1
|
Carbohydrate mouth rinsing decreases perception of effort but does not enhance the performance of older male runners. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2023. [DOI: 10.1007/s12662-022-00869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2
|
Wojtys EM. Boosting Performance. Sports Health 2021; 13:109-110. [PMID: 33622110 DOI: 10.1177/1941738121991495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, Arent SM, Antonio J, Stout JR, Trexler ET, Smith-Ryan AE, Goldstein ER, Kalman DS, Campbell BI. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr 2021; 18:1. [PMID: 33388079 PMCID: PMC7777221 DOI: 10.1186/s12970-020-00383-4] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN) position regarding caffeine intake is as follows: 1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as a wide range of aerobic and anaerobic sport-specific actions. 2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits from caffeine use, although the magnitude of its effects differs between individuals. 3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3-6 mg/kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and do not seem to be required to elicit an ergogenic effect. 4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise session. 5. Caffeine appears to improve physical performance in both trained and untrained individuals. 6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism, and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in between-individual response variation. 7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most individuals. 8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation. 9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when dosages range from 3 to 6 mg/kg and 4-6 mg/kg, respectively. 10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have been shown to improve performance, primarily in aerobic exercise. 11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both anaerobic and aerobic performance.
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 1 King's College Circle, Room 5326A, Toronto, ON, M5S 1A8, Canada.
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, 30144, USA
| | | | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, 10468, USA
| | - Nathaniel D M Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, 52240, USA
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Colombia, SC, 29208, USA
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, 33314, USA
| | - Jeffrey R Stout
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | | | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, Applied Physiology Laboratory, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Erica R Goldstein
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Douglas S Kalman
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
- Scientific Affairs. Nutrasource, Guelph, ON, Canada
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
4
|
|
5
|
Bonvini A, Coqueiro AY, Tirapegui J, Calder PC, Rogero MM. Immunomodulatory role of branched-chain amino acids. Nutr Rev 2018; 76:840-856. [PMID: 30124936 DOI: 10.1093/nutrit/nuy037] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Branched-chain amino acids (BCAAs) have been associated with immunomodulation since the mid-1970s and 1980s and have been used in the nutritional therapy of critically ill patients. Evidence shows that BCAAs can directly contribute to immune cell function, aiding recovery of an impaired immune system, as well as improving the nutritional status in cancer and liver diseases. Branched-chain amino acids may also play a role in treatment of patients with sepsis or trauma, contributing to improved clinical outcomes and survival. Branched-chain amino acids, especially leucine, are activators of the mammalian target of rapamycin (mTOR), which, in turn, interacts with several signaling pathways involved in biological mechanisms of insulin action, protein synthesis, mitochondrial biogenesis, inflammation, and lipid metabolism. Although many in vitro and human and animal model studies have provided evidence for the biological activity of BCAAs, findings have been conflicting, and the mechanisms of action of these amino acids are still poorly understood. This review addresses several aspects related to BCAAs, including their transport, oxidation, and mechanisms of action, as well as their role in nutritional therapy and immunomodulation.
Collapse
Affiliation(s)
- Andrea Bonvini
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Audrey Y Coqueiro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Julio Tirapegui
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Marcelo M Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Effects of creatine monohydrate supplementation on simulated soccer performance. Int J Sports Physiol Perform 2014; 9:503-10. [PMID: 24434117 DOI: 10.1123/ijspp.2013-0407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine the effects of acute short-term creatine (Cr) supplementation on physical performance during a 90-min soccer-specific performance test. METHODS A double-blind, placebo-controlled experimental design was adopted during which 16 male amateur soccer players were required to consume 20 g/d Cr for 7 d or a placebo. A Ball-Sport Endurance and Speed Test (BEAST) comprising measures of aerobic (circuit time), speed (12- and 20-m sprint), and explosive-power (vertical jump) abilities performed over 90 min was performed presupplementation and postsupplementation. RESULTS Performance measures during the BEAST deteriorated during the second half relative to the first for both Cr (1.2-2.3%) and placebo (1.0-2.2%) groups, indicating a fatigue effect associated with the BEAST. However, no significant differences existed between groups, suggesting that Cr had no performance-enhancing effect or ability to offset fatigue. When effect sizes were considered, some measures (12-m sprint, -0.53 ± 0.69; 20-m sprint, -0.39 ± 0.59) showed a negative tendency, indicating chances of harm were greater than chances of benefit. CONCLUSIONS Acute short-term Cr supplementation has no beneficial effect on physical measures obtained during a 90-min soccer-simulation test, thus bringing into question its potential as an effective ergogenic aid for soccer players.
