1
|
Curovic I. The role of resistance exercise-induced local metabolic stress in mediating systemic health and functional adaptations: could condensed training volume unlock greater benefits beyond time efficiency? Front Physiol 2025; 16:1549609. [PMID: 40313877 PMCID: PMC12045103 DOI: 10.3389/fphys.2025.1549609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
The majority of "specialised" exercise configurations (e.g., supersets, drop sets, blood flow restriction) are being assessed as "shortcuts" to hypertrophy and strength improvements. However, these advanced training techniques may also offer significant benefits for systemic health and functional outcomes across recreational and clinical populations via locally induced metabolic responses. Stress-regulating mechanisms are known to enhance the body's resilience by facilitating allostasis, the process of coordinating adaptive processes in reaction to stressors such as physical training. Yet, the role of the local metabolic stress provoked by resistance exercise has not gained much research attention despite its wide potential. Positive effects are not only linked to improved muscular endurance, hypertrophy and strength via primary and secondary mechanisms, but also to the release of myokines, hormones, microRNAs, immune factors, inflammatory substances and other endocrine molecules that initiate numerous health-promoting modifications on a systemic level. Resistance exercise strategies that maximise the local accumulation of metabolites are not well defined, although high volume, close proximity to failure and shorter rests seem to be a necessity. Additionally, blood flow restriction training provides a potent alternative for inducing local acidosis, thereby triggering several pathways associated with improved immunity and physical function even in remote muscle tissues. Future research is warranted to further explore advanced resistance training techniques, as these approaches may offer comparable benefits for physical and mental health to those seen with other forms of exercise such as high-intensity interval training and heavy resistance training.
Collapse
Affiliation(s)
- Ivan Curovic
- Institute of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
2
|
Gottschalk F, Gennser M, Eiken O, Elia A. The effect of eccentric arm cycling on muscle damage and injury-related biomarkers. Clin Physiol Funct Imaging 2025; 45:e12911. [PMID: 39400488 DOI: 10.1111/cpf.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE There is a scarcity of information regarding the effect of upper-body eccentric exercise on biomarkers of muscle damage. This study sought to investigate the effect of eccentric arm cycling on muscle damage [exercise-induced muscle damage (EIMD)]. METHOD Ten subjects performed a 15 min eccentric arm cycling protocol (cadence 49 ± 7 rpm, power absorbed 248 ± 34 W). Maximal voluntary contraction (MVC) of the elbow flexors was evaluated at rest and at 5 min, 24 h, and 48 h post-exercise. In addition, blood samples were drawn at rest and thereafter at 30 min, 24 h, and 48 h intervals after exercise for quantification of creatine kinase (CK), myoglobin, lactate dehydrogenase (LDH) and endothelin (ET-1) concentrations. Delayed onset muscle soreness (DOMS) was assessed using a category ratio scale (0-10). RESULTS Myoglobin was increased from baseline at 30 min post-exercise (+114%, 46.08 ± 22.17 µg/L, p = 0.018). Individual peak values were higher than baseline values for CK (+72.8%, 204 ± 138 U/L, p = 0.046) and LDH (+17%, 3.3 ± 0.88 nmole/min/mL, p = 0.017), but not for ET-1 (+9%, 1.4 ± 0.48 pg/mL, p = 0.45). DOMS was reported at 24 h (median 4) and 48 h (median 4) post-exercise and MVC of the elbow flexors were reduced from baseline (216 ± 44 N) at 5 min (-34%, 147 ± 61 N, p < 0.001), 24 h (-17%, 181 ± 56 N, p = 0.005) and 48 h (-9%, 191 ± 54 N, p = 0.003). CONCLUSION Eccentric arm cycling incites EIMD with reduced MVC and elevation of myoglobin, CK and LDH.
Collapse
Affiliation(s)
- Frode Gottschalk
- Division of Environmental Physiology, Swedish Aerospace Physiology Centre, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Experimental Traumatology, KI Karolinska Institutet, Stockholm, Sweden
| | - Mikael Gennser
- Department of Physiology and Pharmacology, KI Karolinska Institutet, Stockholm, Sweden
| | - Ola Eiken
- Department of Physiology and Pharmacology, KI Karolinska Institutet, Stockholm, Sweden
| | - Antonis Elia
- Department of Physiology and Pharmacology, KI Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Proppe CE, Rivera PM, Kelly RT, Rotenberger NP, Salazar S, Lubiak SM, Hill EC. Indices of exercise induced muscle damage following low load resistance exercise with blood flow restriction in untrained males. J Sports Med Phys Fitness 2024; 64:880-888. [PMID: 38863419 DOI: 10.23736/s0022-4707.24.15896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
BACKGROUND There is conflicting evidence regarding the presence and magnitude of exercise-induced muscle damage (EIMD) following low-load resistance training with blood flow restriction (LL+BFR), which may be related to the protocol implemented or exercise volume. Therefore, the purpose of this investigation was to examine the effects of a 75 repetition (BFR-75) (1×30, 3×15) and four sets to volitional failure (BFR-4x) protocols on indices of EIMD among untrained men. METHODS Twelve males with no history of lower-body resistance training during the previous six months volunteered for this investigation. One leg was randomly assigned to BFR-75, and the other to BFR-4x. Participants performed isokinetic, unilateral, concentric-eccentric, leg extension muscle actions at 30% of maximal strength with BFR. Indices of EIMD (limb circumference, perceived muscle soreness, pain pressure threshold [PPT], passive range of motion, and maximal strength [MVIC]) were recorded before exercise and 0, 24, 48, 72, and 96-hours post-exercise for each protocol. RESULTS There were no significant changes (P>0.05) in limb circumference, PPT, passive range of motion, or MVIC. For both BFR-75 and BFR-4x, perceived muscle soreness increased (P<0.001) similarly 24- (2.5±1.7 AU) and 48-hours (1.9±1.7 AU) post-exercise. CONCLUSIONS There was an increase in muscle soreness 24-48 hours post-exercise for both conditions, which may be due to metabolic stress, but this did not affect the force-generating capacity of the muscle (MVIC), suggesting minimal EIMD. The conflicting evidence of EIMD following LL+BFR may be related to differences in restriction time or overall exercise time.
Collapse
Affiliation(s)
- Christopher E Proppe
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA -
| | - Paola M Rivera
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Ryan T Kelly
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Nathaniel P Rotenberger
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Santiago Salazar
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Sean M Lubiak
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Ethan C Hill
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
- Florida Space Institute, Partnership I, Research Parkway, University of Central Florida, Orlando, FL, USA
- College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
4
|
Zhai W, Liu H, Li J, Xin H. Pregabalin-induced rhabdomyolysis: a case series and literature analysis. J Int Med Res 2024; 52:3000605241257776. [PMID: 38879799 PMCID: PMC11181883 DOI: 10.1177/03000605241257776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/01/2024] [Indexed: 06/19/2024] Open
Abstract
Pregabalin is a prescription medicine that has recently been approved for individuals who suffer from fibromyalgia, neuropathic pain, anxiety disorder, or epilepsy. Pregabalin has the side effects of dizziness, sleepiness, and angioedema. Pregabalin-induced rhabdomyolysis has been rarely reported, with only four reports to date. We report two cases of rhabdomyolysis after pregabalin treatment. A man aged older than 90 years presented with exhaustion, muscle aches, and a high serum creatine kinase concentration after taking 75 mg of pregabalin on the first day of treatment. A woman in her 90s with long-term use of pregabalin presented with considerably elevated serum creatine kinase concentrations. Both patients had a long history of taking statins. Pregabalin therapy was stopped, high-volume intravenous fluids were administered, and serum electrolytes were frequently checked. Alkalinisation was performed with excellent outcomes. The Naranjo Adverse Drug Reaction scale and previous research suggest an association between pregabalin and rhabdomyolysis. Clinicians should be alert to the possibility of rhabdomyolysis occurring with the use of pregabalin, especially when taking statins.
Collapse
Affiliation(s)
- Wenjing Zhai
- Jingdong Medical Area of PLA General Hospital, Beijing, China
| | - Hao Liu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Jinrui Li
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| | - Haili Xin
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Wilburn D, Miserlis D, Fletcher E, Papoutsi E, Ismaeel A, Bradley C, Ring A, Wilkinson T, Smith RS, Ferrer L, Haynatzki G, Monteleone P, Banerjee S, Brisbois E, Bohannon WT, Koutakis P. Skeletal muscle desmin alterations following revascularization in peripheral artery disease claudicants. Sci Rep 2024; 14:12609. [PMID: 38824194 PMCID: PMC11144188 DOI: 10.1038/s41598-024-63626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
Peripheral artery disease (PAD) is characterized by varying severity of arterial stenosis, exercise induced claudication, malperfused tissue precluding normal healing and skeletal muscle dysfunction. Revascularization interventions improve circulation, but post-reperfusion changes within the skeletal muscle are not well characterized. This study investigates if revascularization enhanced hemodynamics increases walking performance with concurrent improvement of mitochondrial function and reverses abnormal skeletal muscle morphological features that develop with PAD. Fifty-eight patients completed walking performance testing and muscle biopsy before and 6 months after revascularization procedures. Muscle fiber morphology, desmin structure, and mitochondria respiration assessments before and after the revascularization were evaluated. Revascularization improved limb hemodynamics, walking function, and muscle morphology. Qualitatively not all participants recovered normal structural architecture of desmin in the myopathic myofibers after revascularization. Heterogenous responses in the recovery of desmin structure following revascularization may be caused by other underlying factors not reversed with hemodynamic improvements. Revascularization interventions clinically improve patient walking ability and can reverse the multiple subcellular functional and structural abnormalities in muscle cells. Further study is needed to characterize desmin structural remodeling with improvements in skeletal muscle morphology and function.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Dimitrios Miserlis
- Department of Surgery and Perioperative Care, University of Texas, Austin, TX, USA
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Ahmed Ismaeel
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Cassandra Bradley
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Andrew Ring
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Trevor Wilkinson
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Lucas Ferrer
- Department of Surgery and Perioperative Care, University of Texas, Austin, TX, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter Monteleone
- Department of Internal Medicine, University of Texas, Austin, TX, USA
| | - Subhash Banerjee
- Department of Cardiology, Baylor Scott & White Medical Center, Dallas, TX, USA
| | - Elizabeth Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA.
| |
Collapse
|
6
|
Gussoni M, Moretti S, Vezzoli A, Genitoni V, Giardini G, Balestra C, Bosco G, Pratali L, Spagnolo E, Montorsi M, Mrakic-Sposta S. Effects of Electrical Stimulation on Delayed Onset Muscle Soreness (DOMS): Evidences from Laboratory and In-Field Studies. J Funct Morphol Kinesiol 2023; 8:146. [PMID: 37873905 PMCID: PMC10594470 DOI: 10.3390/jfmk8040146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Intense, long exercise can increase oxidative stress, leading to higher levels of inflammatory mediators and muscle damage. At the same time, fatigue has been suggested as one of the factors giving rise to delayed-onset muscle soreness (DOMS). The aim of this study was to investigate the efficacy of a specific electrical stimulation (ES) treatment (without elicited muscular contraction) on two different scenarios: in the laboratory on eleven healthy volunteers (56.45 ± 4.87 years) after upper limbs eccentric exercise (Study 1) and in the field on fourteen ultra-endurance athletes (age 47.4 ± 10.2 year) after an ultra-running race (134 km, altitude difference of 10,970 m+) by lower exercising limbs (Study 2). Subjects were randomly assigned to two experimental tasks in cross-over: Active or Sham ES treatments. The ES efficacy was assessed by monitoring the oxy-inflammation status: Reactive Oxygen Species production, total antioxidant capacity, IL-6 cytokine levels, and lactate with micro-invasive measurements (capillary blood, urine) and scales for fatigue and recovery assessments. No significant differences (p > 0.05) were found in the time course of recovery and/or pre-post-race between Sham and Active groups in both study conditions. A subjective positive role of sham stimulation (VAS scores for muscle pain assessment) was reported. In conclusion, the effectiveness of ES in treating DOMS and its effects on muscle recovery remain still unclear.
Collapse
Affiliation(s)
- Maristella Gussoni
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council (SCITEC-CNR), 20133 Milan, Italy;
| | - Sarah Moretti
- National Research Council (IFC-CNR), 20159 Roma, Italy;
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milan, Italy; (A.V.); (L.P.); (E.S.)
| | | | - Guido Giardini
- Neurology and Neurophysiology Department, Mountain Medicine Center Valle d’ Aosta Regional Hospital Umberto Parini, 11100 Aosta, Italy;
- Società Italiana Medicina di Montagna, SIMeM, 35138 Padova, Italy
| | - Costantino Balestra
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Gerardo Bosco
- Environmental Physiology & Medicine Lab, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Lorenza Pratali
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milan, Italy; (A.V.); (L.P.); (E.S.)
- Società Italiana Medicina di Montagna, SIMeM, 35138 Padova, Italy
| | - Elisabetta Spagnolo
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milan, Italy; (A.V.); (L.P.); (E.S.)
| | - Michela Montorsi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Roma, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milan, Italy; (A.V.); (L.P.); (E.S.)
