misuse. This absence of evidence may leave to clinicians the alternative of balancing the possible benefits against the potential adverse effects of the treatment. Even the potential benefit of combining a dopamine agonist with a more potent psychosocial intervention, which was suggested by the previous Cochrane Review (Soares 2003), is not supported by the results of this Cochrane Review update.
Collapse
Affiliation(s)
- Silvia Minozzi
- Lazio Regional Health ServiceDepartment of EpidemiologyVia di Santa Costanza, 53RomeItaly00198
| | - Laura Amato
- Lazio Regional Health ServiceDepartment of EpidemiologyVia di Santa Costanza, 53RomeItaly00198
| | - Pier Paolo Pani
- Health District 8 (ASL 8) CagliariSocial‐Health DivisionVia Logudoro 17CagliariSardiniaItaly09127
| | - Renata Solimini
- Drug Abuse and Doping Unit, Istituto Superiore di SanitàDepartment of Therapeutic Research and Medicines Evaluationviale Regina Elena 299RomeItaly00161
| | - Simona Vecchi
- Lazio Regional Health ServiceDepartment of EpidemiologyVia di Santa Costanza, 53RomeItaly00198
| | - Franco De Crescenzo
- Catholic University of the Sacred HeartInstitute of Psychiatry and PsychologyL.go A. Gemelli 8RomeItaly00168
| | - Piergiorgio Zuccaro
- Drug Abuse and Doping Unit, Istituto Superiore di SanitàDepartment of Therapeutic Research and Medicines Evaluationviale Regina Elena 299RomeItaly00161
| | - Marina Davoli
- Lazio Regional Health ServiceDepartment of EpidemiologyVia di Santa Costanza, 53RomeItaly00198
| | | |
Collapse
|
35
|
Cha HJ, Song MJ, Lee KW, Kim EJ, Kim YH, Lee Y, Seong WK, Hong SI, Jang CG, Yoo HS, Jeong HS. Dependence potential of tramadol: behavioral pharmacology in rodents. Biomol Ther (Seoul) 2014; 22:558-62. [PMID: 25489425 PMCID: PMC4256037 DOI: 10.4062/biomolther.2014.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/10/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022] Open
Abstract
Tramadol is an opioid analgesic agent that has been the subject of a series of case reports suggesting potential for misuse or abuse. However, it is not a controlled substance and is not generally considered addictive in Korea. In this study, we examined the dependence potential and abuse liability of tramadol as well as its effect on the dopaminergic and serotonergic systems in rodents. In animal behavioral tests, tramadol did not show any positive effects on the experimental animals in climbing, jumping, and head twitch tests. However, in the conditioned place preference and self-administration tests, the experimental animals showed significant positive responses. Taken together, tramadol affected the neurological systems related to abuse liability and has the potential to lead psychological dependence.
Collapse
Affiliation(s)
- Hye Jin Cha
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709 ; Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min Ji Song
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| | - Kwang-Wook Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| | - Eun Jung Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| | - Yunje Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| | - Won-Keun Seong
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| | - Sa-Ik Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ho-Sang Jeong
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 361-709
| |
Collapse
|
36
|
Doyle SE, Ramôa C, Garber G, Newman J, Toor S, Lynch WJ. A shift in the role of glutamatergic signaling in the nucleus accumbens core with the development of an addicted phenotype. Biol Psychiatry 2014; 76:810-5. [PMID: 24629536 PMCID: PMC4133320 DOI: 10.1016/j.biopsych.2014.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND While dopamine signaling in the nucleus accumbens (NAc) plays a well-established role in motivating cocaine use in early nonaddicted stages, recent evidence suggests that other signaling pathways may be critical once addiction has developed. Given the importance of glutamatergic signaling in the NAc for drug seeking and relapse, here we examined its role in motivating cocaine self-administration under conditions known to produce either a nonaddicted or an addicted phenotype. METHODS Following acquisition, male and female Sprague Dawley rats were given either short access (three fixed-ratio 1 sessions, 20 infusions/day) or extended 24-hour access (10 days; 4 trials/hour; up to 96 infusions/day) to cocaine. Following a 14-day abstinence period, motivation for cocaine was assessed under a progressive-ratio schedule, and once stable, the effects of intra-NAc infusions of the glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptor antagonist CNQX (0, .01, .03, .1 μg/side) were determined. As an additional measure for the development of an addicted phenotype, separate groups of rats were screened under an extinction/cue-induced reinstatement procedure following abstinence from short-access versus extended-access self-administration. RESULTS Motivation for cocaine and levels of extinction and reinstatement responding were markedly higher following extended-access versus short-access self-administration, confirming the development of an addicted phenotype in the extended-access group. CNQX dose-dependently reduced motivation for cocaine in the extended-access group but was without effect in the short-access group. CONCLUSIONS These results suggest that the role of glutamatergic signaling in the NAc, though not essential for motivating cocaine use in nonaddicted stages, becomes critical once addiction has developed.