Collapse
|
7
|
Rüst CA, Knechtle B, Knechtle P, Pfeifer S, Rosemann T, Lepers R, Senn O. Gender difference and age-related changes in performance at the long-distance duathlon. J Strength Cond Res 2013; 27:293-301. [PMID: 22450258 DOI: 10.1519/jsc.0b013e31825420d0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The differences in gender- and the age-related changes in triathlon (i.e., swimming, cycling, and running) performances have been previously investigated, but data are missing for duathlon (i.e., running, cycling, and running). We investigated the participation and performance trends and the gender difference and the age-related decline in performance, at the "Powerman Zofingen" long-distance duathlon (10-km run, 150-km cycle, and 30-km run) from 2002 to 2011. During this period, there were 2,236 finishers (272 women and 1,964 men, respectively). Linear regression analyses for the 3 split times, and the total event time, demonstrated that running and cycling times were fairly stable during the last decade for both male and female elite duathletes. The top 10 overall gender differences in times were 16 ± 2, 17 ± 3, 15 ± 3, and 16 ± 5%, for the 10-km run, 150-km cycle, 30-km run and the overall race time, respectively. There was a significant (p < 0.001) age effect for each discipline and for the total race time. The fastest overall race times were achieved between the 25- and 39-year-olds. Female gender and increasing age were associated with increased performance times when additionally controlled for environmental temperatures and race year. There was only a marginal time period effect ranging between 1.3% (first run) and 9.8% (bike split) with 3.3% for overall race time. In accordance with previous observations in triathlons, the age-related decline in the duathlon performance was more pronounced in running than in cycling. Athletes and coaches can use these findings to plan the career in long-distance duathletes with the age of peak performance between 25 and 39 years for both women and men.
Collapse
Affiliation(s)
- Christoph A Rüst
- Institute of General Practice and for Health Services Research, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
8
|
Meneguetti QA, Brenzan MA, Batista MR, Bazotte RB, Silva DR, Garcia Cortez DA. Biological effects of hydrolyzed quinoa extract from seeds of Chenopodium quinoa Willd. J Med Food 2011; 14:653-7. [PMID: 21480793 DOI: 10.1089/jmf.2010.0096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An extract from seeds of Chenopodium quinoa Willd. (quinoa), termed hydrolyzed quinoa (HQ), was obtained by enzymatic hydrolysis from seeds of the quinoa variety BRS-Piabiru. Analysis of the physical and chemical properties of quinoa and HQ showed that the hydrolyzed extract is rich in essential amino acids, particularly those with branched chains (leucine, isoleucine, and valine). In addition, we evaluated the biological effects of HQ, particularly the toxicological potential. For this purpose, male Wistar rats were assigned randomly to four groups: (1) sedentary supplemented group, which received HQ (2,000 mg/kg); (2) sedentary control group, non-supplemented; (3) exercised supplemented group (i.e., rats subjected to aerobic physical exercise that received HQ [2,000 mg/kg]); and (4) exercised control group (i.e., rats subjected to aerobic physical exercise, non-supplemented). After 30 days, all groups were analyzed for levels of serum glucose, cholesterol, triacylglycerol, total protein, albumin, uric acid, and urea and activities of the enzymes alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase. Body weight gain, dietary intake, and lipid deposition were also analyzed. The results showed no hepatic and renal toxicity of HQ. Moreover, decreased food intake, body weight, fat deposition, and blood triacylglycerol level were observed in the supplemented groups (sedentary and exercised supplemented groups). These results suggest a potential use of HQ in human nutrition.
Collapse
|
9
|
Abstract
Exercise is making a resurgence in many countries, given its benefits for fitness as well as prevention of obesity. This trend has spawned many supplements that purport to aid performance, muscle growth, and recovery. Initially, sports drinks were developed to provide electrolyte and carbohydrate replacement. Subsequently, energy beverages (EBs) containing stimulants and additives have appeared in most gyms and grocery stores and are being used increasingly by "weekend warriors" and those seeking an edge in an endurance event. Long-term exposure to the various components of EBs may result in significant alterations in the cardiovascular system, and the safety of EBs has not been fully established. For this review, we searched the MEDLINE and EMBASE databases from 1976 through May 2010, using the following keywords: energy beverage, energy drink, power drink, exercise, caffeine, red bull, bitter orange, glucose, ginseng, guarana, and taurine. Evidence regarding the effects of EBs is summarized, and practical recommendations are made to help in answering the patient who asks, "Is it safe for me to drink an energy beverage when I exercise?"
