1
|
Dos Anjos VR, Vivan L, Engelke P, de Lira CAB, Vancini RL, Weiss K, Rosemann T, Knechtle B, Andrade MDS. Differences in 5-km running pace between female and male triathletes. Int J Sports Med 2025; 46:115-120. [PMID: 39515369 DOI: 10.1055/a-2443-9921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
During an IRONMAN, the pacing strategy in the running segment differs significantly between sexes. However, it is unknown if sex affects the running pace in shorter triathlon events. This study compared the pacing strategy between sexes during a 5-km running test performed following a 20-km cycle (sprint triathlon distances). Participants included 16 men (34.7±7.5 years) and 16 women (39.5±7.7 years). A cardiopulmonary exercise test to measure maximal oxygen uptake (˙VO2max) and a functional threshold power (FTP) were performed. Body composition was measured using a dual-emission X-ray absorptiometry system. Participants cycled at 90% FTP for 20 km and ran as fast as possible for 5 km. The total time spent cycling 20 km was shorter (~11%) in male than in female athletes (p<0.001). Similarly, the time spent to run 5 km was shorter in male (~11%) than in female athletes (p=0.006). Male athletes performed the last 600 m of the 5km race significantly faster than the initial meters (p<0.05). Female athletes performed the 5-km race without pace variation (p>0.05). In conclusion, apart from the sex differences associated with performance in short-term triathlon events, the pacing strategy was also different.
Collapse
Affiliation(s)
| | - Lavínia Vivan
- Postgraduate Program in Translation Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Paulo Engelke
- Postgraduate Program in Translation Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Rodrigo Luiz Vancini
- Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Katja Weiss
- Medbase St. Gallen Am Vadianplatz, Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
| | - Thomas Rosemann
- University of Zurich, Department of General Practice, Zurich, Switzerland
| | - Beat Knechtle
- St. Gallen, Gesundheitszentrum, St. Gallen, Switzerland
| | | |
Collapse
|
2
|
Hamilton K, Kilding AE, Plews DJ, Mildenhall MJ, Waldron M, Charoensap T, Cox TH, Brick MJ, Leigh WB, Maunder E. Durability of the moderate-to-heavy-intensity transition is related to the effects of prolonged exercise on severe-intensity performance. Eur J Appl Physiol 2024; 124:2427-2438. [PMID: 38546844 PMCID: PMC11322397 DOI: 10.1007/s00421-024-05459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/06/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Power output at the moderate-to-heavy-intensity transition decreases during prolonged exercise, and resilience to this has been termed 'durability'. The purpose of this study was to assess the relationship between durability and the effect of prolonged exercise on severe-intensity performance, and explore intramuscular correlates of durability. METHODS On separate days, 13 well-trained cyclists and triathletes (V̇O2peak, 57.3 ± 4.8 mL kg-1 min-1; training volume, 12 ± 2.1 h week-1) undertook an incremental test and 5-min time trial (TT) to determine power output at the first ventilatory threshold (VT1) and severe-intensity performance, with and without 150-min of prior moderate-intensity cycling. A single resting vastus lateralis microbiopsy was obtained. RESULTS Prolonged exercise reduced power output at VT1 (211 ± 40 vs. 198 ± 39 W, ∆ -13 ± 16 W, ∆ -6 ± 7%, P = 0.013) and 5-min TT performance (333 ± 75 vs. 302 ± 63 W, ∆ -31 ± 41 W, ∆ -9 ± 10%, P = 0.017). The reduction in 5-min TT performance was significantly associated with durability of VT1 (rs = 0.719, P = 0.007). Durability of VT1 was not related to vastus lateralis carnosine content, citrate synthase activity, or complex I activity (P > 0.05). CONCLUSION These data provide the first direct support that durability of the moderate-to-heavy-intensity transition is an important performance parameter, as more durable athletes exhibited smaller reductions in 5-min TT performance following prolonged exercise. We did not find relationships between durability and vastus lateralis carnosine content, citrate synthase activity, or complex I activity.
Collapse
Affiliation(s)
- Kate Hamilton
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | | | - Mark Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Thanchanok Charoensap
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Tobias H Cox
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Matthew J Brick
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Warren B Leigh
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
3
|
Benhammou S, Mourot L, Clemente FM, Coquart J, Belkadi A. Is test specificity the issue in assessing aerobic fitness and performance of runners? A systematic review. J Sports Med Phys Fitness 2024; 64:539-549. [PMID: 38324270 DOI: 10.23736/s0022-4707.23.15619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Various tests have been developed to evaluate aerobic fitness and performance of runners. However, a systematic understanding of which methods are more accurate is necessary to provide coaches and the sports sciences community with useful and confident outcomes. This study aims to summarize the evidence regarding the validity, reliability and sensitivity of tests for measuring aerobic fitness and performance in runners of several background of training. EVIDENCE ACQUISITION A systematic search was conducted of Web of Science, PubMed and Scopus up to 31st December 2022 according to PRISMA statement guidelines. Studies that reported findings about tests covering maximal aerobic speed, final velocity achieved during the test, average running speed or other method of evaluating the reference speed during the test were included. We evaluated the risk of bias in the included articles using the Risk of Bias Assessment Tool for Nonrandomized Studies (RoBANS). The tests were categorized into continuous incremental tests, intermittent tests and time-trial test. EVIDENCE SYNTHESIS A total of 23 studies met eligibility criteria. These studies contained three background of training: track and road runners (N.=15), trail runners (N.=7) and inexperienced runners (N.=1). Criterion validity was assessed in 73% of the studies, while only 41% of studies examined convergent validity. The majority of the reviewed studies (87%) ignored test-retest reliability. Test sensitivity was not reported in any study. CONCLUSIONS At least one aerobic fitness and performance test was identified for each types of background of training. However, some methodological aspects were not provided in the included articles. Most studies examined at least one aspect of validity (i.e., criterion or convergent-related validity), whilst few studies investigated test-retest reliability. Researchers and practitioners can use the information provided in this systematic review to select appropriate tests.
Collapse
Affiliation(s)
- Saddek Benhammou
- Platform Exercise Performance Health Innovation (Plateforme EPSI), Paris, France -
- Laboratory of Optimizing Research Programs on Physical and Sports Activities, Institute of Physical Education and Sport, University of Abdelhamid Ibn Badis, Mostaganem, Algeria -
| | - Laurent Mourot
- Platform Exercise Performance Health Innovation (Plateforme EPSI), Paris, France
- Unit of Prognostic Markers and Regulatory Factors of Cardiac and Vascular Pathologies (MPFRPV), University of Franche-Comté, Besançon, France
| | - Filipe M Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- Gdansk University of Physical Education and Sport, Gdańsk, Poland
- Sport Physical Activity and Health Research & Innovation Center (SPRINT), Viana do Castelo, Portugal
| | - Jeremy Coquart
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Sante Société, Lille, France
| | - Adel Belkadi
- Laboratory of Optimizing Research Programs on Physical and Sports Activities, Institute of Physical Education and Sport, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| |
Collapse
|
4
|
Vinetti G, Rossi H, Bruseghini P, Corti M, Ferretti G, Piva S, Taboni A, Fagoni N. Functional Threshold Power Field Test Exceeds Laboratory Performance in Junior Road Cyclists. J Strength Cond Res 2023; 37:1815-1820. [PMID: 36692223 PMCID: PMC10448799 DOI: 10.1519/jsc.0000000000004471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vinetti, G, Rossi, H, Bruseghini, P, Corti, M, Ferretti, G, Piva, S, Taboni, A, and Fagoni, N. The functional threshold power field test exceeds laboratory performance in junior road cyclists. J Strength Cond Res 37(9): 1815–1820, 2023—The functional threshold power (FTP) field test is appealing for junior cyclists, but it was never investigated in this age category, and even in adults, there are few data on FTP collected in field conditions. Nine male junior road cyclists (16.9 ± 0.8 years) performed laboratory determination of maximal aerobic power (MAP), 4-mM lactate threshold (P4mM), critical power (CP), and the curvature constant (W ′), plus a field determination of FTP as 95% of the average power output during a 20-minute time trial in an uphill road. The level of significance was set at p < 0.05. Outdoor FTP (269 ± 34 W) was significantly higher than CP (236 ± 24 W) and P4mM (233 ± 23 W). The V ˙ O 2 peak of the field FTP test (66.9 ± 4.4 ml·kg−1·min−1) was significantly higher than the V ˙ O 2 peak assessed in the laboratory (62.7 ± 3.7 ml·kg−1·min−1). Functional threshold power was correlated, in descending order, with MAP (r = 0.95), P4mM (r = 0.94), outdoor and indoor V ˙ O 2 peak (r = 0.93 and 0.93, respectively), CP (r = 0.84), and W ′ (r = 0.66). It follows that in junior road cyclists, the FTP field test was feasible and related primarily to aerobic endurance parameters and secondarily, but notably, to W ′. However, the FTP field test significantly exceeded all laboratory performance tests. When translating laboratory results to outdoor uphill conditions, coaches and sport scientists should consider this discrepancy, which may be particularly enhanced in this cycling age category.
Collapse
Affiliation(s)
- Giovanni Vinetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Huber Rossi
- Marathon Sport Medical Center, Brescia, Italy
| | - Paolo Bruseghini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Corti
- Department of Human Sciences and Promotion of the Quality of Life, University San Raffaele Roma, Rome, Italy; and
| | - Guido Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Simone Piva
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Anna Taboni
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Nazzareno Fagoni
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Funnell MP, Mears SA, James LJ. A self-paced 15-minute cycling time trial is a reliable performance measure in recreationally active individuals. J Sports Sci 2023; 41:1581-1586. [PMID: 37979194 DOI: 10.1080/02640414.2023.2283993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Cycling time trial (TT) protocols have been shown to be reliable in trained cyclists, but their reproducibility in lesser-trained individuals is unknown. This study examined the reliability of a self-paced 15-minute cycling TT in recreationally active individuals. Twelve recreationally active males (age 27 ± 3 y; body mass 75.2 ± 8.9 kg; V ˙ O2peak = 51.10 ± 7.53 ml∙kg∙min-1) completed a V ˙ O2peak test and four experimental trials, separated by > 48 h. Experimental trials consisted of 10 min cycling at 60% Wmax, followed by a self-paced 15-min TT. Heart rate and work done were recorded every 5 min during the TT; and coefficient of variation (CV) was calculated. Work done was not different (P = 0.706) between trials (193.2 ± 45.3 kJ; 193.2 ± 43.5 kJ; 192.0 ± 42.3 kJ; 193.9 ± 42.8 kJ). Within participant CV ranged from 0.5-4.9% for the four TTs, with a mean CV of 2.1%. Mean CV decreased from 2.0% (range 0.1-5.0%) for the first two TTs to 1.7% (range 0.2-5.6%) for the second and third TTs, and further decreased to 1.0% (range 0.2-1.8%) for the third and fourth TTs. In conclusion, the use of a short-duration self-paced cycling TT in recreationally active individuals is a reliable performance measure.
Collapse
Affiliation(s)
- Mark P Funnell
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Stephen A Mears
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
6
|
Sanchez-Jimenez JL, Lorente-Casaus C, Jimenez-Perez I, Gandía-Soriano A, Carpes FP, Priego-Quesada JI. Acute effects of fatigue on internal and external load variables determining cyclists' power profile. J Sports Sci 2023:1-10. [PMID: 37379499 DOI: 10.1080/02640414.2023.2227523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
The aim of the present study was to determine whether fatigue affects internal and external load variables determining power profile in cyclists. Ten cyclists performed outdoor power profile tests (lasting 1-, 5 and 20-min) on two consecutive days, subject either to a fatigued condition or not. Fatigue was induced by undertaking an effort (10-min at 95% of average power output obtained in a 20-min effort followed by 1-min maximum effort) until the power output decreased by 20% compared to the 1-min power output. Fatigued condition decreased power output (p < 0.05, 1-min: 9.0 ± 3.8%; 5-min: 5.9 ± 2.5%; 20-min: 4.1 ± 1.9%) and cadence in all test durations, without differences in torque. Lactate decreased in longer efforts when a fatigue protocol had previously been conducted (e.g., 20-min: 8.6 ± 3.0 vs. 10.9 ± 2.7, p < 0.05). Regression models (r2 ≥ 0.95, p < 0.001) indicated that a lower variation in load variables of 20-min in fatigued condition compared with the non-fatigued state resulted in a lower decrease in critical power after the fatigue protocol. The results suggest that fatigued condition on power was more evident in shorter efforts and seemed to rely more on a decrease in cadence than on torque.