- Società Italiana Medicina di Montagna, SIMeM, 35138 Padova, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Roma, Italy
| |
Collapse
|
7
|
Sokoloski ML, Rigby BR, King GA, Biggerstaff KD, Irvine CJ, Bosak AM, Gordon RA, Zumbro EL, Clark CE, Varone NL, Crossland BW. Muscle Damage, Inflammation, and Muscular Performance following the Physical Ability Test in Professional Firefighters. Sports (Basel) 2023; 11:144. [PMID: 37624124 PMCID: PMC10458274 DOI: 10.3390/sports11080144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Proper monitoring of fatigue and muscular damage may be used to decrease the high levels of cardiovascular disease, overuse musculoskeletal injuries, and workers compensation claims within the profession of firefighting. The purpose of this study was to examine muscle damage, muscular fatigue, and inflammation responses following a typical firefighting shift. Twenty-four professional firefighters completed two Physical Ability Tests to standardize the tasks typically performed in a day of work, and to elicit similar physiological responses. Participants were then monitored for 48 h. Prior to, and 48 h following the Physical Ability Tests, participants were evaluated for changes in strength, power, range-of-motion, as well as blood markers including myoglobin and c-reactive protein. Following the Physical Ability Tests, significant differences in myoglobin (p < 0.05), grip strength (p < 0.05), vertical jump (p < 0.05), and sit-and-reach (p < 0.05) were observed. No difference in c-reactive protein was observed (p > 0.05). After 24 hours following a shift, firefighters exhibited decreased strength, power, and range-of-motion. This may lead to decreases in performance and an increased risk of injury.
Collapse
Affiliation(s)
- Matthew L. Sokoloski
- Exercise Physiology Laboratory, School of Health Promotion and Kinesiology, Texas Woman’s University, Denton, TX 76204, USA; (M.L.S.); (G.A.K.); (K.D.B.); (R.A.G.); (C.E.C.); (N.L.V.); (B.W.C.)
| | - Brandon R. Rigby
- Exercise Physiology Laboratory, School of Health Promotion and Kinesiology, Texas Woman’s University, Denton, TX 76204, USA; (M.L.S.); (G.A.K.); (K.D.B.); (R.A.G.); (C.E.C.); (N.L.V.); (B.W.C.)
| | - George A. King
- Exercise Physiology Laboratory, School of Health Promotion and Kinesiology, Texas Woman’s University, Denton, TX 76204, USA; (M.L.S.); (G.A.K.); (K.D.B.); (R.A.G.); (C.E.C.); (N.L.V.); (B.W.C.)
| | - Kyle D. Biggerstaff
- Exercise Physiology Laboratory, School of Health Promotion and Kinesiology, Texas Woman’s University, Denton, TX 76204, USA; (M.L.S.); (G.A.K.); (K.D.B.); (R.A.G.); (C.E.C.); (N.L.V.); (B.W.C.)
| | - Christopher J. Irvine
- Department of Health and Human Performance, Rocky Mountain College, Billings, MT 59102, USA;
| | - Andrew M. Bosak
- School of Health Sciences: Allied Health Professions, Liberty University, Lynchburg, VA 24515, USA;
| | - Ryan A. Gordon
- Exercise Physiology Laboratory, School of Health Promotion and Kinesiology, Texas Woman’s University, Denton, TX 76204, USA; (M.L.S.); (G.A.K.); (K.D.B.); (R.A.G.); (C.E.C.); (N.L.V.); (B.W.C.)
| | - Emily L. Zumbro
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35209, USA;
| | - Cayla E. Clark
- Exercise Physiology Laboratory, School of Health Promotion and Kinesiology, Texas Woman’s University, Denton, TX 76204, USA; (M.L.S.); (G.A.K.); (K.D.B.); (R.A.G.); (C.E.C.); (N.L.V.); (B.W.C.)
| | - Nicole L. Varone
- Exercise Physiology Laboratory, School of Health Promotion and Kinesiology, Texas Woman’s University, Denton, TX 76204, USA; (M.L.S.); (G.A.K.); (K.D.B.); (R.A.G.); (C.E.C.); (N.L.V.); (B.W.C.)
| | - Brett W. Crossland
- Exercise Physiology Laboratory, School of Health Promotion and Kinesiology, Texas Woman’s University, Denton, TX 76204, USA; (M.L.S.); (G.A.K.); (K.D.B.); (R.A.G.); (C.E.C.); (N.L.V.); (B.W.C.)
| |
Collapse
|
8
|
Bo Y, Liu QB, Tong Y. The Effects of Adopting Mobile Health and Fitness Apps on Hospital Visits: Quasi-Experimental Study. J Med Internet Res 2023; 25:e45681. [PMID: 37505809 PMCID: PMC10422177 DOI: 10.2196/45681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/09/2023] [Accepted: 06/05/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Overcrowding in public hospitals, a common issue in many countries, leads to a range of negative outcomes, such as insufficient access to medical services and patient dissatisfaction. Prior literature regarding solutions to reducing hospital overcrowding primarily focuses on organizational-level operational efficiency. However, few studies have investigated the strategies from the individual patient perspective. Specifically, we considered using mobile health and fitness apps to promote users' health behaviors and produce health benefits, thereby reducing hospital visits. OBJECTIVE This study estimated the causal effect of health and fitness app adoption on hospital visits by exploiting the staggered timing of adoption. We also investigated how the effect varied with users' socioeconomic status and digital literacy. This study provides causal evidence for the effects of health apps, extends the digital health literature, and sheds light on mobile health policies. METHODS This study used a data set containing health and fitness app use and hospital-related geolocation data of 267,651 Chinese mobile phone users from January to December 2019. We used the difference-in-differences and difference-in-difference-in-differences designs to estimate the causal effect. We performed a sensitivity analysis to establish the robustness of the findings. We also conducted heterogeneity analyses based on the interactions of postadoption indicators with users' consumption levels, city tiers, and digital literacy. RESULTS The preferred model (difference-in-difference-in-differences) showed a significant decrease in hospital visits after the adoption of health and fitness apps. App adoption led to a 5.8% (P<.001), 13.1% (P<.001), and 18.4% reduction (P<.001) in hospital visits 1, 2, and 3 months after adoption, respectively. In addition, the moderation analysis shows that the effect is greater for users with high consumption levels, in high-tier cities, or with high digital literacy. CONCLUSIONS This study estimated the causal effect of health and fitness app adoption on hospital visits. The results and sensitivity analysis showed that app adoption can reduce users' hospital visits. The effect varies with users' consumption levels, city tiers, and digital literacy. These findings provide useful insights for multiple stakeholders in the Chinese health care context.
Collapse
Affiliation(s)
- Yan Bo
- Department of Data Science and Engineering Management, School of Management, Zhejiang University, Hangzhou, China
- Department of Information Systems, College of Business, City University of Hong Kong, Hong Kong, China
| | - Qianqian Ben Liu
- Department of Information Systems, College of Business, City University of Hong Kong, Hong Kong, China
| | - Yu Tong
- Department of Data Science and Engineering Management, School of Management, Zhejiang University, Hangzhou, China
- Center for Research on Zhejiang Digital Development and Governance, Hangzhou, China
| |
Collapse
|
9
|
Bin Dayel FF, Alfirevic A, Chadwick AE. Developing In Vitro Models to Define the Role of Direct Mitochondrial Toxicity in Frequently Reported Drug-Induced Rhabdomyolysis. Biomedicines 2023; 11:biomedicines11051485. [PMID: 37239154 DOI: 10.3390/biomedicines11051485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The United States Food and Drug Administration Adverse Event Reporting System (FAERS) logged 27,140 rhabdomyolysis cases from 2004 to 31 March 2020. We used FAERS to identify 14 drugs frequently reported in 6583 rhabdomyolysis cases and to investigate whether mitochondrial toxicity is a common pathway of drug-induced rhabdomyolysis by these drugs. Preliminary screening for mitochondrial toxicity was performed using the acute metabolic switch assay, which is adapted here for use in murine L6 cells. Fenofibrate, risperidone, pregabalin, propofol, and simvastatin lactone drugs were identified as mitotoxic and underwent further investigation, using real-time respirometry (Seahorse Technology) to provide more detail on the mechanism of mitochondrial-induced toxicity. To confirm the human relevance of the findings, fenofibrate and risperidone were evaluated in primary human skeletal muscle-derived cells (HSKMDC), using the acute metabolic switch assay and real-time respirometry, which confirmed this designation, although the toxic effects on the mitochondria were more pronounced in HSKMDC. Overall, these studies demonstrate that the L6 model of acute modification may find utility as an initial, cost-effective screen for identifying potential myotoxicants with relevance to humans and, importantly, that drug-induced mitochondrial dysfunction may be a common mechanism shared by some drugs that induce myotoxicity.
Collapse
Affiliation(s)
- Faten F Bin Dayel
- Department of Pharmacology and Therapeutics, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Ana Alfirevic
- Department of Pharmacology and Therapeutics, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Amy E Chadwick
- Department of Pharmacology and Therapeutics, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| |
Collapse
|
10
|
Šimunič B, Doles M, Kelc R, Švent A. Effectiveness of 448-kHz Capacitive Resistive Monopolar Radiofrequency Therapy After Eccentric Exercise-Induced Muscle Damage to Restore Muscle Strength and Contractile Parameters. J Sport Rehabil 2023:1-8. [PMID: 37192748 DOI: 10.1123/jsr.2022-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/17/2022] [Accepted: 03/15/2023] [Indexed: 05/18/2023]
Abstract
CONTEXT Exercise-induced muscle damage (EIMD) is prevalent especially in sports and rehabilitation. It causes loss in skeletal muscle function and soreness. As there are no firm preventive strategies, we aimed to evaluate the preventive efficacy of nonthermal 448-kHz capacitive resistive monopolar radiofrequency (CRMRF) therapy after eccentric bouts of EIMD response in knee flexors. DESIGN Twenty-nine healthy males (age: 25.2 [4.6] y) were randomized in control group (CG; n = 15) and experimental group (EG; n = 14) where EG followed 5 daily 448-kHz CRMRF therapies. All assessments were performed at baseline and post EIMD (EIMD + 1, EIMD + 2, EIMD + 5, and EIMD + 9 d). We measured tensiomyography of biceps femoris and semitendinosus to calculate contraction time, the maximal displacement and the radial velocity of contraction, unilateral isometric knee flexors maximal voluntary contraction torque, and rate of torque development in first 100 milliseconds. RESULTS Maximal voluntary contraction torque and rate of torque development in first 100 milliseconds decreased more in CG than in EG and recovered only in EG. Biceps femoris contraction time increased only in CG (without recovery), whereas in semitendinosus contraction time increased in EG (only at EIMD + 1) and in CG (without recovery). In both muscles, tensiomyographic maximal displacement decreased in EG (in EIMD + 1 and EIMD + 2) and in CG (without recovery). Furthermore, in both muscles, radial velocity of contraction decreased in EG (from EIMD + 1 until EIMD + 5) and in CG (without recovery). CONCLUSION The study shows beneficial effect of CRMRF therapy after inducing EIMD in skeletal muscle strength and contractile parameters in knee flexors.