Collapse
Affiliation(s)
- John P Higgins
- Division of Cardiology, Lyndon B. Johnson General Hospital, and Memorial Hermann Sports Medicine Institute, The University of Texas Medical School at Houston, Houston, TX 77026-1967, USA.
| | | | | |
Collapse
|
10
|
Derave W, Everaert I, Beeckman S, Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med 2010; 40:247-63. [PMID: 20199122 DOI: 10.2165/11530310-000000000-00000] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carnosine is a dipeptide with a high concentration in mammalian skeletal muscle. It is synthesized by carnosine synthase from the amino acids L-histidine and beta-alanine, of which the latter is the rate-limiting precursor, and degraded by carnosinase. Recent studies have shown that the chronic oral ingestion of beta-alanine can substantially elevate (up to 80%) the carnosine content of human skeletal muscle. Interestingly, muscle carnosine loading leads to improved performance in high-intensity exercise in both untrained and trained individuals. Although carnosine is not involved in the classic adenosine triphosphate-generating metabolic pathways, this suggests an important role of the dipeptide in the homeostasis of contracting muscle cells, especially during high rates of anaerobic energy delivery. Carnosine may attenuate acidosis by acting as a pH buffer, but improved contractile performance may also be obtained by improved excitation-contraction coupling and defence against reactive oxygen species. High carnosine concentrations are found in individuals with a high proportion of fast-twitch fibres, because these fibres are enriched with the dipeptide. Muscle carnosine content is lower in women, declines with age and is probably lower in vegetarians, whose diets are deprived of beta-alanine. Sprint-trained athletes display markedly high muscular carnosine, but the acute effect of several weeks of training on muscle carnosine is limited. High carnosine levels in elite sprinters are therefore either an important genetically determined talent selection criterion or a result of slow adaptation to years of training. beta-Alanine is rapidly developing as a popular ergogenic nutritional supplement for athletes worldwide, and the currently available scientific literature suggests that its use is evidence based. However, many aspects of the supplement, such as the potential side effects and the mechanism of action, require additional and thorough investigation by the sports science community.
Collapse
Affiliation(s)
- Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|
11
|
Magkos F, Kavouras SA. Caffeine Use in Sports, Pharmacokinetics in Man, and Cellular Mechanisms of Action. Crit Rev Food Sci Nutr 2005; 45:535-62. [PMID: 16371327 DOI: 10.1080/1040-830491379245] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Caffeine is the most widely consumed psychoactive 'drug' in the world and probably one of the most commonly used stimulants in sports. This is not surprising, since it is one of the few ergogenic aids with documented efficiency and minimal side effects. Caffeine is rapidly and completely absorbed by the gastrointestinal tract and is readily distributed throughout all tissues of the body. Peak plasma concentrations after normal consumption are usually around 50 microM, and half-lives for elimination range between 2.5-10 h. The parent compound is extensively metabolized in the liver microsomes to more than 25 derivatives, while considerably less than 5% of the ingested dose is excreted unchanged in the urine. There is, however, considerable inter-individual variability in the handling of caffeine by the body, due to both environmental and genetic factors. Evidence from in vitro studies provides a wealth of different cellular actions that could potentially contribute to the observed effects of caffeine in humans in vivo. These include potentiation of muscle contractility via induction of sarcoplasmic reticulum calcium release, inhibition of phosphodiesterase isoenzymes and concomitant cyclic monophosphate accumulation, inhibition of glycogen phosphorylase enzymes in liver and muscle, non-selective adenosine receptor antagonism, stimulation of the cellular membrane sodium/potassium pump, impairment of phosphoinositide metabolism, as well as other, less thoroughly characterized actions. Not all, however, seem to account for the observed effects in vivo, although a variable degree of contribution cannot be readily discounted on the basis of experimental data. The most physiologically relevant mechanism of action is probably the blockade of adenosine receptors, but evidence suggests that, at least under certain conditions, other biochemical mechanisms may also be operational.
