1
|
Morsy MM, Salah B, Hulail MEE, Abdo W, Mahfouz H, Hakami ZH, Alsulimani A, Alnasser SM, Alhegaili AS, Abouzed TK, Elmahallawy EK, Abdel-Kareem MA. Platelet-rich plasma enhances remodeling of combined gastrocnemius muscle and Achilles tendon injuries in rat model: Reducing fibrosis, modulating gene (MMP9, Bax, HMGB1, and IGF) expression, and restoring histopathological and ultrastructural changes. Tissue Cell 2025; 93:102680. [PMID: 39729837 DOI: 10.1016/j.tice.2024.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
Muscle and tendon injuries are prevalent occurrences during sports activities. Platelet-rich plasma (PRP) is known for its rich content of factors essential for wound healing, inflammation reduction, and tissue repair. Despite its recognized benefits, limited information is available regarding PRP's effectiveness in addressing combined surgical injuries to the gastrocnemius muscle and Achilles tendon. The effects of PRP on muscle and tendon injury in rats were assessed through a set of biochemical markers, histopathological examinations, and immunohistochemistry analyses of muscular myogenin, desmin, and tendinous type I collagen. Additionally, mRNA expression levels of Matrix metalloproteinase-9 (MMP-9), Pro-apoptotic Bcl-2 Associated-X-protein (BAX), Insulin-like growth factor (IGF), and High mobility group box 1 protein (HMGB1) genes were evaluated. Induction of muscle and tendon injuries was associated with elevated levels of serum biomarkers such as C-reactive protein (CRP), Aspartate aminotransferase (AST), Lactate dehydrogenase A (LDH), and Creatine Kinase MB (CK-MB), delayed collagen fiber remodeling, and structural abnormalities in myofibrils. Furthermore, there was overexpression of MMP9, Bax, and HMGB1 genes, along with decreased expression of the IGF gene in this group. Treatment with PRP resulted in significant improvement of these reported findings, including enhanced collagen fiber remodeling, elevated levels of desmin and myogenin in muscle tissues, and increased expression of collagen type I in tendons. Additionally, PRP treatment led to reduced expression levels of MMP9, Bax, and HMGB1 genes, while the expression of the IGF gene increased. Overall, PRP treatment demonstrated substantial enhancement of the healing process in both muscle and tendon tissues in a surgical model of gastrocnemius skeletal muscle and Achilles tendon-induced injury. These findings suggest that PRP therapy may offer advantages in the treatment of physical-related injuries.
Collapse
Affiliation(s)
- Manal Mohammad Morsy
- Human Anatomy and embryology department, Faculty of Medicine, Zagazig University, Egypt.
| | - Basma Salah
- Human Anatomy and embryology department, Faculty of Medicine, Zagazig University, Egypt; Department of Anatomy and Embryology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
| | - Mohey E E Hulail
- Human Anatomy and embryology department, Faculty of Medicine, Zagazig University, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hala Mahfouz
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Zaki H Hakami
- Medical Laboratory Technology Department, College of Nursing and Health Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Nursing and Health Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452 Saudi Arabia
| | - Alaa S Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Tarek Kamal Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt.
| | - Mona A Abdel-Kareem
- Department of Anatomy and Embryology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
2
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
3
|
Feng Y, Su L, Liu L, Chen Z, Ji Y, Hu Y, Zheng D, Chen Z, Lei C, Xu H, Han Y, Shen H. Accurate Spatio-Temporal Delivery of Nitric Oxide Facilitates the Programmable Repair of Avascular Dense Connective Tissues Injury. Adv Healthc Mater 2024; 13:e2303740. [PMID: 38413194 DOI: 10.1002/adhm.202303740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Indexed: 02/29/2024]
Abstract
Avascular dense connective tissues (e.g., the annulus fibrosus (AF) rupture, the meniscus tear, and tendons and ligaments injury) repair remains a challenge due to the "biological barrier" that hinders traditional drug permeation and limits self-healing of the injured tissue. Here, accurate delivery of nitric oxide (NO) to penetrate the "AF biological barrier" is achieved thereby enabling programmable AF repair. NO-loaded BioMOFs are synthesized and mixed in a modified polyvinyl alcohol and PCL-composited electrospun fiber membrane with excellent reactive oxygen species-responsive capability (LN@PM). The results show that LN@PM could respond to the high oxidative stress environment at the injured tissue and realize continuous and substantial NO release. Based on low molecular weight and lipophilicity, NO could penetrate through the "biological barrier" for accurate AF drug delivery. Moreover, the dynamic characteristics of the LN@PM reaction can be matched with the pathological microenvironment to initiate programmable tissue repair including sequential remodeling microenvironment, reprogramming the immune environment, and finally promoting tissue regeneration. This tailored programmable treatment strategy that matches the pathological repair process significantly repairs AF, ultimately alleviating intervertebral disc degeneration. This study highlights a promising approach for avascular dense connective tissue treatment through intelligent NO release, effectively overcoming "AF biological barriers" and programmable treatment.
Collapse
Affiliation(s)
- Yubo Feng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Lefeng Su
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Lei Liu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Zhanyi Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yuwei Hu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Zhi Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Changbin Lei
- Department of Orthopedics, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, P. R. China
| | - He Xu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Yingchao Han
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| |
Collapse
|
4
|
Sgaglione MW, Solasz SJ, Leucht P, Egol KA. Is Postoperative Splinting Advantageous After Upper Extremity Fracture Surgery? Results From the Arm Splint Pain Improvement Research Experiment. J Orthop Trauma 2024; 38:e92-e97. [PMID: 38117579 DOI: 10.1097/bot.0000000000002742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
OBJECTIVES The authors report no conflict of interest.To determine if short-term immobilization with a rigid long arm plaster elbow splint after surgery of the arm, elbow, or forearm results in superior outcomes compared with a soft dressing with early motion. METHODS DESIGN Prospective Randomized Control Trial. SETTING Academic Medical Center. PATIENT SELECTION CRITERIA Patients undergoing operative treatment for a mid-diaphysis or distal humerus, elbow, or forearm fracture were consented and randomized according to the study protocol for postoperative application of a rigid elbow splint (10-14 days in a plaster Sugar Tong Splint for forearm fracture or a Long Arm plaster Splint for 10-14 for all others) or soft dressing and allowing immediate free range of elbow and wrist motion (range of motion [ROM]). OUTCOME MEASURES AND COMPARISONS Self-reported pain (visual analog score or VAS), Healthscale (0-100, 100 denoting excellent health), and physical function (EuroQol 5 Dimension or EQ-5D) surveyed on postoperative days 1-5 and 14 were compared between groups. Patient-reported pain score (0-10, 10 denoting highest satisfaction) at week 6, time to fracture union, ultimate disabilities of the arm, shoulder, and hand score, and elbow ROM were also collected for analysis. Incidence of complications were assessed. RESULTS Hundred patients (38 men to 62 women with a mean age of 55.7 years) were included. Over the first 5 days and again at postop day 14, the splint cohort reported a higher "Healthscale" from 0 to 100 than the nonsplint group on all study days ( P = 0.041). There was no difference in reported pain between the 2 study groups over the same interval ( P = 0.161 and 0.338 for least and worst pain, respectively), and both groups reported similar rates of treatment satisfaction ( P = 0.30). Physical function ( P = 0.67) and rates of wound problems ( P = 0.27) were similar. Additionally, the mean time to fracture healing was similar for the splint and control groups (4.6 ± 2.8 vs. 4.0 ± 2.2 months, P = 0.34). Ultimate elbow ROM was similar between the study groups ( P = 0.48, P = 0.49, P = 0.61, and P = 0.51 for elbow extension, flexion, pronation, and supination, respectively). CONCLUSIONS Free range of elbow motion without splinting produced similar results compared with elbow immobilization after surgical intervention for a fracture to the humerus, elbow, and forearm. There was no difference in patient-reported pain outcomes, wound problems, or elbow ROM. Immobilized patients reported slightly higher "healthscale" ratings than nonsplinted patients and, however, reported similar rates of satisfaction. Both treatment strategies are acceptable after upper extremity fracture surgery. LEVEL OF EVIDENCE Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Matthew W Sgaglione
- New York University Langone Orthopedic Hospital, Department of Orthopedic Surgery, NYU Langone Health, New York, NY
| | | | | | | |
Collapse
|
5
|
Tong S, Sun Y, Kuang B, Wang M, Chen Z, Zhang W, Chen J. A Comprehensive Review of Muscle-Tendon Junction: Structure, Function, Injury and Repair. Biomedicines 2024; 12:423. [PMID: 38398025 PMCID: PMC10886980 DOI: 10.3390/biomedicines12020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The muscle-tendon junction (MTJ) is a highly specific tissue interface where the muscle's fascia intersects with the extracellular matrix of the tendon. The MTJ functions as the particular structure facilitating the transmission of force from contractive muscle fibers to the skeletal system, enabling movement. Considering that the MTJ is continuously exposed to constant mechanical forces during physical activity, it is susceptible to injuries. Ruptures at the MTJ often accompany damage to both tendon and muscle tissues. In this review, we attempt to provide a precise definition of the MTJ, describe its subtle structure in detail, and introduce therapeutic approaches related to MTJ tissue engineering. We hope that our detailed illustration of the MTJ and summary of the representative research achievements will help researchers gain a deeper understanding of the MTJ and inspire fresh insights and breakthroughs for future research.
Collapse
Affiliation(s)
- Siqi Tong
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Yuzhi Sun
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Baian Kuang
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Mingyue Wang
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Zhixuan Chen
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing 210009, China
- Center for Stem Cell and Regenerative Medicine, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
6
|
Edouard P, Reurink G, Mackey AL, Lieber RL, Pizzari T, Järvinen TAH, Gronwald T, Hollander K. Traumatic muscle injury. Nat Rev Dis Primers 2023; 9:56. [PMID: 37857686 DOI: 10.1038/s41572-023-00469-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Traumatic muscle injury represents a collection of skeletal muscle pathologies caused by trauma to the muscle tissue and is defined as damage to the muscle tissue that can result in a functional deficit. Traumatic muscle injury can affect people across the lifespan and can result from high stresses and strains to skeletal muscle tissue, often due to muscle activation while the muscle is lengthening, resulting in indirect and non-contact muscle injuries (strains or ruptures), or from external impact, resulting in direct muscle injuries (contusion or laceration). At a microscopic level, muscle fibres can repair focal damage but must be completely regenerated after full myofibre necrosis. The diagnosis of muscle injury is based on patient history and physical examination. Imaging may be indicated to eliminate differential diagnoses. The management of muscle injury has changed within the past 5 years from initial rest, immobilization and (over)protection to early activation and progressive loading using an active approach. One challenge of muscle injury management is that numerous medical treatment options, such as medications and injections, are often used or proposed to try to accelerate muscle recovery despite very limited efficacy evidence. Another challenge is the prevention of muscle injury owing to the multifactorial and complex nature of this injury.