Collapse
Affiliation(s)
- Boštjan Šimunič
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper,Slovenia
| | - Monika Doles
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper,Slovenia
| | - Robi Kelc
- Medical Faculty, Institute for Sports Medicine, University of Maribor, Maribor,Slovenia
| | | |
Collapse
|
11
|
Corsini A, Bisciotti A, Canonico R, Causarano A, Del Vescovo R, Gatto P, Gola P, Iera M, Mazzoni S, Minafra P, Nanni G, Pasta G, Pulcini I, Salvatori S, Scorcu M, Stefanini L, Tenore F, Palermi S, Casasco M, Calza S. Are Football Players More Prone to Muscle Injury after COVID-19 Infection? The "Italian Injury Study" during the Serie a Championship. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5182. [PMID: 36982090 PMCID: PMC10048896 DOI: 10.3390/ijerph20065182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Football was the first sport to resume competitions after the coronavirus disease 2019 (COVID-19) lockdown and promptly the hypothesis was raised of a potential relationship between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and musculoskeletal injuries in athletes. This study aimed to confirm the association between SARS-CoV-2 infection and muscle strain injury in a large population of elite football players and to investigate if the COVID-19 severity level could affect the risk of injury. METHODS A retrospective cohort study involving 15 Italian professional male football teams was performed during the Italian Serie A 2020-2021 season. Injuries and SARS-CoV-2 positivity data were collected by team doctors through an online database. RESULTS Of the 433 included players, we observed 173 SARS-CoV-2 infections and 332 indirect muscle strains. COVID-19 episodes mostly belonged to severity level I and II. The injury risk significantly increased after a COVID-19 event, by 36% (HR = 1.36, CI95% 1.05; 1.77, p-value = 0.02). The injury burden demonstrated an 86% increase (ratio = 1.86, CI95% 1.21; 2.86, p-value = 0.005) in the COVID-19 severity level II/III versus players without a previous SARS-CoV-2 infection, while level I (asymptomatic) patients showed a similar average burden (ratio = 0.92, CI95% 0.54; 1.58, p-value = 0.77). A significantly higher proportion of muscle-tendon junction injuries (40.6% vs. 27.1%, difference = 13.5%, CI95% 0.002%; 26.9%, p-value = 0.047) was found when comparing level II/III versus Non-COVID-19. CONCLUSIONS This study confirms the correlation between SARS-CoV-2 infection and indirect muscle injuries and highlights how the severity of the infection would represent an additional risk factor.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Stefano Mazzoni
- Sport Medicine Department—Milan Lab, Associazione Calcistica Milan, 20149 Milano, Italy
| | | | - Gianni Nanni
- Bologna Football Club 1909, 40132 Bologna, Italy
| | | | | | | | | | | | | | - Stefano Palermi
- Public Health Department, University of Naples Federico II, 80131 Naples, Italy;
| | | | - Stefano Calza
- Unit of Biostatistics and Bioinformatics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| |
Collapse
|
12
|
Marichal G, Trigo P, Soto C, Meikle A, Suárez G. Hydroelectrolytic and Acid-Base Parameters after 80 to 115 km Endurance Races (Raid Uruguayo) and Their Association with the Comfort Index. Animals (Basel) 2023; 13:ani13040670. [PMID: 36830457 PMCID: PMC9951660 DOI: 10.3390/ani13040670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The Raid Uruguayo (RAID) is an equestrian endurance competition. This study characterized the hydroelectrolytic parameters (Na+, K+, Cl-, tCa++, and iCa++), hematocrit (Ht), total plasma protein (TPP), and blood pH from 900 equine athletes (finishers and non-finishers) competing over distances of 80 to 115 km under different climate conditions. Paired blood samples were taken prior to the start of the competition (sample 1) and at the end of the race or at the time of leaving the competition (sample 2). The association of the comfort index (CI: low, moderate, and high) with blood parameters was evaluated. Of the 900 horses included, 550 were not able to finish the trial. The comfort index was not associated with success in completing the race. In the horses that finished the race, the CI was not associated with Ht, pH, TPP, or Na+ concentrations in samples taken after finishing the RAID. In contrast, the decreases in chloride, K+, tCa++, and iCa++ concentrations found after the race were more pronounced at moderate and high CI values when compared with low CI values. In horses that did not finish the race, the CI was associated with all variables except for Ht. The data confirmed the relevance of considering the impact of the comfort index in hydroelectrolytic losses in the RAID, as it influence ssuccess or failure in the performance of endurance horses finishing the competition.
Collapse
Affiliation(s)
- Gonzalo Marichal
- Unidad de Clínica y Cirugía de Equinos, Departamento Hospital y Clínicas Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (G.M.); (G.S.)
| | - Pablo Trigo
- IGEVET CONICET CC La Plata, Facultad de Ciencias Veterinarias, Universidad Nacional de la Plata, La Plata 1900, Argentina
| | - Carlos Soto
- Departamento Hospital y Clínicas Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana Meikle
- Laboratorio de Endocrinología y Metabolismo Animal, Facultad de Veterinaria, Universidad de la República, Montevideo 11800, Uruguay
| | - Gonzalo Suárez
- Unidad de Farmacología y Terapéutica, Departamento Hospital y Clínicas Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (G.M.); (G.S.)
| |
Collapse
|
13
|
Liu X, Zhao L, Gao Y, Chen Y, Tian Q, Son JS, Chae SA, de Avila JM, Zhu MJ, Du M. AMP-activated protein kinase inhibition in fibro-adipogenic progenitors impairs muscle regeneration and increases fibrosis. J Cachexia Sarcopenia Muscle 2023; 14:479-492. [PMID: 36513394 PMCID: PMC9891933 DOI: 10.1002/jcsm.13150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Following muscle injury, fibro-adipogenic progenitors (FAPs) are rapidly activated and undergo apoptosis at the resolution stage, which is required for proper muscle regeneration. When excessive FAPs remain, it contributes to fibrotic and fatty infiltration, impairing muscle recovery. Mechanisms controlling FAP apoptosis remain poorly defined. We hypothesized that AMP-activated protein kinase (AMPK) in FAPs mediates their apoptosis during the muscle regeneration. METHODS To test, AMPKα1fl/fl PDGFRαCre mice were used to knock out AMPKα1 in FAPs. Following AMPKα1 knockout, the mice were injected with phosphate-buffered saline or glycerol to induce muscle injury. Tibialis anterior muscle and FAPs were collected at 3, 7 and 14 days post-injury (dpi) for further analysis. RESULTS We found that AMPKα1 deletion in FAPs enhanced p65 translocation to the nuclei by 110% (n = 3; P < 0.01). AMPKα1 knockout group had a higher gene expression of MMP-9 (matrix metalloproteinase-9) by 470% (n = 3; P < 0.05) and protein level by 39% (n = 3; P < 0.05). Loss of AMPKα1 up-regulated the active TGF-β1 (transforming growth factor-β1) levels by 21% (n = 3; P < 0.05). TGF-β promoted apoptotic resistance, because AMPKα1-deficient group had 36% lower cleaved Caspase 3 (cCAS3) content (n = 3; P < 0.05). Fibrotic differentiation of FAPs was promoted, with increased collagen protein level by 54% (n = 3; P < 0.05). Moreover, obesity decreased phosphorylation of AMPK by 54% (n = 3; P < 0.05), which decreased cCAS3 in FAPs by 44% (n = 3; P < 0.05) and elevated collagen accumulation (52%; n = 3; P < 0.05) during muscle regeneration. CONCLUSIONS These data suggest that AMPK is a key mediator of FAPs apoptosis, and its inhibition due to obesity results in fibrosis of regenerated muscle.
Collapse
Affiliation(s)
- Xiangdong Liu
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Liang Zhao
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Yao Gao
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Yanting Chen
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Qiyu Tian
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Jun Seok Son
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Song Ah Chae
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Jeanene Marie de Avila
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
14
|
Nasser N, Zorgati H, Chtourou H, Guimard A. Cold water immersion after a soccer match: Does the placebo effect occur? Front Physiol 2023; 14:1062398. [PMID: 36895634 PMCID: PMC9988943 DOI: 10.3389/fphys.2023.1062398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Although cold water immersion (CWI) is one of the most widely used post-exercise strategies to accelerate recovery processes, the benefits of CWI may be associated with placebo effects. This study aimed to compare the effects of CWI and placebo interventions on time course of recovery after the Loughborough Intermittent Shuttle Test (LIST). In a randomized, counterbalanced, crossover study, twelve semi-professional soccer players (age 21.1 ± 2.2 years, body mass 72.4 ± 5.9 kg, height 174.9 ± 4.6 cm, V ˙ O2max 56.1 ± 2.3 mL/min/kg) completed the LIST followed by CWI (15 min at 11°C), placebo (recovery Pla beverage), and passive recovery (Rest) over three different weeks. Creatine kinase (CK), C-reactive protein (CRP), uric acid (UA), delayed onset muscle soreness (DOMS), squat jump (SJ), countermovement jump (CMJ), 10-m sprint (10 mS), 20-m sprint (20 mS) and repeated sprint ability (RSA) were assessed at baseline and 24 and 48 h after the LIST. Compared to baseline, CK concentration was higher at 24 h in all conditions (p < 0.01), while CRP was higher at 24 h only in CWI and Rest conditions (p < 0.01). UA was higher for Rest condition at 24 and 48 h compared to Pla and CWI conditions (p < 0.001). DOMS score was higher for Rest condition at 24 h compared to CWI and Pla conditions (p = 0.001), and only to Pla condition at 48 h (p = 0.017). SJ and CMJ performances decreased significantly after the LIST in Rest condition (24 h: -7.24%, p = 0.001 and -5.45%, p = 0.003 respectively; 48 h: -9.19%, p < 0.001 and -5.70% p = 0.002 respectively) but not in CWI and Pla conditions. 10 mS and RSA performance were lower for Pla at 24 h compared to CWI and Rest conditions (p < 0.05), while no significant change was observed for 20 mS time. These data suggests that CWI and Pla intervention were more effective than the Rest conditions in recovery kinetics of muscle damage markers and physical performance. Furthermore, the effectiveness of CWI would be explained, at least in part, by the placebo effect.
Collapse
Affiliation(s)
- Nidhal Nasser
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisie.,Institut Supérieur du Sport et de l'Education Physique de Sfax, Université de Sfax, Sfax, Tunisie
| | - Houssem Zorgati
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisie.,Institut Supérieur du Sport et de l'Education Physique de Gafsa, Université de Gafsa, Gafsa, Tunisie
| | - Hamdi Chtourou
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisie.,Institut Supérieur du Sport et de l'Education Physique de Sfax, Université de Sfax, Sfax, Tunisie
| | - Alexandre Guimard
- Université Sorbonne Paris Nord, Hypoxie et Poumon, H&P, INSERM, UMR 1272, Bobigny, France.,Département STAPS, Université Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
15
|
Rodrigues S, Forte P, Dewaele E, Branquinho L, Teixeira JE, Ferraz R, Barbosa TM, Monteiro AM. Effect of Blood Flow Restriction Technique on Delayed Onset Muscle Soreness: A Systematic Review. Medicina (B Aires) 2022; 58:medicina58091154. [PMID: 36143831 PMCID: PMC9505400 DOI: 10.3390/medicina58091154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The effect of the blood flow restriction technique (BFR) on delayed onset muscular soreness (DOMS) symptoms remains unclear. Since there is no consensus in the literature, the aim of the present study is to systematically identify and appraise the available evidence on the effects of the BFR technique on DOMS, in healthy subjects. Materials and Methods: Computerized literature search in the databases Pubmed, Google Scholar, EBSCO, Cochrane and PEDro to identify randomized controlled trials that assessed the effects of blood flow restriction on delayed onset muscular soreness symptoms. Results: Eight trials met the eligibility criteria and were included in this review, presenting the results of 118 participants, with a mean methodological rating of 6/10 on the PEDro scale. Conclusions: So far, there is not enough evidence to confirm or refute the influence of BFR on DOMS, and more studies with a good methodological basis are needed, in larger samples, to establish protocols and parameters of exercise and intervention. Data analysis suggests a tendency toward the proinflammatory effect of BFR during high restrictive pressures combined with eccentric exercises, while postconditioning BFR seems to have a protective effect on DOMS. Prospero ID record: 345457, title registration: “Effect of Blood Flow Restriction Technique on the Prevention of Delayed Onset Muscle Soreness: A Systematic Review”.
Collapse
Affiliation(s)
- Sandra Rodrigues
- FP-I3ID, FP-BHS, Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia, 334, 4200-253 Porto, Portugal
- Correspondence:
| | - Pedro Forte
- Department of Sports, Higher Institute of Educational Sciences of the Douro, 4560-708 Penafiel, Portugal
- Department of Sports Sciences and Physical Education, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| | - Eva Dewaele
- FP-I3ID, FP-BHS, Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia, 334, 4200-253 Porto, Portugal
| | - Luís Branquinho
- Department of Sports, Higher Institute of Educational Sciences of the Douro, 4560-708 Penafiel, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| | - José E. Teixeira
- Department of Sports Sciences and Physical Education, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| | - Ricardo Ferraz
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
- Department of Sports Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Tiago M. Barbosa
- Department of Sports Sciences and Physical Education, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| | - António M. Monteiro
- Department of Sports Sciences and Physical Education, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| |
Collapse
|
16
|
Harrison DC, Doma K, Leicht AS, McGuckin TA, Woods CT, Connor JD. Repeated Bout Effect of Two Resistance Training Bouts on Bowling-Specific Performance in Male Cricketers. Sports (Basel) 2022; 10:sports10090126. [PMID: 36136381 PMCID: PMC9500931 DOI: 10.3390/sports10090126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
To examine the repeated bout effect (RBE) following two identical resistance bouts and its effect on bowling-specific performance in male cricketers. Male cricket pace bowlers (N = 10), who had not undertaken resistance exercises in the past six months, were invited to complete a familiarisation and resistance maximum testing, before participating in the study protocol. The study protocol involved the collection of muscle damage markers, a battery of anaerobic (jump and sprint), and a bowling-specific performance test at baseline, followed by a resistance training bout, and a retest of physical and bowling-specific performance at 24 h (T24) and 48 h (T48) post-training. The study protocol was repeated 7–10 days thereafter. Indirect markers of muscle damage were lower (creatine kinase: 318.7 ± 164.3 U·L−1; muscle soreness: 3 ± 1), whilst drop jump was improved (~47.5 ± 8.1 cm) following the second resistance training bout when compared to the first resistance training bout (creatine kinase: 550.9 ± 242.3 U·L−1; muscle soreness: 4 ± 2; drop jump: ~43.0 ± 9.7 cm). However, sport-specific performance via bowling speed declined (Bout 1: −2.55 ± 3.43%; Bout 2: 2.67 ± 2.41%) whilst run-up time increased (2.34 ± 3.61%; Bout 2: 3.84 ± 4.06%) after each bout of resistance training. Findings suggest that while an initial resistance training bout reduced muscle damage indicators and improved drop jump performance following a second resistance training bout, this RBE trend was not observed for bowling-specific performance. It was suggested that pace bowlers with limited exposure to resistance training should minimise bowling-specific practice for 1–2 days following the initial bouts of their resistance training program.