Collapse
Affiliation(s)
- Faidon Magkos
- Laboratory of Nutrition and Clinical Dietetics, Department of Nutrition and Dietetics, Harokopio University, 176 71 Kallithea, Athens, Greece
| | | |
Collapse
|
12
|
Ayranci U, Son N, Son O. Prevalence of nonvitamin, nonmineral supplement usage among students in a Turkish university. BMC Public Health 2005; 5:47. [PMID: 15904512 PMCID: PMC1173114 DOI: 10.1186/1471-2458-5-47] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 05/16/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There have been multiple studies carried out in many countries with regard to the use of nonvitamin, nonmineral (NVNM) supplements. These studies have shown that the use of NVNM supplements is on the increase throughout the world, particularly in western countries. The aim of this study was to assess the extent of NVNM supplement use among Turkish university students. METHODS The survey was conducted between September and December 2004 at Osmangazi University, a public university located in the west of Turkey. Responses were analysed, using the chi-square (x2) test, t test and percent (%) ratios, according to gender and consumers. Differences were considered significant for p <or= 0.05. RESULTS Of 2253 students attending the university, 1871 participated in the survey (909 men and 962 women). Overall, the prevalence of NVNM supplement use was 16.5% (16.6% in men and 16.3% in women, p < 0.05). The three most commonly given reasons for use were 'improvement of energy and vitality (78.6%)', 'promotion of weight loss (71.1%)', followed by 'enhancement of athletic performance (64.3%)'. Twenty-six of the 308 reported NVNM users (26/308, 8.4%) reported having experienced an adverse reaction. Television (76.3%), magazines/newspapers (41.5%) and internet websites (37.3%) were the most frequently used sources for obtaining information about NVNM supplements. The three most frequently used NVNM supplements were echinacea, ginseng, and gingko biloba (38.6%, 36.4%, and 32.8%, respectively). Nutritional scores were higher in NVNM supplement users than in non-users (66.510.8 vs. 62.712.7) (p < 0.001). Users and nonusers of NVNM supplements differed significantly according to sex, age, Body Mass Index (BMI) values, types of school, mother and fathers' education levels, family income, most permanent place of residence up to the time of survey, smoking status, and participating in sports. CONCLUSION The results indicate that the prevalence of NVNM supplement use is relatively modest among Turkish university students and more information is needed on why people use particular NVNM supplements.
Collapse
Affiliation(s)
- Unal Ayranci
- Medico Social Center, Osmangazi University 26480 Meselik Eskisehir Turkey
| | - Nazan Son
- Medical Faculty, Dietitian Division, Osmangazi University 26480 Meselik Eskisehir Turkey
| | - Osman Son
- Medical Faculty, Internal illnesses Department, Osmangazi University 26480 Meselik Eskisehir Turkey
| |
Collapse
|
13
|
Abstract
Preparations containing caffeine and ephedrine have become increasingly popular among sportspersons in recent years as a means to enhance athletic performance. This is due to a slowly accumulating body of evidence suggesting that combination of the two drugs may be more efficacious than each one alone. Caffeine is a compound with documented ergogenicity in various exercise modalities, while ephedrine and related alkaloids have not been shown, as yet, to result in any significant performance improvements. Caffeine-ephedrine mixtures, however, have been reported in several instances to confer a greater ergogenic benefit than either drug by itself. Although data are limited and heterogeneous in nature to allow for reaching consensus, the increase in performance is a rather uniform finding as it has been observed during submaximal steady-state aerobic exercise, short- and long-distance running, maximal and supramaximal anaerobic cycling, as well as weight lifting. From the metabolic point of view, combined ingestion of caffeine and ephedrine has been observed to increase blood glucose and lactate concentrations during exercise, wheareas qualitatively similar effects on lipid fuels (free fatty acids and glycerol) are less pronounced. In parallel, epinephrine and dopamine concentrations are significantly increased, wheareas the effects on norepinephrine are less clear. With respect to pulmonary gas exchange during short-term intense exercise, no physiologically significant effects have been reported following ingestion of caffeine, ephedrine or their combination. Yet, during longer and/or more demanding efforts, some sporadic enhancements have indeed been shown. On the other hand, a relatively consistent cardiovascular manifestation of the latter preparation is an increase in heart rate, in addition to that caused by exercise alone. Finally, evidence to date strongly suggests that caffeine and ephedrine combined are quite effective in decreasing the rating of perceived exertion and this seems to be independent of the type of activity being performed. In general, our knowledge and understanding of the physiological, metabolic and performance-enhancing effects of caffeine-ephedrine mixtures are still in their infancy. Research in this field is probably hampered by sound ethical concerns that preclude administration of potentially hazardous substances to human volunteers. In contrast, while it is certainly true that caffeine and especially ephedrine have been associated with several acute adverse effects on health, athletes do not seem to be concerned with these, as long as they perceive that their performance will improve. In light of the fact that caffeine and ephedra alkaloids, but not ephedrine itself, have been removed from the list of banned substances, their use in sports can be expected to rise considerably in the foreseeable future. Caffeine-ephedra mixtures may thus become one of most popular ergogenic aids in the years to come and while they may indeed prove to be one of the most effective ones, and probably one of the few legal ones, whether they also turn out to be one of the most dangerous ones awaits to be witnessed.
