1
|
Husak JF, Lailvaux SP. Stable isotopes reveal sex- and context-dependent amino acid routing in green anole lizards (Anolis carolinensis). J Exp Biol 2024; 227:jeb248024. [PMID: 39155675 DOI: 10.1242/jeb.248024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Allocation of acquired resources to phenotypic traits is affected by resource availability and current selective context. While differential investment in traits is well documented, the mechanisms driving investment at lower levels of biological organization, which are not directly related to fitness, remain poorly understood. We supplemented adult male and female Anolis carolinensis lizards with an isotopically labelled essential amino acid (13C-leucine) to track routing in four tissues (muscle, liver, gonads and spleen) under different combinations of resource availability (high- and low-calorie diets) and exercise training (sprint training and endurance capacity). We predicted sprint training should drive routing to muscle, and endurance training to liver and spleen, and that investment in gonads should be of lower priority in each of the cases of energetic stress. We found complex interactions between training regime, diet and tissue type in females, and between tissue type and training, and tissue type and diet in males, suggesting that males and females adjust their 13C-leucine routing strategies differently in response to similar environmental challenges. Importantly, our data show evidence of increased 13C-leucine routing in training contexts not to muscle as we expected, but to the spleen, which turns over blood cells, and to the liver, which supports metabolism under differing energetic scenarios. Our results reveal the context-specific nature of long-term trade-offs associated with increased chronic activity. They also illustrate the importance of considering the costs of locomotion in studies of life-history strategies.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St Thomas, St Paul, MN 55105, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
2
|
Knipping K, Kartaram SW, Teunis M, Zuithoff NPA, Buurman N, M’Rabet L, van Norren K, Witkamp R, Pieters R, Garssen J. Salivary concentrations of secretory leukocyte protease inhibitor and matrix metallopeptidase-9 following a single bout of exercise are associated with intensity and hydration status. PLoS One 2023; 18:e0291297. [PMID: 37992002 PMCID: PMC10664895 DOI: 10.1371/journal.pone.0291297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2023] [Indexed: 11/24/2023] Open
Abstract
AIM To investigate the effects of exercise on salivary concentrations of inflammatory markers by analyzing a panel of 25 inflammatory markers in subjects who had participated in bicycle ergometer tests varying in workload and hydration status. METHODS Fifteen healthy young men (20-35 years) had performed 4 different exercise protocols of 1 hour duration in a randomly assigned cross-over design, preceded by a rest protocol. Individual workloads depended on participant's pre-assessed individual maximum workload (Wmax): rest (protocol 1), 70% Wmax in hydrated (protocol 2) and dehydrated (protocol 3) state, 50% Wmax (protocol 4) and intermittent 85%/55% Wmax in 2 min blocks (protocol 5). Saliva samples were collected before (T0) and immediately after exercise (T1), and at several time points after exercise (2 hours (T3), 3 hours (T4), 6 hours (T5) and 24 hours (T6)). Secretory Leukocyte Protease Inhibitor (SLPI), Matrix Metallopeptidase-9 (MMP-9) and lactoferrin was analyzed using a commercial ELISA kit, a panel of 22 cytokines and chemokines were analyzed using a commercial multiplex immunoassay. Data was analyzed using a multilevel mixed linear model, with multiple test correction. RESULTS Among a panel of 25 inflammatory markers, SLPI concentrations were significantly elevated immediately after exercise in all protocols compared to rest and higher concentrations reflected the intensity of exercise and hydration status. MMP-9 showed a significant increase in the 70% Wmax dehydrated, 50% Wmax and intermittent protocols. CONCLUSIONS Salivary concentrations of SLPI and MMP-9 seem associated with exercise intensity and hydration status and may offer non-invasive biomarkers to study (local) inflammatory responses to different exercise intensities in human studies.