Collapse
|
37
|
Forray A, Sofuoglu M. Future pharmacological treatments for substance use disorders. Br J Clin Pharmacol 2014; 77:382-400. [PMID: 23039267 DOI: 10.1111/j.1365-2125.2012.04474.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/23/2012] [Indexed: 12/20/2022] Open
Abstract
Substance use disorders represent a serious public health and social issue worldwide. Recent advances in our understanding of the neurobiological basis of the addictive processes have led to the development of a growing number of pharmacological agents to treat addictions. Despite this progress, there are no approved pharmacological treatments for cocaine, methamphetamine and cannabis addiction. Moving treatment development to the next stage will require novel ways of approaching substance use disorders. One such novel approach is to target individual vulnerabilities, such as cognitive function, sex differences and psychiatric comorbidities. This review provides a summary of promising pharmacotherapies for alcohol, opiate, stimulant and nicotine addictions. Many medications that target positive and negative reinforcement of drugs, as well as individual vulnerabilities to addiction, are in different phases of development. Clinical trials testing the efficacy of these medications for substance use disorder are warranted.
Collapse
Affiliation(s)
- Ariadna Forray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
38
|
Stoops WW, Rush CR. Agonist replacement for stimulant dependence: a review of clinical research. Curr Pharm Des 2014; 19:7026-35. [PMID: 23574440 DOI: 10.2174/138161281940131209142843] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/04/2013] [Indexed: 11/22/2022]
Abstract
Stimulant use disorders are an unrelenting public health concern worldwide. Agonist replacement therapy is among the most effective strategies for managing substance use disorders including nicotine and opioid dependence. The present paper reviewed clinical data from human laboratory self-administration studies and clinical trials to determine whether agonist replacement therapy is a viable strategy for managing cocaine and/or amphetamine use disorders. The extant literature suggests that agonist replacement therapy may be effective for managing stimulant use disorders, however, the clinical selection of an agonist replacement medication likely needs to be based on the pharmacological mechanism of the medication and the stimulant abused by patients. Specifically, dopamine releasers appear most effective for reducing cocaine use whereas dopamine reuptake inhibitors appear most effective for reducing amphetamine use.
Collapse
Affiliation(s)
- William W Stoops
- Department of Behavioral Science, University of Kentucky Medical Center, Lexington, KY 40536- 0086.