Collapse
Affiliation(s)
- Jose Luis Sanchez-Jimenez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Carlos Lorente-Casaus
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Irene Jimenez-Perez
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Alexis Gandía-Soriano
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| | - Felipe P Carpes
- Applied Neuromechanics Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Jose Ignacio Priego-Quesada
- Research Group in Sports Biomechanics (GIBD), Department of Physical Education and Sports, University of Valencia, Valencia, Spain
| |
Collapse
|
7
|
Osmani F, Lago-Fuentes C, Alemany-Iturriaga J, Barcala-Furelos M. The relationship of muscle oxygen saturation analyzer with other monitoring and quantification tools in a maximal incremental treadmill test. Front Physiol 2023; 14:1155037. [PMID: 37275231 PMCID: PMC10232742 DOI: 10.3389/fphys.2023.1155037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction: The study aims to explore whether NIRS derived data can be used to identify the second ventilatory threshold (VT2) during a maximal incremental treadmill test in non-professional runners and to determine if there is a correlation between SmO2 and other valid and reliable exercise performance assessment measures or parameters for maximal incremental test, such as lactate concentration (LT), RPE, HR, and running power (W). Methods: 24 participants were recruited for the study (5 women and 19 men). The devices used consisted of the following: i) a muscle oxygen saturation analyzer placed on the vastus lateralis of the right leg, ii) the Stryd power meter for running, iii) the Polar H7 heart rate band; and iv) the lactate analyzer. In addition, a subjective perceived exertion scale (RPE 1-10) was used. All of the previously mentioned devices were used in a maximal incremental treadmill test, which began at a speed of 8 km/h with a 1% slope and a speed increase of 1.2 km/h every 3 min. This was followed by a 30-s break to collect the lactate data between each 3-min stage. Spearman correlation was carried out and the level of significance was set at p < 0.05. Results: The VT2 was observed at 87,41 ± 6,47% of the maximal aerobic speed (MAS) of each participant. No relationship between lactate data and SmO2 values (p = 0.076; r = -0.156) at the VT2 were found. No significant correlations were found between the SmO2 variables and the other variables (p > 0.05), but a high level of significance and strong correlations were found between all the following variables: power data (W), heart rate (HR), lactate concentration (LT) and RPE (p < 0.05; r > 0.5). Discussion: SmO2 data alone were not enough to determine the VT2, and there were no significant correlations between SmO2 and the other studied variables during the maximal incremental treadmill test. Only 8 subjects had a breakpoint at the VT2 determined by lactate data. Conclusion: The NIRS tool, Humon Hex, does not seem to be useful in determining VT2 and it does not correlate with the other variables in a maximal incremental treadmill test.
Collapse
Affiliation(s)
- Florent Osmani
- Faculty of Health Sciences, Universidad Europea del Atlántico, Santander, Spain
| | - Carlos Lago-Fuentes
- Faculty of Health Sciences, Universidad Europea del Atlántico, Santander, Spain
| | - Josep Alemany-Iturriaga
- Faculty of Social Sciences and Humanities, Universidad Europea del Atlántico, Santander, Spain
| | - Martín Barcala-Furelos
- Faculty of Health Sciences, Universidad Europea del Atlántico, Santander, Spain
- Faculty of Social Sciences and Humanities, Universidad Europea del Atlántico, Santander, Spain
| |
Collapse
|
8
|
King DG, Stride E, Mendis J, Gurton WH, Macrae H, Jones L, Hunt J. A Double-Blind, Randomized, Placebo-Controlled Pilot Study examining an Oxygen Nanobubble Beverage for 16.1-km Time Trial and Repeated Sprint Cycling Performance. J Diet Suppl 2023; 21:167-181. [PMID: 37127913 DOI: 10.1080/19390211.2023.2203738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is growing interest of ergogenic aids that deliver supplemental oxygen during exercise and recovery, however, breathing supplemental oxygen via specialist facemasks is often not feasible. Therefore, this study investigated the effect of an oxygen-nanobubble beverage during submaximal and repeated sprint cycling. In a double-blind, randomized, placebo-controlled study, 10 male cyclists (peak aerobic capacity, 56.9 ± 6.1 mL·kg-1·min-1; maximal aerobic power, 385 ± 25 W) completed submaximal or maximal exercise after consuming an oxygen-nanobubble (O2) or placebo (PLA) beverage. Submaximal trials comprised 30-min of steady-state cycling at 60% peak aerobic capacity and 16.1-km time-trial (TT). Maximal trials involved 4 × 30 s Wingate tests interspersed by 4-min recovery. Time-to-completion during the 16.1-km TT was 2.4% faster after O2 compared with PLA (95% CI = 0.7-4.0%, p = 0.010, d = 0.41). Average power for the 16.1-km TT was 4.1% higher for O2 vs. PLA (95% CI = 2.1-7.3%, p = 0.006, d = 0.28). Average peak power during the repeated Wingate tests increased by 7.1% for O2 compared with PLA (p = 0.002, d = 0.58). An oxygen-nanobubble beverage improves performance during submaximal and repeated sprint cycling, therefore may provide a practical and effective ergogenic aid for competitive cyclists.
Collapse
Affiliation(s)
- David G King
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Jeewaka Mendis
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - William H Gurton
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Heather Macrae
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Louise Jones
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Julie Hunt
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
9
|
O'Malley CA, Fullerton CL, Mauger AR. Test-retest reliability of a 30-min fixed perceived effort cycling exercise. Eur J Appl Physiol 2023; 123:721-735. [PMID: 36436029 PMCID: PMC10030391 DOI: 10.1007/s00421-022-05094-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Using exercise protocols at a fixed rating of perceived effort (RPE) is a useful method for exploring the psychophysical influences on exercise performance. However, studies that have employed this protocol have arbitrarily selected RPE values without considering how these values correspond to exercise intensity thresholds and domains. Therefore, aligning RPE intensities with established physiological thresholds seems more appropriate, although the reliability of this method has not been assessed. METHODS Eight recreationally active cyclists completed two identical ramped incremental trials on a cycle ergometer to identify gas exchange threshold (GET). A linear regression model plotted RPE responses during this test alongside gas parameters to establish an RPE corresponding to GET (RPEGET) and 15% above GET (RPE+15%GET). Participants then completed three trials at each intensity, in which performance, physiological, and psychological measures were averaged into 5-min time zone (TZ) intervals and 30-min 'overall' averages. Data were assessed for reliability using intraclass correlation coefficients (ICC) and accompanying standard error measurements (SEM), 95% confidence intervals, and coefficient of variations (CoV). RESULTS All performance and gas parameters showed excellent levels of test-retest reliability (ICCs = > .900) across both intensities. Performance, gas-related measures, and heart rate averaged over the entire 30-min exercise demonstrated good intra-individual reliability (CoV = < 5%). CONCLUSION Recreationally active cyclists can reliably replicate fixed perceived effort exercise across multiple visits when RPE is aligned to physiological thresholds. Some evidence suggests that exercise at RPE+15%GET is more reliable than RPEGET.
Collapse
Affiliation(s)
- Callum A O'Malley
- School of Sport and Exercise Sciences, University of Kent, Canterbury, Kent, United Kingdom. C.O'
- School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montréal, Quebec, Canada. C.O'
| | | | - Alexis R Mauger
- School of Sport and Exercise Sciences, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
10
|
Darrow DP, Balser DY, Freeman D, Pelrine E, Krassioukov A, Phillips A, Netoff T, Parr A, Samadani U. Effect of epidural spinal cord stimulation after chronic spinal cord injury on volitional movement and cardiovascular function: study protocol for the phase II open label controlled E-STAND trial. BMJ Open 2022; 12:e059126. [PMID: 35851008 PMCID: PMC9297213 DOI: 10.1136/bmjopen-2021-059126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/17/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) leads to significant changes in morbidity, mortality and quality of life (QOL). Currently, there are no effective therapies to restore function after chronic SCI. Preliminary studies have indicated that epidural spinal cord stimulation (eSCS) is a promising therapy to improve motor control and autonomic function for patients with chronic SCI. The aim of this study is to assess the effects of tonic eSCS after chronic SCI on quantitative outcomes of volitional movement and cardiovascular function. Our secondary objective is to optimise spinal cord stimulation parameters for volitional movement. METHODS AND ANALYSIS The Epidural Stimulation After Neurologic Damage (ESTAND) trial is a phase II single-site self-controlled trial of epidural stimulation with the goal of restoring volitional movement and autonomic function after motor complete SCI. Participants undergo epidural stimulator implantation and are followed up over 15 months while completing at-home, mobile application-based movement testing. The primary outcome measure integrates quantity of volitional movement and similarity to normal controls using the volitional response index (VRI) and the modified Brain Motor Control Assessment. The mobile application is a custom-designed platform to support participant response and a kinematic task to optimise the settings for each participant. The application optimises stimulation settings by evaluating the parameter space using movement data collected from the tablet application and accelerometers. A subgroup of participants with cardiovascular dysautonomia are included for optimisation of blood pressure stabilisation. Indirect effects of stimulation on cardiovascular function, pain, sexual function, bowel/bladder, QOL and psychiatric measures are analysed to assess generalisability of this targeted intervention. ETHICS AND DISSEMINATION This study has been approved after full review by the Minneapolis Medical Research Foundation Institutional Review Board and by the Minneapolis VA Health Care System. This project has received Food and Drug Administration investigational device exemption approval. Trial results will be disseminated through peer-reviewed publications, conference presentations and seminars. TRIAL REGISTRATION NUMBER NCT03026816.
Collapse
Affiliation(s)
- David P Darrow
- Neurosurgery, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - David Young Balser
- Rehabilitation Medicine, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
| | - David Freeman
- Neurosurgery, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
| | - Eliza Pelrine
- Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Andrei Krassioukov
- Physical Medicine and Rehabilitation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron Phillips
- Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Theoden Netoff
- Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Ann Parr
- Neurosurgery, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
| | - Uzma Samadani
- Surgery, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Schneeweiss P, Schellhorn P, Haigis D, Niess AM, Martus P, Krauss I. Effect of Two Different Training Interventions on Cycling Performance in Mountain Bike Cross-Country Olympic Athletes. Sports (Basel) 2022; 10:sports10040053. [PMID: 35447863 PMCID: PMC9031322 DOI: 10.3390/sports10040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
To improve performance in endurance sports, it is important to include both high-intensity and low-intensity training, but there is neither a universally accepted practice nor clear scientific evidence that allows reliable statements about the predominance of a specific training method. This randomized controlled trial compared the effects of a polarized training model (POL) to a low-intensity training model (LIT) on physiological parameters and mountain bike cross-country Olympic (XCO) race performance in eighteen competitive XCO athletes (17.9 ± 3.6 years). The superiority of one of the two methods could not be shown in this study. The results did not show statistically significant differences between POL and LIT, as both interventions led to slight improvements. However, a small tendency toward better effects for POL was seen for cycling power output during the race (4.4% vs. –2.2%), at the 4 mmol/L (6.1% vs. 2.8%) and individual anaerobic lactate threshold (5.1% vs. 2.3%), and for maximal aerobic performance (4.4% vs. 2.6%), but not for maximal efforts lasting 10 to 300 s. Despite the lack of significant superiority in this and some other studies, many athletes and coaches prefer POL because it produces at least equivalent effects and requires less training time.
Collapse
Affiliation(s)
- Patrick Schneeweiss
- Medical Clinic, Department of Sports Medicine, University of Tübingen, 72076 Tübingen, Germany; (P.S.); (D.H.); (A.M.N.); (I.K.)