Collapse
Affiliation(s)
- Karen Knipping
- Danone Nutricia Research, Utrecht, The Netherlands
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Shirley W. Kartaram
- Research Group Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Marc Teunis
- Research Group Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Nicolaas P. A. Zuithoff
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Laura M’Rabet
- Research Group Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Klaske van Norren
- Nutritional Biology, Division Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Renger Witkamp
- Nutritional Biology, Division Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Raymond Pieters
- Research Group Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
- Institute for Risk Assessment Sciences, Immunotoxicology (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Danone Nutricia Research, Utrecht, The Netherlands
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Martínez-Noguera FJ, Alcaraz PE, Carlos-Vivas J, Marín-Pagán C. 8 weeks of 2 S-hesperidin prevents a decrease in pO 2 at submaximal intensity in amateur cyclists in off-season: randomized controlled trial. Food Funct 2023; 14:2750-2767. [PMID: 36857626 DOI: 10.1039/d2fo03007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although chronic supplementation with 2S-hesperidin has been shown to improve performance, to date, the possible mechanisms underlying this effect have not been explored. Therefore, the aim of this study was to assess whether changes in gasometry may be associated with improved performance after the intake of 2S-hesperidin (500 mg d-1, 8 weeks). Forty amateur cyclists (n = 20 2S-hesperidin, n = 20 placebo) performed a rectangular test, during which capillary blood samples were taken at the baseline, FatMax1, ventilatory threshold 1 and 2 (VT1 and VT2), power maximum (PMAX), FatMax2 and excess post-exercise O2 consumption (EPOC) to measure gasometry parameters. Significantly increased CO2 and tCO2 was found at FatMax1, VT1, FatMax2 and EPOC (p = <0.05) after 8 weeks of 2S-hesperidin ingestion. Conversely, the placebo group had a significant decrease in pO2 at VT2 (p = 0.04) during the rectangular test, with no changes in the 2S-hesperidin group. Therefore, chronic supplementation with 2S-hesperidin prevents decreases in pO2 at submaximal intensities in amateur cyclists in an off-season period.
Collapse
Affiliation(s)
- Francisco Javier Martínez-Noguera
- Research Center for High Performance Sport, Catholic University of Murcia, Campus de los Jerónimos N° 135, UCAM, 30107, Murcia, Spain.
| | - Pedro E Alcaraz
- Research Center for High Performance Sport, Catholic University of Murcia, Campus de los Jerónimos N° 135, UCAM, 30107, Murcia, Spain.
| | - Jorge Carlos-Vivas
- Health, Economy, Motricity and Education Research Group (HEME), Faculty of Sport Sciences, University of Extremadura, Avda. de Elvas, s/n., 06006, Badajoz, Spain.
| | - Cristian Marín-Pagán
- Research Center for High Performance Sport, Catholic University of Murcia, Campus de los Jerónimos N° 135, UCAM, 30107, Murcia, Spain.
| |
Collapse
|
4
|
Bizjak DA, Treff G, Zügel M, Schumann U, Winkert K, Schneider M, Abendroth D, Steinacker JM. Differences in Immune Response During Competition and Preparation Phase in Elite Rowers. Front Physiol 2022; 12:803863. [PMID: 34975545 PMCID: PMC8718927 DOI: 10.3389/fphys.2021.803863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Metabolic stress is high during training and competition of Olympic rowers, but there is a lack of biomedical markers allowing to quantify training load on the molecular level. We aimed to identify such markers applying a complex approach involving inflammatory and immunologic variables. Methods: Eleven international elite male rowers (age 22.7 ± 2.4 yrs.; VO2max 71 ± 5 ml·min-1·kg-1) of the German National Rowing team were monitored at competition phase (COMP) vs. preparation phase (PREP), representing high vs. low load. Perceived stress and recovery were assessed by a Recovery Stress Questionnaire for Athletes (RESTQ-76 Sport). Immune cell activation (dendritic cell (DC)/macrophage/monocytes/T-cells) was evaluated via fluorescent activated cell sorting. Cytokines, High-Mobility Group Protein B1 (HMGB1), cell-free DNA (cfDNA), creatine kinase (CK), uric acid (UA), and kynurenine (KYN) were measured in venous blood. Results: Rowers experienced more general stress and less recovery during COMP, but sports-related stress and recovery did not differ from PREP. During COMP, DC/macrophage/monocyte and T-regulatory cells (Treg-cell) increased (p = 0.001 and 0.010). HMGB1 and cfDNA increased in most athletes during COMP (p = 0.001 and 0.048), while CK, UA, and KYN remained unaltered (p = 0.053, 0.304, and 0.211). Pro-inflammatory cytokines IL-1β (p = 0.002), TNF-α (p < 0.001), and the chemokine IL-8 (p = 0.001) were elevated during COMP, while anti-inflammatory Il-10 was lower (p = 0.002). Conclusion: COMP resulted in an increase in biomarkers reflecting tissue damage, with plausible evidence of immune cell activation that appeared to be compensated by anti-inflammatory mechanisms, such as Treg-cell proliferation. We suggest an anti-inflammatory and immunological matrix approach to optimize training load quantification in elite athletes.