Collapse
Affiliation(s)
- Drew C. Harrison
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Kenji Doma
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Correspondence:
| | - Anthony S. Leicht
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health & Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Teneale A. McGuckin
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Carl T. Woods
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3011, Australia
| | - Jonathan D. Connor
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
17
|
Fukada SI, Higashimoto T, Kaneshige A. Differences in muscle satellite cell dynamics during muscle hypertrophy and regeneration. Skelet Muscle 2022; 12:17. [PMID: 35794679 PMCID: PMC9258228 DOI: 10.1186/s13395-022-00300-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle homeostasis and function are ensured by orchestrated cellular interactions among several types of cells. A noticeable aspect of skeletal muscle biology is the drastic cell-cell communication changes that occur in multiple scenarios. The process of recovering from an injury, which is known as regeneration, has been relatively well investigated. However, the cellular interplay that occurs in response to mechanical loading, such as during resistance training, is poorly understood compared to regeneration. During muscle regeneration, muscle satellite cells (MuSCs) rebuild multinuclear myofibers through a stepwise process of proliferation, differentiation, fusion, and maturation, whereas during mechanical loading-dependent muscle hypertrophy, MuSCs do not undergo such stepwise processes (except in rare injuries) because the nuclei of MuSCs become directly incorporated into the mature myonuclei. In this review, six specific examples of such differences in MuSC dynamics between regeneration and hypertrophy processes are discussed.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Tatsuyoshi Higashimoto
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
18
|
Crossland BW, Rigby BR, Duplanty AA, King GA, Juma S, Levine NA, Clark CE, Ramirez KP, Varone NL. Acute Supplementation with Cannabidiol Does Not Attenuate Inflammation or Improve Measures of Performance following Strenuous Exercise. Healthcare (Basel) 2022; 10:healthcare10061133. [PMID: 35742183 PMCID: PMC9222918 DOI: 10.3390/healthcare10061133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Supplementation with cannabidiol (CBD) may expedite recovery when consumed after exercise. The purpose of this study was to determine if supplementation with CBD reduces inflammation and enhances performance following strenuous eccentric exercise in collegiate athletes. Twenty-four well-trained females (age = 21.2 ± 1.8 years, height = 166.4 ± 8 cm, weight = 64.9 ± 9.1 kg) completed 100 repetitions of unilateral eccentric leg extension to induce muscle damage. In this crossover design, participants were randomized to receive 5 mg/kg of CBD in pill form or a placebo 2 h prior to, immediately following, and 10 h following muscle damage. Blood was collected, and performance and fatigue were measured prior to, and 4 h, 24 h, and 48 h following the muscle damage. Approximately 28 days separated treatment administration to control for the menstrual cycle. No significant differences were observed between the treatments for inflammation, muscle damage, or subjective fatigue. Peak torque at 60°/s (p = 0.001) and peak isometric torque (p = 0.02) were significantly lower 24 h following muscle damage, but no difference in performance was observed between treatments at any timepoint. Cannabidiol supplementation was unable to reduce fatigue, limit inflammation, or restore performance in well-trained female athletes.
Collapse
|
19
|
Qammar NW, Orinaitė U, Šiaučiūnaitė V, Vainoras A, Šakalytė G, Ragulskis M. The Complexity of the Arterial Blood Pressure Regulation during the Stress Test. Diagnostics (Basel) 2022; 12:1256. [PMID: 35626410 PMCID: PMC9141350 DOI: 10.3390/diagnostics12051256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, two categories of persons with normal and high ABP are subjected to the bicycle stress test (9 persons with normal ABP and 10 persons with high ABP). All persons are physically active men but not professional sportsmen. The mean and the standard deviation of age is 41.11 ± 10.21 years; height 178.88 ± 0.071 m; weight 80.53 ± 10.01 kg; body mass index 25.10 ± 2.06 kg/m2. Machine learning algorithms are employed to build a set of rules for the classification of the performance during the stress test. The heart rate, the JT interval, and the blood pressure readings are observed during the load and the recovery phases of the exercise. Although it is obvious that the two groups of persons will behave differently throughout the bicycle stress test, with this novel study, we are able to detect subtle variations in the rate at which these changes occur. This paper proves that these differences are measurable and substantial to detect subtle differences in the self-organization of the human cardiovascular system. It is shown that the data collected during the load phase of the stress test plays a more significant role than the data collected during the recovery phase. The data collected from the two groups of persons are approximated by Gaussian distribution. The introduced classification algorithm based on the statistical analysis and the triangle coordinate system helps to determine whether the reaction of the cardiovascular system of a new candidate is more pronounced by an increased heart rate or an increased blood pressure during the stress test. The developed approach produces valuable information about the self-organization of human cardiovascular system during a physical exercise.
Collapse
Affiliation(s)
- Naseha Wafa Qammar
- Department of Mathematical Modelling, Kaunas University of Technology, Studentu St. 50-146, LT-51368 Kaunas, Lithuania; (N.W.Q.); (U.O.); (V.Š.)
| | - Ugnė Orinaitė
- Department of Mathematical Modelling, Kaunas University of Technology, Studentu St. 50-146, LT-51368 Kaunas, Lithuania; (N.W.Q.); (U.O.); (V.Š.)
| | - Vaiva Šiaučiūnaitė
- Department of Mathematical Modelling, Kaunas University of Technology, Studentu St. 50-146, LT-51368 Kaunas, Lithuania; (N.W.Q.); (U.O.); (V.Š.)
| | - Alfonsas Vainoras
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 17, LT-50161 Kaunas, Lithuania; (A.V.); (G.Š.)
| | - Gintarė Šakalytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu St. 17, LT-50161 Kaunas, Lithuania; (A.V.); (G.Š.)
| | - Minvydas Ragulskis
- Department of Mathematical Modelling, Kaunas University of Technology, Studentu St. 50-146, LT-51368 Kaunas, Lithuania; (N.W.Q.); (U.O.); (V.Š.)
| |
Collapse
|
20
|
Sánchez-Gómez Á, Jurado-Castro JM, Mata F, Sánchez-Oliver AJ, Domínguez R. Effects of β-Hydroxy β-Methylbutyric Supplementation in Combination with Conservative Non-Invasive Treatments in Athletes with Patellar Tendinopathy: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:471. [PMID: 35010730 PMCID: PMC8744953 DOI: 10.3390/ijerph19010471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to analyze the effect of conservative non-invasive treatments based on eccentric training, stretching and extracorporeal shock wave therapy (ESWT) supplemented with β-Hydroxy β-methylbutyric (HMB) or placebo (PLAC) on body composition, pain and muscular function (jump ability, muscular power and muscular strength) in athletes with patellar tendinopathy (PT). In a double-blind randomized trial, 8 athletes (4 males and 4 females) performed a physical rehabilitation for 4 weeks. They were randomly divided into two experimental groups (two males and two females in each one) that ingested HMB (HMBG) or PLAC (PLACG). In pre- and post-intervention were assessed body composition, pain, countermovement jump (CMJ), back-squat (BS) for analyzing peak power (W) (PPPP), load (kg) associated to PPPP (PPKG) and mean velocity (m/s) (PPMV) in addition to a 5-RM leg extension tests. An interaction intervention·supplementation (p = 0.049; Ƞ2p = 0.774) was observed in the height reached in the CMJ as an intervention effect in PPPP detected for the HMBG (p = 0.049). In addition, an enhancement in PPKG (p = 0.028; Ƞ2p = 0.842) was detected in the intervention, but not in PPMV, as an increase in the intervention in the 5-RM test (p = 0.001; Ƞ2p = 0.981) was observed. No changes were noted on body composition or pain (p > 0.05). The combination of eccentric training with stretching and ESWT increased concentric muscular power and strength after 4 weeks without changes in body lean mass or pain. In addition, HMB supplementation could enhance the power muscular performance in athletes with PT, optimizing the intervention adaptions.
Collapse
Affiliation(s)
- Ángela Sánchez-Gómez
- Departamento de Enfermería Farmacología y Fisioterapia, Facultad de Medicina y Enfermería, Universidad de Córdoba, 14004 Córdoba, Spain;
| | - Jose Manuel Jurado-Castro
- Metabolism and Investigation Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Córdoba, Spain;
- Centro Adscrito a la Universidad de Sevilla, Escuela Universitaria de Osuna, 41640 Osuna, Spain
| | - Fernando Mata
- Centro de Estudios Avanzados en Nutrición, 14010 Córdoba, Spain;
| | - Antonio Jesús Sánchez-Oliver
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, 41013 Seville, Spain;
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, 41013 Seville, Spain;
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| |
Collapse
|
21
|
König D, Kohl J, Jerger S, Centner C. Potential Relevance of Bioactive Peptides in Sports Nutrition. Nutrients 2021; 13:3997. [PMID: 34836255 PMCID: PMC8622853 DOI: 10.3390/nu13113997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive peptides are physiologically active peptides mostly derived from proteins following gastrointestinal digestion, fermentation or hydrolysis by proteolytic enzymes. It has been shown that bioactive peptides can be resorbed in their intact form and have repeatedly been shown to have a positive effect on health-related parameters such as hypertension, dyslipoproteinemia, inflammation and oxidative stress. In recent years, there has been increasing evidence that biologically active peptides could also play an important role in sports nutrition. Current studies have shown that bioactive peptides could have a positive impact on changes in body composition and muscular performance, reduce muscle damage following exercise and induce beneficial adaptions within the connective tissue. In the following overview, potential mechanisms as well as possible limitations regarding the sports-related effect of bioactive peptides and their potential mechanisms are presented and discussed. In addition, practical applications will be discussed on how bioactive peptides can be integrated into a nutritional approach in sports to enhance athletic performance as well as prevent injuries and improve the rehabilitation process.
Collapse
Affiliation(s)
- Daniel König
- Centre for Sports Science and University Sports, Institute for Nutrition, Exercise and Health, University of Vienna, Auf der Schmelz, 61150 Vienna, Austria
- Department for Nutritional Science, Institute for Nutrition, Exercise and Health, University of Vienna, 61150 Vienna, Austria
| | - Jan Kohl
- Department of Sport and Sport Science, University of Freiburg, 79102 Freiburg, Germany; (J.K.); (S.J.); (C.C.)
| | - Simon Jerger
- Department of Sport and Sport Science, University of Freiburg, 79102 Freiburg, Germany; (J.K.); (S.J.); (C.C.)
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, 79102 Freiburg, Germany; (J.K.); (S.J.); (C.C.)
- Praxisklinik Rennbahn, CH-4132 Muttenz, Switzerland
| |
Collapse
|
22
|
Akehurst H, Grice JE, Angioi M, Morrissey D, Migliorini F, Maffulli N. Whole-body vibration decreases delayed onset muscle soreness following eccentric exercise in elite hockey players: a randomised controlled trial. J Orthop Surg Res 2021; 16:589. [PMID: 34641941 PMCID: PMC8513296 DOI: 10.1186/s13018-021-02760-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Delayed onset muscle soreness (DOMS) is a common non-structural muscle injury which can disrupt training and impair performance in elite athletes. Vibration therapy reduces inflammation and improves neuromuscular efficiency, leading to reductions in pain and stiffness, and may be effective for the prevention or treatment of DOMS. However, the effect of whole-body vibration (WBV) used after sport in elite athletes has not been reported. METHODS A randomised, controlled trial was performed. Participants were elite (national or international level) hockey players and underwent an eccentric exercise protocol previously shown to produce clinical DOMS. After exercise, one group underwent static stretching with WBV therapy, and the other performed stretching only. Baseline and serial post-exercise pain scores and measurements of quadriceps tightness were obtained. RESULTS Eleven participants were recruited into each study arm. There were no significant differences in baseline group characteristics. Participants receiving WBV had significant reductions in both pain (p = 0.04) and quadriceps tightness (p = 0.02) compared with stretching only. CONCLUSIONS Post-exercise WBV is effective in elite hockey players to reduce DOMS after eccentric exercise. Elite athletes in multi-sprint sports are at risk of DOMS during training and competition, and its reduction could contribute to reduced injury risk and improved performance. This treatment modality is favourable because it can be incorporated with minimal disruption into the recovery section of existing training regimes. These findings may also be extrapolated to other multi-sprint sports.