Collapse
Affiliation(s)
- Pascal Edouard
- Université Jean Monnet, Lyon 1, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France.
- Department of Clinical and Exercise Physiology, Sports Medicine Unit, University Hospital of Saint-Etienne, Faculty of Medicine, Saint-Etienne, France.
| | - Gustaaf Reurink
- Department of Orthopedic Surgery and Sports Medicine, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Academic Medical Center, Amsterdam, Netherlands
- The Sports Physicians Group, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Departments of Physical Medicine and Rehabilitation and Biomedical Engineering, Northwestern University, Chicago, IL, USA
- Hines VA Medical Center, Maywood, IL, USA
| | - Tania Pizzari
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Tero A H Järvinen
- Tampere University and Tampere University Hospital, Tampere, Finland
| | - Thomas Gronwald
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Alheib O, da Silva LP, Mesquita KA, da Silva Morais A, Pirraco RP, Reis RL, Correlo VM. Human adipose-derived mesenchymal stem cells laden in gellan gum spongy-like hydrogels for volumetric muscle loss treatment. Biomed Mater 2023; 18:065005. [PMID: 37604159 DOI: 10.1088/1748-605x/acf25b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND volumetric muscle loss (VML) is a traumatic massive loss of muscular tissue which frequently leads to amputation, limb loss, or lifetime disability. The current medical intervention is limited to autologous tissue transfer, which usually leads to non-functional tissue recovery. Tissue engineering holds a huge promise for functional recovery. METHODS in this work, we evaluated the potential of human adipose-derived mesenchymal stem cells (hASCs) pre-cultured in gellan gum based spongy-like hydrogels (SLHs). RESULTS in vitro, hASCs were spreading, proliferating, and releasing growth factors and cytokines (i.e. fibroblast growth factor, hepatocyte growth factor, insulin-like growth factor 1, interleukin-6 (IL-6), IL-8, IL-10, vascular endothelial growth factor) important for muscular regeneration. After implantation into a volumetric muscle loss (VML) mouse model, implants were degrading overtime, entirely integrating into the host between 4 and 8 weeks. In both SLH and SLH + hASCs defects, infiltrated cells were observed inside constructs associated with matrix deposition. Also, minimal collagen deposition was marginally observed around the constructs along both time-points. Neovascularization (CD31+vessels) and neoinnervation (β-III tubulin+bundles) were significantly detected in the SLH + hASCs group, in relation to the SHAM (empty lesion). A higher density ofα-SA+and MYH7+cells were found in the injury site among all different experimental groups, at both time-points, in relation to the SHAM. The levels ofα-SA, MyoD1, and myosin heavy chain proteins were moderately increased in the SLH + hASCs group after 4 weeks, and in the hASCs group after 8 weeks, in relation to the SHAM. CONCLUSIONS taken together, defects treated with hASCs-laden SLH promoted angiogenesis, neoinnervation, and the expression of myogenic proteins.
Collapse
Affiliation(s)
- Omar Alheib
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucilia P da Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Katia A Mesquita
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alain da Silva Morais
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Siu WS, Ma H, Cheng W, Shum WT, Leung PC. Traditional Chinese Medicine for Topical Treatment of Skeletal Muscle Injury. Pharmaceuticals (Basel) 2023; 16:1144. [PMID: 37631059 PMCID: PMC10457816 DOI: 10.3390/ph16081144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Muscle injuries are common musculoskeletal problems, but the pharmaceutical agent for muscle repair and healing is insufficient. Traditional Chinese Medicine (TCM) frequently uses topical treatments to treat muscle injuries, although scientific evidence supporting their efficacy is scarce. In this study, an in vitro assay was used to test the cytotoxicity of a topical TCM formula containing Carthami Flos, Dipsaci Radix, and Rhei Rhizoma (CDR). Then, a muscle contusion rat model was developed to investigate the in vivo effect and basic mechanisms underlying CDR on muscle regeneration. The in vitro assay illustrated that CDR was non-cytotoxic to immortalized rat myoblast culture and increased cell viability. Histological results demonstrated that the CDR treatment facilitated muscle repair by increasing the number of new muscle fibers and promoting muscle integrity. The CDR treatment also upregulated the expression of Pax7, MyoD and myogenin, as evidenced by an immunohistochemical study. A gene expression analysis indicated that the CDR treatment accelerated the regeneration and remodeling phases during muscle repair. This study demonstrated that topical CDR treatment was effective at facilitating muscle injury repair.
Collapse
Affiliation(s)
- Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wen Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wai-Ting Shum
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; (H.M.); (W.C.); (W.-T.S.); (P.-C.L.)
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
9
|
Orthobiologic Interventions for Muscle Injuries. Phys Med Rehabil Clin N Am 2023; 34:181-198. [DOI: 10.1016/j.pmr.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Iqbal MH, Revana FJR, Pradel E, Gribova V, Mamchaoui K, Coirault C, Meyer F, Boulmedais F. Brush-Induced Orientation of Collagen Fibers in Layer-by-Layer Nanofilms: A Simple Method for the Development of Human Muscle Fibers. ACS NANO 2022; 16:20034-20043. [PMID: 36301714 DOI: 10.1021/acsnano.2c06329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The engineering of skeletal muscle tissue, a highly organized structure of myotubes, is promising for the treatment of muscle injuries and muscle diseases, for replacement, or for pharmacology research. Muscle tissue development involves differentiation of myoblasts into myotubes with parallel orientation, to ultimately form aligned myofibers, which is challenging to achieve on flat surfaces. In this work, we designed hydrogen-bonded tannic acid/collagen layer-by-layer (TA/COL LbL) nanofilms using a simple brushing method to address this issue. In comparison to films obtained by dipping, brushed TA/COL films showed oriented COL fibers of 60 nm diameter along the brushing direction. Built at acidic pH due to COL solubility, TA/COL films released TA in physiological conditions with a minor loss of thickness. After characterization of COL fibers' orientation, human myoblasts (C25CL48) were seeded on the oriented TA/COL film, ended by COL. After 12 days in a differentiation medium without any other supplement, human myoblasts were able to align on brushed TA/COL films and to differentiate into long aligned myotubes (from hundreds of μm up to 1.7 mm length) thanks to two distinct properties: (i) the orientation of COL fibers guiding myoblasts' alignment and (ii) the TA release favoring the differentiation. This simple and potent brushing process allows the development of anisotropic tissues in vitro which can be used for studies of drug discovery and screening or the replacement of damaged tissue.
Collapse
Affiliation(s)
- Muhammad Haseeb Iqbal
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, Strasbourg Cedex 2, 67034, France
| | | | - Emeline Pradel
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, Strasbourg Cedex 2, 67034, France
| | - Varvara Gribova
- Centre de Recherche en Biomédecine de Strasbourg, Institut National de la Santé et de la Recherche Médicale, UMR 1121, Biomatériaux et Bioingénierie, Strasbourg Cedex, 67085, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg 67000, France
| | - Kamel Mamchaoui
- Sorbonne Université, INSERM UMRS 974, Centre for Research in Myology, Batiment Babinski, GH Pitié-Salpêtrière 47 bd de l'Hôpital, F-75013 Paris, France
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS 974, Centre for Research in Myology, Batiment Babinski, GH Pitié-Salpêtrière 47 bd de l'Hôpital, F-75013 Paris, France
| | - Florent Meyer
- Centre de Recherche en Biomédecine de Strasbourg, Institut National de la Santé et de la Recherche Médicale, UMR 1121, Biomatériaux et Bioingénierie, Strasbourg Cedex, 67085, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg 67000, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, Strasbourg Cedex 2, 67034, France
| |
Collapse
|
11
|
Kay JC, Colbath J, Talmadge RJ, Garland T. Mice from lines selectively bred for voluntary exercise are not more resistant to muscle injury caused by either contusion or wheel running. PLoS One 2022; 17:e0278186. [PMID: 36449551 PMCID: PMC9710767 DOI: 10.1371/journal.pone.0278186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Muscle injury can be caused by strenuous exercise, repetitive tasks or external forces. Populations that have experienced selection for high locomotor activity may have evolutionary adaptations that resist exercise-induced injury and/or enhance the ability to cope with injury. We tested this hypothesis with an experiment in which mice are bred for high voluntary wheel running. Mice from four high runner lines run ~three times more daily distance than those from four non-selected control lines. To test recovery from injury by external forces, mice experienced contusion via weight drop on the calf. After injury, running distance and speed were reduced in high runner but not control lines, suggesting that the ability of control mice to run exceeds their motivation. To test effects of injury from exercise, mice were housed with/without wheels for six days, then trunk blood was collected and muscles evaluated for injury and regeneration. Both high runner and control mice with wheels had increased histological indicators of injury in the soleus, and increased indicators of regeneration in the plantaris. High runner mice had relatively more central nuclei (regeneration indicator) than control in the soleus, regardless of wheel access. The subset of high runner mice with the mini-muscle phenotype (characterized by greatly reduced muscle mass and type IIb fibers) had lower plasma creatine kinase (indicator of muscle injury), more markers of injury in the deep gastrocnemius, and more markers of regeneration in the deep and superficial gastrocnemius than normal-muscled individuals. Contrary to our expectations, high runner mice were not more resistant to either type of injury.
Collapse
Affiliation(s)
- Jarren C. Kay
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
- * E-mail:
| | - James Colbath
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
| | - Robert J. Talmadge
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States of America
| | - Theodore Garland
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, United States of America
| |
Collapse
|
12
|
Widodo AF, Tien CW, Chen CW, Lai SC. Isotonic and Isometric Exercise Interventions Improve the Hamstring Muscles’ Strength and Flexibility: A Narrative Review. Healthcare (Basel) 2022; 10:healthcare10050811. [PMID: 35627948 PMCID: PMC9140507 DOI: 10.3390/healthcare10050811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Hamstring weakness has been associated with an increased risk of hamstring strain, a common sports injury that occurs when athletes perform actions such as quick sprints. The hamstring complex comprises three distinct muscles: the long and short heads of the bicep femoris, the semimembranosus, and the semitendinosus. Methods: The researchers collected the data from different electronic databases: PubMed, Google Scholar, and the Web of Science. Results: Many studies have been conducted on the numerous benefits of hamstring strength, in terms of athletic performance and injury prevention. Isotonic and isometric exercises are commonly used to improve hamstring strength, with each exercise type having a unique effect on the hamstring muscles. Isotonic exercise improves the muscles’ strength, increasing their ability to resist any force, while isometric training increases strength and the muscles’ ability to produce power by changing the muscle length. Conclusions: These exercises, when performed at low intensity, but with high repetition, can be used by the healthy general population to prepare for training and daily exercise. This can improve hamstring muscle strength and flexibility, leading to enhanced performance and reduced injury risk.