- Interfaculty Research Institute for Sports and Physical Activity, University of Tübingen, 72074 Tübingen, Germany
- Correspondence:
| | - Philipp Schellhorn
- Medical Clinic, Department of Sports Medicine, University of Tübingen, 72076 Tübingen, Germany; (P.S.); (D.H.); (A.M.N.); (I.K.)
- Interfaculty Research Institute for Sports and Physical Activity, University of Tübingen, 72074 Tübingen, Germany
| | - Daniel Haigis
- Medical Clinic, Department of Sports Medicine, University of Tübingen, 72076 Tübingen, Germany; (P.S.); (D.H.); (A.M.N.); (I.K.)
- Interfaculty Research Institute for Sports and Physical Activity, University of Tübingen, 72074 Tübingen, Germany
| | - Andreas Michael Niess
- Medical Clinic, Department of Sports Medicine, University of Tübingen, 72076 Tübingen, Germany; (P.S.); (D.H.); (A.M.N.); (I.K.)
- Interfaculty Research Institute for Sports and Physical Activity, University of Tübingen, 72074 Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, 72076 Tübingen, Germany;
| | - Inga Krauss
- Medical Clinic, Department of Sports Medicine, University of Tübingen, 72076 Tübingen, Germany; (P.S.); (D.H.); (A.M.N.); (I.K.)
- Interfaculty Research Institute for Sports and Physical Activity, University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
12
|
Validity of the Favero Assioma Duo Power Pedal System in Maximal-Effort Cycling Tests. Int J Sports Physiol Perform 2022; 17:800-805. [PMID: 35180707 DOI: 10.1123/ijspp.2021-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE The pedal-based power meter has its advantages, so it has become a popular monitoring tool in cycling. This study aimed to examine the validity of the Favero Assioma Duo power pedal system (FAD) in comparison with the SRM, which is considered the gold standard under maximal-effort cycling conditions, and a widely used cycling test, the 20-minute Functional Threshold Test. METHODS Fourteen male adolescent cyclists completed a series of cycling intervals including 5, 15, 30, 60, 240, 600, and 1200 seconds (20-min Functional Threshold Test) with their maximal-effort performance on 2 separate days. Power output data were collected from the FAD and the SRM for analysis. RESULTS Extremely strong correlations and excellent intraclass correlation coefficients (ICCs) were found between the power output values registered with the FAD and the SRM overall (r > .999, ICC = .996) and each power test (r > .98, ICC > .91). A low bias was found in power tests of longer durations (-3.2% at 240-s test, -3.3% at 600-s test, and -3.1% at 20-min Functional Threshold Test), while the bias augmented in shorter intervals (-2.7% at 5-s test, -3.6% at 15-s test, and -2.6% at 30-s test and -3.3% at 60-s test). A regression equation was proposed as y = -2.943 + 0.976x to diminish the bias (-0.2 W) with increased r value (>.98) and ICC (>.98). CONCLUSION The FAD appears to be a valid tool for the measures of maximal-effort performance. The recorded power value reflects the true value with proposed regression equation.
Collapse
|
13
|
Leo P, Spragg J, Podlogar T, Lawley JS, Mujika I. Power profiling and the power-duration relationship in cycling: a narrative review. Eur J Appl Physiol 2022; 122:301-316. [PMID: 34708276 PMCID: PMC8783871 DOI: 10.1007/s00421-021-04833-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022]
Abstract
Emerging trends in technological innovations, data analysis and practical applications have facilitated the measurement of cycling power output in the field, leading to improvements in training prescription, performance testing and race analysis. This review aimed to critically reflect on power profiling strategies in association with the power-duration relationship in cycling, to provide an updated view for applied researchers and practitioners. The authors elaborate on measuring power output followed by an outline of the methodological approaches to power profiling. Moreover, the deriving a power-duration relationship section presents existing concepts of power-duration models alongside exercise intensity domains. Combining laboratory and field testing discusses how traditional laboratory and field testing can be combined to inform and individualize the power profiling approach. Deriving the parameters of power-duration modelling suggests how these measures can be obtained from laboratory and field testing, including criteria for ensuring a high ecological validity (e.g. rider specialization, race demands). It is recommended that field testing should always be conducted in accordance with pre-established guidelines from the existing literature (e.g. set number of prediction trials, inter-trial recovery, road gradient and data analysis). It is also recommended to avoid single effort prediction trials, such as functional threshold power. Power-duration parameter estimates can be derived from the 2 parameter linear or non-linear critical power model: P(t) = W'/t + CP (W'-work capacity above CP; t-time). Structured field testing should be included to obtain an accurate fingerprint of a cyclist's power profile.
Collapse
Affiliation(s)
- Peter Leo
- Division of Performance Physiology & Prevention, Department of Sport Science, University Innsbruck, Innsbruck, Austria.
| | - James Spragg
- Health Physical Activity Lifestyle Sport Research Centre (HPALS), University of Cape Town, Cape Town, South Africa
| | - Tim Podlogar
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Justin S Lawley
- Division of Performance Physiology & Prevention, Department of Sport Science, University Innsbruck, Innsbruck, Austria
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country, Spain
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
14
|
Treff G, Mentz L, Mayer B, Winkert K, Engleder T, Steinacker JM. Initial Evaluation of the Concept-2 Rowing Ergometer's Accuracy Using a Motorized Test Rig. Front Sports Act Living 2022; 3:801617. [PMID: 35146423 PMCID: PMC8821892 DOI: 10.3389/fspor.2021.801617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction The Concept 2 (C2) rowing ergometer is used worldwide for home-based training, official competitions, and performance assessment in sports and science. Previous studies reported a disparate underestimation of mechanical power output positively related to an unclearly defined stroke variability. The aim of this study was to quantify the accuracy of the C2 while controlling for the potentially influencing variables of the rowing stroke by using a test rig for air-braked rowing ergometers and thus excluding biological variability. Methods A unique motorized test rig for rowing ergometers was employed. Accuracy was assessed as the difference in mechanical power output between C2 and a reference system during steady (i.e., minimal variations of stroke power within a series of 50 spacemark, no -strokes) and unsteady simulated rowing (i.e., persistent variations during measurement series) while manipulating the stroke variables shape, force, or rate. Results During steady simulated rowing, differences between C2 and the reference system ranged 2.9–4.3%. Differences were not significantly affected by stroke shapes (P = 0.153), but by stroke rates ranging 22–28 min−1 (P < 0.001). During unsteady simulated rowing with alterations of stroke force and rate, mean differences of 2.5–3.9% were similar as during steady simulated rowing, but the random error increased up to 18-fold. C2 underestimated mechanical power output of the first five strokes by 10–70%. Their exclusion reduced mean differences to 0.2–1.9%. Conclusion Due to the enormous underestimation of the start strokes, the nominal accuracy of the C2 depends on the total number of strokes considered. It ranges 0.2–1.9%, once the flywheel has been sufficiently accelerated. Inaccuracy increases with uneven rowing, but the stroke shape has a marginal impact. Hence, rowers should row as even as possible and prefer higher stroke rates to optimize C2 readings. We recommend external reference systems for scientific and high-performance assessments, especially for short tests designs where the start strokes will have a major impact.
Collapse
Affiliation(s)
- Gunnar Treff
- Division of Sports- and Rehabilitation Medicine, Ulm University, Ulm, Germany
- University Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
- *Correspondence: Gunnar Treff
| | - Lennart Mentz
- Division of Sports- and Rehabilitation Medicine, Ulm University, Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Kay Winkert
- Division of Sports- and Rehabilitation Medicine, Ulm University, Ulm, Germany
| | - Thomas Engleder
- Faculty of Mechatronics and Medical Engineering, University of Applied Sciences, Ulm, Germany
| | | |
Collapse
|
15
|
Bouillod A, Soto-Romero G, Grappe F, Bertucci W, Brunet E, Cassirame J. Caveats and Recommendations to Assess the Validity and Reliability of Cycling Power Meters: A Systematic Scoping Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:386. [PMID: 35009945 PMCID: PMC8749704 DOI: 10.3390/s22010386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 05/05/2023]
Abstract
A large number of power meters have become commercially available during the last decades to provide power output (PO) measurement. Some of these power meters were evaluated for validity in the literature. This study aimed to perform a review of the available literature on the validity of cycling power meters. PubMed, SPORTDiscus, and Google Scholar have been explored with PRISMA methodology. A total of 74 studies have been extracted for the reviewing process. Validity is a general quality of the measurement determined by the assessment of different metrological properties: Accuracy, sensitivity, repeatability, reproducibility, and robustness. Accuracy was most often studied from the metrological property (74 studies). Reproducibility was the second most studied (40 studies) property. Finally, repeatability, sensitivity, and robustness were considerably less studied with only 7, 5, and 5 studies, respectively. The SRM power meter is the most used as a gold standard in the studies. Moreover, the number of participants was very different among them, from 0 (when using a calibration rig) to 56 participants. The PO tested was up to 1700 W, whereas the pedalling cadence ranged between 40 and 180 rpm, including submaximal and maximal exercises. Other exercise conditions were tested, such as torque, position, temperature, and vibrations. This review provides some caveats and recommendations when testing the validity of a cycling power meter, including all of the metrological properties (accuracy, sensitivity, repeatability, reproducibility, and robustness) and some exercise conditions (PO range, sprint, pedalling cadence, torque, position, participant, temperature, vibration, and field test).
Collapse
Affiliation(s)
- Anthony Bouillod
- EA4660, C3S Health-Sport Department, Sports University, 25000 Besancon, France; (A.B.); (F.G.)
- French Cycling Federation, 78180 Saint Quentin, France;
- LAAS-CNRS, Université de Toulouse, CNRS, 31000 Toulouse, France;
- Professional Cycling Team FDJ, 77230 Moussy-le-Vieux, France
| | | | - Frederic Grappe
- EA4660, C3S Health-Sport Department, Sports University, 25000 Besancon, France; (A.B.); (F.G.)
- Professional Cycling Team FDJ, 77230 Moussy-le-Vieux, France
| | - William Bertucci
- EA7507, Laboratoire Performance, Santé, Métrologie, Société, 51100 Reims, France;
| | | | - Johan Cassirame
- EA4660, C3S Health-Sport Department, Sports University, 25000 Besancon, France; (A.B.); (F.G.)
- EA7507, Laboratoire Performance, Santé, Métrologie, Société, 51100 Reims, France;
- Mtraining, R&D Division, 25480 Ecole Valentin, France
| |
Collapse
|
16
|
Mackey J, Horner K. What is known about the FTP 20 test related to cycling? A scoping review. J Sports Sci 2021; 39:2735-2745. [PMID: 34304689 DOI: 10.1080/02640414.2021.1955515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
Functional Threshold Power (FTP) in cycling is increasingly used in exercise prescription, particularly with the rise in use of home trainers and virtual exercise platforms. FTP testing does not require biological sampling and is considered a more practical test than others. This scoping review investigated what is known about the 20-minute FTP (FTP20) test. A three-step search strategy was used to identify studies in relevant databases (PubMed, CINAHL, SportDiscus, Google Scholar, Web of Science) and grey literature. Data were extracted and common themes identified which allowed for descriptive analysis and thematic summary. Fifteen studies were included. The primary focus fitted broadly into four themes: reliability, association with other physiological markers, other power-related concepts and performance prediction. The FTP20 test was reported as a reliable test. Studies investigating the relationship of FTP20 with other physiological markers and power-related concepts reported large limits of agreement suggesting parameters cannot be used interchangeably. Some findings indicate that FTP20 may be useful in performance prediction. The majority of studies involved trained male cyclists. Overall, existing literature on the FTP20 test is limited. Further investigation is needed to provide physiological justification for FTP20 and inform use in exercise prescription in a range of populations.