Collapse
Affiliation(s)
- Faidon Magkos
- Laboratory of Nutrition and Clinical Dietetics, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | | |
Collapse
|
14
|
Huang TH, Yang RS, Hsieh SS, Liu SH. Effects of caffeine and exercise on the development of bone: a densitometric and histomorphometric study in young Wistar rats. Bone 2002; 30:293-9. [PMID: 11792600 DOI: 10.1016/s8756-3282(01)00659-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
High doses of caffeine will induce calcium loss and influence the normal development of bone, whereas the proper exercise has positive effects on bone metabolism. This study investigated the possible effects of exercise to antagonize the caffeine-induced impairment of bone development in young male Wistar rats. A total of 32 male rats (5 weeks old) were divided randomly into four groups: group 1 rats were fed caffeine; group 2 rats were prescribed an exercise program; group 3 rats were fed caffeine and prescribed an exercise program; and group 4 rats served as the control group. The caffeine was fed via the animals' dietary water and the dosage was 10 mg/100 g body weight per day, 3 days a week. The exercise program was carried out on a treadmill for 10 weeks (5 days/week, 1 h/day, 70% VO(2)max). Body weight was measured weekly. After sacrifice, the tibia length was measured and the tibia was processed for histomorphometric analysis. Bone mineral density was measured by dual-energy X-ray absorptiometer at three different sites of the tibia. In addition, the calcium content of the right femur was measured by atomic absorptiometry. The results showed that both exercise and caffeine significantly lowered the body weight gain. Rats fed with caffeine (groups 1 and 3) had a significantly longer tibia as compared with the non-caffeine-fed rats (groups 2 and 4) (p = 0.0149). The histomorphometry study showed that thickness of the growth plate in the proliferative zone, the hypertrophic zone, and total growth plate was greater in caffeine-fed groups than in non-caffeine-fed groups. The cell number in the proliferative zone was higher in the caffeine-fed groups. Area ratio of trabeculae in the primary spongiosa of rats in groups 1 and 2 were significantly greater than the control group. Caffeine feeding (groups 1 and 3) induced a lower area ratio of bone trabeculae in the secondary spongiosa, whereas exercise training (groups 2 and 3) increased the thickness of the trabeculae. The exercise program counteracted the negative effect of caffeine on the trabecular thickness, but did not correct the trabecular bone ratio. The bone mineral density (BMD) of the tibia was significantly lower in caffeine-fed rats, and the exercise program did not show any counteracting effect on the caffeine-induced BMD reduction. The calcium content assay showed that caffeine feeding decreased the weight and total calcium content of the femur. Again this exercise program did not counterbalance the negative effects of caffeine. In conclusion, high doses of caffeine seemed to stimulate the growth of long bone. However, it caused more serious negative effects on bone, including bone mineral loss, lower BMD, and lower calcium content. Exercise training at 70% VO(2)max had little antagonizing effect on caffeine-induced impairment of bone formation. Therefore, the best way to prevent caffeine-induced negative effects on bone development is to lower caffeine exposure.
Collapse
Affiliation(s)
- T H Huang
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | |
Collapse
|
15
|
Abstract
"Ergogenic aid" is defined as any means of enhancing energy utilization, including energy production, control, and efficiency. Athletes frequently use ergogenic aids to improve their performance and increase their chances of winning in competition. It is estimated that between 1 and 3 million male and female athletes in the United States alone have used anabolic steroids. In response to the problem of drug use, many athletic organizations have established policies prohibiting the use of certain pharmacologic, physiologic, and nutritional aids by athletes and have implemented drug testing programs to monitor compliance. Therefore, it is important for physicians to be knowledgeable about the available ergogenic aids so they can appropriately treat and counsel the athletic patient.