Collapse
Affiliation(s)
- Harold Akehurst
- Department of Trauma and Orthopaedics, Great Western Hospital, Swindon, UK
| | - John E Grice
- Department of Trauma and Orthopaedics, Great Western Hospital, Swindon, UK.,Centre for Sports and Exercise Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Manuela Angioi
- Centre for Sports and Exercise Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Dylan Morrissey
- Centre for Sports and Exercise Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Nicola Maffulli
- Centre for Sports and Exercise Medicine, William Harvey Research Institute, Queen Mary University of London, London, UK.,Department of Trauma and Orthopaedics, University of Salerno School of Medicine, Surgery and Dentistry, Salerno, Italy
| |
Collapse
|
23
|
Neuromuscular responses to isometric, concentric and eccentric contractions of the knee extensors at the same torque-time integral. Eur J Appl Physiol 2021; 122:127-139. [PMID: 34591170 DOI: 10.1007/s00421-021-04817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The present study compared isometric, concentric and eccentric contractions at the same torque-time integral for changes in neuromuscular fatigue and muscle damage parameters. METHOD Healthy men (18-24 years) were placed to either isometric (ISO), concentric (CONC), or eccentric (ECC) group (n = 11/group) that performed corresponding contractions of the knee extensors to exert the same amount of torque-time integral (24,427 ± 291 Nm·s). Changes in maximal voluntary contraction (MVC) torque, voluntary activation, evoked torque at 10 Hz and 100 Hz and its ratio, M-wave amplitude, and muscle soreness were assessed immediately before and after, 1 h, 1 day and 2 days after each exercise, and were compared among the groups. RESULTS MVC torque decreased immediately after ISO (- 17.0 ± 8.3%), CONC (- 21.7 ± 11.5%) and ECC (- 26.2 ± 15.6%) similarly (p = 0.35), but the decrease sustained longer (p < 0.05) for ECC (2 days post-exercise: - 12.9 ± 14.8%) and ISO (- 5.5 ± 7.9%) than CONC (+ 5.0 ± 11.0%). Muscle soreness developed after ECC (25.1 ± 19.8 mm) and ISO (17.5 ± 21.0 mm) similarly (p = 0.15). Voluntary activation decreased immediately (- 3.7 ± 6.6%) and 1 h post-exercise (- 4.7 ± 7.6%) for all groups similarly. Electrically evoked forces decreased greater immediately (- 30.1 ± 15.6%) and 1 h post-exercise (- 35.0 ± 12.8%) for ECC than others, and the decrease in 10/100 Hz ratio was also greater immediately (- 30.5 ± 12.6%) and 1 h after ECC (- 23.8 ± 10.3%) than others. CONCLUSION ISO, CONC and ECC with the same torque-time integral produced similar neuromuscular fatigue at immediately post-exercise, but the force loss was longer-lasting after ISO and ECC than CONC, and the changes in peripheral fatigue parameters were the greatest after ECC, suggesting greater muscle damage.
Collapse
|
24
|
Khuu S, Fernandez JW, Handsfield GG. A Coupled Mechanobiological Model of Muscle Regeneration In Cerebral Palsy. Front Bioeng Biotechnol 2021; 9:689714. [PMID: 34513808 PMCID: PMC8429491 DOI: 10.3389/fbioe.2021.689714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/06/2021] [Indexed: 01/05/2023] Open
Abstract
Cerebral palsy is a neuromusculoskeletal disorder associated with muscle weakness, altered muscle architecture, and progressive musculoskeletal symptoms that worsen with age. Pathological changes at the level of the whole muscle have been shown; however, it is unclear why this progression of muscle impairment occurs at the cellular level. The process of muscle regeneration is complex, and the interactions between cells in the muscle milieu should be considered in the context of cerebral palsy. In this work, we built a coupled mechanobiological model of muscle damage and regeneration to explore the process of muscle regeneration in typical and cerebral palsy conditions, and whether a reduced number of satellite cells in the cerebral palsy muscle environment could cause the muscle regeneration cycle to lead to progressive degeneration of muscle. The coupled model consisted of a finite element model of a muscle fiber bundle undergoing eccentric contraction, and an agent-based model of muscle regeneration incorporating satellite cells, inflammatory cells, muscle fibers, extracellular matrix, fibroblasts, and secreted cytokines. Our coupled model simulated damage from eccentric contraction followed by 28 days of regeneration within the muscle. We simulated cyclic damage and regeneration for both cerebral palsy and typically developing muscle milieus. Here we show the nonlinear effects of altered satellite cell numbers on muscle regeneration, where muscle repair is relatively insensitive to satellite cell concentration above a threshold, but relatively sensitive below that threshold. With the coupled model, we show that the fiber bundle geometry undergoes atrophy and fibrosis with too few satellite cells and excess extracellular matrix, representative of the progression of cerebral palsy in muscle. This work uses in silico modeling to demonstrate how muscle degeneration in cerebral palsy may arise from the process of cellular regeneration and a reduced number of satellite cells.
Collapse
Affiliation(s)
- Stephanie Khuu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Justin W. Fernandez
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
25
|
Rojas-Valverde D. Potential Role of Cannabidiol on Sports Recovery: A Narrative Review. Front Physiol 2021; 12:722550. [PMID: 34413793 PMCID: PMC8369499 DOI: 10.3389/fphys.2021.722550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
The use of cannabidiol (CBD) among athletes is becoming extensive and frequent. This could be due to the elimination of CBD from the list of prohibited substances by federations and international institutions of sport. The legalization and resulting production, and commercialization of CBD, could increase its intake in sports professionals. This commercialization of cannabinoids has fueled a race to study their properties, benefits, and risks for health and performance in athletes. Although there is evidence that suggests some beneficial properties such as anxiolytics, antidepressants, anti-inflammatory, and antioxidants among others, the evidence presented so far is neither clear nor conclusive. There are significant gaps in knowledge of the physiological pathways that explain the role of CBD in sports performance. This mini-review examines evidence suggesting that CBD has the potential to be used as a part of the strategies to recover from fatigue and muscle damage related to physical and cognitive exertion in sports.
Collapse
Affiliation(s)
- Daniel Rojas-Valverde
- Clínica de Lesiones Deportivas (Rehabilitation and Readaptation), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia, Costa Rica.,Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia, Costa Rica.,Núcleo de Estudios para el Alto Rendimiento y la Salud (NARS), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
26
|
Zhu YC, Jin FH, Zhang MY, Qi F. Inhibition of Peripheral ERK Signaling Ameliorates Persistent Muscle Pain Around Trigger Points in Rats. Cell Transplant 2021; 29:963689720960190. [PMID: 33081508 PMCID: PMC7784566 DOI: 10.1177/0963689720960190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to investigate whether the ERK signaling pathway was involved in ameliorating chronic myofascial hyperalgesia from contused gastrocnemius muscle in rats. We established an animal model associated with myofascial pain syndrome and described the mechanism of muscle pain in an animal model. Changes in the mechanical pain threshold were observed 0.5, 1, 2, 3, 4, 5, 8, 12, 18, and 24 h after ERK inhibitor injection around myofascial trigger points (MTrPs) of the gastrocnemius muscle in rats. Morphological changes in gastrocnemius muscle cells were observed by hematoxylin and eosin (H&E) staining. ERK signaling pathway activation was detected through immunohistochemistry and Western blotting. The main morphological characteristics of injured muscle fibers around MTrPs include gathered circular or elliptical shapes of different sizes in the cross-section and continuous inflated and tapering fibers in the longitudinal section. After intramuscular injection of U0126 (ERK inhibitor), the mechanical pain threshold significantly increased. The reduction in mechanical hyperalgesia was accompanied by reduced ERK protein phosphorylation, myosin light chain kinase (MLCK) protein, p-MLC protein expression, and the cross-sectional area of skeletal muscle cells around MTrPs. An ERK inhibitor contributed to the attenuation of mechanical hyperalgesia in the rat myofascial pain model, and the increase in pain threshold may be related to MLCK downregulation and other related contraction-associated proteins by ERK.
Collapse
Affiliation(s)
- Yu-Chang Zhu
- Department of Anaesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Anaesthesiology, Shangdong Provincial Maternal and Child Health Care Hospital, China
| | - Fei-Hong Jin
- Department of Anaesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming-Yang Zhang
- Department of Anaesthesiology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Feng Qi
- Department of Anaesthesiology and Pain Clinic, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
27
|
Lombardo ME, Carraro E, Sancricca C, Armando M, Catteruccia M, Mazzone E, Ricci G, Salamino F, Santorelli FM, Filosto M. Management of motor rehabilitation in individuals with muscular dystrophies. 1 st Consensus Conference report from UILDM - Italian Muscular Dystrophy Association (Rome, January 25-26, 2019). ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2021; 40:72-87. [PMID: 34355124 PMCID: PMC8290512 DOI: 10.36185/2532-1900-046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 11/03/2022]
Abstract
Muscular dystrophy (MD) is a group of neuromuscular diseases characterized by progressive muscle weakness due to various mutations in several genes involved in muscle structure and function. The age at onset, evolution and severity of the different forms of MD can vary and there is often impairment of motor function and activities of daily living. Although there have been important scientific advances with regard to pharmacological therapies for many forms of MD, rehabilitation management remains central to ensuring the patient's psychophysical well-being. Here we report the results of an Italian consensus conference promoted by UILDM (Unione Italiana Lotta alla Distrofia Muscolare, the Italian Muscular Dystrophy Association) in order to establish general indications and agreed protocols for motor rehabilitation of the different forms of MD.
Collapse
Affiliation(s)
| | - Elena Carraro
- Neuromuscular Omnicentre, Fondazione Serena Onlus, Milan, Italy
| | - Cristina Sancricca
- Centro di Riabilitazione UILDM Lazio ONLUS, Rome, Italy
- UOC Neurofisiopatologia, Dipartimento Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michela Armando
- Department of Rehabilitation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Michela Catteruccia
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Elena Mazzone
- Physioterapist and international trainer for therapeutic trials, Rome, Italy
| | - Giulia Ricci
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia; NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| |
Collapse
|
28
|
Schlink BR, Nordin AD, Brooks CN, Ferris DP. Fatigue induces altered spatial myoelectric activation patterns in the medial gastrocnemius during locomotion. J Neurophysiol 2021; 125:2013-2023. [PMID: 33909489 DOI: 10.1152/jn.00602.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This research investigates the effects of muscle fatigue on spatial myoelectric patterns in the lower limb during locomotion. Both spatial and frequency aspects of neuromuscular recruitment in the medial gastrocnemius change in response to fatigue, resulting in altered myoelectric patterns during walking and running. These data may help us better understand the adaptations that occur in lower limb muscles to avoid overuse injuries caused by fatigue.
Collapse
Affiliation(s)
- Bryan R Schlink
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Andrew D Nordin
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Christina N Brooks
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| |
Collapse
|
29
|
Kwiecien SY, McHugh MP. The cold truth: the role of cryotherapy in the treatment of injury and recovery from exercise. Eur J Appl Physiol 2021; 121:2125-2142. [PMID: 33877402 DOI: 10.1007/s00421-021-04683-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/05/2021] [Indexed: 01/08/2023]
Abstract
Cryotherapy is utilized as a physical intervention in the treatment of injury and exercise recovery. Traditionally, ice is used in the treatment of musculoskeletal injury while cold water immersion or whole-body cryotherapy is used for recovery from exercise. In humans, the primary benefit of traditional cryotherapy is reduced pain following injury or soreness following exercise. Cryotherapy-induced reductions in metabolism, inflammation, and tissue damage have been demonstrated in animal models of muscle injury; however, comparable evidence in humans is lacking. This absence is likely due to the inadequate duration of application of traditional cryotherapy modalities. Traditional cryotherapy application must be repeated to overcome this limitation. Recently, the novel application of cooling with 15 °C phase change material (PCM), has been administered for 3-6 h with success following exercise. Although evidence suggests that chronic use of cryotherapy during resistance training blunts the anabolic training effect, recovery using PCM does not compromise acute adaptation. Therefore, following exercise, cryotherapy is indicated when rapid recovery is required between exercise bouts, as opposed to after routine training. Ultimately, the effectiveness of cryotherapy as a recovery modality is dependent upon its ability to maintain a reduction in muscle temperature and on the timing of treatment with respect to when the injury occurred, or the exercise ceased. Therefore, to limit the proliferation of secondary tissue damage that occurs in the hours after an injury or a strenuous exercise bout, it is imperative that cryotherapy be applied in abundance within the first few hours of structural damage.
Collapse
Affiliation(s)
- Susan Y Kwiecien
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY, USA.
| | - Malachy P McHugh
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY, USA
| |
Collapse
|
30
|
Effects of Kinesio Taping on the Relief of Delayed Onset Muscle Soreness: A Randomized, Placebo-Controlled Trial. J Sport Rehabil 2021; 28:781-786. [PMID: 30040009 DOI: 10.1123/jsr.2018-0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/28/2018] [Accepted: 06/10/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this study was to examine the effects of Kinesio taping (KT) on delayed onset muscle soreness. DESIGN Randomized controlled study. SETTING Clinical laboratory. PARTICIPANTS Fifty-four nonathletic volunteers were assigned randomly to KT (n = 27) and placebo KT (n = 27) groups. INTERVENTIONS The intense exercise protocol consisted of 100 consecutive drop jumps from a 0.60-m-high platform. Kinesio tape was applied with the fan technique on the quadriceps muscles in the KT group. The placebo KT group received the Kinesio tape with no technique and tension. MAIN OUTCOME MEASURE Muscle soreness, maximal isometric quadriceps muscle strength, vertical jump height, and blood analyses (creatine kinase, lactate dehydrogenase, myoglobin, and C-reactive protein) were measured preexercise, immediately postexercise, 48 hours postexercise, and 72 hours postexercise. RESULTS There was a significant effect of time in all outcome measures (P < .05) except serum C-reactive protein level (P > .05). The intensity of muscle soreness was significantly lower in the KT group relative to the placebo KT group at 72 hours postexercise (P = .01). The serum creatine kinase level was significantly higher in the KT group compared with the placebo KT group at 72 hours postexercise (P = .01). There were no statistically significant differences between groups for the other outcome measures (P > .05). CONCLUSIONS These findings indicate that KT intervention following the intense exercise protocol reduced muscle soreness. However, it had no effect on maximal quadriceps isometric strength and vertical jump height or serum lactate dehydrogenase, myoglobin, and C-reactive protein levels. Furthermore, KT application after intense exercise also increased serum creatine kinase levels.