Collapse
Affiliation(s)
- Akhmad Fajri Widodo
- International Sport Science Master’s Program, College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
| | - Cheng-Wen Tien
- Physical Education Office, General Education Centre, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
| | - Chien-Wei Chen
- International Sport Science Master’s Program, College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
- Department of Exercise and Health Science, College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
- Correspondence:
| | - Shih-Chiung Lai
- Department of Exercise and Health Science, College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
| |
Collapse
|
13
|
Müßig JA, Brand A, Kröger I, Klöpfer-Krämer I, Augat P. Effects of assistive insole feedback training on immediate and multi-day partial weight bearing retention during walking: A pilot study. Gait Posture 2022; 93:78-82. [PMID: 35093666 DOI: 10.1016/j.gaitpost.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Adherence to partial weight bearing (PWB) plays a crucial role in early rehabilitation and motor control. Dynamic biofeedback insole systems provide a supportive function on immediate PWB adherence, while important long-term retention effects and potential advantages to a conventional static training remain unknown. RESEARCH QUESTION Is acoustic insole feedback training effective for the retention of prescribed PWB adherence and is there any advantage relative to static training using a conventional bathroom scale? Methods Twenty-four volunteers were randomized into two groups receiving biofeedback training (N = 12) via a mobile insole system (Loadsol®) or conventional training using a bathroom scale (N = 12). After initial PWB training (20 kg) of one randomized leg, the immediate and one-week retention effects were analysed using mean and maximum load (N) and overload rate (%). Statistical analysis was performed using a two-way repeated measures ANOVA with post-hoc pairwise comparisons (p < 0.05). RESULTS A significantly (p < 0.001) improved immediate and long-term PWB adherence was found for the insole feedback group during walking. A significant (p < 0.001) reduction of the overload rate by 86% was found for the insole feedback group when compared to the conventional training group after one week. Significant (p < 0.01) reductions by 51% and 46% was also found for the mean and maximum load in the insole feedback group when compared to the conventional training group. SIGNIFICANCE The use of insole feedback systems can serve as a viable tool to become familiar with PWB and to provide optimal retention of specified loads. Therefore, such systems serve as an advantageous training intervention to maintain a prescribed PWB during locomotion.
Collapse
Affiliation(s)
- Janina Anna Müßig
- Institute for Biomechanics, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical Private University, Salzburg, Austria
| | - Andreas Brand
- Institute for Biomechanics, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical Private University, Salzburg, Austria.
| | - Inga Kröger
- Institute for Biomechanics, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical Private University, Salzburg, Austria
| | - Isabella Klöpfer-Krämer
- Institute for Biomechanics, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical Private University, Salzburg, Austria
| | - Peter Augat
- Institute for Biomechanics, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany; Institute for Biomechanics, Paracelsus Medical Private University, Salzburg, Austria
| |
Collapse
|
14
|
SantAnna JPC, Pedrinelli A, Hernandez AJ, Fernandes TL. Lesão muscular: Fisiopatologia, diagnóstico e tratamento. Rev Bras Ortop 2022; 57:1-13. [PMID: 35198103 PMCID: PMC8856841 DOI: 10.1055/s-0041-1731417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/08/2021] [Indexed: 10/28/2022] Open
Abstract
ResumoO tecido muscular esquelético possui a maior massa do corpo humano, correspondendo a 45% do peso total. As lesões musculares podem ser causadas por contusões, estiramentos ou lacerações. A atual classificação separa as lesões entre leves, moderadas e graves. Os sinais e sintomas das lesões grau I são edema e desconforto; grau II, perda de função, gap e equimose eventual; grau III, rotura completa, dor intensa e hematoma extenso. O diagnóstico pode ser confirmado por ultrassom (dinâmico e barato, porém examinador-dependente); e ressonância magnética (RM) (maior definição anatômica). A fase inicial do tratamento se resume à proteção, ao repouso, ao uso otimizado do membro afetado e crioterapia. Anti-inflamatórios não hormonais (AINHs), ultrassom terapêutico, fortalecimento e alongamento após a fase inicial e amplitudes de movimento sem dor são utilizados no tratamento clínico. Já o cirúrgico possui indicações precisas: drenagem do hematoma, reinserção e reforço musculotendíneos.
Collapse
Affiliation(s)
- João Paulo Cortez SantAnna
- Grupo de Medicina do Esporte, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - André Pedrinelli
- Grupo de Medicina do Esporte, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Centro de Excelência Médica da FIFA, São Paulo, SP, Brasil
| | - Arnaldo José Hernandez
- Grupo de Medicina do Esporte, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Centro de Excelência Médica da FIFA, São Paulo, SP, Brasil
| | - Tiago Lazzaretti Fernandes
- Grupo de Medicina do Esporte, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Centro de Excelência Médica da FIFA, São Paulo, SP, Brasil
| |
Collapse
|
15
|
Lu A, Guo P, Pan H, Tseng C, Sinha KM, Yang F, Scibetta A, Cui Y, Huard M, Zhong L, Ravuri S, Huard J. Enhancement of myogenic potential of muscle progenitor cells and muscle healing during pregnancy. FASEB J 2021; 35:e21378. [PMID: 33565161 DOI: 10.1096/fj.202001914r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022]
Abstract
The decline of muscle regenerative potential with age has been attributed to a diminished responsiveness of muscle progenitor cells (MPCs). Heterochronic parabiosis has been used as a model to study the effects of aging on stem cells and their niches. These studies have demonstrated that, by exposing old mice to a young systemic environment, aged progenitor cells can be rejuvenated. One interesting idea is that pregnancy represents a unique biological model of a naturally shared circulatory system between developing and mature organisms. To test this hypothesis, we evaluated the muscle regeneration potential of pregnant mice using a cardiotoxin (CTX) injury mouse model. Our results indicate that the pregnant mice demonstrate accelerated muscle healing compared to nonpregnant control mice following muscle injury based on improved muscle histology, superior muscle regeneration, and a reduction in inflammation and necrosis. Additionally, we found that MPCs isolated from pregnant mice display a significant improvement of myogenic differentiation capacity in vitro and muscle regeneration in vivo when compared to the MPCs from nonpregnant mice. Furthermore, MPCs from nonpregnant mice display enhanced myogenic capacity when cultured in the presence of serum obtained from pregnant mice. Our proteomics data from these studies provides potential therapeutic targets to enhance the myogenic potential of progenitor cells and muscle repair.
Collapse
Affiliation(s)
- Aiping Lu
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Ping Guo
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Haiying Pan
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chieh Tseng
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Krishna M Sinha
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alex Scibetta
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Ling Zhong
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Johnny Huard
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
16
|
Lin J, Yang X, Liu S, Luo Z, Chen Q, Sun Y, Ding Z, Chen J. Long non-coding RNA MFAT1 promotes skeletal muscle fibrosis by modulating the miR-135a-5p-Tgfbr2/Smad4 axis as a ceRNA. J Cell Mol Med 2021; 25:4420-4433. [PMID: 33837645 PMCID: PMC8093971 DOI: 10.1111/jcmm.16508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/05/2023] Open
Abstract
Fibrosis after skeletal muscle injury is common in sports and can cause irreversible damage to the biomechanical properties of skeletal muscle. Long non-coding RNAs (lncRNAs) have been validated to act as important modulators in the fibrosis of various organs. Here, we reported a novel lncRNA (the skeletal muscle fibrosis-associated transcript 1, lnc-MFAT1), which was highly expressed in skeletal muscle fibrosis. We demonstrate that lnc-MFAT1 knockdown can reduce TGFβ-induced fibrosis in vitro and attenuate skeletal muscle fibrosis after acute contusion in mice. Further study showed that lnc-MFAT1 acted as a competitive endogenous RNA of miR-135a-5p. Besides, the miR-135a-5p inhibition obviously promoted TGFβ-induced fibrosis in vitro via enhancing its target genes Tgfbr2/Smad4. Moreover, we discovered that lnc-MFAT1 regulates Tgfbr2/Smad4 expression by sponging miR-135a-5p to exert competing endogenous RNA function, resulting in TGFβ pathway activation. In conclusion, our study identified a crucial role of lnc-MFAT1-miR-135a-Tgfbr2/Smad4 axis in skeletal muscle fibrosis, providing a promising treatment option against skeletal muscle fibrosis.