Collapse
Affiliation(s)
- Jon Mackey
- School of Public Health, Physiotherapy and Sport Science and Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Katy Horner
- School of Public Health, Physiotherapy and Sport Science and Institute for Sport and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
The Validity and Reliability of a Tire Pressure-Based Power Meter for Indoor Cycling. SENSORS 2021; 21:s21186117. [PMID: 34577323 PMCID: PMC8470436 DOI: 10.3390/s21186117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/15/2023]
Abstract
The purpose of this study was to evaluate the validity and reliability of a tire pressure sensor (TPS) cycling power meter against a gold standard (SRM) during indoor cycling. Twelve recreationally active participants completed eight trials of 90 s of cycling at different pedaling and gearing combinations on an indoor hybrid roller. Power output (PO) was simultaneously calculated via TPS and SRM. The analysis compared the paired 1 s PO and 1 min average PO per trial between devices. Agreement was assessed by correlation, linear regression, inferential statistics, effect size, and Bland–Altman LoA. Reliability was assessed by ICC and CV comparison. TPS showed near-perfect correlation with SRM in 1 s (rs = 0.97, p < 0.001) and 1-min data (rs = 0.99, p < 0.001). Differences in paired 1 s data were statistically significant (p = 0.04), but of a trivial magnitude (d = 0.05). There was no significant main effect for device (F(1,9) = 0.05, p = 0.83, ηp2
= 0.97) in 1 min data and no statistical differences between devices by trial in post hoc analysis (p < 0.01–0.98; d < 0.01–0.93). Bias and LoA were −0.21 ± 16.77 W for the 1 min data. Mean TPS bias ranged from 3.37% to 7.81% of the measured SRM mean PO per trial. Linear regression SEE was 7.55 W for 1 min TPS prediction of SRM. ICC3,1 across trials was 0.96. No statistical difference (p = 0.09–0.11) in TPS CV (3.6–5.0%) and SRM CV (4.3–4.7%). The TPS is a valid and reliable power meter for estimating average indoor PO for time periods equal to or greater than 1 min and may have acceptable sensitivity to detect changes under less stringent criteria (±5%).
Collapse
|
18
|
Taboga P, Giovanelli N, Spinazzè E, Cuzzolin F, Fedele G, Zanuso S, Lazzer S. Running power: lab based vs. portable devices measurements and its relationship with aerobic power. Eur J Sport Sci 2021; 22:1555-1568. [PMID: 34420488 DOI: 10.1080/17461391.2021.1966104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In recent years, different companies have developed devices that estimate "running power". The main objective of this paper is to evaluate the effect of running speed on aerobic and running powers measured using force plates and by different devices. The second objective is to evaluate the relationship between aerobic power and running powers measured using force plates and by different devices. We enrolled 11 subjects in the study, they performed 5-min running trials at 2.22, 2.78, 3.33, 3.89 and 4.44 m/s respectively on a force-measuring treadmill while we collected metabolic data. We calculated running power as the dot product of ground reaction force and velocity of the centre of mass and compared it to the running power estimates of three devices: Skillrun (Technogym), Stryd Summit Powermeter (Stryd) and Garmin HRM-Run (Garmin). We found statistically significant linear correlations with running powers measured by all devices and running speed. Although absolute running power measurements were different among devices, an increase of 1 m/s in running speed translated to an increase of 0.944 W/kg in running power (p < 0.001). We found statistically significant linear correlations with running powers measured by all devices and aerobic power, in particular: as aerobic power increases by 1 W/kg, running power increases by 0.218 W/kg for all devices (p < 0.001). For level treadmill running, across speeds, running power measured by commercially available devices reflects force-based measurements and it can be a valuable metric, providing quasi real-time feedback during training sessions and competitions. HighlightsWe evaluated the effect of running speed on aerobic and running powers measured using force plates and by different devices.We also compared the relationship between aerobic power and running powers measured using force plates and by different devices.We found statistically significant linear correlations with running powers measured by all devices and aerobic power, in particular: as aerobic power increases by 1 W/kg, running power increases by 0.218 W/kg for all devices.For level treadmill running, across speeds, running power measured by commercially available devices reflects force-based measurements and it can be a valuable metric, providing quasi real-time feedback during training sessions and competitions.
Collapse
Affiliation(s)
- Paolo Taboga
- Department of Kinesiology, California State University, Sacramento, CA, USA
| | - Nicola Giovanelli
- Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy
| | - Enrico Spinazzè
- Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy
| | | | - Giuseppe Fedele
- Technogym Scientific Department, Technogym S.p.A, Cesena, Italy
| | - Silvano Zanuso
- Technogym Scientific Department, Technogym S.p.A, Cesena, Italy
| | - Stefano Lazzer
- Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy
| |
Collapse
|
19
|
Early Specialization and Critical Periods in Acquiring Expertise: A Comparison of Traditional Versus Detection Talent Identification in Team GB Cycling at London 2012. JOURNAL OF MOTOR LEARNING AND DEVELOPMENT 2021. [DOI: 10.1123/jmld.2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to compare two methodologies employed by the British Cycling talent identification program. Specifically, the authors investigated cyclists selected to represent GB cycling team at the London 2012 Olympics using (a) a traditional talent identification methodology (British Cycling Olympic Development Program), where selection is based upon race results and (b) a detection talent identification methodology (U.K. Sport Talent Team Program), which is a multi-Olympic event initiative that identifies athletic potential from physical and skill-based tests. To facilitate this comparison, the authors calculated the speed with which expertise was acquired. A Mann–Whitney U test (U = 16.0, p = .031) indicated that the speed of acquiring expertise was quicker in detection talent identification (Mdn = 5.4) than traditional talent identification (Mdn = 7.2). Practice started later with detection talent identification than with traditional talent identification (14.12 years vs. 11.23 years, respectively), which affected the period to excellence. Thus, detection talent identification resulted in an absence of early specialization, which suggests a critical period for attaining cycling expertise. The authors hypothesize a genetic basis of talent and propose that critical periods are important in detection talent identification programs.
Collapse
|
20
|
Płoszczyca K, Czuba M, Chalimoniuk M, Gajda R, Baranowski M. Red Blood Cell 2,3-Diphosphoglycerate Decreases in Response to a 30 km Time Trial Under Hypoxia in Cyclists. Front Physiol 2021; 12:670977. [PMID: 34211402 PMCID: PMC8239298 DOI: 10.3389/fphys.2021.670977] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022] Open
Abstract
Red blood cell 2,3-diphosphoglycerate (2,3-DPG) is one of the factors of rightward-shifted oxygen dissociation curves and decrease of Hb-O2 affinity. The reduction of Hb-O2 affinity is beneficial to O2 unloading at the tissue level. In the current literature, there are no studies about the changes in 2,3-DPG level following acute exercise in moderate hypoxia in athletes. For this reason, the aim of this study was to analyze the effect of prolonged intense exercise under normoxic and hypoxic conditions on 2,3-DPG level in cyclists. Fourteen male trained cyclists performed a simulation of a 30 km time trial (TT) in normoxia and normobaric hypoxia (FiO2 = 16.5%, ~2,000 m). During the TT, the following variables were measured: power, blood oxygen saturation (SpO2), and heart rate (HR). Before and immediately after exercise, the blood level of 2,3-DPG and acid–base equilibrium were determined. The results showed that the mean SpO2 during TT in hypoxia was 8% lower than in normoxia. The reduction of SpO2 in hypoxia resulted in a decrease of average power by 9.6% (p < 0.001) and an increase in the 30 km TT completion time by 3.8% (p < 0.01) compared to normoxia. The exercise in hypoxia caused a significant (p < 0.001) decrease in 2,3-DPG level by 17.6%. After exercise in normoxia, a downward trend of 2,3-DPG level was also observed, but this effect was not statistically significant. The analysis also revealed that changes of acid–base balance were significantly larger (p < 0.05) after exercise in hypoxia than in normoxia. In conclusion, intense exercise in hypoxic conditions leads to a decrease in 2,3-DPG concentration, primarily due to exercise-induced acidosis.
Collapse
Affiliation(s)
- Kamila Płoszczyca
- Department of Kinesiology, Institute of Sport - National Research Institute, Warsaw, Poland
| | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport - National Research Institute, Warsaw, Poland
| | - Małgorzata Chalimoniuk
- Department of Physical Education and Health in Biala Podlaska, Józef Piłsudski University of Physical Education in Warsaw, Biala Podlaska, Poland
| | - Robert Gajda
- Center for Sports Cardiology, Gajda-Med Medical Center in Pułtusk, Pułtusk, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
21
|
Valenzuela PL, Alejo LB, Montalvo-Pérez A, Gil-Cabrera J, Talavera E, Lucia A, Barranco-Gil D. Relationship Between Critical Power and Different Lactate Threshold Markers in Recreational Cyclists. Front Physiol 2021; 12:676484. [PMID: 34177619 PMCID: PMC8220144 DOI: 10.3389/fphys.2021.676484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose: To analyze the relationship between critical power (CP) and different lactate threshold (LT2) markers in cyclists. Methods: Seventeen male recreational cyclists [33 ± 5 years, peak power output (PO) = 4.5 ± 0.7 W/kg] were included in the study. The PO associated with four different fixed (onset of blood lactate accumulation) and individualized (Dmaxexp, Dmaxpol, and LTΔ1) LT2 markers was determined during a maximal incremental cycling test, and CP was calculated from three trials of 1-, 5-, and 20-min duration. The relationship and agreement between each LT2 marker and CP were then analyzed. Results: Strong correlations (r = 0.81–0.98 for all markers) and trivial-to-small non-significant differences (Hedges’ g = 0.01–0.17, bias = 1–9 W, and p > 0.05) were found between all LT2 markers and CP with the exception of Dmaxexp, which showed the strongest correlation but was slightly higher than the CP (Hedges’ g = 0.43, bias = 20 W, and p < 0.001). Wide limits of agreement (LoA) were, however, found for all LT2 markers compared with CP (from ±22 W for Dmaxexp to ±52 W for Dmaxpol), and unclear to most likely practically meaningful differences (PO differences between markers >1%, albeit <5%) were found between markers attending to magnitude-based inferences. Conclusion: LT2 markers show a strong association and overall trivial-to-small differences with CP. Nevertheless, given the wide LoA and the likelihood of potentially meaningful differences between these endurance-related markers, caution should be employed when using them interchangeably.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Lidia B Alejo
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | | | - Jaime Gil-Cabrera
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Eduardo Talavera
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | | |
Collapse
|
22
|
Ishihara K, Inamura N, Tani A, Shima D, Kuramochi A, Nonaka T, Oneda H, Nakamura Y. Contribution of Solid Food to Achieve Individual Nutritional Requirement during a Continuous 438 km Mountain Ultramarathon in Female Athlete. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105153. [PMID: 34067992 PMCID: PMC8152256 DOI: 10.3390/ijerph18105153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023]
Abstract
Background: Races and competitions over 100 miles have recently increased. Limited information exists about the effect of multiday continuous endurance exercise on blood glucose control and appropriate intake of food and drink in a female athlete. The present study aimed to examine the variation of blood glucose control and its relationship with nutritional intake and running performance in a professional female athlete during a 155.7 h ultramarathon race with little sleep. Methods: We divided the mountain course of 438 km into 33 segments by timing gates and continuously monitored the participant’s glucose profile throughout the ultramarathon. The running speed in each segment was standardized to the scheduled required time-based on three trial runs. Concurrently, the accompanying runners recorded the participant’s food and drink intake. Nutrient, energy, and water intake were then calculated. Results: Throughout the ultramarathon of 155.7 h, including 16.0 h of rest and sleep, diurnal variation had almost disappeared with the overall increase in blood glucose levels (25–30 mg/dL) compared with that during resting (p < 0.0001). Plasma total protein and triglyceride levels were decreased after the ultramarathon. The intake of protein and fat directly or indirectly contributed to maintaining blood glucose levels and running speed as substrates for gluconeogenesis or as alternative sources of energy when the carbohydrate intake was at a lower recommended limit. The higher amounts of nutrient intakes from solid foods correlated with a higher running pace compared with those from liquids and gels to supply carbohydrates, protein, and fat. Conclusion: Carbohydrate, protein, and fat intake from solid foods contributed to maintaining a fast pace with a steady, mild rise in blood glucose levels compared with liquids and gels when female runner completed a multiday continuous ultramarathon with little sleep.