Collapse
Affiliation(s)
- M D Silver
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
16
|
Van Nieuwenhoven MA, Brummer RM, Brouns F. Gastrointestinal function during exercise: comparison of water, sports drink, and sports drink with caffeine. J Appl Physiol (1985) 2000; 89:1079-85. [PMID: 10956354 DOI: 10.1152/jappl.2000.89.3.1079] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caffeine is suspected to affect gastrointestinal function. We therefore investigated whether supplementation of a carbohydrate-electrolyte solution (CES) sports drink with 150 mg/l caffeine leads to alterations in gastrointestinal variables compared with a normal CES and water using a standardized rest-exercise-rest protocol. Ten well-trained subjects underwent a rest-cycling-rest protocol three times. Esophageal motility, gastroesophageal reflux, and intragastric pH were measured by use of a transnasal catheter. Orocecal transit time was measured using breath-H(2) measurements. A sugar absorption test was applied to determine intestinal permeability and glucose absorption. Gastric emptying was measured via the (13)C-acetate breath test. In the postexercise episode, midesophageal pressure was significantly lower in the CES + caffeine trial compared with the water trial (P = 0.017). There were no significant differences between the three drinks for gastric pH and reflux during the preexercise, the cycling, and the postexercise episode, respectively. Gastric emptying, orocecal transit time, and intestinal permeability showed no significant differences between the three trials. However, glucose absorption was significantly increased in the CES + caffeine trial compared with the CES trial (P = 0.017). No significant differences in gastroesophageal reflux, gastric pH, or gastrointestinal transit could be observed between the CES, the CES + caffeine, and the water trials. However, intestinal glucose uptake was increased in the CES + caffeine trial.
Collapse
Affiliation(s)
- M A Van Nieuwenhoven
- Department of Gastroenterology, University Hospital, Maastricht, 6202 AZ Maastricht, The Netherlands.
| | | | | |
Collapse
|
17
|
Abstract
The branched-chain amino acids (BCAA), isoleucine, leucine and valine, are unique in that they are principally metabolized extrahepatically in the skeletal muscle. This observation led to the investigation of these nutrients in a number of clinical scenarios. By far the most intensively studied applications for BCAA have been in patients with liver failure and/or patients in catabolic disease states. However, the resulting studies have not demonstrated a clear clinical benefit for BCAA nutritional supplements. In patients with liver failure, the BCAA did improve nitrogen retention and protein synthesis, but their effect on patient outcome was less clear. Similarly, in critically ill septic patients, BCAA did not improve either survival or morbidity. The BCAA are important nutrients, and it seems that any specific benefits associated with their use will be based upon a greater understanding of the underlying cellular biology. Potential areas of further research may include the combination of BCAA supplements with other anabolic factors (e.g. growth hormone) in managing patients with catabolic disease states.