Collapse
Affiliation(s)
- Jinrong Lin
- Department of Sports MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Xiaobao Yang
- Department of Medical Laboratory ScienceRuijin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shaohua Liu
- Department of Sports MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Zhiwen Luo
- Department of Sports MedicineHuashan HospitalFudan UniversityShanghaiChina
| | | | - Yaying Sun
- Department of Sports MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Zheci Ding
- Department of Sports MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Jiwu Chen
- Department of Sports MedicineHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
17
|
Contreras-Muñoz P, Torrella JR, Venegas V, Serres X, Vidal L, Vila I, Lahtinen I, Viscor G, Martínez-Ibáñez V, Peiró JL, Järvinen TAH, Rodas G, Marotta M. Muscle Precursor Cells Enhance Functional Muscle Recovery and Show Synergistic Effects With Postinjury Treadmill Exercise in a Muscle Injury Model in Rats. Am J Sports Med 2021; 49:1073-1085. [PMID: 33719605 DOI: 10.1177/0363546521989235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Skeletal muscle injuries represent a major concern in sports medicine. Cell therapy has emerged as a promising therapeutic strategy for muscle injuries, although the preclinical data are still inconclusive and the potential clinical use of cell therapy has not yet been established. PURPOSE To evaluate the effects of muscle precursor cells (MPCs) on muscle healing in a small animal model. STUDY DESIGN Controlled laboratory study. METHODS A total of 27 rats were used in the study. MPCs were isolated from rat (n = 3) medial gastrocnemius muscles and expanded in primary culture. Skeletal muscle injury was induced in 24 rats, and the animals were assigned to 3 groups. At 36 hours after injury, animals received treatment based on a single ultrasound-guided MPC (105 cells) injection (Cells group) or MPC injection in combination with 2 weeks of daily exercise training (Cells+Exercise group). Animals receiving intramuscular vehicle injection were used as controls (Vehicle group). Muscle force was determined 2 weeks after muscle injury, and muscles were collected for histological and immunofluorescence evaluation. RESULTS Red fluorescence-labeled MPCs were successfully transplanted in the site of the injury by ultrasound-guided injection and were localized in the injured area after 2 weeks. Transplanted MPCs participated in the formation of regenerating muscle fibers as corroborated by the co-localization of red fluorescence with developmental myosin heavy chain (dMHC)-positive myofibers by immunofluorescence analysis. A strong beneficial effect on muscle force recovery was detected in the Cells and Cells+Exercise groups (102.6% ± 4.0% and 101.5% ± 8.5% of maximum tetanus force of the injured vs healthy contralateral muscle, respectively) compared with the Vehicle group (78.2% ± 5.1%). Both Cells and Cells+Exercise treatments stimulated the growth of newly formed regenerating muscles fibers, as determined by the increase in myofiber cross-sectional area (612.3 ± 21.4 µm2 and 686.0 ± 11.6 µm2, respectively) compared with the Vehicle group (247.5 ± 10.7 µm2), which was accompanied by a significant reduction of intramuscular fibrosis in Cells and Cells+Exercise treated animals (24.2% ± 1.3% and 26.0% ± 1.9% of collagen type I deposition, respectively) with respect to control animals (40.9% ± 4.1% in the Vehicle group). MPC treatment induced a robust acceleration of the muscle healing process as demonstrated by the decreased number of dMHC-positive regenerating myofibers (enhanced replacement of developmental myosin isoform by mature myosin isoforms) (4.3% ± 2.6% and 4.1% ± 1.5% in the Cells and Cells+Exercise groups, respectively) compared with the Vehicle group (14.8% ± 13.9%). CONCLUSION Single intramuscular administration of MPCs improved histological outcome and force recovery of the injured skeletal muscle in a rat injury model that imitates sports-related muscle injuries. Cell therapy showed a synergistic effect when combined with an early active rehabilitation protocol in rats, which suggests that a combination of treatments can generate novel therapeutic strategies for the treatment of human skeletal muscle injuries. CLINICAL RELEVANCE Our study demonstrates the strong beneficial effect of MPC transplant and the synergistic effect when the cell therapy is combined with an early active rehabilitation protocol for muscle recovery in rats; this finding opens new avenues for the development of effective therapeutic strategies for muscle healing and clinical trials in athletes undergoing MPC transplant and rehabilitation protocols.
Collapse
Affiliation(s)
- Paola Contreras-Muñoz
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joan Ramón Torrella
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanessa Venegas
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Xavier Serres
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vidal
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ingrid Vila
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ilmari Lahtinen
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ginés Viscor
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vicente Martínez-Ibáñez
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - José Luis Peiró
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Tero A H Järvinen
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gil Rodas
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mario Marotta
- Investigation performed at Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
18
|
Skeletal muscle healing by M1-like macrophages produced by transient expression of exogenous GM-CSF. Stem Cell Res Ther 2020; 11:473. [PMID: 33158459 PMCID: PMC7648431 DOI: 10.1186/s13287-020-01992-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022] Open
Abstract
Background After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. The sequence of M1 and M2 macrophage accumulation and the duration of each subtype in the injured area may help to direct the relative extent of fibrogenesis and myogenesis during healing. We hypothesized that increasing the number of M1 macrophages early after traumatic muscle injury would produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. Methods To test this hypothesis, we transfected skeletal muscle with a plasmid vector to transiently express GM-CSF shortly after injury to drive the polarization of macrophages towards the M1 subset. C57BL/6 mouse tibialis anterior (TA) muscles were injured by contusion and electroporated with uP-mGM, which is a plasmid vector that transiently expresses GM-CSF. Myogenesis, angiogenesis, and fibrosis were evaluated by histology, immunohistochemistry, and RT-qPCR; subpopulations of macrophages by flow cytometry; and muscle functioning by the maximum running speed on the treadmill and the recovery of muscle mass. Results Muscle injury increased the number of local M1-like macrophages and decreased the number of M2-like macrophages on day 4, and uP-mGM treatment enhanced this variation. uP-mGM treatment decreased TGF-β1 protein expression on day 4, and the Sirius Red-positive area decreased from 35.93 ± 15.45% (no treatment) to 2.9% ± 6.5% (p < 0.01) on day 30. uP-mGM electroporation also increased Hgf, Hif1α, and Mtor gene expression; arteriole density; and muscle fiber number during regeneration. The improvement in the quality of the muscle tissue after treatment with uP-mGM affected the increase in the TA muscle mass and the maximum running speed on a treadmill. Conclusion Collectively, our data show that increasing the number of M1-like macrophages immediately after traumatic muscle injury promotes muscle recovery with less fibrosis, and this can be achieved by the transient expression of GM-CSF.
Collapse
|
19
|
Oberlohr V, Lengel H, Hambright WS, Whitney KE, Evans TA, Huard J. Biologics for Skeletal Muscle Healing: The Role of Senescence and Platelet-Based Treatment Modalities. OPER TECHN SPORT MED 2020. [DOI: 10.1016/j.otsm.2020.150754] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Altarawneh MM, Hanson ED, Betik AC, Petersen AC, Hayes A, McKenna MJ. Effects of testosterone suppression, hindlimb immobilization, and recovery on [ 3H]ouabain binding site content and Na +, K +-ATPase isoforms in rat soleus muscle. J Appl Physiol (1985) 2020; 128:501-513. [PMID: 31854248 DOI: 10.1152/japplphysiol.01077.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of testosterone suppression, hindlimb immobilization, and recovery on skeletal muscle Na+,K+-ATPase (NKA), measured via [3H]ouabain binding site content (OB) and NKA isoform abundances (α1-3, β1-2). Male rats underwent castration or sham surgery plus 7 days of rest, 10 days of unilateral immobilization (cast), and 14 days of recovery, with soleus muscles obtained at each time from cast and noncast legs. Testosterone reduction did not modify OB or NKA isoforms in nonimmobilized control muscles. With sham surgery, OB was lower after immobilization in the cast leg than in both the noncast leg (-26%, P = 0.023) and the nonimmobilized control (-34%, P = 0.001), but OB subsequently recovered. With castration, OB was lower after immobilization in the cast leg than in the nonimmobilized control (-34%, P = 0.001), and remained depressed at recovery (-34%, P = 0.001). NKA isoforms did not differ after immobilization or recovery in the sham group. After castration, α2 in the cast leg was ~60% lower than in the noncast leg (P = 0.004) and nonimmobilized control (P = 0.004) and after recovery remained lower than the nonimmobilized control (-42%, P = 0.039). After immobilization, β1 was lower in the cast than the noncast leg (-26%, P = 0.018), with β2 lower in the cast leg than in the noncast leg (-71%, P = 0.004) and nonimmobilized control (-65%, P = 0.012). No differences existed for α1 or α3. Thus, both OB and α2 decreased after immobilization and recovery in the castration group, with α2, β1, and β2 isoform abundances decreased with immobilization compared with the sham group. Therefore, testosterone suppression in rats impaired restoration of immobilization-induced lowered number of functional NKA and α2 isoforms in soleus muscle.NEW & NOTEWORTHY: The Na+,K+-ATPase (NKA) is vital in muscle excitability and function. In rats, immobilization depressed soleus muscle NKA, with declines in [3H]ouabain binding, which was restored after 14 days recovery. After testosterone suppression by castration, immobilization depressed [3H]ouabain binding, depressed α2, β1, and β2 isoforms, and abolished subsequent recovery in [3H]ouabain binding and α2 isoforms. This may have implications for functional recovery for inactive men with lowered testosterone levels, such as in prostate cancer or aging.
Collapse
Affiliation(s)
- Muath M Altarawneh
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Erik D Hanson
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, North Carolina
| | - Andrew C Betik
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Aaron C Petersen
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science, Victoria University, Melbourne, Australia
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
21
|
Abstract
Physical therapy and rehabilitation following orthopaedic surgery in companion animals have become more common and new advancements in this field have been made in recent years. Surgery alone may not return the animal to its previous physical activity or work-related tasks, whether due to concurrent soft tissue trauma, arthrogenic muscle inhibition or osteoarthritis. Rehabilitation therapies following surgery can restore function as well as strength, coordination and balance. Many simple techniques such as cryotherapy and passive range of motion exercises have been shown to improve outcomes following musculoskeletal procedures and may help restore function as well as reduce pain and facilitate healing. Some techniques are more useful during different stages in order to achieve optimum tissue healing and recovery of function. During the first 72 hours, rehabilitation should focus on reduction of inflammation and pain, maintaining joint nutrition and range of motion, and stimulating vascularisation and healing; and may include cryotherapy, passive range of motion exercises, massage and therapeutic exercises. Following the initial recovery period, the goals of rehabilitation also include restoring strength, balance and normal gait patterns, as well as recovery of function. During this period the focus of therapy may shift toward therapeutic exercises, aquatic therapy and increasing activity in the animal. Therapeutic modalities such as neuromuscular electrical stimulation, photobiomodulation (laser therapy), therapeutic ultrasound and extracorporeal shock wave therapy have been reported to reduce pain and inflammation, enhance healing and reduce recovery time in the early and late stages following orthopaedic surgery.
Collapse
Affiliation(s)
- W I Baltzer
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
22
|
Pogliacomi F, Visigalli A, Valenti PG, Pedrazzini A, Bernuzzi G, Concari G, Vaienti E, Ceccarelli F. Rectus femoris myotendinous lesion treated with PRP: a case report. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:178-183. [PMID: 31821305 PMCID: PMC7233700 DOI: 10.23750/abm.v90i12-s.8932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIM OF WORK Musculoskeletal injuries are the most common cause of severe, chronic pain and physical disability for the majority of all sport-related injuries. Platelet-rich plasma is being used more frequently to promote healing of muscle injuries. We report a case of 39 years old non professional soccer player who came to our attention for a quadriceps muscle pain onset after kicking the ball during a match. METHODS Clinical and instrumental evaluation revealed a myotendinous junction rupture of the rectus femoris with retraction of 1.5 cm from the anterior inferior iliac spine. We decided to treat the patient with PRP ultrasound guided injections and a specific rehabilitation protocol. RESULTS Clinical evaluation 45 days following the end of the treatment showed the resolution of the pain and the full recovery of strength and range of motion. Muscle healing was documented by magnetic resonance imaging. CONCLUSIONS Even if the role of PRP in muscle injury is not still clear, the result observed confirms that it could be used in the treatment of muscle lesions.