Collapse
|
31
|
Lyu X, Gao Y, Liu Q, Zhao H, Zhou H, Pan S. Exercise-induced muscle damage: multi-parametric MRI quantitative assessment. BMC Musculoskelet Disord 2021; 22:239. [PMID: 33653313 PMCID: PMC7927395 DOI: 10.1186/s12891-021-04085-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND To explore the value of magnetic resonance quantitative analysis using diffusion tensor imaging, T2 mapping, and intravoxel incoherent motion in the evaluation of eccentric exercise-induced muscle damage and to compare the effects of various eccentric exercise modes at different time points in rats. METHODS A total of 174 Sprague-Dawley male rats were randomly divided into five groups: control, once-only exercise, continuous exercise, intermittent exercise, and once-fatigue exercise groups. Each experimental group was divided into seven time-subgroups: 0.5 h, 24 h, 48 h, 72 h, 96 h, 120 h and 168 h after exercise. The quadriceps femoris muscles were then scanned using magnetic resonance imaging. The apparent diffusion coefficient and fractional anisotropy values of diffusion tensor imaging, T2 values of T2 mapping, D and D* values of intravoxel incoherent motion and optical density values of desmin were measured. Associations among different eccentric exercise programmes, magnetic resonance imaging findings, and histopathological results were evaluated. Dunnett's test, two-way repeated measures analysis of variance, and Pearson correlation analysis were used for statistical analysis. RESULTS Diffusion tensor imaging showed that the number of muscle fibre bundles decreased to varying degrees with different time points and eccentric exercises. Apparent diffusion coefficient values of the exercise groups showed a trend that first increased and then decreased, the opposite of fractional anisotropy. The specimens in all eccentric exercise programmes showed high signal T2 values after exercise, the highest among which was in the once-fatigue exercise group. D and D* in the experimental groups were significantly higher than those in the control group at 0.5-48 h after exercise. The apparent diffusion coefficient, fractional anisotropy, T2, D and D* values correlated with the optical density values of desmin. CONCLUSIONS Diffusion tensor imaging, T2 mapping, and intravoxel incoherent motion technology accurately reflect the degree of skeletal muscle damage and recovery associated with eccentric exercise. The degree of muscle damage was the lowest in the continuous exercise group and the highest in the once-fatigue exercise group, which may provide more information and guidance for the formulation of physical and athletic training programmes.
Collapse
Affiliation(s)
- Xiaohong Lyu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.,Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Yue Gao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Qiang Liu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Heng Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Huadong Zhou
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Shinong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
32
|
Qualls AE, Southern WM, Call JA. Mitochondria-cytokine crosstalk following skeletal muscle injury and disuse: a mini-review. Am J Physiol Cell Physiol 2021; 320:C681-C688. [PMID: 33566726 DOI: 10.1152/ajpcell.00462.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle mitochondria are highly adaptable, highly dynamic organelles that maintain the functional integrity of the muscle fiber by providing ATP for contraction and cellular homeostasis (e.g., Na+/K+ ATPase). Emerging as early modulators of inflammation, mitochondria sense and respond to cellular stress. Mitochondria communicate with the environment, in part, by release of physical signals called mitochondrial-derived damage-associated molecular patterns (mito-DAMPs) and deviation from routine function (e.g., reduced ATP production, Ca2+ overload). When skeletal muscle is compromised, mitochondria contribute to an acute inflammatory response necessary for myofibril regeneration; however, exhaustive signaling associated with altered or reduced mitochondrial function can be detrimental to muscle outcomes. Here, we describe changes in mitochondrial content, structure, and function following skeletal muscle injury and disuse and highlight the influence of mitochondria-cytokine crosstalk on muscle regeneration and recovery. Although the appropriate therapeutic modulation following muscle stressors remains unknown, retrospective gene expression analysis reveals that interleukin-6 (IL-6), interleukin-1β (IL-1β), chemokine C-X-C motif ligand 1 (CXCL1), and monocyte chemoattractant protein 1 (MCP-1) are significantly upregulated following three unique muscle injuries. These cytokines modulate mitochondrial function and execute bona fide pleiotropic roles that can aid functional recovery of muscle, however, when aberrant, chronically disrupt healing partly by exacerbating mitochondrial dysfunction. Multidisciplinary efforts to delineate the opposing regulatory roles of inflammatory cytokines in the muscle mitochondrial environment are required to modulate regenerative behavior following skeletal muscle injury or disuse. Future therapeutic directions to consider include quenching or limited release of mito-DAMPs and cytokines present in cytosol or circulation.
Collapse
Affiliation(s)
- Anita E Qualls
- Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - W Michael Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| |
Collapse
|
33
|
The Potential Role of Exercise-Induced Muscle Damage in Exertional Heat Stroke. Sports Med 2021; 51:863-872. [PMID: 33528800 DOI: 10.1007/s40279-021-01427-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Exertional heat stroke (EHS) is a life-threatening condition that affects mainly athletes, military personnel, firefighters, and occupational workers. EHS is frequently observed in non-compensable conditions (where the body is unable to maintain a steady thermal balance) as a result of heavy heat stress and muscle contraction associated with prolonged and strenuous physical and occupational activities, resulting in central nervous system dysfunction followed by multi-organ damage and failure. Since the pathophysiology of EHS is complex and involves multiple organs and systems, any condition that changes the interrelated systems may increase the risk for EHS. It has been suggested that exercise-induced muscle damage (EIMD) can lead to thermoregulatory impairment and systemic inflammation, which could be a potential predisposing factor for EHS. In this review article, we aim to (1) address the evidence of EIMD as a predisposing factor for EHS and (2) propose a possible mechanism of how performing muscle-damaging exercise in the heat may aggravate muscle damage and subsequent risk of EHS and acute kidney injury (AKI). Such an understanding could be meaningful to minimize the risks of EHS and AKI for individuals with muscle damage due to engaging in physical work in hot environments.
Collapse
|
34
|
Mullaney MJ, McHugh MP, Kwiecien SY, Ioviero N, Fink A, Howatson G. Accelerated Muscle Recovery in Baseball Pitchers Using Phase Change Material Cooling. Med Sci Sports Exerc 2021; 53:228-235. [PMID: 32694373 DOI: 10.1249/mss.0000000000002447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this study was to document recovery after a pitching performance and determine whether prolonged postgame phase change material (PCM) cooling of the shoulder and forearm accelerates recovery. METHODS Strength, soreness, and serum creatine kinase (CK) activity were assessed before and on the 2 d after pitching performances in 16 college pitchers. Pitchers were randomized to receive either postgame PCM cooling packs on the shoulder and forearm or no cooling (control). PCM packs were applied inside compression shirts and delivered cooling at a constant temperature of 15°C for 3 h. Strength was assessed for shoulder internal rotation (IR), external rotation (ER), empty can (EC) test, and grip. RESULTS Total pitch count was 60 ± 16 for 23 PCM cooling games and 62 ± 17 for 24 control games (P = 0.679). On the days after pitching, IR strength (P = 0.006) and grip strength (P = 0.036) were higher in the PCM cooling group versus control. One day after pitching, IR strength was 95% ± 14% of baseline with PCM cooling versus 83% ± 13% for control (P = 0.008, effect size d = 0.91) and 107% ± 9% versus 95% ± 10% for grip strength (P = 0.022, effect size d = 1.29). There was a trend for greater ER strength with PCM cooling (P = 0.091, effect size d = 0.51). The EC strength was not impaired after pitching (P = 0.147) and was therefore unaffected by PCM cooling (P = 0.168). Elevations in soreness and CK were not different between treatments (treatment-time CK P = 0.139, shoulder soreness P = 0.885, forearm soreness P = 0.206). CONCLUSION This is one of the first studies to document impairments in muscle function on the days after baseball pitching, and the first study showing a novel cryotherapy intervention that accelerates recovery of muscle function in baseball pitchers after a game.
Collapse
Affiliation(s)
| | | | | | - Neil Ioviero
- Athletics Department, Kean University, Union, NJ
| | - Andrew Fink
- Mullaney and Associates Physical Therapy, Matawan, NJ
| | | |
Collapse
|
35
|
Bontemps B, Vercruyssen F, Gruet M, Louis J. Downhill Running: What Are The Effects and How Can We Adapt? A Narrative Review. Sports Med 2020; 50:2083-2110. [PMID: 33037592 PMCID: PMC7674385 DOI: 10.1007/s40279-020-01355-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Downhill running (DR) is a whole-body exercise model that is used to investigate the physiological consequences of eccentric muscle actions and/or exercise-induced muscle damage (EIMD). In a sporting context, DR sections can be part of running disciplines (off-road and road running) and can accentuate EIMD, leading to a reduction in performance. The purpose of this narrative review is to: (1) better inform on the acute and delayed physiological effects of DR; (2) identify and discuss, using a comprehensive approach, the DR characteristics that affect the physiological responses to DR and their potential interactions; (3) provide the current state of evidence on preventive and in-situ strategies to better adapt to DR. Key findings of this review show that DR may have an impact on exercise performance by altering muscle structure and function due to EIMD. In the majority of studies, EIMD are assessed through isometric maximal voluntary contraction, blood creatine kinase and delayed onset muscle soreness, with DR characteristics (slope, exercise duration, and running speed) acting as the main influencing factors. In previous studies, the median (25th percentile, Q1; 75th percentile, Q3) slope, exercise duration, and running speed were - 12% (- 15%; - 10%), 40 min (30 min; 45 min) and 11.3 km h-1 (9.8 km h-1; 12.9 km h-1), respectively. Regardless of DR characteristics, people the least accustomed to DR generally experienced the most EIMD. There is growing evidence to suggest that preventive strategies that consist of prior exposure to DR are the most effective to better tolerate DR. The effectiveness of in-situ strategies such as lower limb compression garments and specific footwear remains to be confirmed. Our review finally highlights important discrepancies between studies in the assessment of EIMD, DR protocols and populations, which prevent drawing firm conclusions on factors that most influence the response to DR, and adaptive strategies to DR.
Collapse
Affiliation(s)
- Bastien Bontemps
- Université de Toulon, Laboratoire IAPS, Toulon, France
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | | | - Mathieu Gruet
- Université de Toulon, Laboratoire IAPS, Toulon, France
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
36
|
Pinto J, Rocha P, Torres R. Cold-Water Immersion Has No Effect on Muscle Stiffness After Exercise-Induced Muscle Damage. Clin J Sport Med 2020; 30:533-538. [PMID: 30365470 DOI: 10.1097/jsm.0000000000000682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To analyze the effect of cryotherapy on muscle stiffness after exercise-induced muscle damage. DESIGN A leg-to-leg comparison model. SETTING University research laboratory. PARTICIPANTS Thirty (30) untrained men (21.1 ± 1.6 years, 177.6 ± 6.4 cm, 75.9 ± 10.0 kg, and 15.9 ± 2.9% fat mass) with no history of lower-limb injury and no experience in resistance training. INTERVENTION All participants underwent a plyometric exercise program to induce muscle damage; however, randomly, one leg was assigned to a treatment condition and subjected twice to cold-water immersion of the lower limb at 10°C (±1°C) for 10 minutes, while the other leg was assigned to control. MAIN OUTCOMES MEASURES Longitudinal stiffness and passive transverse stiffness were evaluated on the soleus and gastrocnemius muscles at 4 moments: pre-exercise, immediately after exercise, 24 hours, and 72 hours after the damage protocol. Furthermore, pressure pain threshold (PPT) and maximal voluntary isometric contraction (MVIC) were also assessed in the same periods. RESULTS No significant differences between control and cryotherapy were observed in regard to MVIC (P = 0.529), passive longitudinal stiffness (P = 0.315), and passive transverse stiffness (P = 0.218). Only a significant decrease was observed in PPT on the soleus muscle in the cryotherapy compared with the control leg immediately after exercise (P = 0.040). CONCLUSIONS The results show that cryotherapy had no influence on muscle stiffness. However, cryotherapy had a positive effect on PPT immediately after exercise.
Collapse
Affiliation(s)
- João Pinto
- CESPU, Department of Physiotherapy, North Polytechnic Institute of Health, Paredes, Portugal; and
| | - Pedro Rocha
- CESPU, Department of Physiotherapy, North Polytechnic Institute of Health, Paredes, Portugal; and
| | - Rui Torres
- CESPU, Department of Physiotherapy, North Polytechnic Institute of Health, Paredes, Portugal; and
- CEMAH, Activity and Human Movement Study Center, Polytechnic Institute of Oporto, Oporto, Portugal
| |
Collapse
|
37
|
Mirzoev TM. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth. Int J Mol Sci 2020; 21:ijms21217940. [PMID: 33114683 PMCID: PMC7663166 DOI: 10.3390/ijms21217940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle fibers have a unique capacity to adjust their metabolism and phenotype in response to alternations in mechanical loading. Indeed, chronic mechanical loading leads to an increase in skeletal muscle mass, while prolonged mechanical unloading results in a significant decrease in muscle mass (muscle atrophy). The maintenance of skeletal muscle mass is dependent on the balance between rates of muscle protein synthesis and breakdown. While molecular mechanisms regulating protein synthesis during mechanical unloading have been relatively well studied, signaling events implicated in protein turnover during skeletal muscle recovery from unloading are poorly defined. A better understanding of the molecular events that underpin muscle mass recovery following disuse-induced atrophy is of significant importance for both clinical and space medicine. This review focuses on the molecular mechanisms that may be involved in the activation of protein synthesis and subsequent restoration of muscle mass after a period of mechanical unloading. In addition, the efficiency of strategies proposed to improve muscle protein gain during recovery is also discussed.