| | | |
Collapse
|
39
|
New perspectives on using brain imaging to study CNS stimulants. Neuropharmacology 2014; 87:104-14. [PMID: 25080072 DOI: 10.1016/j.neuropharm.2014.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/26/2014] [Accepted: 07/07/2014] [Indexed: 11/23/2022]
Abstract
While the recent application of brain imaging to study CNS stimulants has offered new insights into the fundamental factors that contribute to their use and abuse, many gaps remain. Brain circuits that mediate pleasure, dependence, craving and relapse are anatomically, neurophysiologically and neurochemically distinct from one another, which has guided the search for correlates of stimulant-seeking and taking behavior. However, unlike other drugs of abuse, metrics for tolerance and physical dependence on stimulants are not obvious. The dopamine theory of stimulant abuse does not sufficiently explain this disorder as serotonergic, GABAergic and glutamagergic circuits are clearly involved in stimulant pharmacology and so tracking the source of the "addictive" processes must adopt a more multimodal, multidisciplinary approach. To this end, both anatomical and functional magnetic resonance imaging (MRI), MR spectroscopy (MRS) and positron emission tomography (PET) are complementary and have equally contributed to our understanding of how stimulants affect the brain and behavior. New vistas in this area include nanotechnology approaches to deliver small molecules to receptors and use MRI to resolve receptor dynamics. Anatomical and blood flow imaging has yielded data showing that cognitive enhancers might be useful adjuncts in treating CNS stimulant dependence, while MRS has opened opportunities to examine the brain's readiness to accept treatment as GABA tone normalizes after detoxification. A desired outcome of the above approaches is being able to offer evidence-based rationales for treatment approaches that can be implemented in a more broad geographic area, where access to brain imaging facilities may be limited. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
|
40
|
Miszkiel J, Przegaliński E. Effects of serotonin (5-HT)1B receptor ligands on amphetamine-seeking behavior in rats. Pharmacol Rep 2014; 65:813-22. [PMID: 24145075 DOI: 10.1016/s1734-1140(13)71062-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/06/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Numerous studies have indicated that serotonin (5-HT)1B receptor ligands affect the behavioral effects of psychostimulants (cocaine, amphetamine), including the reinforcing activities of these drugs. METHODS To substantiate a role for those receptors in incentive motivation for amphetamine, we used the extinction/reinstatement model to examine the effects of the 5-HT1B receptor ligands on the reinstatement of extinguished amphetamine-seeking behavior. Rats trained to self-administer amphetamine (0.06 mg/kg/infusion) subsequently underwent the extinction procedure. These rats were then tested for the amphetamine-primed or amphetamine-associated cue-induced reinstatement of extinguished amphetamine-seeking behavior. RESULTS The 5-HT1B receptor antagonist SB 216641 (5-7.5 mg/kg) attenuated the amphetamine (1.5 mg/kg)- and the amphetamine-associated cue combined with the threshold dose of amphetamine (0.5 mg/kg)-induced reinstatement of amphetamine-seeking behavior. The 5-HT1B receptor agonist CP 94253 (1.25-5 mg/kg) also inhibited the amphetamine-seeking behavior induced by amphetamine (1.5 mg/kg) but not by the cue combined with the threshold dose of amphetamine. The inhibitory effect of CP94253 on amphetamine-seeking behavior remained unaffected by the 5-HT1B receptor antagonist. CONCLUSION Our results indicate that tonic activation of 5-HT1B receptors is involved in amphetamine- and cue-induced reinstatement of amphetamine-seeking behavior and that the inhibitory effects of 5-HT1B receptor antagonists on these phenomena are directly related to the motivational aspects of amphetamine abuse. The inhibitory effect of CP 94253 on amphetamine-seeking behavior seems to be unrelated to 5-HT1B receptor activation and may result from a general reduction of motivation.
Collapse
Affiliation(s)
- Joanna Miszkiel
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | |
Collapse
|
41
|
Zhan CG. Novel pharmacological approaches to treatment of drug overdose and addiction. Expert Rev Clin Pharmacol 2014; 2:1-4. [PMID: 21072135 DOI: 10.1586/17512433.2.1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chang-Guo Zhan
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, 789 South Limestone Street, Lexington, KY 40536, USA TEL: 859-323-3943 FAX: 859-323-3575
| |
Collapse
|
42
|
Cha HJ, Lee HA, Ahn JI, Jeon SH, Kim EJ, Jeong HS. Dependence potential of quetiapine: behavioral pharmacology in rodents. Biomol Ther (Seoul) 2013; 21:307-12. [PMID: 24244816 PMCID: PMC3819904 DOI: 10.4062/biomolther.2013.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 12/18/2022] Open
Abstract
Quetiapine is an atypical or second-generation antipsychotic agent and has been a subject of a series of case report and suggested to have the potential for misuse or abuse. However, it is not a controlled substance and is not generally considered addictive. In this study, we examined quetiapine’s dependence potential and abuse liability through animal behavioral tests using rodents to study the mechanism of quetiapine. Molecular biology techniques were also used to find out the action mechanisms of the drug. In the animal behavioral tests, quetiapine did not show any positive effect on the experimental animals in the climbing, jumping, and conditioned place preference tests. However, in the head twitch and self-administration tests, the experimental animals showed significant positive responses. In addition, the action mechanism of quetiapine was found being related to dopamine and serotonin release. These results demonstrate that quetiapine affects the neurological systems related to abuse liability and has the potential to lead psychological dependence, as well.