Collapse
Affiliation(s)
- Francesco Pogliacomi
- PARMA UNIVERSITY DEPARTMENT OF SURGICAL SCIENCES ORTHOPAEDIC AND TRAUMATOLOGY SECTION.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sales RM, Cavalcante MC, Cohen M, Ejnisman B, Andreoli CV, Pochini ADC. Treatment of Acute Thigh Muscle Injury with or without Hematoma Puncture in Athletes. Rev Bras Ortop 2019; 54:6-12. [PMID: 31363236 PMCID: PMC6424810 DOI: 10.1016/j.rbo.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/05/2017] [Indexed: 11/17/2022] Open
Abstract
Objectives To correlate the mean time of return of athletes to sport after acute injury of the thigh muscle with hematoma that was punctured or not. Methods Study based on clinical intervention, controlled and non-randomized with 20 amateur and professional athletes, divided into moderate and total or subtotal thighs lesions, according with the Munich Consensus Statement. Nine athletes were included in the intervention group and 11 athletes in the control group. In the intervention group, the athletes were submitted to a puncture of the hematoma, associated to physical therapy; the control group did only physical therapy. The variable mean time of return to sport was analyzed using the Mann-Whitney test and a significance level of 5% ( p < 0.05; 95% confidence interval [CI]) was established. Results The mean group was composed mostly of men, eight of them were amateur athletes. There were three women, two of whom were amateur athletes. The average age of participants was 34.70 ± 12.79 years. There were 13 patients with posterior thigh lesions, 5 with anterior lesions and two with adductor lesions. Considering all injuries, the mean time of return to sport was of 48.50 ± 27.50 days in the intervention group. In the control group, this period was of 102.09 ± 52.02 days, showing a statistically significant difference between them ( p = 0.022). Conclusion In the present study, hematoma drainage in athletes with moderate and total or subtotal muscle injuries associated with hematomas decreased their return time to sport.
Collapse
Affiliation(s)
- Rodrigo Moreira Sales
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo (Unifesp), Escola Paulista de Medicina, São Paulo, SP, Brasil
| | - Marcelo Cortês Cavalcante
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo (Unifesp), Escola Paulista de Medicina, São Paulo, SP, Brasil
- Address for correspondence Marcelo Cortês Cavalcante Departamento de Ortopedia e Traumatologia, Universidade Federal de São PauloEscola Paulista de Medicina, São Paulo, SP 04021-001Brasil
| | - Moisés Cohen
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo (Unifesp), Escola Paulista de Medicina, São Paulo, SP, Brasil
| | - Benno Ejnisman
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo (Unifesp), Escola Paulista de Medicina, São Paulo, SP, Brasil
| | - Carlos Vicente Andreoli
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo (Unifesp), Escola Paulista de Medicina, São Paulo, SP, Brasil
| | - Alberto de Castro Pochini
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo (Unifesp), Escola Paulista de Medicina, São Paulo, SP, Brasil
| |
Collapse
|
24
|
Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle 2019; 10:501-516. [PMID: 30843380 PMCID: PMC6596399 DOI: 10.1002/jcsm.12416] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022] Open
Abstract
Diseases that jeopardize the musculoskeletal system and cause chronic impairment are prevalent throughout the Western world. In Germany alone, ~1.8 million patients suffer from these diseases annually, and medical expenses have been reported to reach 34.2bn Euros. Although musculoskeletal disorders are seldom fatal, they compromise quality of life and diminish functional capacity. For example, musculoskeletal disorders incur an annual loss of over 0.8 million workforce years to the German economy. Among these diseases, traumatic skeletal muscle injuries are especially problematic because they can occur owing to a variety of causes and are very challenging to treat. In contrast to chronic muscle diseases such as dystrophy, sarcopenia, or cachexia, traumatic muscle injuries inflict damage to localized muscle groups. Although minor muscle trauma heals without severe consequences, no reliable clinical strategy exists to prevent excessive fibrosis or fatty degeneration, both of which occur after severe traumatic injury and contribute to muscle degeneration and dysfunction. Of the many proposed strategies, cell-based approaches have shown the most promising results in numerous pre-clinical studies and have demonstrated success in the handful of clinical trials performed so far. A number of myogenic and non-myogenic cell types benefit muscle healing, either by directly participating in new tissue formation or by stimulating the endogenous processes of muscle repair. These cell types operate via distinct modes of action, and they demonstrate varying levels of feasibility for muscle regeneration depending, to an extent, on the muscle injury model used. While in some models the injury naturally resolves over time, other models have been developed to recapitulate the peculiarities of real-life injuries and therefore mimic the structural and functional impairment observed in humans. Existing limitations of cell therapy approaches include issues related to autologous harvesting, expansion and sorting protocols, optimal dosage, and viability after transplantation. Several clinical trials have been performed to treat skeletal muscle injuries using myogenic progenitor cells or multipotent stromal cells, with promising outcomes. Recent improvements in our understanding of cell behaviour and the mechanistic basis for their modes of action have led to a new paradigm in cell therapies where physical, chemical, and signalling cues presented through biomaterials can instruct cells and enhance their regenerative capacity. Altogether, these studies and experiences provide a positive outlook on future opportunities towards innovative cell-based solutions for treating traumatic muscle injuries-a so far unmet clinical need.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Winkler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
25
|
Goyal KS, Speeckaert AL, Goitz RJ, Tavana ML. A Comparison of Barbed Suture Versus Traditional Techniques for Muscle Belly Repair. Hand (N Y) 2019; 14:91-94. [PMID: 30227727 PMCID: PMC6346357 DOI: 10.1177/1558944718798853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The use of barbed sutures in wound closure and tendon repair has been previously been studied with improved results over traditional suture material. We examine the use of barbed suture in muscle belly repair in a custom configuration, comparing it with traditional configurations and a control. METHODS Twenty-five matched porcine psoas muscles were assigned to 5 different test groups: Mason-Allen with #1 Ethibond, Figure of Eight Allen with #1 Ethibond, Modified Kessler with #1 Ethibond, Custom Configuration with #2 Barbed PDS, Custom Configuration with #1 Ethibond. Repair was performed on the cut edge of muscle, with the free end of the suture anchored to a fixed base, forming a single-sided repair. An Instron 8874 tensiometer was used to linearly distract the repair to failure at 1 mm/s after 1 N preload. Five samples of each group were run, comparing load to failure and distraction at 10 N. RESULTS Repair with barbed suture in custom configuration had statistically significantly greater load to failure than all other methods. It also showed statistically significant less displacement at 10 N of force than all other methods of repair except the Mason-Allen repair with #1 Ethibond. Mode of failure for traditional techniques was suture pull-through with tissue loss. Failure with barbed suture was through suture pullout without tissue loss. CONCLUSIONS Custom configuration with a barbed suture increases the load to failure and decreases displacement of the repair site at 10 N of force. In addition, when the suture does pull out, it does so with minimal tissue loss.
Collapse
Affiliation(s)
- Kanu S. Goyal
- The Ohio State University Wexner Medical Center, Columbus, USA,Kanu S. Goyal, Division of Hand and Upper Extremity Surgery, Department of Orthopaedics, The Ohio State University Wexner Medical Center, 915 Olentangy River Road, Suite #3200, Columbus, OH 43212, USA.
| | | | | | | |
Collapse
|
26
|
Stares J, Dawson B, Peeling P, Drew M, Heasman J, Rogalski B, Colby M. How much is enough in rehabilitation? High running workloads following lower limb muscle injury delay return to play but protect against subsequent injury. J Sci Med Sport 2018; 21:1019-1024. [DOI: 10.1016/j.jsams.2018.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/10/2018] [Accepted: 03/20/2018] [Indexed: 11/25/2022]
|
27
|
Ribeiro S, Gomes AC, Etxebarria I, Lanceros-Méndez S, Ribeiro C. Electroactive biomaterial surface engineering effects on muscle cells differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:868-874. [PMID: 30184816 DOI: 10.1016/j.msec.2018.07.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/27/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
Abstract
Even though skeletal muscle cells can naturally regenerate as a response to insignificant tissue damages, more severe injuries can cause irreversible loss of muscle cells mass and/or function. Until now, cell therapies are not a good approach to treat those injuries. Biomaterials such as poly(vinylidene fluoride), PVDF, can improve muscle regeneration by presenting physical cues to muscle cells that mimic the natural regeneration environment. In this way, the ferroelectric and piezoelectric properties of PVDF offer new opportunities for skeletal muscle tissue engineering once the piezoelectricity is an electromechanical effect that can be used to provide electrical signals to the cells, upon mechanical solicitations, similar to the ones found in several body tissues. Thus, previous to dynamic experiments, it is important to determine how the surface properties of the material, both in terms of the poling state (positive or negative net surface charge) and of the morphology (films or fibers) influence myoblast differentiation. It was observed that PVDF promotes myogenic differentiation of C2C12 cells as evidenced by quantitative analysis of myotube fusion, maturation index, length, diameter and number. Charged surfaces improve the fusion of muscle cells into differentiated myotubes, as demonstrated by fusion and maturation index values higher than the control samples. Finally, the use of random and oriented β-PVDF electrospun fibers scaffolds has revealed differences in cell morphology. Contrary to the randomly oriented fibers, oriented PVDF electrospun fibers have promoted the alignment of the cells. It is thus demonstrated that the use of this electroactive polymer represents a suitable approach for the development of electroactive microenvironments for effective muscle tissue engineering.
Collapse
Affiliation(s)
- S Ribeiro
- Centro de Física, Universidade do Minho, 4710-057 Braga, Portugal; Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - A C Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - I Etxebarria
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - S Lanceros-Méndez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - C Ribeiro
- Centro de Física, Universidade do Minho, 4710-057 Braga, Portugal; CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
28
|
|
29
|
Lasak AM, Jean-Michel M, Le PU, Durgam R, Harroche J. The Role of Pelvic Floor Muscle Training in the Conservative and Surgical Management of Female Stress Urinary Incontinence: Does the Strength of the Pelvic Floor Muscles Matter? PM R 2018; 10:1198-1210. [PMID: 29753829 DOI: 10.1016/j.pmrj.2018.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 01/06/2018] [Accepted: 03/02/2018] [Indexed: 01/23/2023]
Abstract
The purpose of this review is to provide an in-depth overview of the role of pelvic floor muscle (PFM) training in the management of stress urinary incontinence (SUI). The definition, epidemiology, and pathogenesis of SUI are described. We review the anatomy of the PFM and the importance of PFM strength in maintaining urinary continence and establishing normal voiding function. A brief description of the surgical options currently available for SUI and the existing data regarding the role of perioperative PFM training for SUI are included. Critical research questions to better evaluate and assess PFM training during the perioperative period are proposed. Promising novel approaches in the treatment of SUI are also presented. This review is useful for physiatrists, urogynecologists, female urologists, and nurse practitioners who specialize in the management and treatment of women with SUI. LEVEL OF EVIDENCE: IV.