Collapse
Affiliation(s)
- Kengo Ishihara
- Department of Food Sciences and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan; (N.I.); (A.T.); (D.S.); (A.K.); (Y.N.)
- Correspondence: ; Tel.: +81-77-599-5601 (ext. 2011)
| | - Naho Inamura
- Department of Food Sciences and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan; (N.I.); (A.T.); (D.S.); (A.K.); (Y.N.)
| | - Asuka Tani
- Department of Food Sciences and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan; (N.I.); (A.T.); (D.S.); (A.K.); (Y.N.)
| | - Daisuke Shima
- Department of Food Sciences and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan; (N.I.); (A.T.); (D.S.); (A.K.); (Y.N.)
| | - Ai Kuramochi
- Department of Food Sciences and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan; (N.I.); (A.T.); (D.S.); (A.K.); (Y.N.)
| | | | | | - Yasuyuki Nakamura
- Department of Food Sciences and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan; (N.I.); (A.T.); (D.S.); (A.K.); (Y.N.)
- Department of Public Health, Shiga University of Medical Science, Shiga 520-2192, Japan
| |
Collapse
|
23
|
Are the Assioma Favero Power Meter Pedals a Reliable Tool for Monitoring Cycling Power Output? SENSORS 2021; 21:s21082789. [PMID: 33921002 PMCID: PMC8071453 DOI: 10.3390/s21082789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
This study aimed to examine the validity and reliability of the recently developed Assioma Favero pedals under laboratory cycling conditions. In total, 12 well-trained male cyclists and triathletes (VO2max = 65.7 ± 8.7 mL·kg−1·min−1) completed five cycling tests including graded exercises tests (GXT) at different cadences (70–100 revolutions per minute, rpm), workloads (100–650 Watts, W), pedaling positions (seated and standing), vibration stress (20–40 Hz), and an 8-s maximal sprint. Tests were completed using a calibrated direct drive indoor trainer for the standing, seated, and vibration GXTs, and a friction belt cycle ergometer for the high-workload step protocol. Power output (PO) and cadence were collected from three different brand, new pedal units against the gold-standard SRM crankset. The three units of the Assioma Favero exhibited very high within-test reliability and an extremely high agreement between 100 and 250 W, compared to the gold standard (Standard Error of Measurement, SEM from 2.3–6.4 W). Greater PO produced a significant underestimating trend (p < 0.05, Effect size, ES ≥ 0.22), with pedals showing systematically lower PO than SRM (1–3%) but producing low bias for all GXT tests and conditions (1.5–7.4 W). Furthermore, vibrations ≥ 30 Hz significantly increased the differences up to 4% (p < 0.05, ES ≥ 0.24), whereas peak and mean PO differed importantly between devices during the sprints (p < 0.03, ES ≥ 0.39). These results demonstrate that the Assioma Favero power meter pedals provide trustworthy PO readings from 100 to 650 W, in either seated or standing positions, with vibrations between 20 and 40 Hz at cadences of 70, 85, and 100 rpm, or even at a free chosen cadence.
Collapse
|
24
|
Validity of the Favero Assioma Duo Power Pedal System for Measuring Power Output and Cadence. SENSORS 2021; 21:s21072277. [PMID: 33805150 PMCID: PMC8037746 DOI: 10.3390/s21072277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Cycling power meters enable monitoring external loads and performance changes. We aimed to determine the concurrent validity of the novel Favero Assioma Duo (FAD) pedal power meter compared with the crank-based SRM system (considered as gold standard). Thirty-three well-trained male cyclists were assessed at different power output (PO) levels (100-500 W and all-out 15-s sprints), pedaling cadences (75-100 rpm) and cycling positions (seating and standing) to compare the FAD device vs. SRM. No significant differences were found between devices for cadence nor for PO during all-out efforts (p > 0.05), although significant but small differences were found for efforts at lower PO values (p < 0.05 for 100-500 W, mean bias 3-8 W). A strong agreement was observed between both devices for mean cadence (ICC > 0.87) and PO values (ICC > 0.81) recorded in essentially all conditions and for peak cadence (ICC > 0.98) and peak PO (ICC > 0.99) during all-out efforts. The coefficient of variation for PO values was consistently lower than 3%. In conclusion, the FAD pedal-based power meter can be considered an overall valid system to record PO and cadence during cycling, although it might present a small bias compared with power meters placed on other locations such as SRM.
Collapse
|
25
|
Ferguson HA, Harnish C, Chase JG. Using Field Based Data to Model Sprint Track Cycling Performance. SPORTS MEDICINE - OPEN 2021; 7:20. [PMID: 33725208 PMCID: PMC7966696 DOI: 10.1186/s40798-021-00310-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/28/2021] [Indexed: 11/21/2022]
Abstract
Cycling performance models are used to study rider and sport characteristics to better understand performance determinants and optimise competition outcomes. Performance requirements cover the demands of competition a cyclist may encounter, whilst rider attributes are physical, technical and psychological characteristics contributing to performance. Several current models of endurance-cycling enhance understanding of performance in road cycling and track endurance, relying on a supply and demand perspective. However, they have yet to be developed for sprint-cycling, with current athlete preparation, instead relying on measures of peak-power, speed and strength to assess performance and guide training. Peak-power models do not adequately explain the demands of actual competition in events over 15-60 s, let alone, in World-Championship sprint cycling events comprising several rounds to medal finals. Whilst there are no descriptive studies of track-sprint cycling events, we present data from physiological interventions using track cycling and repeated sprint exercise research in multiple sports, to elucidate the demands of performance requiring several maximal sprints over a competition. This review will show physiological and power meter data, illustrating the role of all energy pathways in sprint performance. This understanding highlights the need to focus on the capacity required for a given race and over an event, and therefore the recovery needed for each subsequent race, within and between races, and how optimal pacing can be used to enhance performance. We propose a shift in sprint-cyclist preparation away from training just for peak power, to a more comprehensive model of the actual event demands.
Collapse
Affiliation(s)
- Hamish A. Ferguson
- Centre for Bioengineering, Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140 New Zealand
| | - Chris Harnish
- Department of Exercise Science, College of Health, Mary Baldwin University, Staunton, VA USA
| | - J. Geoffrey Chase
- Centre for Bioengineering, Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140 New Zealand
| |
Collapse
|
26
|
Karsten B, Petrigna L, Klose A, Bianco A, Townsend N, Triska C. Relationship Between the Critical Power Test and a 20-min Functional Threshold Power Test in Cycling. Front Physiol 2021; 11:613151. [PMID: 33551839 PMCID: PMC7862708 DOI: 10.3389/fphys.2020.613151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
To investigate the agreement between critical power (CP) and functional threshold power (FTP), 17 trained cyclists and triathletes (mean ± SD: age 31 ± 9 years, body mass 80 ± 10 kg, maximal aerobic power 350 ± 56 W, peak oxygen consumption 51 ± 10 mL⋅min-1⋅kg-1) performed a maximal incremental ramp test, a single-visit CP test and a 20-min time trial (TT) test in randomized order on three different days. CP was determined using a time-trial (TT) protocol of three durations (12, 7, and 3 min) interspersed by 30 min passive rest. FTP was calculated as 95% of 20-min mean power achieved during the TT. Differences between means were examined using magnitude-based inferences and a paired-samples t-test. Effect sizes are reported as Cohen's d. Agreement between CP and FTP was assessed using the 95% limits of agreement (LoA) method and Pearson correlation coefficient. There was a 91.7% probability that CP (256 ± 50 W) was higher than FTP (249 ± 44 W). Indeed, CP was significantly higher compared to FTP (P = 0.041) which was associated with a trivial effect size (d = 0.04). The mean bias between CP and FTP was 7 ± 13 W and LoA were -19 to 33 W. Even though strong correlations exist between CP and FTP (r = 0.969; P < 0.001), the chance of meaningful differences in terms of performance (1% smallest worthwhile change), were greater than 90%. With relatively large ranges for LoA between variables, these values generally should not be used interchangeably. Caution should consequently be exercised when choosing between FTP and CP for the purposes of performance analysis.
Collapse
Affiliation(s)
- Bettina Karsten
- European University of Applied Sciences (EUFH), Berlin, Germany
| | - Luca Petrigna
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Andreas Klose
- Institut für Sportwissenschaft, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Nathan Townsend
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Christoph Triska
- Institute of Sport Science, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria.,Leistungssport Austria, High Performance Unit, Brunn am Gebirge, Austria
| |
Collapse
|
27
|
Comment on: "Effects of Carbohydrate Mouth Rinse on Cycling Time Trial Performance: A Systematic Review and Meta-analysis" and Subsequent Comment/Author Reply from Li et al. Sports Med 2020; 50:629-632. [PMID: 31696450 DOI: 10.1007/s40279-019-01216-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Effects of Dietary Nitrates on Time Trial Performance in Athletes with Different Training Status: Systematic Review. Nutrients 2020; 12:nu12092734. [PMID: 32911636 PMCID: PMC7551808 DOI: 10.3390/nu12092734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Much research has been done in sports nutrition in recent years as the demand for performance-enhancing substances increases. Higher intake of nitrates from the diet can increase the bioavailability of nitric oxide (NO) via the nitrate-nitrite-NO pathway. Nevertheless, the increased availability of NO does not always lead to improved performance in some individuals. This review aims to evaluate the relationship between the athlete's training status and the change in time trial performance after increased dietary nitrate intake. Articles indexed by Scopus and PubMed published from 2015 to 2019 were reviewed. Thirteen articles met the eligibility criteria: clinical trial studies on healthy participants with different training status (according to VO2max), conducting time trial tests after dietary nitrate supplementation. The PRISMA guidelines were followed to process the review. We found a statistically significant relationship between VO2max and ergogenicity in time trial performance using one-way ANOVA (p = 0.001) in less-trained athletes (VO2 < 55 mL/kg/min). A strong positive correlation was observed in experimental situations using a chronic supplementation protocol but not in acute protocol situations. In the context of our results and recent histological observations of muscle fibres, there might be a fibre-type specific role in nitric oxide production and, therefore, supplement of ergogenicity.
Collapse
|
29
|
Imbach F, Candau R, Chailan R, Perrey S. Validity of the Stryd Power Meter in Measuring Running Parameters at Submaximal Speeds. Sports (Basel) 2020; 8:E103. [PMID: 32698464 PMCID: PMC7404478 DOI: 10.3390/sports8070103] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022] Open
Abstract
This study assessed the Stryd running power meter validity at sub-maximal speeds (8 to 19 km/h). Six recreational runners performed an incremental indoor running test. Power output (PO), ground contact time (GCT) and leg spring stiffness (LSS) were compared to reference measures recorded by portable metabolic analyser, force platforms and motion capture system. A Bayesian framework was conducted for systems validity and comparisons. We observed strong and positive linear relationships between Stryd PO and oxygen consumption ( R 2 = 0.82 , B F 10 > 100 ), and between Stryd PO and external mechanical power ( R 2 = 0.88 , B F 10 > 100 ). Stryd power meter underestimated PO ( B F 10 > 100 ) whereas GCT and LSS values did not show any significant differences with the reference measures ( B F 10 = 0.008 , B F 10 = 0.007 , respectively). We conclude that the Stryd power meter provides valid measures of GCT and LSS but underestimates the absolute values of PO.