Collapse
Affiliation(s)
- Hye Jin Cha
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungwon 363-700, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Cha HJ, Cha JH, Cho HY, Chung EY, Kwon KJ, Lee JY, Jeong HS, Kim HS, Chung HJ, Kim EJ. Dependence potential of propofol: behavioral pharmacology in rodents. Biomol Ther (Seoul) 2013; 20:234-8. [PMID: 24116301 PMCID: PMC3792224 DOI: 10.4062/biomolther.2012.20.2.234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 11/05/2022] Open
Abstract
Propofol is an anesthetic commonly used to provide sedation or to induce and maintain an anesthetic stated. However, there are reports which indicate propofol may cause psychological dependence or be abused. In the present study, we used various behavioral tests including climbing test, jumping test, conditioned place preference, and self-administration test to assess the dependence potential and abuse liability of propofol compared to a positive control (methamphetamine) or a negative control (saline or intralipid). Among the tests, the conditioned place preference test was conducted with a biased method, and the selfadministration test was performed under a fixed ratio (FR) 1 schedule, 1 h per session. No difference was found in the climbing test and jumping test, but propofol (30 mg/kg, i.p.) increased the rewarding effect in the conditioned place preference test, and it showed a positive reinforcing effect compared to the vehicle. These results indicate that propofol tends to show psychological dependence rather than physical dependence, and it seems not to be related with dopaminergic system.
Collapse
Affiliation(s)
- Hye Jin Cha
- National Institute of Food and Drug Safety Evaluation
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Elman I, Borsook D, Volkow ND. Pain and suicidality: insights from reward and addiction neuroscience. Prog Neurobiol 2013; 109:1-27. [PMID: 23827972 PMCID: PMC4827340 DOI: 10.1016/j.pneurobio.2013.06.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/18/2013] [Indexed: 01/09/2023]
Abstract
Suicidality is exceedingly prevalent in pain patients. Although the pathophysiology of this link remains unclear, it may be potentially related to the partial congruence of physical and emotional pain systems. The latter system's role in suicide is also conspicuous during setbacks and losses sustained in the context of social attachments. Here we propose a model based on the neural pathways mediating reward and anti-reward (i.e., allostatic adjustment to recurrent activation of the reward circuitry); both are relevant etiologic factors in pain, suicide and social attachments. A comprehensive literature search on neurobiology of pain and suicidality was performed. The collected articles were critically reviewed and relevant data were extracted and summarized within four key areas: (1) physical and emotional pain, (2) emotional pain and social attachments, (3) pain- and suicide-related alterations of the reward and anti-reward circuits as compared to addiction, which is the premier probe for dysfunction of these circuits and (4) mechanistically informed treatments of co-occurring pain and suicidality. Pain-, stress- and analgesic drugs-induced opponent and proponent states of the mesolimbic dopaminergic pathways may render reward and anti-reward systems vulnerable to sensitization, cross-sensitization and aberrant learning of contents and contexts associated with suicidal acts and behaviors. These findings suggest that pain patients exhibit alterations in the brain circuits mediating reward (depressed function) and anti-reward (sensitized function) that may affect their proclivity for suicide and support pain and suicidality classification among other "reward deficiency syndromes" and a new proposal for "enhanced anti-reward syndromes". We suggest that interventions aimed at restoring the balance between the reward and anti-reward networks in patients with chronic pain may help decreasing their suicide risk.