Collapse
Affiliation(s)
- Anna Maria Lasak
- Department of Rehabilitation Medicine, Montefiore Medical Center, The University Hospital For Albert Einstein College of Medicine, Bronx, NY(∗)
| | | | - Phuong Uyen Le
- Department of Rehabilitation Medicine, Montefiore Medical Center, The University Hospital For Albert Einstein College of Medicine, 150 East 210(th) Street, 2(nd) floor, Bronx, NY 10467(‡).
| | - Roshni Durgam
- Department of Rehabilitation Medicine, Montefiore Medical Center, The University Hospital For Albert Einstein College of Medicine, Bronx, NY(§)
| | - Jessica Harroche
- Montefiore Medical Center, The University Hospital For Albert Einstein College of Medicine, Bronx, NY(¶)
| |
Collapse
|
30
|
Considerations in the Diagnosis and Accelerated Return to Sport of a Professional Basketball Player With a Triceps Surae Injury: A Case Report. J Orthop Sports Phys Ther 2018; 48:388-397. [PMID: 29623750 DOI: 10.2519/jospt.2018.7192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Study Design Case report. Background Acute injuries of the triceps surae and Achilles tendon are common in sports. Rupture of the plantaris tendon can be challenging to diagnose. There is limited evidence detailing the diagnosis, rehabilitation, and accelerated return to sport of elite professional basketball players who have sustained calf injuries. Case Description A 25-year-old male professional basketball player sustained an injury to his calf during a professional basketball game. This case report details the presumptive diagnosis, graduated progression of intervention, and return to play of a professional athlete with a likely isolated plantaris tendon tear. Outcomes The patient returned to postseason competition 10 days post injury. Objective measures were tracked throughout rehabilitation and compared to baseline assessments. Before returning to play, the athlete showed improvements beyond the minimal clinically important difference for calf girth (2 cm) and numeric pain-rating scale score (4 points, 0-10 scale). Functional testing was conducted that included the Y Balance Test lower quarter and the Functional Movement Screen, with results that exceeded or returned the athlete to preseason levels. Discussion This report details the case of a professional basketball player who returned to competitive play in an accelerated time frame following injury to his calf. Diagnosing a plantaris tendon rupture can be challenging, and anatomical variations of this muscle should be considered. It was demonstrated in this case that physical therapy rehabilitation was helpful in making a treatment-based clinical diagnosis when imaging was unclear. Level of Evidence Therapy, level 5. J Orthop Sports Phys Ther 2018;48(5):388-397. Epub 6 Apr 2018. doi:10.2519/jospt.2018.7192.
Collapse
|
31
|
Kung FH, Sillitti D, Shrirao AB, Shreiber DI, Firestein BL. Collagen nanofibre anisotropy induces myotube differentiation and acetylcholine receptor clustering. J Tissue Eng Regen Med 2018; 12:e2010-e2019. [DOI: 10.1002/term.2632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Frank H. Kung
- Department of Cell Biology and NeuroscienceRutgers University Piscataway NJ USA
| | - David Sillitti
- Department of Biomedical EngineeringRutgers University Piscataway NJ USA
| | - Anil B. Shrirao
- Department of Biomedical EngineeringRutgers University Piscataway NJ USA
| | - David I. Shreiber
- Department of Biomedical EngineeringRutgers University Piscataway NJ USA
- Graduate Faculty in Biomedical EngineeringRutgers University Piscataway NJ USA
| | - Bonnie L. Firestein
- Department of Cell Biology and NeuroscienceRutgers University Piscataway NJ USA
- Graduate Faculty in Biomedical EngineeringRutgers University Piscataway NJ USA
| |
Collapse
|
32
|
Stilhano RS, Samoto VY, Silva LM, Pereira GJ, Erustes AG, Smaili SS, Won Han S. Reduction in skeletal muscle fibrosis of spontaneously hypertensive rats after laceration by microRNA targeting angiotensin II receptor. PLoS One 2017; 12:e0186719. [PMID: 29059221 PMCID: PMC5653346 DOI: 10.1371/journal.pone.0186719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/08/2017] [Indexed: 12/23/2022] Open
Abstract
Regeneration of injured skeletal muscles is affected by fibrosis, which can be improved by the administration of angiotensin II (AngII) receptor (ATR) blockers in normotensive animals. However, the role of ATR in skeletal muscle fibrosis in hypertensive organisms has not been investigated yet. The tibialis anterior (TA) muscle of spontaneously hypertensive (SHR) and Wistar rats (WR) were lacerated and a lentivector encoding a microRNA targeting AngII receptor type 1 (At1) (Lv-mirAT1a) or control (Lv-mirCTL) was injected. The TA muscles were collected after 30 days to evaluate fibrosis by histology and gene expression by real-time quantitative PCR (RT-qPCR) and Western blot. SHR's myoblasts were analyzed by RT-qPCR, 48 h after transduction. In the SHR's TA, AT1 protein expression was 23.5-fold higher than in WR without injury, but no difference was observed in the angiotensin II receptor type 2 (AT2) protein expression. TA laceration followed by suture (LS) produced fibrosis in the SHR (23.3±8.5%) and WR (7.9±1.5%). Lv-mirAT1 treatment decreased At1 gene expression in 50% and reduced fibrosis to 7% 30 days after. RT-qPCR showed that reduction in At1 expression is due to downregulation of the At1a but not of the At1b. RT-qPCR of myoblasts from SHR transduced with Lv-mirAT1a showed downregulation of the Tgf-b1, Tgf-b2, Smad3, Col1a1, and Col3a1 genes by mirAT1a. In vivo and in vitro studies indicate that hypertension overproduces skeletal muscle fibrosis, and AngII-AT1a signaling is the main pathway of fibrosis in SHR. Moreover, muscle fibrosis can be treated specifically by in loco injection of Lv-mirAT1a without affecting other organs.
Collapse
Affiliation(s)
- Roberta Sessa Stilhano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Vivian Yochiko Samoto
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Leonardo Martins Silva
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Gustavo José Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Adolfo Garcia Erustes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Soraya Soubhi Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
| | - Sang Won Han
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
33
|
Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats—part 1: morphological and functional aspects. Lasers Med Sci 2017; 32:2111-2120. [DOI: 10.1007/s10103-017-2346-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/28/2017] [Indexed: 01/12/2023]
|
34
|
Tomazoni SS, Frigo L, Dos Reis Ferreira TC, Casalechi HL, Teixeira S, de Almeida P, Muscara MN, Marcos RL, Serra AJ, de Carvalho PDTC, Leal-Junior ECP. Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats-part 2: biochemical aspects. Lasers Med Sci 2017; 32:1879-1887. [PMID: 28795275 DOI: 10.1007/s10103-017-2299-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022]
Abstract
Muscle injuries trigger an inflammatory process, releasing important biochemical markers for tissue regeneration. The use of non-steroidal anti-inflammatory drugs (NSAIDs) is the treatment of choice to promote pain relief due to muscle injury. NSAIDs exhibit several adverse effects and their efficacy is questionable. Photobiomodulation therapy (PBMT) has been demonstrated to effectively modulate inflammation induced from musculoskeletal disorders and may be used as an alternative to NSAIDs. Here, we assessed and compared the effects of different doses of PBMT and topical NSAIDs on biochemical parameters during an acute inflammatory process triggered by a controlled model of contusion-induced musculoskeletal injury in rats. Muscle injury was induced by trauma to the anterior tibial muscle of rats. After 1 h, rats were treated with PBMT (830 nm, continuous mode, 100 mW of power, 35.71 W/cm2; 1, 3, and 9 J; 10, 30, and 90 s) or diclofenac sodium (1 g). Our results demonstrated that PBMT, 1 J (35.7 J/cm2), 3 J (107.1 J/cm2), and 9 J (321.4 J/cm2) reduced the expression of tumor necrosis factor alpha (TNF-α) and cyclooxygenase-2 (COX-2) genes at all assessed times as compared to the injury and diclofenac groups (p < 0.05). The diclofenac group showed reduced levels of COX-2 only in relation to the injury group (p < 0.05). COX-2 protein expression remained unchanged with all therapies except with PBMT at a 3-J dose at 12 h (p < 0.05 compared to the injury group). In addition, PBMT (1, 3, and 9 J) effectively reduced levels of cytokines TNF-α, interleukin (IL)-1β, and IL-6 at all assessed times as compared to the injury and diclofenac groups (p < 0.05). Thus, PBMT at a 3-J dose was more effective than other doses of PBMT and topical NSAIDs in the modulation of the inflammatory process caused by muscle contusion injuries.
Collapse
Affiliation(s)
- Shaiane Silva Tomazoni
- Masters and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo (UNICID), Rua Cesário Galeno, 448/475, São Paulo, SP, 05508-900, Brazil.
| | - Lúcio Frigo
- Biological Sciences and Health Center, Cruzeiro do Sul University (UNICSUL), São Paulo, SP, Brazil
| | - Tereza Cristina Dos Reis Ferreira
- Laboratory of Phototherapy in Sports and Exercise, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil.,Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Heliodora Leão Casalechi
- Laboratory of Phototherapy in Sports and Exercise, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Simone Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Patrícia de Almeida
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo Labat Marcos
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Andrey Jorge Serra
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Paulo de Tarso Camillo de Carvalho
- Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil.,Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Laboratory of Phototherapy in Sports and Exercise, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil.,Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| |
Collapse
|
35
|
|
36
|
Criteria for Progressing Rehabilitation and Determining Return-to-Play Clearance Following Hamstring Strain Injury: A Systematic Review. Sports Med 2016; 47:1375-1387. [DOI: 10.1007/s40279-016-0667-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Circadian rhythms accelerate wound healing in female Siberian hamsters. Physiol Behav 2016; 171:165-174. [PMID: 27998755 DOI: 10.1016/j.physbeh.2016.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
Abstract
Circadian rhythms (CRs) provide temporal regulation and coordination of numerous physiological traits, including immune function. CRs in multiple aspects of immune function are impaired in rodents that have been rendered circadian-arrhythmic through various methods. In Siberian hamsters, circadian arrhythmia can be induced by disruptive light treatments (DPS). Here we examined CRs in wound healing, and the effects of circadian disruption on wound healing in DPS-arrhythmic hamsters. Circadian entrained/rhythmic (RHYTH) and behaviorally-arrhythmic (ARR) female hamsters were administered a cutaneous wound either 3h after light onset (ZT03) or 2h after dark onset (ZT18); wound size was quantified daily using image analyses. Among RHYTH hamsters, ZT03 wounds healed faster than ZT18 wounds, whereas in ARR hamsters, circadian phase did not affect wound healing. In addition, wounds healed slower in ARR hamsters. The results document a clear CR in wound healing, and indicate that the mere presence of organismal circadian organization enhances this aspect of immune function. Faster wound healing in CR-competent hamsters may be mediated by CR-driven coordination of the temporal order of mechanisms (inflammation, leukocyte trafficking, tissue remodeling) underlying cutaneous wound healing.