Collapse
Affiliation(s)
- Frank Imbach
- Seenovate, 34000 Montpellier, France;
- INRAe–DMeM, Univ Montpellier, 34000 Montpellier, France;
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, 34090 Montpellier, France;
| | - Robin Candau
- INRAe–DMeM, Univ Montpellier, 34000 Montpellier, France;
| | | | - Stephane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, 34090 Montpellier, France;
| |
Collapse
|
30
|
Bini R, Hume P. Reproducibility of lower limb motion and forces during stationary submaximal pedalling using wearable motion tracking sensors. Sports Biomech 2020:1-22. [PMID: 32623961 DOI: 10.1080/14763141.2020.1776760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In order to address gaps in the literature, this study assessed the reproducibility (i.e., difference between and within sessions) of joint and muscle forces using wearable sensors during stationary cycling. Seventeen male cyclists performed two sessions on a cycle ergometer cycling at a combination of three power outputs (1.5, 2.5 and 3.5 W/kg) and three pedalling cadences (60, 80 and 100 rpm) in two sessions (2-7 days apart). The first trial from each session was repeated at the end of the session for assessment of within-session reproducibility. Three-dimensional (3D) full-body motion and 3D bilateral pedal forces were collected using an inertial motion tracking system and a pair of instrumented pedals, respectively. Joint angles, muscle forces and knee joint forces were computed using OpenSim. Poor to excellent agreement (ICCs = 0.31-0.99) was observed and differences were trivial to small and non-significant between trials within-session. Poor to excellent agreement (ICCs = 0.05-0.97) was observed and differences were trivial to large between sessions. Variability can be attributed to changes in muscle recruitment strategies (within and between-sessions) and to repositioning of sensors (between-sessions).
Collapse
Affiliation(s)
- Rodrigo Bini
- La Trobe Rural Health School, La Trobe University, Bendigo, Australia.,Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| | - Patria Hume
- Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| |
Collapse
|
31
|
Application of Continuous Glucose Monitoring for Assessment of Individual Carbohydrate Requirement during Ultramarathon Race. Nutrients 2020; 12:nu12041121. [PMID: 32316458 PMCID: PMC7230511 DOI: 10.3390/nu12041121] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background: The current study intended to evaluate the feasibility of the application of continuous glucose monitoring to guarantee optimal intake of carbohydrate to maintain blood glucose levels during a 160-km ultramarathon race. Methods: Seven ultramarathon runners (four male and three female) took part in the study. The glucose profile was monitored continuously throughout the race, which was divided into 11 segments by timing gates. Running speed in each segment was standardized to the average of the top five finishers for each gender. Food and drink intake during the race were recorded and carbohydrate and energy intake were calculated. Results: Observed glucose levels ranged between 61.9–252.0 mg/dL. Average glucose concentration differed from the start to the end of the race (104 ± 15.0 to 164 ± 30.5 SD mg/dL). The total amount of carbohydrate intake during the race ranged from 0.27 to 1.14 g/kg/h. Glucose concentration positively correlated with running speeds in segments (P < 0.005). Energy and carbohydrate intake positively correlated with overall running speed (P < 0.01). Conclusion: The present study demonstrates that continuous glucose monitoring could be practical to guarantee optimal carbohydrate intake for each ultramarathon runner.
Collapse
|
32
|
Schneeweiss P, Schellhorn P, Haigis D, Niess A, Martus P, Krauss I. Cycling Performance in Short-term Efforts: Laboratory and Field-Based Data in XCO Athletes. Sports Med Int Open 2020; 4:E19-E26. [PMID: 32232124 PMCID: PMC7101247 DOI: 10.1055/a-1101-5750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 11/21/2022] Open
Abstract
Mountain bike cross-country Olympic has an intermittent performance profile, underlining the importance of short-term but high cycling power output. Previous findings indicate that power output during sprint tests differs between laboratory and field-based conditions and that cycling cadence rises with increasing workload. The aim was therefore to examine power output and cadence in short-term efforts under laboratory and field conditions. Twenty-three competitive athletes (17.9±3.7 years) performed a laboratory power profile test and a simulated race within one week. Power output and cadence during the power profile test were compared to corresponding short-term efforts during the race over durations of 10-300s (TT 10-300 ). Differences were TT 10 +8%, TT 30 +7%, TT 60 -15% and TT 300 -12% for power output and+10%,+8%,+19%,+21% for cadence respectively. Compared to the race, we found higher power output during the power profile test for the shorter efforts but lower for TT 60 and TT 300 . Confirming previous results, cadence was higher during the power profile test compared to the respective intervals of the race and increased with increasing workload or shorter time trial duration. Future research should take into account that compared to the field, a higher cadence is used in laboratory settings to produce similar power output.
Collapse
Affiliation(s)
- Patrick Schneeweiss
- Medical Clinic, Department of Sports Medicine, University of Tübingen, Tübingen, Germany
| | - Philipp Schellhorn
- Medical Clinic, Department of Sports Medicine, University of Tübingen, Tübingen, Germany
| | - Daniel Haigis
- Medical Clinic, Department of Sports Medicine, University of Tübingen, Tübingen, Germany
| | - Andreas Niess
- Medical Clinic, Department of Sports Medicine, University of Tübingen, Tübingen, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Inga Krauss
- Medical Clinic, Department of Sports Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
The Reliability and Validity of the PowerTap P1 Power Pedals Before and After 100 Hours of Use. Int J Sports Physiol Perform 2019; 14:855–858. [PMID: 30569791 DOI: 10.1123/ijspp.2018-0563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To (1) evaluate agreement between the PowerTap P1 (P1) pedals and the Lode Excalibur Sport cycle ergometer, (2) investigate the reliability of the P1 pedals between repeated testing sessions, and (3) compare the reliability and validity of the P1 pedals before (P10) and after (P1100) ∼100 h of use. METHODS Ten participants completed four 5-min submaximal cycling bouts (100, 150, 200, and 250 W), a 2-min time trial, and two 10-s all-out sprints on 2 occasions. This protocol was repeated after 15 mo and ∼100 h of use. RESULTS Significant differences were seen between the P10 pedals and the Lode Excalibur Sport at 100 W (P = .006), 150 W (P = .006), 200 W (P = .001), and 250 W (P = .006) and during the all-out sprints (P = .020). After ∼100 h of use, the P1100 pedals did not significantly differ from the Lode Excalibur Sport at 100 W (P = .799), 150 W (P = .183), 200 W (P = .289), and 250 W (P = .183), during the 2-min time trial (P = .583), or during the all-out sprints (P = .412). The coefficients of variation for the P10 and P1100 ranged from 0.6% to 1.3% and 0.5% to 2.0%, respectively, during the submaximal cycling bouts. CONCLUSION The P1 pedals provide valid data after ∼100 h of laboratory use. Furthermore, the pedals provide reliable data during submaximal cycling, even after prolonged use.
Collapse
|
34
|
Costa VP, Tramontin AF, Visentainer LH, Borszcz FK. Test-retest reliability and validity of the Stages mountain bike power meter. ISOKINET EXERC SCI 2019. [DOI: 10.3233/ies-181198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Morrissey MC, Kisiolek JN, Ragland TJ, Willingham BD, Hunt RL, Hickner RC, Ormsbee MJ. The effect of cold ambient temperature and preceding active warm-up on lactate kinetics in female cyclists and triathletes. Appl Physiol Nutr Metab 2019; 44:1043-1051. [PMID: 30785765 DOI: 10.1139/apnm-2018-0698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of this study was to evaluate the effect of cold ambient temperature on lactate kinetics with and without a preceding warm-up in female cyclists/triathletes. Seven female cyclists/triathletes participated in this study. The randomized, crossover study included 3 experimental visits that comprised the following conditions: (i) thermoneutral temperature (20 °C; NEU); (ii) cold temperature (0 °C) with no active warm-up (CNWU); and (iii) cold temperature (0 °C) with 25-min active warm-up (CWU). During each condition, participants performed a lactate threshold (LT) test followed by a time to exhaustion trial at 120% of the participant's peak power output (PPO) as determined during prior peak oxygen consumption testing. Power output at LT with CNWU was 10.2% ± 2.6% greater than with NEU, and the effect was considered very likely small (effect size (ES) = 0.59, 95%-99% likelihood). Power output at LT with CNWU was 4.2% ± 5.4% greater than with CWU; however, the effect was likely trivial (ES = 0.25, 75%-95% likelihood). At LT, there were no significant differences between interventions groups in oxygen consumption, blood lactate concentration, heart rate, or rating of perceived exertion. Time to exhaustion at 120% at PPO was 11% longer with CNWU than with CWU (ES = 0.62, respectively), and this effect was likely small. These findings suggest that power output at LT was higher in CNWU compared with NEU. Additionally, time to exhaustion at 120% of PPO was higher in CNWU compared with CWU and no different than NEU; these differences likely result in a small improvement in performance with CNWU versus CWU and NEU.
Collapse
Affiliation(s)
- Margaret C Morrissey
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT 06269, USA.,Institute of Sports Science and Medicine, Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jacob N Kisiolek
- Institute of Sports Science and Medicine, Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Tristan J Ragland
- Institute of Sports Science and Medicine, Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Brandon D Willingham
- Institute of Sports Science and Medicine, Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Rachael L Hunt
- Institute of Sports Science and Medicine, Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Robert C Hickner
- Institute of Sports Science and Medicine, Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.,Discipline of Biokinetics, Exercise and Leisure Sciences, University of KawaZulu-Natal, Durban 4014, South Africa
| | - Michael J Ormsbee
- Institute of Sports Science and Medicine, Department of Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.,Discipline of Biokinetics, Exercise and Leisure Sciences, University of KawaZulu-Natal, Durban 4014, South Africa
| |
Collapse
|
36
|
Etxebarria N, Ingham SA, Ferguson RA, Bentley DJ, Pyne DB. Sprinting After Having Sprinted: Prior High-Intensity Stochastic Cycling Impairs the Winning Strike for Gold. Front Physiol 2019; 10:100. [PMID: 30837886 PMCID: PMC6383108 DOI: 10.3389/fphys.2019.00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/28/2019] [Indexed: 11/23/2022] Open
Abstract
Bunch riding in closed circuit cycling courses and some track cycling events are often typified by highly variable power output and a maximal sprint to the finish. How criterium style race demands affect final sprint performance however, is unclear. We studied the effects of 1 h variable power cycling on a subsequent maximal 30 s sprint in the laboratory. Nine well-trained male cyclists/triathletes (O2peak 4.9 ± 0.4 L⋅min-1; mean ± SD) performed two 1 h cycling trials in a randomized order with either a constant (CON) or variable (VAR) power output matched for mean power output. The VAR protocol comprised intervals of varying intensities (40–135% of maximal aerobic power) and durations (10 to 90 s). A 30 s maximal sprint was performed before and immediately after each 1 h cycling trial. When compared with CON, there was a greater reduction in peak (-5.1 ± 6.1%; mean ± 90% confidence limits) and mean (-5.9 ± 5.2%) power output during the 30 s sprint after the 1 h VAR cycle. Variable power cycling, commonly encountered during criterium and triathlon races can impair an optimal final sprint, potentially compromising race performance. Athletes, coaches, and staff should evaluate training (to improve repeat sprint-ability) and race-day strategies (minimize power variability) to optimize the final sprint.
Collapse
Affiliation(s)
- Naroa Etxebarria
- Research Institute of Sport and Exercise, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | | | - Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - David J Bentley
- College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - David B Pyne
- Research Institute of Sport and Exercise, Faculty of Health, University of Canberra, Canberra, ACT, Australia.,Australian Institute of Sport, Canberra, ACT, Australia
| |
Collapse
|
37
|
Enhancement of Exercise Performance by 48 Hours, and 15-Day Supplementation with Mangiferin and Luteolin in Men. Nutrients 2019; 11:nu11020344. [PMID: 30736383 PMCID: PMC6412949 DOI: 10.3390/nu11020344] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
The natural polyphenols mangiferin and luteolin have free radical-scavenging properties, induce the antioxidant gene program and down-regulate the expression of superoxide-producing enzymes. However, the effects of these two polyphenols on exercise capacity remains mostly unknown. To determine whether a combination of luteolin (peanut husk extract containing 95% luteolin, PHE) and mangiferin (mango leave extract (MLE), Zynamite®) at low (PHE: 50 mg/day; and 140 mg/day of MLE containing 100 mg of mangiferin; L) and high doses (PHE: 100 mg/day; MLE: 420 mg/day; H) may enhance exercise performance, twelve physically active men performed incremental exercise to exhaustion, followed by sprint and endurance exercise after 48 h (acute effects) and 15 days of supplementation (prolonged effects) with polyphenols or placebo, following a double-blind crossover design. During sprint exercise, mangiferin + luteolin supplementation enhanced exercise performance, facilitated muscle oxygen extraction, and improved brain oxygenation, without increasing the VO₂. Compared to placebo, mangiferin + luteolin increased muscle O₂ extraction during post-exercise ischemia, and improved sprint performance after ischemia-reperfusion likely by increasing glycolytic energy production, as reflected by higher blood lactate concentrations after the sprints. Similar responses were elicited by the two doses tested. In conclusion, acute and prolonged supplementation with mangiferin combined with luteolin enhances performance, muscle O₂ extraction, and brain oxygenation during sprint exercise, at high and low doses.