Collapse
Affiliation(s)
- Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| |
Collapse
|
38
|
Abstract
RATIONALE Polymyxin B has been used to treat extensively drug-resistant gram-negative bacteria and shown a better antibacterial effect in the clinic at present. Meanwhile, polymyxin B is associated with several adverse effects. However, there is a lack of awareness that polymyxin B can cause rhabdomyolysis. In this study, we firstly report a case of polymyxin B-induced rhabdomyolysis during antiinfection therapy. PATIENT CONCERNS A 70-year-old woman suffering from rheumatic heart disease underwent aortic and mitral valve replacement at our institute. Subsequently, she developed bacteremia and pneumonia caused by extensively drug resistance-acinetobacter baumannii. Polymyxin B was administered for 5 days. During treatment, the patient complained of muscle pain and limb weakness, and her serum creatine phosphokinase and myoglobin levels rose. DIAGNOSIS The clinical symptoms and laboratory examination confirmed rhabdomyolysis, and polymyxin B-induced rhabdomyolysis was considered. INTERVENTION We ceased polymyxin B treatment and monitored the patient daily. OUTCOMES Serum creatine phosphokinase levels returned to normal, myoglobin levels decreased, and muscle pain was significantly alleviated after cessation of polymyxin B. We identified this as a case of polymyxin B-induced rhabdomyolysis. LESSONS Here, we report the first reported case of rhabdomyolysis induced by polymyxin B administration. The awareness of rare adverse reaction helps ensure the clinical safety of polymyxin B treatment.
Collapse
Affiliation(s)
- Ming Ni
- Department of Clinical Pharmacy, Henan Provincial People's Hospital
- Department of Clinical Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou
| | - Xiangdong Meng
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai
| | - Limin Wang
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai
| | - Yanan Zhao
- Department of Clinical Pharmacy, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Min Yu
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai
| | - Sheng Shi
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai
| |
Collapse
|
39
|
Tang D, Hu J, Liu H, Li Z, Shi Q, Zhao G, Gao B, Lou J, Yao C, Xu F. Diagnosis and prognosis for exercise-induced muscle injuries: from conventional imaging to emerging point-of-care testing. RSC Adv 2020; 10:38847-38860. [PMID: 35518400 PMCID: PMC9057463 DOI: 10.1039/d0ra07321k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/11/2020] [Indexed: 12/02/2022] Open
Abstract
With the development of modern society, we have witnessed a significant increase of people who join in sport exercises, which also brings significantly increasing exercise-induced muscle injuries, resulting in reduction and even cessation of participation in sports and physical activities. Although severely injured muscles can hardly realize full functional restoration, skeletal muscles subjected to minor muscle injuries (e.g., tears, lacerations, and contusions) hold remarkable regeneration capacity to be healed without therapeutic interventions. However, delayed diagnosis or inappropriate prognosis will cause exacerbation of the injuries. Therefore, timely diagnosis and prognosis of muscle injuries is important to the recovery of injured muscles. Here, in this review, we discuss the definition and classification of exercise-induced muscle injuries, and then analyze their underlying mechanism. Subsequently, we provide detailed introductions to both conventional and emerging techniques for evaluation of exercise-induced muscle injuries with focus on emerging portable and wearable devices for point-of-care testing (POCT). Finally, we point out existing challenges and prospects in this field. We envision that an integrated system that combines physiological and biochemical analyses is anticipated to be realized in the future for assessing muscle injuries.
Collapse
Affiliation(s)
- Deding Tang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Maanshan Teachers College Ma Anshan 243041 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jie Hu
- Suzhou DiYinAn Biotech Co., Ltd., Suzhou Innovation Center for Life Science and Technology Suzhou 215129 P. R. China
| | - Hao Liu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zedong Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Qiang Shi
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
- Anhui College of Traditional Chinese Medicine Wuhu 241000 P. R. China
| | - Guoxu Zhao
- School of Material Science and Chemical Engineering, Xi'an Technological University Xi'an 710021 P. R. China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University Xi'an 710038 P. R. China
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University Chongqing 400038 P. R. China
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
40
|
Kwiecien SY, McHugh MP, Howatson G. Don't Lose Your Cool With Cryotherapy: The Application of Phase Change Material for Prolonged Cooling in Athletic Recovery and Beyond. Front Sports Act Living 2020; 2:118. [PMID: 33345107 PMCID: PMC7739598 DOI: 10.3389/fspor.2020.00118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Strenuous exercise can result in muscle damage in both recreational and elite athletes, and is accompanied by strength loss, and increases in soreness, oxidative stress, and inflammation. If the aforementioned signs and symptoms associated with exercise-induced muscle damage are excessive or unabated, the recovery process becomes prolonged and can result in performance decrements; consequently, there has been a great deal of research focussing on accelerating recovery following exercise. A popular recovery modality is cryotherapy which results in a reduction of tissue temperature by the withdrawal of heat from the body. Cryotherapy is advantageous because of its ability to reduce tissue temperature at the site of muscle damage. However, there are logistical limitations to traditional cryotherapy modalities, such as cold-water immersion or whole-body cryotherapy, because they are limited by the duration for which they can be administered in a single dose. Phase change material (PCM) at a temperature of 15°C can deliver a single dose of cooling for a prolonged duration in a practical, efficacious, and safe way; hence overcoming the limitations of traditional cryotherapy modalities. Recently, 15°C PCM has been locally administered following isolated eccentric exercise, a soccer match, and baseball pitching, for durations of 3-6 h with no adverse effects. These data showed that using 15°C PCM to prolong the duration of cooling successfully reduced strength loss and soreness following exercise. Extending the positive effects associated with cryotherapy by prolonging the duration of cooling can enhance recovery following exercise and give athletes a competitive advantage.
Collapse
Affiliation(s)
- Susan Y. Kwiecien
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY, United States
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Malachy P. McHugh
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY, United States
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
41
|
Miller W, Jeon S, Ye X. An examination of acute cross-over effects following unilateral low intensity concentric and eccentric exercise. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:141-152. [PMID: 35782286 PMCID: PMC9219316 DOI: 10.1016/j.smhs.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 11/15/2022] Open
Abstract
We compared the effects of low intensity concentric (CON) and eccentric (ECC) exercise on the force and neural responses of the dominant (exercised) elbow flexors (EFs), and studied if these conditions could induce cross-over effects to the contralateral (non-exercised) EFs. Fifteen subjects (8 males) completed all conditions (CON and ECC: 6 sets of low intensity exercise to failure; control: rest) in separate visits with a randomized order. Maximal isometric force and electromyography (EMG) of the dominant and contralateral EFs were assessed at pre, immediate-, 24-, and 48-h-post. Two-factor (condition and time) linear mixed-model analyses were performed to examine the force and EMG responses. Immediately post CON, contralateral EFs force was significantly (p = 0.026) higher (12.41%) than control, but no cross-over effects regarding the neural responses were observed. Immediately post ECC, dominant EFs force was significantly lower in ECC, compared to CON (p = 0.003) and control (p < 0.001). This force remained depressed at 24- and 48-h post ECC, when compared to CON (p < 0.001) and control (p < 0.001). Our data suggests that submaximal unilateral exercises are not likely to impair contralateral muscle strength performance. Instead, concentric exercises may acutely improve muscle strength for the contralateral limb. However, this effect is not explained by changes in muscle excitation.
Collapse
Affiliation(s)
- William Miller
- The University of Mississippi, Department of Health, Exercise Science, and Recreation Management, Neuromuscular Laboratory, University, MS, USA
| | - Sunggun Jeon
- Oklahoma State University, School of Kinesiology, Applied Health and Recreation, Stillwater, OK, USA
| | - Xin Ye
- The University of Mississippi, Department of Health, Exercise Science, and Recreation Management, Neuromuscular Laboratory, University, MS, USA
- University of Hartford, Department of Rehabilitation Sciences, West Hartford, CT, USA
- Corresponding author. University of Hartford, Department of Rehabilitation Sciences, West Hartford, CT, 06117, USA.
| |
Collapse
|
42
|
Kumar D, Nanga RPR, Thakuri D, Wilson N, Cember A, Martin ML, Zhu D, Shinohara RT, Qin Q, Hariharan H, Reddy R. Recovery kinetics of creatine in mild plantar flexion exercise using 3D creatine CEST imaging at 7 Tesla. Magn Reson Med 2020; 85:802-817. [PMID: 32820572 DOI: 10.1002/mrm.28463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/06/2022]
Abstract
PURPOSE Two-dimensional creatine CEST (2D-CrCEST), with a slice thickness of 10-20 mm and temporal resolution (τRes ) of about 30 seconds, has previously been shown to capture the creatine-recovery kinetics in healthy controls and in patients with abnormal creatine-kinase kinetics following the mild plantar flexion exercise. Since the distribution of disease burden may vary across the muscle length for many musculoskeletal disorders, there is a need to increase coverage in the slice-encoding direction. Here, we demonstrate the feasibility of 3D-CrCEST with τRes of about 30 seconds, and propose an improved voxel-wise B 1 + -calibration approach for CrCEST. METHODS The current 7T study with enrollment of 5 volunteers involved collecting the baseline CrCEST imaging for the first 2 minutes, followed by 2 minutes of plantar flexion exercise and then 8 minutes of postexercise CrCEST imaging, to detect the temporal evolution of creatine concentration following exercise. RESULTS Very good repeatability of 3D-CrCEST findings for activated muscle groups on an intraday and interday basis was established, with coefficient of variance of creatine recovery constants (τCr ) being 7%-15.7%, 7.5%, and 5.8% for lateral gastrocnemius, medial gastrocnemius, and peroneus longus, respectively. We also established a good intraday and interday scan repeatability for 3D-CrCEST and also showed good correspondence between τCr measurements using 2D-CrCEST and 3D-CrCEST acquisitions. CONCLUSION In this study, we demonstrated for the first time the feasibility and the repeatability of the 3D-CrCEST method in calf muscle with improved B 1 + correction to measure creatine-recovery kinetics within a large 3D volume of calf muscle.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Deepa Thakuri
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neil Wilson
- Siemens Medical Solutions USA Inc., Malvern, Pennsylvania, USA
| | - Abigail Cember
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa Lynne Martin
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics and Epidemiology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dan Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics and Epidemiology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Hari Hariharan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravinder Reddy
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Hyatt HW, Powers SK. The Role of Calpains in Skeletal Muscle Remodeling with Exercise and Inactivity-induced Atrophy. Int J Sports Med 2020; 41:994-1008. [PMID: 32679598 DOI: 10.1055/a-1199-7662] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calpains are cysteine proteases expressed in skeletal muscle fibers and other cells. Although calpain was first reported to act as a kinase activating factor in skeletal muscle, the consensus is now that calpains play a canonical role in protein turnover. However, recent evidence reveals new and exciting roles for calpains in skeletal muscle. This review will discuss the functions of calpains in skeletal muscle remodeling in response to both exercise and inactivity-induced muscle atrophy. Calpains participate in protein turnover and muscle remodeling by selectively cleaving target proteins and creating fragmented proteins that can be further degraded by other proteolytic systems. Nonetheless, an often overlooked function of calpains is that calpain-mediated cleavage of proteins can result in fragmented proteins that are biologically active and have the potential to actively influence cell signaling. In this manner, calpains function beyond their roles in protein turnover and influence downstream signaling effects. This review will highlight both the canonical and noncanonical roles that calpains play in skeletal muscle remodeling including sarcomere transformation, membrane repair, triad junction formation, regulation of excitation-contraction coupling, protein turnover, cell signaling, and mitochondrial function. We conclude with a discussion of key unanswered questions regarding the roles that calpains play in skeletal muscle.
Collapse
Affiliation(s)
- Hayden W Hyatt
- Applied Physiology and Kinesiology, University of Florida, Gainesville, United States
| | - Scott K Powers
- Applied Physiology, University of Florida, Gainesville, United States
| |
Collapse
|
44
|
Stožer A, Vodopivc P, Križančić Bombek L. Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiol Res 2020; 69:565-598. [PMID: 32672048 DOI: 10.33549/physiolres.934371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extreme or unaccustomed eccentric exercise can cause exercise-induced muscle damage, characterized by structural changes involving sarcomere, cytoskeletal, and membrane damage, with an increased permeability of sarcolemma for proteins. From a functional point of view, disrupted force transmission, altered calcium homeostasis, disruption of excitation-contraction coupling, as well as metabolic changes bring about loss of strength. Importantly, the trauma also invokes an inflammatory response and clinically presents itself by swelling, decreased range of motion, increased passive tension, soreness, and a transient decrease in insulin sensitivity. While being damaging and influencing heavily the ability to perform repeated bouts of exercise, changes produced by exercise-induced muscle damage seem to play a crucial role in myofibrillar adaptation. Additionally, eccentric exercise yields greater hypertrophy than isometric or concentric contractions and requires less in terms of metabolic energy and cardiovascular stress, making it especially suitable for the elderly and people with chronic diseases. This review focuses on our current knowledge of the mechanisms underlying exercise-induced muscle damage, their dependence on genetic background, as well as their consequences at the structural, functional, metabolic, and clinical level. A comprehensive understanding of these is a prerequisite for proper inclusion of eccentric training in health promotion, rehabilitation, and performance enhancement.