Collapse
Affiliation(s)
- Daniel Alexander Bizjak
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| | - Gunnar Treff
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| | - Martina Zügel
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| | - Uwe Schumann
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| | - Kay Winkert
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| | - Marion Schneider
- Department of Anaesthesiology, Division of Experimental Anaesthesiology, University Hospital Ulm, Ulm, Germany
| | | | - Jürgen Michael Steinacker
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
5
|
Navarro-Martínez R, Cauli O. Lymphocytes as a Biomarker of Frailty Syndrome: A Scoping Review. Diseases 2021; 9:53. [PMID: 34287298 PMCID: PMC8293122 DOI: 10.3390/diseases9030053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022] Open
Abstract
Frailty is a geriatric syndrome characterized by a decrease in physiological reserve and reduced resistance to stress, as a result of an accumulation of multiple deficits in physiological systems. Frailty increases the vulnerability to adverse events and is associated with the aging process. Several studies show an association between frailty syndrome and altered blood lymphocyte levels, which is therefore potentially useful for monitoring interventions to improve or delay frailty. The main objective of this review is to provide an analysis of the current evidence related to changes in lymphocyte counts and their associations with frailty syndrome. To that end, the literature published in this field until March 2021 was in several databases: PubMed, SCOPUS, and Cochrane. Eighteen studies analyzed the association between lymphocyte counts, lymphocyte subtypes, and frailty syndrome. Eighteen studies were analyzed, and most of them reported associations. Interestingly, the association between frailty syndrome and lower lymphocytes counts appears in different clinical conditions. Further studies are needed to determine the sensitivity of lymphocyte counts and lymphocyte subtypes in the diagnosis and monitoring of frailty syndrome, and for this measure to be used as a biomarker of frailty status.
Collapse
Affiliation(s)
- Rut Navarro-Martínez
- Haematology Department, Hospital General Universitario, 46014 Valencia, Spain;
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain
| | - Omar Cauli
- Haematology Department, Hospital General Universitario, 46014 Valencia, Spain;
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
6
|
Borges L, Gorjão R, Gray SR, Martins TR, Santos VC, Momesso CM, Pithon-Curi TC, Hatanaka E. Lymphocyte activation after a high-intensity street dance class. PLoS One 2020; 15:e0239516. [PMID: 32956398 PMCID: PMC7505442 DOI: 10.1371/journal.pone.0239516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 01/15/2023] Open
Abstract
Intense dance training leads to inflammation, which may impair the health and performance of the practitioners. Herein, we evaluate the effect of a single street dancing class on the profile of muscle enzymes, lymphocyte activation, and cell surface CD62L expression. We also investigated the correlation between muscle enzymes, adhesion molecules, and lymphocyte activation in dancers. Fifteen male participants (mean ± standard error: age 22.4 ± 1.08 years, body mass index 24.8 ± 0.69 kg/m2, body fat 12.3 ± 1.52%), who were amateur dancers, had blood samples collected previously and subsequent to a high-intensity street dance class. After the class, dancers showed an increase in total lymphocyte count (2.0-fold), creatine kinase (CK)-NAC (4.87%), and CK-MB (3.36%). We also observed a decrease (2.5-fold) in reactive oxygen species (ROS) produced by lymphocytes, under phorbol myristate acetate-stimulated environments. Following the dance class, CD62L expression in lymphocytes decreased (51.42%), while there was a negative correlation between the intensity of the exercise and CD62L expression (r = -0.73; p = 0.01). Lymphocytes were less responsive to stimuli after a single bout of street dancing, indicating transient immunosuppression.