Collapse
Affiliation(s)
- Igor Elman
- Providence VA Medical Center and Cambridge Health Alliance, Harvard Medical School, 26 Central Street, Somerville, MA 02143, USA.
| | | | | |
Collapse
|
45
|
Hiranita T, Soto PL, Tanda G, Kopajtic TA, Katz JL. Stimulants as specific inducers of dopamine-independent σ agonist self-administration in rats. J Pharmacol Exp Ther 2013; 347:20-9. [PMID: 23908387 PMCID: PMC3781409 DOI: 10.1124/jpet.113.207522] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 12/19/2022] Open
Abstract
A previous study showed that cocaine self-administration induced dopamine-independent reinforcing effects of σ agonists mediated by their selective actions at σ1 receptors (σ1Rs), which are intracellularly mobile chaperone proteins implicated in abuse-related effects of stimulants. The present study assessed whether the induction was specific to self-administration of cocaine. Rats were trained to self-administer the dopamine releaser, d-methamphetamine (0.01-0.32 mg/kg per injection), the μ-opioid receptor agonist, heroin (0.001-0.032 mg/kg per injection), and the noncompetitive N-methyl-d-aspartate receptor/channel antagonist ketamine (0.032-1.0 mg/kg per injection). As with cocaine, self-administration of d-methamphetamine induced reinforcing effects of the selective σ1R agonists PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate hydrochloride] and (+)-pentazocine (0.032-1.0 mg/kg per injection, each). In contrast, neither self-administration of heroin nor ketamine induced PRE-084 or (+)-pentazocine (0.032-10 mg/kg per injection, each) self-administration. Although the σ1R agonists did not maintain responding in subjects with histories of heroin or ketamine self-administration, substitution for those drugs was obtained with appropriate agonists (e.g., remifentanil, 0.1-3.2 µg/kg per injection, for heroin and (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ((+)-MK 801; dizocilpine), 0.32-10.0 µg/kg per injection, for ketamine). The σR antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008; 1.0-10 mg/kg) dose-dependently blocked PRE-084 self-administration but was inactive against d-methamphetamine, heroin, and ketamine. In contrast, PRE-084 self-administration was affected neither by the dopamine receptor antagonist (+)-butaclamol (10-100 μg/kg) nor by the opioid antagonist (-)-naltrexone (1.0-10 mg/kg), whereas these antagonists were active against d-methamphetamine and heroin self-administration, respectively. The results indicate that experience specifically with indirect-acting dopamine agonists induces reinforcing effects of previously inactive σ1R agonists. It is further suggested that induced σ1R reinforcing mechanisms may play an essential role in treatment-resistant stimulant abuse, suggesting new approaches for the development of effective medications for its treatment.
Collapse
Affiliation(s)
- Takato Hiranita
- Psychobiology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (T.H., G.T., T.A.K., J.L.K.); and Behavioral Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (P.L.S.)
| | | | | | | | | |
Collapse
|
46
|
Olière S, Joliette-Riopel A, Potvin S, Jutras-Aswad D. Modulation of the endocannabinoid system: vulnerability factor and new treatment target for stimulant addiction. Front Psychiatry 2013; 4:109. [PMID: 24069004 PMCID: PMC3780360 DOI: 10.3389/fpsyt.2013.00109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/02/2013] [Indexed: 01/07/2023] Open
Abstract
Cannabis is one of the most widely used illicit substance among users of stimulants such as cocaine and amphetamines. Interestingly, increasing recent evidence points toward the involvement of the endocannabinoid system (ECBS) in the neurobiological processes related to stimulant addiction. This article presents an up-to-date review with deep insights into the pivotal role of the ECBS in the neurobiology of stimulant addiction and the effects of its modulation on addictive behaviors. This article aims to: (1) review the role of cannabis use and ECBS modulation in the neurobiological substrates of psychostimulant addiction and (2) evaluate the potential of cannabinoid-based pharmacological strategies to treat stimulant addiction. A growing number of studies support a critical role of the ECBS and its modulation by synthetic or natural cannabinoids in various neurobiological and behavioral aspects of stimulants addiction. Thus, cannabinoids modulate brain reward systems closely involved in stimulants addiction, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for treating addiction across different classes of stimulants.