Collapse
|
38
|
MacInnis MJ, Thomas ACQ, Phillips SM. The Reliability of 4-Minute and 20-Minute Time Trials and Their Relationships to Functional Threshold Power in Trained Cyclists. Int J Sports Physiol Perform 2019; 14:38-45. [PMID: 29809063 DOI: 10.1123/ijspp.2018-0100] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 10/27/2023]
Abstract
PURPOSE The mean power output (MPO) from a 60-min time trial (TT)-also known as functional threshold power, or FTP-is a standard measure of cycling performance; however, shorter performance tests are desirable to reduce the burden of performance testing. The authors sought to determine the reliability of 4- and 20-min TTs and the extent to which these short TTs were associated with 60-min MPO. METHODS Trained male cyclists (n = 8; age = 25 [5] y; VO2max = 71 [5] mL/kg/min) performed two 4-min TTs, two 20-min TTs, and one 60-min TT. Critical power (CP) was estimated from 4- and 20-min TTs. The typical error of the mean (TEM) and intraclass correlation coefficient (ICC) were calculated to assess reliability, and R2 values were calculated to assess relationships with 60-min MPO. RESULTS Pairs of 4-min TTs (mean: 417 [SD: 45] W vs 412 [49] W, P = .25; TEM = 8.1 W; ICC = .98), 20-min TTs (342 [36] W vs 344 [33] W, P = .41; TEM = 4.6 W; ICC = .99), and CP estimates (323 [35] W vs 328 [32] W, P = .25; TEM = 6.5; ICC = .98) were reliable. The 4-min MPO (R2 = .95), 20-min MPO (R2 = .92), estimated CP (R2 = .82), and combination of the 4- and 20-min MPO (adjusted R2 = .98) were strongly associated with the 60-min MPO (309 [26] W). CONCLUSION The 4- and 20-min TTs appear useful for assessing performance in trained, if not elite, cyclists.
Collapse
|
39
|
Mitchell EA, Martin NRW, Turner MC, Taylor CW, Ferguson RA. The combined effect of sprint interval training and postexercise blood flow restriction on critical power, capillary growth, and mitochondrial proteins in trained cyclists. J Appl Physiol (1985) 2019; 126:51-59. [DOI: 10.1152/japplphysiol.01082.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sprint interval training (SIT) combined with postexercise blood flow restriction (BFR) is a novel method to increase maximal oxygen uptake (V̇o2max) in trained individuals and also provides a potent acute stimulus for angiogenesis and mitochondrial biogenesis. The efficacy to enhance endurance performance, however, has yet to be demonstrated. Trained male cyclists ( n = 21) (V̇o2max: 62.8 ± 3.7 ml·min−1·kg−1) undertook 4 wk of SIT (repeated 30-s maximal sprints) either alone (CON; n = 10) or with postexercise BFR ( n = 11). Before and after training V̇o2max, critical power (CP) and curvature constant ( Wʹ) were determined and muscle biopsies obtained for determination of skeletal muscle capillarity and mitochondrial protein content. CP increased ( P = 0.001) by a similar extent following CON (287 ± 39 W to 297 ± 43 W) and BFR (296 ± 40 W to 306 ± 36 W). V̇o2max increased following BFR by 5.9% ( P = 0.02) but was unchanged after CON ( P = 0.56). All markers of skeletal muscle capillarity and mitochondrial protein content were unchanged following either training intervention. In conclusion, 4 wk of SIT increased CP; however, this was not enhanced further with BFR. SIT was not sufficient to elicit changes in skeletal muscle capillarity and mitochondrial protein content with or without BFR. However, we further demonstrate the potency of combining BFR with SIT to enhance V̇o2max in trained individuals. NEW & NOTEWORTHY This investigation has demonstrated that 4 wk of sprint interval training (SIT) increased critical power in trained individuals; however, postexercise blood flow restriction (BFR) did not enhance this further. SIT, with or without BFR, did not induce any changes in skeletal muscle capillarity or mitochondrial protein content in our trained population. We do, however, confirm previous findings that SIT combined with BFR is a potent stimulus to enhance maximal oxygen uptake.
Collapse
Affiliation(s)
- Emma A. Mitchell
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Neil R. W. Martin
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mark C. Turner
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Conor W. Taylor
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Richard A. Ferguson
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
40
|
Pigatto AV, Santos RRD, Balbinot A. An Automatic Cycling Performance Classifier System Based on the Crank Arm Force Measurement Data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:4237-4240. [PMID: 30441289 DOI: 10.1109/embc.2018.8513403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper describes the development of an automatic cycling performance measurement system with a Fuzzy Logic Controller (FLC), using Mamdani Inference method, to classify the performance of the cyclist. From data of the average power, its standard deviation and the effective force bilateral asymmetry index, a score that represents the cyclist performance is determined. Data are acquired using an experimental crank arm load cell force platform developed with built-in strain gages and conditioning circuit that measure the force that is applied to the bicycle pedal during cycling with a linearity error under 0.6%. A randomized block experiment design was performed with 15 cyclists of 29±5 years with a body mass of 73±9kg and a height of 1.78±0.07m. The average power reached by the subjects was 137.63±59.6W; the mean bilateral asymmetry index, considering all trials, was 67.01±6.23%. The volunteers cycling performance scores were then determined using the developed FLC; the mean score was 25.4% ± 16.9%. ANOVA showed that the subject causes significant variation on the performance score.
Collapse
|
41
|
Abstract
PURPOSE To validate the new drive indoor trainer Hammer designed by Cycleops®. METHODS A total of 11 cyclists performed 44 randomized and counterbalanced graded exercise tests (100-500 W) at 70-, 85-, and 100-rpm cadences in seated and standing positions on 3 different Hammer units, while a scientific SRM system continuously recorded cadence and power output data. RESULTS No significant differences were detected between the 3 Hammer devices and the SRM for any workload, cadence, or pedaling condition (P value between 1.00 and .350), except for some minor differences (P = .03 and .04) found in the Hammer 1 at low workloads and for Hammer 2 and 3 at high workloads, all in seated position. Strong intraclass correlation coefficients were found between the power output values recorded by the Hammers and the SRM (≥.996; P = .001), independently from the cadence condition and seated position. Bland-Altman analysis revealed low bias (-5.5 to 3.8) and low SD of bias (2.5-5.3) for all testing conditions, except marginal values found for the Hammer 1 at high cadences and seated position (9.6 [6.6]). High absolute reliability values were detected for the 3 Hammers (150-500 W; coefficient of variation <1.2%; SEM <2.1). CONCLUSIONS This new Cycleops trainer is a valid and reliable device to drive and measure power output in cyclists, providing an alternative to larger and more expensive laboratory ergometers and allowing cyclists to use their own bicycles.
Collapse
|
42
|
Kordi M, Fullerton C, Passfield L, Parker Simpson L. Influence of upright versus time trial cycling position on determination of critical power and W' in trained cyclists. Eur J Sport Sci 2018; 19:192-198. [PMID: 30009673 DOI: 10.1080/17461391.2018.1495768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Body position is known to alter power production and affect cycling performance. The aim of this study was to compare mechanical power output in two riding positions, and to calculate the effects on critical power (CP) and W' estimates. Seven trained cyclists completed three peak power output efforts and three fixed-duration trial (3-, 5- and 12-min) riding with their hands on the brake lever hoods (BLH), or in a time trial position (TTP). A repeated-measures analysis of variance showed that mean power output during the 5-min trial was significantly different between BLH and TTP positions, resulting in a significantly lower estimate of CP, but not W', for the TTP trial. In addition, TTP decreased the performance during each trial and increased the percentage difference between BLH and TTP with greater trial duration. There were no differences in pedal cadence or heart rate during the 3-min trial; however, TTP results for the 12-min trial showed a significant fall in pedal cadence and a significant rise in heart rate. The findings suggest that cycling position affects power output and influences consequent CP values. Therefore, cyclists and coaches should consider the cycling position used when calculating CP.
Collapse
Affiliation(s)
- Mehdi Kordi
- a English Institute of Sport , Manchester Institute of Health and Performance , Manchester , UK.,b Department of Sport, Exercise and Rehabilitation , Northumbria University , Newcastle upon Tyne , UK.,e British Cycling , National Cycling Centre , Manchester , UK
| | - Chris Fullerton
- c School of Sport and Exercise Science , University of Kent , Kent , UK
| | - Louis Passfield
- c School of Sport and Exercise Science , University of Kent , Kent , UK
| | - Len Parker Simpson
- c School of Sport and Exercise Science , University of Kent , Kent , UK.,d Scottish Institute of Sport , Stirling , UK
| |
Collapse
|
43
|
Puchowicz MJ, Mizelman E, Yogev A, Koehle MS, Townsend NE, Clarke DC. The Critical Power Model as a Potential Tool for Anti-doping. Front Physiol 2018; 9:643. [PMID: 29928234 PMCID: PMC5997808 DOI: 10.3389/fphys.2018.00643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/11/2018] [Indexed: 11/13/2022] Open
Abstract
Existing doping detection strategies rely on direct and indirect biochemical measurement methods focused on detecting banned substances, their metabolites, or biomarkers related to their use. However, the goal of doping is to improve performance, and yet evidence from performance data is not considered by these strategies. The emergence of portable sensors for measuring exercise intensities and of player tracking technologies may enable the widespread collection of performance data. How these data should be used for doping detection is an open question. Herein, we review the basis by which performance models could be used for doping detection, followed by critically reviewing the potential of the critical power (CP) model as a prototypical performance model that could be used in this regard. Performance models are mathematical representations of performance data specific to the athlete. Some models feature parameters with physiological interpretations, changes to which may provide clues regarding the specific doping method. The CP model is a simple model of the power-duration curve and features two physiologically interpretable parameters, CP and W′. We argue that the CP model could be useful for doping detection mainly based on the predictable sensitivities of its parameters to ergogenic aids and other performance-enhancing interventions. However, our argument is counterbalanced by the existence of important limitations and unresolved questions that need to be addressed before the model is used for doping detection. We conclude by providing a simple worked example showing how it could be used and propose recommendations for its implementation.
Collapse
Affiliation(s)
- Michael J Puchowicz
- Department of Health Services, Arizona State University, Tempe, AZ, United States
| | - Eliran Mizelman
- Department of Biomedical Physiology and Kinesiology and Sports Analytics Group, Simon Fraser University, Burnaby, BC, Canada
| | - Assaf Yogev
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Michael S Koehle
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada.,Division of Sport and Exercise Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Nathan E Townsend
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - David C Clarke
- Department of Biomedical Physiology and Kinesiology and Sports Analytics Group, Simon Fraser University, Burnaby, BC, Canada.,Canadian Sport Institute Pacific, Victoria, BC, Canada
| |
Collapse
|
44
|
Concurrent validation of an inertial measurement system to quantify kicking biomechanics in four football codes. J Biomech 2018; 73:24-32. [PMID: 29602475 DOI: 10.1016/j.jbiomech.2018.03.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/12/2018] [Accepted: 03/09/2018] [Indexed: 11/21/2022]
Abstract
Wearable inertial measurement systems (IMS) allow for three-dimensional analysis of human movements in a sport-specific setting. This study examined the concurrent validity of a IMS (Xsens MVN system) for measuring lower extremity and pelvis kinematics in comparison to a Vicon motion analysis system (MAS) during kicking. Thirty footballers from Australian football (n = 10), soccer (n = 10), rugby league and rugby union (n = 10) clubs completed 20 kicks across four conditions. Concurrent validity was assessed using a linear mixed-modelling approach, which allowed the partition of between and within-subject variance from the device measurement error. Results were expressed in raw and standardised units for assessments of differences in means and measurement error, and interpreted via non-clinical magnitude-based inferences. Trivial to small differences were found in linear velocities (foot and pelvis), angular velocities (knee, shank and thigh), sagittal joint (knee and hip) and segment angle (shank and pelvis) means (mean difference: 0.2-5.8%) between the IMS and MAS in Australian football, soccer and the rugby codes. Trivial to small measurement errors (from 0.1 to 5.8%) were found between the IMS and MAS in all kinematic parameters. The IMS demonstrated acceptable levels of concurrent validity compared to a MAS when measuring kicking biomechanics across the four football codes. Wearable IMS offers various benefits over MAS, such as, out-of-laboratory testing, larger measurement range and quick data output, to help improve the ecological validity of biomechanical testing and the timing of feedback. The results advocate the use of IMS to quantify biomechanics of high-velocity movements in sport-specific settings.