Collapse
|
38
|
Kobayashi M, Ota S, Terada S, Kawakami Y, Otsuka T, Fu FH, Huard J. The Combined Use of Losartan and Muscle-Derived Stem Cells Significantly Improves the Functional Recovery of Muscle in a Young Mouse Model of Contusion Injuries. Am J Sports Med 2016; 44:3252-3261. [PMID: 27501834 DOI: 10.1177/0363546516656823] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although muscle injuries tend to heal uneventfully in most cases, incomplete functional recovery commonly occurs as a result of scar tissue formation at the site of injury, even after treatment with muscle-derived stem cells (MDSCs). HYPOTHESIS The transplantation of MDSCs in the presence of a transforming growth factor β1 (TGF-β1) antagonist (losartan) would result in decreased scar tissue formation and enhance muscle regeneration after contusion injuries in a mouse model. STUDY DESIGN Controlled laboratory study. METHODS An animal model of muscle contusion was developed using the tibialis anterior muscle in 48 healthy mice at 8 to 10 weeks of age. After sustaining muscle contusion injuries, the mice were divided into 4 groups: (1) saline injection group (control group; n = 15), (2) MDSC transplantation group (MDSC group; n = 15), (3) MDSC transplantation plus oral losartan group (MDSC/losartan group; n = 15), and (4) healthy uninjured group (healthy group; n = 3). Losartan was administrated systemically beginning 3 days after injury and continued until the designated endpoint (1, 2, or 4 weeks after injury). MDSCs were transplanted 4 days after injury. Muscle regeneration and fibrotic scar formation were evaluated by histology, and the expression of follistatin, MyoD, Smad7, and Smad2/3 were analyzed by immunohistochemistry and reverse transcription polymerase chain reaction analysis. Functional recovery was measured via electrical stimulation of the peroneal nerve. RESULTS When compared with MDSC transplantation alone, MDSC/losartan treatment resulted in significantly decreased scar formation, an increase in the number of regenerating myofibers, and improved functional recovery after muscle contusions. In support of these findings, the expression levels of Smad7 and MyoD were significantly increased in the group treated with both MDSCs and losartan. CONCLUSION When compared with MDSCs alone, the simultaneous treatment of muscle contusions with MDSCs and losartan significantly reduced scar formation, increased the number of regenerating myofibers, and improved the functional recovery of muscle; these effects were caused, at least in part, by the losartan-mediated upregulation of Smad7 and MyoD. Increased levels of Smad7 and MyoD together reduced the deposition of scar tissue (via the inhibition of TGF-β1 by Smad7) and committed the transplanted MDSCs toward a myogenic lineage (via Smad7-regulated MyoD expression). CLINICAL RELEVANCE The study findings contribute to the development of biological treatments to accelerate and improve the quality of muscle healing after injury.
Collapse
Affiliation(s)
- Makoto Kobayashi
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shusuke Ota
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Satoshi Terada
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yohei Kawakami
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Takanobu Otsuka
- Department of Orthopaedic Surgery, Nagoya City University, Nagoya, Japan
| | - Freddie H Fu
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Johnny Huard
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA .,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
39
|
Di Trani Lobacz A, Glutting J, Kaminski TW. Clinical Practice Patterns and Beliefs in the Management of Hamstrings Strain Injuries. J Athl Train 2016; 51:162-74. [PMID: 26942659 DOI: 10.4085/1062-6050-51.3.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Hamstrings strain injuries (HSIs) are among the most commonly occurring injuries in sport and are top causes of missed playing time. Lingering symptoms, prolonged recovery, and a high reinjury rate (12%-34%) make HSI management a frustrating and challenging process for the athletic trainer (AT). The clinical practice patterns and opinions of ATs regarding HSI treatment and rehabilitation are unknown. OBJECTIVE To examine the frequency of method use and opinions about current HSI management among ATs. DESIGN Cross-sectional study. SETTING Survey administered to registrants at the 2013 National Athletic Trainers' Association Clinical Symposia and AT Expo. PATIENTS OR OTHER PARTICIPANTS A total of 1356 certified ATs (691 men, 665 women; age = 35.4 ± 10.5 years, time certified = 11.92 ± 9.75 years). DATA COLLECTION AND ANALYSIS A survey was distributed electronically to 7272 registrants and on paper to another 700 attendees. Validity and reliability were established before distribution. Participants reported demographic information and rated their frequency of treatment and rehabilitation method use and agreement with questions assessing confidence, satisfaction, and desire for better clinical practice guidelines. Exploratory factor analysis and principal axis factor analysis were used. We also calculated descriptive statistics and χ(2) tests to assess practice patterns. RESULTS The response rate was 17% (n = 1356). A 2-factor solution was accepted for factor analysis (r = 0.76, r = 0.70), indicating that ATs follow either a contemporary or traditional management style. Various practice patterns were evident across employment settings and years of clinical experience. Satisfaction with the current HSI management plan was high (73.6%), whereas confidence in returning an athlete to play was lower (62.0%). Rates of use were associated with belief in effectiveness for all methods assessed (P < .001). Higher confidence levels were associated with high use of several methods; we observed increased satisfaction (χ(2)2 = 22.5, P = .002) but not increased confidence levels in more experienced ATs. CONCLUSIONS Our study demonstrated the lack of consensus in HSI treatment and rehabilitation and the ATs' desire for better clinical practice guidelines. Future research in which multimodal strategies, including both traditional and contemporary methods, are studied is warranted for effective management of HSI.
Collapse
|
40
|
Fernandes TL, Pedrinelli A, Hernandez AJ. MUSCLE INJURY - PHYSIOPATHOLOGY, DIAGNOSIS, TREATMENT AND CLINICAL PRESENTATION. Rev Bras Ortop 2015; 46:247-55. [PMID: 27047816 PMCID: PMC4799202 DOI: 10.1016/s2255-4971(15)30190-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 12/23/2010] [Indexed: 11/28/2022] Open
Abstract
Skeletal muscle tissue has the largest mass in the human body, accounting for 45% of the total weight. Muscle injuries can be caused by bruising, stretching or laceration. The current classification divides such injuries into mild, moderate and severe. The signs and symptoms of grade I lesions are edema and discomfort; grade II, loss of function, gaps and possible ecchymosis; and grade III, complete rupture, severe pain and extensive hematoma. The diagnosis can be confirmed by: ultrasound, which is dynamic and cheap, but examiner dependent; and tomography or magnetic resonance, which gives better anatomical definition, but is static. Initial phase of the treatment can be summarized as the “PRICE” protocol. NSAIDs, ultrasound therapy, strengthening and stretching after the initial phase and range of motion without pain are used in clinical treatment. On the other hand, surgery has precise indications: hematoma drainage and muscle-tendon reinsertion and reinforcement.
Collapse
Affiliation(s)
- Tiago Lazzaretti Fernandes
- Department of Orthopedics and Traumatology, University of São Paulo Medical School; Collaborator in the FIFA Medical Excellence Center
| | - André Pedrinelli
- Attending Physician in the Sports Medicine Group, Institute of Orthopedics and Traumatology, Hospital das Clínicas, University of São Paulo Medical School; Coordinator of the FIFA Medical Excellence Center
| | - Arnaldo José Hernandez
- Head of the Sports Medicine Group, Institute of Orthopedics and Traumatology, Hospital das Clínicas, University of São Paulo Medical School
| |
Collapse
|
41
|
Pagano AF, Demangel R, Brioche T, Jublanc E, Bertrand-Gaday C, Candau R, Dechesne CA, Dani C, Bonnieu A, Py G, Chopard A. Muscle Regeneration with Intermuscular Adipose Tissue (IMAT) Accumulation Is Modulated by Mechanical Constraints. PLoS One 2015; 10:e0144230. [PMID: 26629696 PMCID: PMC4668059 DOI: 10.1371/journal.pone.0144230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022] Open
Abstract
Sports trauma are able to induce muscle injury with fibrosis and accumulation of intermuscular adipose tissue (IMAT), which affect muscle function. This study was designed to investigate whether hypoactivity would influence IMAT accumulation in regenerating mouse skeletal muscle using the glycerol model of muscle regeneration. The animals were immediately hindlimb unloaded for 21 days after glycerol injection into the tibialis anterior (TA) muscle. Muscle fiber and adipocyte cross-sectional area (CSA) and IMAT accumulation were determined by histomorphometric analysis. Adipogenesis during regenerative processes was examined using RT-qPCR and Western blot quantification. Twenty-one days of hindlimb unloading resulted in decreases of 38% and 50.6% in the muscle weight/body weight ratio and CSA, respectively, in soleus muscle. Glycerol injection into TA induced IMAT accumulation, reaching 3% of control normal-loading muscle area. This IMAT accumulation was largely inhibited in unloading conditions (0.09%) and concomitant with a marked reduction in perilipin and FABP4 protein content, two key markers of mature adipocytes. Induction of PPARγ and C/EBPα mRNA, two markers of adipogenesis, was also decreased. Furthermore, the protein expression of PDGFRα, a cell surface marker of fibro/adipogenic progenitors, was much lower in regenerating TA from the unloaded group. Exposure of regenerating muscle to hypoactivity severely reduces IMAT development and accumulation. These results provide new insight into the mechanisms regulating IMAT development in skeletal muscle and highlight the importance of taking into account the level of mechanical constraint imposed on skeletal muscle during the regeneration processes.