Collapse
Affiliation(s)
- Leandro Borges
- Institute of Physical Activity and Sport Sciences (ICAFE), Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Renata Gorjão
- Institute of Physical Activity and Sport Sciences (ICAFE), Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Stuart R. Gray
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Thaís Reis Martins
- Institute of Physical Activity and Sport Sciences (ICAFE), Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Vinicius Coneglian Santos
- Institute of Physical Activity and Sport Sciences (ICAFE), Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Cesar Miguel Momesso
- Institute of Physical Activity and Sport Sciences (ICAFE), Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Tania Cristina Pithon-Curi
- Institute of Physical Activity and Sport Sciences (ICAFE), Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Elaine Hatanaka
- Institute of Physical Activity and Sport Sciences (ICAFE), Cruzeiro do Sul University, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Changes in cardiovascular parameters of a-university football athletes associated with short duration pre-tournament training. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Zügel M, Treff G, Steinacker JM, Mayer B, Winkert K, Schumann U. Increased Hepcidin Levels During a Period of High Training Load Do Not Alter Iron Status in Male Elite Junior Rowers. Front Physiol 2020; 10:1577. [PMID: 32038278 PMCID: PMC6985289 DOI: 10.3389/fphys.2019.01577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
The liver-derived hormone hepcidin plays a key role in iron metabolism by mediating the degradation of the iron export protein ferroportin 1 (FPN1). Circulating levels of hepcidin and the iron storage protein ferritin are elevated during the recovery period after acute endurance exercise, which can be interpreted as an acute phase reaction to intense exercise with far-reaching consequences for iron metabolism and homeostasis. Since absolute and functional iron deficiency (ID) potentially lead to a loss of performance and well-being, it is surprising that the cumulative effects of training stress on hepcidin levels and its interplay with cellular iron availability are not well described. Therefore, the aim of this study was to determine serum levels of hepcidin at six time points during a 4-week training camp of junior world elite rowers preparing for the world championships and to relate the alterations in training load to overall iron status determined by serum ferritin, transferrin, iron, and soluble transferrin receptor (sTfR). Serum hepcidin levels increased significantly (p = 0.02) during the initial increase in training load (23.24 ± 2.43 ng/ml) at day 7 compared to the start of training camp (11.47 ± 3.92 ng/ml) and turned back on day 13 (09.51 ± 3.59 ng/ml) already, meeting well the entrance level of hepcidin at day 0. Serum ferritin was significantly higher at day 7 compared to all other timepoints with exception of the subsequent time point at day 13 reflecting well the time course pattern of hepcidin. Non-significant changes between training phases were found for serum iron, transferrin, and sTfR levels as well as for transferrin saturation, and ferritin-index (sTfR/log ferritin). Our findings indicate that hepcidin as well as ferritin, both representing acute phase proteins, are sensitive to initial increases in training load. Erythropoiesis was unaffected by iron compartmentalization through hepcidin. We conclude that hepcidin is sensitive to rigorous changes in training load in junior world elite rowers without causing short-term alterations in functional iron homeostasis.