Collapse
Affiliation(s)
- Stéphanie Olière
- Addiction Psychiatry Research Unit, Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montreal, QC , Canada
| | | | | | | |
Collapse
|
47
|
Phan NTN, Hanrieder J, Berglund EC, Ewing AG. Capillary electrophoresis-mass spectrometry-based detection of drugs and neurotransmitters in Drosophila brain. Anal Chem 2013; 85:8448-54. [PMID: 23915325 DOI: 10.1021/ac401920v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Capillary electrophoresis coupled to mass spectrometry has been used to determine the in vivo concentrations of the neuroactive drug, methylphenidate, and a metabolite in the heads of the fruit fly, Drosophila melanogaster . These concentrations, evaluated at the site of action, the brain, have been correlated with orally administrated methylphenidate. D. melanogaster has a relatively simple nervous system but possesses high-order brain functions similar to humans; thus, it has been used as a common model system in biological and genetics research. Methylphenidate has been used to mediate cocaine addiction due to its lower pharmacokinetics, which results in fewer addictive and reinforcing effects than cocaine; the effects of the drug on the nervous system, however, have not been fully understood. In addition to measurements of drug concentration, the method has been used to examine drug-dose dependence on the levels of several primary biogenic amines. Higher in vivo concentration of methylphenidate is observed with increasing feeding doses up to 25 mM methylphenidate. Furthermore, administrated methylphenidate increases the drug metabolism activity and the neurotransmitter levels; however, this increase appears to saturate at a feeding dose of 20 mM. The method developed for the fruit fly provides a new tool to evaluate the concentration of administered drug at the site of action and provides information concerning the effect of methylphenidate on the nervous system.
Collapse
Affiliation(s)
- Nhu T N Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | | | | | | |
Collapse
|
48
|
Velázquez-Sánchez C, Ferragud A, Ramos-Miguel A, García-Sevilla JA, Canales JJ. Substituting a long-acting dopamine uptake inhibitor for cocaine prevents relapse to cocaine seeking. Addict Biol 2013; 18:633-43. [PMID: 22741574 DOI: 10.1111/j.1369-1600.2012.00458.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The treatment of cocaine addiction remains a challenge. The dopamine replacement approach in cocaine addiction involves the use of a competing dopaminergic agonist that might suppress withdrawal and drug craving in abstinent individuals. Although it has long been postulated that such an approach may be therapeutically successful, preclinical or clinical evidence showing its effectiveness to prevent relapse is scant. We used in rats a procedure that involved substitution of the N-substituted benztropine analog 3α-[bis(4'-fluorophenyl)methoxy]-tropane (AHN-1055), a long-acting dopamine uptake inhibitor (DUI), for cocaine. Maintenance treatment was self-administered. After extinction, reinstatement of drug seeking was induced by cocaine priming. We measured the contents of brain-derived neurotrophic factor (BDNF), c-Fos and Fas-associated death domain (FADD) proteins in the medial prefrontal cortex (mPFC) following reinstatement. DUI, but not amphetamine, substitution led to extinction of active lever presses, as did saline substitution. DUI substitution significantly reduced cocaine-induced reinstatement of drug-seeking behavior, which was strongly elicited after saline substitution. Rats passively yoked to DUI also showed reduced cocaine-primed reinstatement. Reductions in drug seeking during reinstatement were matched by downward shifts in the contents of BDNF, c-Fos and FADD proteins in the mPFC, which were elevated in relapsing rats. These data indicate that DUI substitution not only leads to extinction of self-administration behavior but also prevents reinstatement of drug seeking induced by cocaine re-exposure. Thus, DUI substitution therapy using compounds with low abuse potential, even if received passively in the context previously paired with drug taking, may provide an effective treatment for stimulant addiction.