Collapse
Affiliation(s)
- C Platell
- University Department of Surgery at Fremantle Hospital, Perth, Western Australia, Australia
| | | | | | | |
Collapse
|
18
|
Benzi G. Is there a rationale for the use of creatine either as nutritional supplementation or drug administration in humans participating in a sport? Pharmacol Res 2000; 41:255-64. [PMID: 10675277 DOI: 10.1006/phrs.1999.0618] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Even though no unambiguous proof for enhanced performance during high-intensity exercise has yet been reported, the creatine administration is charged to improve physical performance and has become a popular practice among subjects participating in different sports. Appropriate creatine dosage may be also used as a medicinal product since, in accordance with the Council Directive 65/65/CEE, any substance which may be administered with a view to restoring, correcting or modifying physiological functions in human beings is considered a medicinal product. Thus, quality, efficacy and safety must characterize the substance. In biochemical terms, creatine administration enhances both creatine and phosphocreatine concentrations, allowing for an increased total creatine pool in skeletal muscle. In thermodynamics terms, creatine interferes with the creatine-creatine kinase-phosphocreatine circuit, which is related to the mitochondrial function as a highly organized system for the energy control of the subcellular adenylate pool. In pharmacokinetics terms, creatine entry into skeletal muscle is initially dependent on the extracellular concentration, but the creatine transport is subsequently down-regulated. In pharmacodynamics terms, the creatine enhances the possibility to maintain power output during brief periods of high-intensity exercises. In spite of uncontrolled daily dosage and long-term administration, no research on creatine safety in humans has been set up by specific standard protocol of clinical pharmacology and toxicology, as currently occurs in phase I for the products for human use. More or less documented side effects induced by creatine are weight gain; influence on insulin production; feedback inhibition of endogenous creatine synthesis; long-term damages on renal function. A major point that related to the quality of creatine products is the amount of creatine ingested in relation to the amount of contaminants present. During the production of creatine from sarcosine and cyanamide, variable amounts of contaminants (dicyandiamide, dihydrotriazines, creatinine, ions) are generated and, thus, their tolerable concentrations (ppm) must be defined by specific toxicological researches. Creatine, as the nutritional factors, can be used either at supplementary or therapeutic levels as a function of the dose. Supplementary doses of nutritional factors usually are of the order of the daily turnover, while therapeutic ones are three or more times higher. In a subject with a body weight of 70 kg with a total creatine pool of 120 g, the daily turnover is approximately 2 g. Thus, in healthy subjects nourished with a fat-rich, carbohydrate-, protein-poor diet and participating in a daily recreational sport, the oral creatine supplementation should be on the order of the daily turnover, i.e. less than 2.5-3 g per day, bringing the gastrointestinal absorption to account. In healthy athletes submitted daily to high-intensity strength- or sprint-training, the maximal oral creatine supplementation should be on the order of two times the daily turnover, i.e. less than 5-6 g per day for less than 2 weeks, and the creatine supplementation should be taken under appropriate medical supervision. The oral administration of more than 6 g per day of creatine should be considered as a therapeutic intervention because the dosage is more than three times higher than the creatine daily turnover and more than six times higher than the creatine daily allowance. In this case, creatine administration should be prescribed by physicians only in the cases of suspected or proven deficiency, or in conditions of severe stress and/or injury. 2000 Academic Press@p$hr
Collapse
Affiliation(s)
- G Benzi
- Department of Physiology and Pharmacology, Faculty of Science, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Casini L, Gatta D, Magni L, Colombani B. Effect of prolonged branched-chain amino acid supplementation on metabolic response to anaerobic exercise in standardbreds. J Equine Vet Sci 2000. [DOI: 10.1016/s0737-0806(00)80470-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Abstract
Substance abuse is well documented among bodybuilders and weight lifters keen to enhance their performance. A case is described of abuse of caffeine to toxic levels by an amateur bodybuilder and is believed to be the first documented case of such recreational abuse.
Collapse
Affiliation(s)
- C R FitzSimmons
- Accident and Emergency Department, Northern General Hospital, Sheffield, UK
| | | |
Collapse
|
21
|
Peraza MA, Ayala-Fierro F, Barber DS, Casarez E, Rael LT. Effects of micronutrients on metal toxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 1998; 106 Suppl 1:203-16. [PMID: 9539014 PMCID: PMC1533267 DOI: 10.1289/ehp.98106s1203] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is growing evidence that micronutrient intake has a significant effect on the toxicity and carcinogenesis caused by various chemicals. This paper examines the effect of micronutrient status on the toxicity of four nonessential metals: cadmium, lead, mercury, and arsenic. Unfortunately, few studies have directly examined the effect of dietary deficiency or supplementation on metal toxicity. More commonly, the effect of dietary alteration must be deduced from the results of mechanistic studies. We have chosen to separate the effect of micronutrients on toxic metals into three classes: interaction between essential micronutrients and toxic metals during uptake, binding, and excretion; influence of micronutrients on the metabolism of toxic metals; and effect of micronutrients on secondary toxic effects of metals. Based on data from mechanistic studies, the ability of micronutrients to modulate the toxicity of metals is indisputable. Micronutrients interact with toxic metals at several points in the body: absorption and excretion of toxic metals; transport of metals in the body; binding to target proteins; metabolism and sequestration of toxic metals; and finally, in secondary mechanisms of toxicity such as oxidative stress. Therefore, people eating a diet deficient in micronutrients will be predisposed to toxicity from nonessential metals.
Collapse
Affiliation(s)
- M A Peraza
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson 85721-0207, USA.
| | | | | | | | | |
Collapse
|