Collapse
Affiliation(s)
- Martina Zügel
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Ulm University, Ulm, Germany
| | - Gunnar Treff
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Ulm University, Ulm, Germany
| | - Jürgen M Steinacker
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Ulm University, Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Kay Winkert
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Ulm University, Ulm, Germany
| | - Uwe Schumann
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
9
|
Estruel-Amades S, Ruiz-Iglesias P, Périz M, Franch À, Pérez-Cano FJ, Camps-Bossacoma M, Castell M. Changes in Lymphocyte Composition and Functionality After Intensive Training and Exhausting Exercise in Rats. Front Physiol 2019; 10:1491. [PMID: 31920698 PMCID: PMC6928120 DOI: 10.3389/fphys.2019.01491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Exhausting exercise can have a deleterious effect on the immune system. Nevertheless, the impact of exercise intensity on lymphocyte composition and functionality remains uncertain. The aim of this study was to establish the influence of intensive training on lymphoid tissues (blood, thymus, and spleen) in Wistar rats. Two intensive training programs were performed: a short program, running twice a day for 2 weeks and ending with a final exhaustion test (S-TE group), and a longer program, including two exhaustion tests plus three runs per week for 5 weeks. After this last training program, samples were obtained 24 h after a regular training session (T group), immediately after an additional exhaustion test (TE group) and 24 h later (TE24 group). The composition of lymphocytes in the blood, thymus, and spleen, the function of spleen cells and serum immunoglobulins were determined. In the blood, only the TE group modified lymphocyte proportions. Mature thymocytes' proportions decreased in tissues obtained just after exhaustion. There was a lower percentage of spleen NK and NKT cells after the longer training program. In these rats, the T group showed a reduced lymphoproliferative activity, but it was enhanced immediately after the final exhaustion. Cytokine secretion was modified after the longer training (T group), which decreased IFN-γ and IL-10 secretion but increased that of IL-6. Higher serum IgG concentrations after the longer training program were detected. In conclusion, the intensive training for 5 weeks changed the lymphocyte distribution among primary and secondary lymphoid tissues and modified their function.
Collapse
Affiliation(s)
- Sheila Estruel-Amades
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Marta Périz
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Mariona Camps-Bossacoma
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Vafaee R, Hatamabadi H, Soori H, Hedayati M. The Impact of Resveratrol Supplementation on Inflammation Induced by Acute Exercise in Rats: Il6 Responses to Exercise. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:772-784. [PMID: 31531060 PMCID: PMC6706740 DOI: 10.22037/ijpr.2019.1100684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Severe physical activity leads to a sharp increase in free radicals, an oxidative stress, inflammation, and tissue damage. Resveratrol as one of the antioxidants can be effective in preventing the effects of oxidative stress. Therefore, the present study was aimed to evaluate the effect of trans-resveratrol supplementation and training exercise on inflammation-related factors. Sixty-four male Wistar rats were divided into six groups, each group consisting of 16 animals: 1) excursive + trans-resveratrol, 2) exercise group, 3) trans-resveratrol group, and 4) control group. Following the familiarization sessions, a more consistent protocol with an intensity of 65% vo2 max was performed for 12 weeks. Afterward, half of the mice in each group received acute exercise training with an intensity of 70-75% of vo2 max at the age of 20 weeks, until reaching the disability level. Finally, the levels of inflammatory markers were measured using special kits. Our findings depicted that inflammatory factors such as CPR, TNF-α, IL-6, and IL-7 were not affected by endurance protocol (P > 0.05), whereas, they were significantly increased by acute exercise training (P > 0.05). Additionally, we found that RES supplements led to a decrease in CPR and IL-6 levels, while not affecting TNF-α and IL-17 levels. According to available evidence, RES appears to have anti-inflammatory and protective effects during exercise by reducing inflammatory factors. Further studies are required to clarify the role of trans-resveratrol supplementation after exercise training.
Collapse
Affiliation(s)
- Reza Vafaee
- Safety Promotion and Injury Prevention Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Hatamabadi
- Safety Promotion and Injury Prevention Research Center, Department of Emergency Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Soori
- Safety Promotion and Injury Prevention Research Center, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Estruel-Amades S, Massot-Cladera M, Garcia-Cerdà P, Pérez-Cano FJ, Franch À, Castell M, Camps-Bossacoma M. Protective Effect of Hesperidin on the Oxidative Stress Induced by an Exhausting Exercise in Intensively Trained Rats. Nutrients 2019; 11:nu11040783. [PMID: 30987366 PMCID: PMC6520900 DOI: 10.3390/nu11040783] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Intensive exercise can lead to oxidative stress, which can be particularly deleterious for lymphoid tissues. Hesperidin has demonstrated its antioxidant activity, but few studies focus on its influence on intensive training. The aim of this study was to assess the impact of hesperidin on the oxidant/antioxidant status of lymphoid tissues after an intensive training program. Wistar rats were trained for five weeks (five days per week), including two exhaustion tests plus three trainings per week. During this period, animals were orally administrated with 200 mg/kg of hesperidin or vehicle (three days per week). The oxidative status was determined before, immediately after and 24 h after an additional exhaustion test. The production of reactive oxygen species (ROS) by peritoneal macrophages, superoxide dismutase (SOD) and catalase activities in spleen, thymus and liver, and hepatic glutathione peroxidase activity (GPx) were assessed. Hesperidin prevented an increase in ROS production induced by the additional exhaustion test. Likewise, hesperidin avoided a decrease in SOD and catalase activities in the thymus and spleen that was found after the additional exhaustion test. The antioxidant effects of hesperidin were associated with a higher performance in the assessed training model. These results suggest that hesperidin, acting as an antioxidant, can prevent oxidative stress induced by exercise and improve exercise performance.