Collapse
|
49
|
Velázquez-Sánchez C, García-Verdugo JM, Murga J, Canales JJ. The atypical dopamine transport inhibitor, JHW 007, prevents amphetamine-induced sensitization and synaptic reorganization within the nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:73-80. [PMID: 23385166 DOI: 10.1016/j.pnpbp.2013.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 11/17/2022]
Abstract
Benztropine (BZT) analogs, a family of agents with high affinity for the dopamine transporter have been postulated as potential treatments in stimulant abuse due to their ability to attenuate a wide range of effects evoked by psychomotor stimulants such as cocaine and amphetamine (AMPH). Repeating administration of drugs, including stimulants, can result in behavioral sensitization, a progressive increase in their psychomotor activating effects. We examined in mice the sensitizing effects and the neuroplasticity changes elicited by chronic AMPH exposure, and the modulation of these effects by the BZT derivative and atypical dopamine uptake inhibitor, JHW007, a candidate medication for stimulant abuse. The results indicated that JHW007 did not produce sensitized locomotor activity when given alone but prevented the sensitized motor behavior induced by chronic AMPH administration. Morphological analysis of medium spiny neurons of the nucleus accumbens revealed that JHW 007 prevented the neuroadaptations induced by chronic AMPH exposure, including increments in dendritic arborization, lengthening of dendritic processes and increases in spine density. Furthermore, data revealed that AMPH produced an increase in the density of asymmetric, possibly glutamatergic synapses in the nucleus accumbens, an effect that was also blocked by JHW007 pretreatment. The present observations demonstrate that JHW007 is able to prevent not only AMPH-induced behavioral sensitization but also the long-term structural changes induced by chronic AMPH in the nucleus accumbens. Such findings support the development and evaluation of BZT derivatives as possible leads for treatment in stimulant addiction.
Collapse
Affiliation(s)
- Clara Velázquez-Sánchez
- Behavioural Neuroscience, Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | | | | | | |
Collapse
|
50
|
de Guglielmo G, Cippitelli A, Somaini L, Gerra G, Li H, Stopponi S, Ubaldi M, Kallupi M, Ciccocioppo R. Pregabalin reduces cocaine self-administration and relapse to cocaine seeking in the rat. Addict Biol 2013; 18:644-53. [PMID: 22734646 DOI: 10.1111/j.1369-1600.2012.00468.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pregabalin (Lyrica™) is a structural analog of γ-aminobutyric acid (GABA) and is approved by the FDA for partial epilepsy, neuropathic pain and generalized anxiety disorders. Pregabalin also reduces excitatory neurotransmitter release and post-synaptic excitability. Recently, we demonstrated that pregabalin reduced alcohol intake and prevented relapse to the alcohol seeking elicited by stress or environmental stimuli associated with alcohol availability. Here, we sought to extend these findings by examining the effect of pregabalin on cocaine self-administration (0.25 mg/infusion) and on cocaine seeking elicited by both conditioned stimuli and stress, as generated by administration of yohimbine (1.25 mg/kg). The results showed that oral administration of pregabalin (0, 10 or 30 mg/kg) reduced self-administration of cocaine over an extended period (6 hours), whereas it did not modify self-administration of food. In cocaine reinstatement studies, pregabalin (10 and 30 mg/kg) abolished the cocaine seeking elicited by both the pharmacological stressor yohimbine and the cues predictive of cocaine availability. Overall, these results demonstrate that pregabalin may have potential in the treatment of some aspects of cocaine addiction.
Collapse
Affiliation(s)
- Giordano de Guglielmo
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| | - Andrea Cippitelli
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| | - Lorenzo Somaini
- Addiction Treatment Centre; Health Local Unit; Biella; Italy
| | - Gilberto Gerra
- Drug Prevention and Health Branch; Division for Operations; United Nations Office on Drugs and Crime; Vienna; Austria
| | - Hongwu Li
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| | - Serena Stopponi
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| | - Massimo Ubaldi
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| | - Marsida Kallupi
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit; School of Pharmacy; University of Camerino, Via Madonna delle Carceri; Camerino; Italy
| |
Collapse
|