Collapse
|
45
|
Reliability of Power Settings of the Wahoo KICKR Power Trainer After 60 Hours of Use. Int J Sports Physiol Perform 2018; 13:119-121. [PMID: 28459298 DOI: 10.1123/ijspp.2016-0732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To assess the reliability of power-output measurements of a Wahoo KICKR Power Trainer (KICKR) on 2 separate occasions separated by 14 mo of regular use (∼1 h/wk). METHODS Using the KICKR to set power outputs, powers of 100-600 W in increments of 50 W were assessed at cadences of 80, 90, and 100 rpm that were controlled and validated by a dynamic calibration rig. RESULTS A small ratio bias of 1.002 (95% limits of agreement [LoA] 0.992-1.011) was observed over 100-600 W at 80-100 rpm between trials 1 and 2. Similar ratio biases with acceptable limits of agreement were observed at 80 rpm (1.003 [95% LoA 0.987-1.018]), 90 rpm (1.000 [0.996-1.005]), and 100 rpm (1.002 [0.997-1.007]). The intraclass correlation coefficient with 95% confidence interval (CI) for mean power between trials was 1.00 (95% CI 1.00-1.00) with a typical error (TE) of 3.1 W and 1.6% observed between trials 1 and 2. CONCLUSION When assessed at 2 separate time points 14 mo apart, the KICKR has acceptable reliability for combined power outputs of 100-600 W at 80-100 rpm, reporting overall small ratio biases with acceptable LoA and low TE. Coaches and sport scientists should feel confident in the power output measured by the KICKR over an extended period of time when performing laboratory training and performance assessments.
Collapse
|
46
|
Abstract
PURPOSE To describe the demand of recent World Cup (WC) races comparing top-10 (T10) and non-top-10 (N-T10) performances using power data. METHODS Race data were collected in 1-d World Cup races during the 2012-2015 road cycling seasons. Seven female cyclists completed 49 WC races, finishing 25 times in T10 and 24 times in N-T10. Peak power (1 s) and maximal mean power (MMP) for durations of 5, 10, 20, and 30 s and 1, 2, 5, 10, 20, 30, and 60 min expressed as power to weight ratio were analyzed in T10 and N-T10. The percentage of total race time spent at different power bands was compared between T10 and N-T10 using 0.75-W·kg-1 power bands, ranging from <0.75 to >7.50 W·kg-1. The number of efforts in which the power output remained above 7.50 W·kg-1 for at least 10 s was recorded. RESULTS MMPs were significantly higher in T10 than in N-T10, with a large effect size for durations between 10 s and 5 min. N-T10 spent more time in the 3.01- to 3.75-W·kg-1 power band when compared to T10 (P = .011); conversely, T10 spent more time in the 6.75- to 7.50- and >7.50-W·kg-1 power bands (P = .009 and .005, respectively) than N-T10. A significantly higher number of short and high-intensity efforts (≥10 s, >7.5 W·kg-1) was ridden by T10 than N-T10 (P = .002), specifically, 46 ± 20 and 30 ± 15 efforts for T10 and N-T10, respectively. CONCLUSIONS The ability to ride at high intensity was determinant for successful road-cycling performances in WC races.
Collapse
|
47
|
Coakley SL, Passfield L. Cycling performance is superior for time-to-exhaustion versus time-trial in endurance laboratory tests. J Sports Sci 2017; 36:1228-1234. [PMID: 28892462 DOI: 10.1080/02640414.2017.1368691] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Time-to-exhaustion (TTE) trials are used in a laboratory setting to measure endurance performance. However, there is some concern with their ecological validity compared with time-trials (TT). Consequently, we aimed to compare cycling performance in TTE and TT where the duration of the trials was matched. Seventeen trained male cyclists completed three TTE trials at 80, 100 and 105% of maximal aerobic power (MAP). On a subsequent visit they performed three TT over the same duration as the TTE. Participants were blinded to elapsed time, power output, cadence and heart rate (HR). Average TTE was 865 ± 345 s, 165 ± 98 s and 117 ± 45 s for the 80, 100 and 105% trials respectively. Average power output was higher for TTE (294 ± 44 W) compared to TT (282 ± 43 W) at 80% MAP (P < 0.01), but not at 100 and 105% MAP (P > 0.05). There was no difference in cadence, HR, or RPE for any trial (P > 0.05). Critical power (CP) was also higher when derived from TTE compared to TT (P < 0.01). It is concluded that TTE results in a higher average power output compared to TT at 80% MAP. When determining CP, TTE rather than TT protocols appear superior.
Collapse
Affiliation(s)
- Sarah L Coakley
- a Endurance Research Group, School of Sport and Exercise Sciences , University of Kent , Kent , UK
| | - Louis Passfield
- a Endurance Research Group, School of Sport and Exercise Sciences , University of Kent , Kent , UK
| |
Collapse
|
48
|
Bellinger PM, Minahan CL. Additive Benefits of β-Alanine Supplementation and Sprint-Interval Training. Med Sci Sports Exerc 2017; 48:2417-2425. [PMID: 27434084 DOI: 10.1249/mss.0000000000001050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The present study investigated the effects of β-alanine supplementation only, and in combination with sprint-interval training (SIT), on training intensity, and energy provision and performance during exhaustive supramaximal-intensity cycling and a 4- and 10-km time trial (TT). METHODS Fourteen trained cyclists (V˙O2max = 4.5 ± 0.6 L·min) participated in this placebo-controlled, double-blind study. Subjects performed a supramaximal cycling test to exhaustion (equivalent to 120% V˙O2max) and a 4- and 10-km TT and 4 × 1-km sprints at three time points: before and after 28 d of supplementation loading (6.4 g·d) with β-alanine (n = 7) or a placebo (n = 7), and after a 5-wk supervised, SIT program performed twice weekly (repeated 1-km cycling sprints) while maintaining supplementation with β-alanine (1.2 g·d) or a placebo. RESULTS After the loading period, sprints 3 and 4 of the 4 × 1-km sprint intervals were improved with β-alanine supplementation (4.5% ± 3.4% and 7.0% ± 4.0%; P < 0.05, respectively). After 5 wk of SIT, training intensity increased in both groups but the change was greater with β-alanine supplementation (9.9% ± 5.0% vs 4.9% ± 5.0%; P = 0.04). β-alanine supplementation also improved supramaximal cycling time to exhaustion to a greater extent than placebo (14.9% ± 9.2% vs 9.0% ± 6.9%; P = 0.04), whereas 4- and 10-km TT performance improved to a similar magnitude in both groups. After SIT, β-alanine also increased anaerobic capacity (5.5% ± 4.2%; P = 0.04), whereas V˙O2peak increased similarly in each group (3.1% ± 2.9% vs 3.5% ± 2.9%; P < 0.05). CONCLUSIONS These findings indicate that β-alanine supplementation enhances training intensity during SIT and provides additional benefits to exhaustive supramaximal cycling compared with SIT alone.
Collapse
Affiliation(s)
- Phillip M Bellinger
- 1Griffith University Sport Science, School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, AUSTRALIA; and 2Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, AUSTRALIA
| | | |
Collapse
|
49
|
Clark NW, Wagner DR, Heath EM. Influence of Velotron chainring size on Wingate anaerobic test. J Sci Med Sport 2017; 21:202-206. [PMID: 28807684 DOI: 10.1016/j.jsams.2017.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/25/2017] [Accepted: 07/26/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVES This study compared an 85-tooth versus the standard 62-tooth chainring for power outputs during a Wingate test using a Velotron electromagnetically-braked cycle ergometer. DESIGN All participants completed trials using both chainring sizes in a repeated-measures cross-over design. METHODS Resistance-trained male participants (n=20, 24.6±4.5years) performed two Wingate tests separated by at least 48h. Peak power (PP), mean power (MP), fatigue index (FI), peak cadence, mean cadence, and total work (TW) were recorded. RESULTS Peak power was not significantly different (p=0.10) between trials (62-tooth=1111±187W vs. 85-tooth=1188±103W). However, MP, mean cadence, and TW were significantly greater (p<0.01) for the 85-tooth trial (869±114W, 131±16rpm, and 26,063±3418J) compared to the 62-tooth test (673±136W, 102±24rpm, and 20,199±4066J). Fatigue index was reduced during the 85-tooth trial (49.9±9.1% vs. 61.6±8.8%; p<0.01). Agreement was poor with most ICCs≈0.19 and large SEMs. CONCLUSIONS The two options for chainrings on Velotron cycle ergometers should not be interchangeably used with the Wingate test software; the 62-tooth ring is recommended for most applications. Individuals who can attain peak cadence >180rpm have less variability and tend to achieve higher power outputs on the 62-tooth ring. We suspect that the manufacturer's software limits peak cadence to 182rpm when using the 85-tooth chainring.
Collapse
Affiliation(s)
- Nicolas W Clark
- Kinesiology and Health Science Department, Utah State University, USA
| | - Dale R Wagner
- Kinesiology and Health Science Department, Utah State University, USA.
| | - Edward M Heath
- Kinesiology and Health Science Department, Utah State University, USA
| |
Collapse
|
50
|
Griffin PJ, Ferguson RA, Gissane C, Bailey SJ, Patterson SD. Ischemic preconditioning enhances critical power during a 3 minute all-out cycling test. J Sports Sci 2017; 36:1038-1043. [PMID: 28686083 DOI: 10.1080/02640414.2017.1349923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study tested the hypothesis that ischemic preconditioning (IPC) would increase critical power (CP) during a 3 minute all-out cycling test. Twelve males completed two 3 minute all-out cycling tests, in a crossover design, separated by 7 days. These tests were preceded by IPC (4 x 5 minute intervals at 220 mmHg bilateral leg occlusion) or SHAM treatment (4 x 5 minute intervals at 20 mmHg bilateral leg occlusion). CP was calculated as the mean power output during the final 30 s of the 3 minute test with W' taken as the total work done above CP. Muscle oxygenation was measured throughout the exercise period. There was a 15.3 ± 0.3% decrease in muscle oxygenation (TSI; [Tissue saturation index]) during the IPC stimulus, relative to SHAM. CP was significantly increased (241 ± 65 W vs. 234 ± 67 W), whereas W' (18.4 ± 3.8 vs 17.9 ± 3.7 kJ) and total work done (TWD) were not different (61.1 ± 12.7 vs 60.8 ± 12.7 kJ), between the IPC and SHAM trials. IPC enhanced CP during a 3 minute all-out cycling test without impacting W' or TWD. The improved CP after IPC might contribute towards the effect of IPC on endurance performance.
Collapse
Affiliation(s)
- Patrick J Griffin
- a School of Sport, Health, and Applied Science , St. Mary's University , London , UK
| | - Richard A Ferguson
- b School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Conor Gissane
- a School of Sport, Health, and Applied Science , St. Mary's University , London , UK
| | - Stephen J Bailey
- b School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Stephen D Patterson
- a School of Sport, Health, and Applied Science , St. Mary's University , London , UK
| |
Collapse
|