Collapse
Affiliation(s)
- A Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia.
| | | | | |
Collapse
|
45
|
McCartney D, Benson MJ, Desbrow B, Irwin C, Suraev A, McGregor IS. Cannabidiol and Sports Performance: a Narrative Review of Relevant Evidence and Recommendations for Future Research. SPORTS MEDICINE - OPEN 2020; 6:27. [PMID: 32632671 PMCID: PMC7338332 DOI: 10.1186/s40798-020-00251-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid derived from Cannabis sativa. CBD initially drew scientific interest due to its anticonvulsant properties but increasing evidence of other therapeutic effects has attracted the attention of additional clinical and non-clinical populations, including athletes. Unlike the intoxicating cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC), CBD is no longer prohibited by the World Anti-Doping Agency and appears to be safe and well-tolerated in humans. It has also become readily available in many countries with the introduction of over-the-counter "nutraceutical" products. The aim of this narrative review was to explore various physiological and psychological effects of CBD that may be relevant to the sport and/or exercise context and to identify key areas for future research. As direct studies of CBD and sports performance are is currently lacking, evidence for this narrative review was sourced from preclinical studies and a limited number of clinical trials in non-athlete populations. Preclinical studies have observed robust anti-inflammatory, neuroprotective and analgesic effects of CBD in animal models. Preliminary preclinical evidence also suggests that CBD may protect against gastrointestinal damage associated with inflammation and promote healing of traumatic skeletal injuries. However, further research is required to confirm these observations. Early stage clinical studies suggest that CBD may be anxiolytic in "stress-inducing" situations and in individuals with anxiety disorders. While some case reports indicate that CBD improves sleep, robust evidence is currently lacking. Cognitive function and thermoregulation appear to be unaffected by CBD while effects on food intake, metabolic function, cardiovascular function, and infection require further study. CBD may exert a number of physiological, biochemical, and psychological effects with the potential to benefit athletes. However, well controlled, studies in athlete populations are required before definitive conclusions can be reached regarding the utility of CBD in supporting athletic performance.
Collapse
Affiliation(s)
- Danielle McCartney
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia.
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia.
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia.
| | - Melissa J Benson
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Ben Desbrow
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher Irwin
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | - Anastasia Suraev
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Iain S McGregor
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| |
Collapse
|
46
|
Vella L, Markworth JF, Farnfield MM, Maddipati KR, Russell AP, Cameron-Smith D. Intramuscular inflammatory and resolving lipid profile responses to an acute bout of resistance exercise in men. Physiol Rep 2020; 7:e14108. [PMID: 31257737 PMCID: PMC6599756 DOI: 10.14814/phy2.14108] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 01/23/2023] Open
Abstract
Lipid mediators including classical arachidonic acid‐derived eicosanoids (e.g. prostaglandins and leukotrienes) and more recently identified specialized pro‐resolving‐mediator metabolites of the omega‐3 fatty acids play essential roles in initiation, self‐limitation, and active resolution of acute inflammatory responses. In this study, we examined the bioactive lipid mediator profile of human skeletal muscle at rest and following acute resistance exercise. Twelve male subjects completed a single bout of maximal isokinetic unilateral knee extension exercise and muscle biopsies were taken from the m.vastus lateralis before and at 2, 4, and 24 h of recovery. Muscle tissue lipid mediator profile was analyzed via liquid chromatography–mass spectrometry (LC‐MS)‐based targeted lipidomics. At 2 h postexercise, there was an increased intramuscular abundance of cyclooxygenase (COX)‐derived thromboxanes (TXB2: 3.33 fold) and prostaglandins (PGE2: 2.52 fold and PGF2α: 1.77 fold). Resistance exercise also transiently increased muscle concentrations of lipoxygenase (LOX) pathway‐derived leukotrienes (12‐Oxo LTB4: 1.49 fold and 20‐COOH LTB4: 2.91 fold), monohydroxy‐eicosatetraenoic acids (5‐HETE: 2.66 fold, 12‐HETE: 2.83 fold, and 15‐HETE: 1.69 fold) and monohydroxy‐docosahexaenoic acids (4‐HDoHE: 1.69 fold, 7‐HDoHE: 1.58 fold and 14‐HDoHE: 2.35 fold). Furthermore, the abundance of CYP pathway‐derived epoxy‐ and dihydroxy‐eicosatrienoic acids was increased in 2 h postexercise biopsies (5,6‐EpETrE: 2.48 fold, 11,12‐DiHETrE: 1.66 fold and 14,15‐DiHETrE: 2.23 fold). These data reveal a range of bioactive lipid mediators as present within human skeletal muscle tissue and demonstrate that acute resistance exercise transiently stimulates the local production of both proinflammatory eicosanoids and pathway markers in specialized proresolving mediator biosynthesis circuits.
Collapse
Affiliation(s)
- Luke Vella
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia.,Department of Sports Development and Recreation, University of Bath, Bath, United Kingdom
| | - James F Markworth
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Michelle M Farnfield
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Krishna R Maddipati
- Bioactive Lipids Research Program and Lipidomics Core, Department of Pathology, School of Medicine, Wayne State University, Karmanos Cancer Institute, Detroit, Michigan
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | | |
Collapse
|
47
|
Do Antioxidant Vitamins Prevent Exercise-Induced Muscle Damage? A Systematic Review. Antioxidants (Basel) 2020; 9:antiox9050372. [PMID: 32365669 PMCID: PMC7278664 DOI: 10.3390/antiox9050372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Free radicals produced during exercise play a role in modulating cell signaling pathways. High doses of antioxidants may hamper adaptations to exercise training. However, their benefits are unclear. This review aims to examine whether vitamin C (VitC) and/or vitamin E (VitE) supplementation (SUP) prevents exercise-induced muscle damage. The PubMed, Web of Science, Medline, CINAHL, and SPORTDiscus databases were searched, and 21 articles were included. Four studies examined the effects of acute VitC SUP given pre-exercise: in one study, lower CK levels post-exercise was observed; in three, no difference was recorded. In one study, acute VitE SUP reduced CK activity 1 h post-exercise in conditions of hypoxia. In three studies, chronic VitE SUP did not reduce CK activity after an exercise session. Chronic VitE SUP did not reduce creatine kinase (CK) concentrations after three strength training sessions, but it was effective after 6 days of endurance training in another study. Chronic SUP with VitC + E reduced CK activity post-exercise in two studies, but there was no such effect in four studies. Finally, three studies described the effects of chronic VitC + E SUP and long-term exercise, reporting dissimilar results. To conclude, although there is some evidence of a protective effect of VitC and/or VitE against exercise-induced muscle damage, the available data are not conclusive.
Collapse
|
48
|
Paphangkorakit J, Chaichit R, Khummool K, Nopphaisit S, Saengsai A. Effect of biting speed and jaw separation on force used to incise food. J Oral Rehabil 2020; 47:731-735. [PMID: 32160328 DOI: 10.1111/joor.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 11/29/2022]
Abstract
Biting food too quickly might affect the control of jaw-closing muscles and the estimation of bite force. The objectives of this study were to compare the incisal bite forces used to cut food and the activity of masseter (MA) and anterior temporalis (AT) muscles between slow, habitual and fast biting speeds and also between small and large jaw openings. Twenty subjects were asked to use their incisors to cut through a 5 mm thick of chewing gum. In the first experiment, subjects bit at 10-mm incisal separation with slow, habitual and fast biting speeds, and in the second experiment, subjects bit with their habitual speed at 10- and 30-mm incisal separations. The activities in the MA and AT muscles were assessed with surface electromyography, and the bite force was recorded by a force sensor placed beneath the chewing gum. Peak bite forces and associated MA amplitudes were increased significantly as biting speed was increased (P's < .05). Anterior temporalis amplitude was significantly increased during fast biting compared to slow and habitual biting (P's < .001). At 30-mm incisal separation, both peak bite force and AT amplitude were significantly increased, whereas MA amplitude was significantly decreased, compared to those at 10-mm separation (P's < .05). Biting off food quickly with incisor teeth results in larger activities in both MA and AT muscles. In addition, biting a large piece of food resulted in increased activity of AT muscle. Both conditions could be injury stimulator for jaw muscles.
Collapse
Affiliation(s)
- Jarin Paphangkorakit
- Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.,Neuroscience Research and Development Group, Khon Kaen University, Khon Kaen, Thailand
| | - Rajda Chaichit
- Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Kakanank Khummool
- Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Saowalak Nopphaisit
- Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Assanon Saengsai
- Department of Oral Biomedical Science, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
49
|
Tokinoya K, Ishikura K, Ra SG, Ebina K, Miyakawa S, Ohmori H. Relationship between early-onset muscle soreness and indirect muscle damage markers and their dynamics after a full marathon. J Exerc Sci Fit 2020; 18:115-121. [PMID: 32351588 PMCID: PMC7183207 DOI: 10.1016/j.jesf.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/23/2019] [Accepted: 03/09/2020] [Indexed: 01/10/2023] Open
Abstract
Background/Objective Muscle soreness and damage occurs after completing a full marathon. Here we refer to muscle soreness induced by prolonged running as early-onset muscle soreness (EOMS) because muscle soreness and damage markers induced after prolonged running are different from delayed-onset muscle soreness (DOMS) and muscle damage markers induced after eccentric contraction, such as resistance exercise. The dynamics and relationship between muscle damage markers and EOMS are unclear; therefore, in this study, we aimed to elucidate the relationship between EOMS and indirect muscle damage markers, and their dynamics after a full marathon. Methods The following measurements were performed in 19 subjects who completed a full marathon: perceived muscle soreness (using a numeric rating scale), thigh circumference (CIR), hip joint range of motion (ROM), jump height (JH) and muscle damage marker activities in the blood (CK, AST, LDH, ALD) before (Pre), after (Post) and every day for 4 days after a full marathon (D1−4). Results EOMS was induced, as determined by the numeric rating scale score peaking immediately after a full marathon. ROM and JH significantly decreased and all muscle damage markers significantly increased after a full marathon. Serum CK and AST peaked at D1. Serum LDH and ALD peaked at Post and D3. Each marker showed different dynamics. CIR significantly decreased after a full marathon. Conclusion Muscle soreness peaked and muscle damage markers in the blood showed different dynamics after a full marathon. In other words, this is different from DOMS.
Collapse
Affiliation(s)
- Katsuyuki Tokinoya
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Keisuke Ishikura
- Prefectural Education Center, Sojo University, Kumamoto, 860-0082, Japan
| | - Song-Gyu Ra
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kei Ebina
- Department of Human Nutrition, Seitoku University, Matsudo, 271-8555, Japan
| | - Shumpei Miyakawa
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, 305-8574, Japan
| | - Hajime Ohmori
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, 305-8574, Japan
| |
Collapse
|
50
|
Supplementation of Re-Esterified Docosahexaenoic and Eicosapentaenoic Acids Reduce Inflammatory and Muscle Damage Markers after Exercise in Endurance Athletes: A Randomized, Controlled Crossover Trial. Nutrients 2020; 12:nu12030719. [PMID: 32182747 PMCID: PMC7146268 DOI: 10.3390/nu12030719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 01/18/2023] Open
Abstract
This study aimed to analyse the effect of 10 weeks of a highly concentrated docosahexaenoic acid (DHA) + eicosapentaenoic (EPA) supplementation (ratio 8:1) on strength deficit and inflammatory and muscle damage markers in athletes. Fifteen endurance athletes participated in the study. In a randomized, double-blinded cross-over controlled design, the athletes were supplemented with a re-esterified triglyceride containing 2.1 g/day of DHA + 240 mg/day of EPA or placebo for 10 weeks. After a 4-week wash out period, participants were supplemented with the opposite treatment. Before and after each supplementation period, participants performed one eccentric-induced muscle damage exercise training session (ECC). Before, post-exercise min and 24 and 48 h after exercise, muscle soreness, knee isokinetic strength and muscle damage and inflammatory markers were tested. No significant differences in strength deficit variables were found between the two conditions in any of the testing sessions. However, a significant effect was observed in IL1β (p= 0.011) and IL6 (p= 0.009), which showed significantly lower values after DHA consumption than after placebo ingestion. Moreover, a significant main effect was observed in CPK (p = 0.014) and LDH-5 (p = 0.05), in which significantly lower values were found after DHA + EPA consumption. In addition, there was a significant effect on muscle soreness (p = 0.049), lower values being obtained after DHA + EPA consumption. Ten weeks of re-esterified DHA + EPA promoted lower concentrations of inflammation and muscle damage markers and decreased muscle soreness but did not improve the strength deficit after an ECC in endurance athletes.
Collapse
|