Collapse
Affiliation(s)
- Allan F. Pagano
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Rémi Demangel
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Thomas Brioche
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Elodie Jublanc
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Christelle Bertrand-Gaday
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Robin Candau
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Claude A. Dechesne
- Université Nice-Sophia Antipolis, iBV, CNRS UMR7277, INSERM U1091, 06107, Nice, France
| | - Christian Dani
- Université Nice-Sophia Antipolis, iBV, CNRS UMR7277, INSERM U1091, 06107, Nice, France
| | - Anne Bonnieu
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34060, Montpellier, France
- * E-mail:
| |
Collapse
|
42
|
Kim K. Interaction between HSP 70 and iNOS in skeletal muscle injury and repair. J Exerc Rehabil 2015; 11:240-3. [PMID: 26535212 PMCID: PMC4625650 DOI: 10.12965/jer.150235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/11/2015] [Indexed: 11/23/2022] Open
Abstract
Muscle injuries are frequently occurred in various sports. The biological process and mechanism of muscle repair after injury are well known through the many studies. This study aimed at presenting heat shock protein and nitric oxide synthase are to respond to muscle damage and repair. This section discusses the results obtained through many articles. Heat shock proteins (HSPs) are considered to play an essential role in protecting cells from damage, preparing them to survive on new environmental challenges. In addition, exercise-induced changes such as heat shock, oxidative, metabolic, muscular, and cytokine stress seem to be responsible for the HSP response to exercise. Also, inducible nitric oxide synthase (iNOS) generates nitric oxide (NO) for prolonged period and causes pathophysiological effects. Furthermore, iNOS is involved in processes such as cell injury, wound repair, embryogenesis, tissue differentiation, and suppression of tumorigenesis. In conclusion, the inhibition of HSP 70 on caspase-3 and apoptosis is associated with its inhibition on iNOS that leads to less NO production.
Collapse
Affiliation(s)
- Kijeong Kim
- School of Exercise & Sport Science, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| |
Collapse
|
43
|
Walters TJ, Garg K, Corona BT. Activity attenuates skeletal muscle fiber damage after ischemia and reperfusion. Muscle Nerve 2015; 52:640-8. [PMID: 25641705 DOI: 10.1002/mus.24581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 01/21/2023]
Abstract
INTRODUCTION In this investigation we aimed to determine whether: (1) physical activity protects rat skeletal muscle from ischemia/reperfusion (I/R) injury; and (2) continued activity after I/R improves the rate of healing. METHODS Rats were divided into sedentary or active (voluntary wheel running) groups. Active rats ran for 4 weeks before I/R or 4 weeks before plus 4 weeks after I/R. RESULTS Activity before I/R resulted in 73.2% less muscle damage (Evans blue dye inclusion). Sedentary and active rats had a similar decline in neural-evoked (∼ 99%) and directly stimulated (∼ 70%) in vivo muscle torque, and a similar reduction in junctophilin 1. Active rats produced 19% and 15% greater neural-evoked torque compared with sedentary rats at 14 and 28 days postinjury, respectively, although the rate of recovery appeared similar. CONCLUSIONS Activity protects against long-term muscle damage, but not short-term neural injury or excitation-contraction uncoupling. Continued activity neither accelerates nor hinders the rate of functional recovery.
Collapse
Affiliation(s)
- Thomas J Walters
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, 3698 Chambers Pass, Fort Sam Houston, Texas, 78234-6315, USA
| | - Koyal Garg
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, 3698 Chambers Pass, Fort Sam Houston, Texas, 78234-6315, USA
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, 3698 Chambers Pass, Fort Sam Houston, Texas, 78234-6315, USA
| |
Collapse
|
44
|
Stilhano RS, Martins L, Ingham SJM, Pesquero JB, Huard J. Gene and cell therapy for muscle regeneration. Curr Rev Musculoskelet Med 2015; 8:182-187. [PMID: 25899573 DOI: 10.1007/s12178-015-9268-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle injury and healing are multifactorial processes, involving three steps of healing: (1) degeneration and inflammation, (2) regeneration, and (3) fibrosis. Fibrous tissue hinders the muscle's complete recovery and current therapies fail in achieving total muscle recovery. Gene and cell therapy (or both) are potential future treatments for severe muscular injuries. Stem cells' properties associated with growth factors or/and cytokines can improve muscle healing and permit long-term recovery.
Collapse
Affiliation(s)
- Roberta Sessa Stilhano
- Biophysics Department, Federal University of São Paulo - UNIFESP, Rua Mirassol, 207 - Vila Clementino, 04044-010 São Paulo, Brazil
| | - Leonardo Martins
- Biophysics Department, Federal University of São Paulo - UNIFESP, Rua Mirassol, 207 - Vila Clementino, 04044-010 São Paulo, Brazil
| | | | - João Bosco Pesquero
- Biophysics Department, Federal University of São Paulo - UNIFESP, Rua Mirassol, 207 - Vila Clementino, 04044-010 São Paulo, Brazil
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
45
|
Garg K, Corona BT, Walters TJ. Therapeutic strategies for preventing skeletal muscle fibrosis after injury. Front Pharmacol 2015; 6:87. [PMID: 25954202 PMCID: PMC4404830 DOI: 10.3389/fphar.2015.00087] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/04/2015] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle repair after injury includes a complex and well-coordinated regenerative response. However, fibrosis often manifests, leading to aberrant regeneration and incomplete functional recovery. Research efforts have focused on the use of anti-fibrotic agents aimed at reducing the fibrotic response and improving functional recovery. While there are a number of mediators involved in the development of post-injury fibrosis, TGF-β1 is the primary pro-fibrogenic growth factor and several agents that inactivate TGF-β1 signaling cascade have emerged as promising anti-fibrotic therapies. A number of these agents are FDA approved for other conditions, clearing the way for rapid translation into clinical treatment. In this article, we provide an overview of muscle's host response to injury with special emphasis on the cellular and non-cellular mediators involved in the development of fibrosis. This article also reviews the findings of several pre-clinical studies that have utilized anti-fibrotic agents to improve muscle healing following most common forms of muscle injuries. Although some studies have shown positive results with anti-fibrotic treatment, others have indicated adverse outcomes. Some concerns and questions regarding the clinical potential of these anti-fibrotic agents have also been presented.
Collapse
Affiliation(s)
- Koyal Garg
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine Houston, TX, USA
| | - Benjamin T Corona
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine Houston, TX, USA
| | - Thomas J Walters
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine Houston, TX, USA
| |
Collapse
|
46
|
Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 2015; 53:502-21. [PMID: 25890747 DOI: 10.1016/j.biomaterials.2015.02.110] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.
| | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, USA.
| | - Matthias Pumberger
- Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Center for Musculoskeletal Surgery, Charitè - Universitätsmedizin Berlin, Germany.
| | - Sven Geissler
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
47
|
George C, Smith C, Isaacs AW, Huisamen B. Chronic Prosopis glandulosa treatment blunts neutrophil infiltration and enhances muscle repair after contusion injury. Nutrients 2015; 7:815-30. [PMID: 25625816 PMCID: PMC4344562 DOI: 10.3390/nu7020815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/09/2015] [Indexed: 12/31/2022] Open
Abstract
The current treatment options for soft tissue injuries remain suboptimal and often result in delayed/incomplete recovery of damaged muscle. The current study aimed to evaluate the effects of oral Prosopis glandulosa treatment on inflammation and regeneration in skeletal muscle after contusion injury, in comparison to a conventional treatment. The gastrocnemius muscle of rats was subjected to mass-drop injury and muscle samples collected after 1-, 3 h, 1- and 7 days post-injury. Rats were treated with P. glandulosa (100 mg/kg/day) either for 8 weeks prior to injury (up until day 7 post-injury), only post-injury, or with topically applied diclofenac post-injury (0.57 mg/kg). Neutrophil (His48-positive) and macrophage (F4/80-positive) infiltration was assessed by means of immunohistochemistry. Indicators of muscle satellite cell proliferation (ADAM12) and regeneration (desmin) were used to evaluate muscle repair. Chronic P. glandulosa and diclofenac treatment (p < 0.0001) was associated with suppression of the neutrophil response to contusion injury, however only chronic P. glandulosa treatment facilitated more effective muscle recovery (increased ADAM12 (p < 0.05) and desmin (p < 0.001) expression), while diclofenac treatment had inhibitory effects on repair, despite effective inhibition of neutrophil response. Data indicates that P. glandulosa treatment results in more effective muscle repair after contusion.
Collapse
Affiliation(s)
- Cindy George
- Department of Biomedical Sciences, Faculty of Health Science, Stellenbosch University, Tygerberg 7505, South Africa.
| | - Carine Smith
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Ashwin W Isaacs
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Barbara Huisamen
- Department of Biomedical Sciences, Faculty of Health Science, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
48
|
Ferreira Filho CM, Silva AMDS, Sudo RT, Takiya CM, Machado JC. Laceration in rat gastrocnemius. Following-up muscle repairing by ultrasound biomicroscopy (in vivo), contractility test (ex vivo) and histopathology. Acta Cir Bras 2015; 30:13-23. [DOI: 10.1590/s0102-86502015001000003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/15/2014] [Indexed: 11/21/2022] Open
|
49
|
Biomechanical Comparison of Different Suturing Techniques in Rabbit Medial Gastrocnemius Muscle Laceration Repair. Ann Plast Surg 2014; 73:333-5. [DOI: 10.1097/sap.0b013e31827ae9b0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Macedo ACBD, Ywazaki JL, Pacheco J, Gonçalves S, Gomes ARS. Acute effects of gastrocnemius muscle stretching after contusion in rats. FISIOTERAPIA E PESQUISA 2014. [DOI: 10.1590/1809-2950/446210114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the acute effects of stretching after gastrocnemius contusion in rats. Thirty-three male Wistar rats were selected (8 weeks, 219±35 g) and divided into 4 groups: Control (CG, n=3) - intact; Lesion (LG, n=10); Stretching (SG, n=10): Lesion and Stretching (LSG, n=10). The right gastrocnemius (RG) was submitted to contusion. Stretching on RG was performed manually, with 4 repetitions of 30 seconds each day, for 5 consecutive days, beginning 72 hour after contusion. One week later, rats were weighed and both paws were removed for investigation of muscle length, serial sarcomere number and sarcomere length. The final body weight increased in all groups. The muscle weight and length, as well as the serial sarcomere number (SSN) of LG, were higher than SG. However, the SSN of LSG was higher than SG. The sarcomere length of SG was the highest among all groups. It was concluded that the contusion and stretching did not affect body weight gain. The stretching induced sarcomerogenesis in injured muscle, but did not modify the healthy muscle.
Collapse
|