Collapse
Affiliation(s)
- Sheila Estruel-Amades
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, 08921 Santa Coloma de Gramenet, Spain.
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, 08921 Santa Coloma de Gramenet, Spain.
| | - Pau Garcia-Cerdà
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, 08921 Santa Coloma de Gramenet, Spain.
| | - Francisco J Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, 08921 Santa Coloma de Gramenet, Spain.
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, 08921 Santa Coloma de Gramenet, Spain.
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, 08921 Santa Coloma de Gramenet, Spain.
| | - Mariona Camps-Bossacoma
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, 08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
12
|
Exercise-Induced Reductive Stress Is a Protective Mechanism against Oxidative Stress in Peripheral Blood Mononuclear Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3053704. [PMID: 30405875 PMCID: PMC6201335 DOI: 10.1155/2018/3053704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/10/2018] [Indexed: 12/26/2022]
Abstract
Eccentric exercise is a well-studied modality that induces oxidative stress and muscle damage. Furthermore, it promotes inflammatory response in which peripheral blood mononuclear cells (PBMCs) are the major mediators. Although free radicals are necessary in a specific range of concentrations, yet unknown, it remains unclear whether reductive redox status (i.e., increased antioxidant defenses and impaired free radical generation) is beneficial or not. Thus, the aim of the present investigation was to examine the effects of reductive stress and the impact of reduced glutathione (GSH) baseline values on the ability of PBMCs to counteract oxidative stress induced by a potent oxidative agent. PBMCs were isolated from the blood of subjects who performed eccentric exercise and treated with t-BOOH for 24 h. The subjects were clustered in the reductive and the oxidative group on the basis of increased or decreased GSH concentration postexercise compared to preexercise values, respectively. According to our results in PBMCs, lipid peroxidation levels as depicted by thiobarbituric acid reactive substances (TBARS) remained unchanged in the reductive group contrary to the observed enhancement in the oxidative group. In addition, GSH concentration and catalase activity increased in the reductive group, whereas they were not affected in the oxidative group. In conclusion, the effects of an oxidizing agent on the redox status of PBMCs isolated from the blood of athletes after acute eccentric exercise are dependent on the baseline values of GSH in erythrocytes. Otherwise, reductive stress defined by increased GSH levels is a protective mechanism, at least when followed by an oxidative stimulus.
Collapse
|
13
|
Cury-Boaventura MF, Gorjão R, de Moura NR, Santos VC, Bortolon JR, Murata GM, Borges LDS, Momesso CM, Dermargos A, Pithon-Curi TC, Hatanaka E. The Effect of a Competitive Futsal Match on T Lymphocyte Surface Receptor Signaling and Functions. Front Physiol 2018; 9:202. [PMID: 29599721 PMCID: PMC5862818 DOI: 10.3389/fphys.2018.00202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/23/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, the lymphocyte activation status (surface expression of CD95, CD28, CD25, and CTLA-4), lymphocyte number, lymphocyte subpopulations, lymphocyte necrosis and/or apoptosis, and lymphocyte release of reactive oxygen species (ROS) were investigated in blood samples from 16 futsal athletes before and immediately following a competitive match. Lymphocytes were isolated from the blood samples, and the cellular parameters were assessed by flow cytometry. The futsal match induced lymphocytosis and lymphocyte apoptosis, as indicated by phosphatidylserine externalization, CD95 expression, and DNA fragmentation. Additionally, the competitive match induced the necrotic death of lymphocytes. No differences in the percentage of CD4+ and CD8+ T cells or in the T-helper/suppressor profile between before and immediately after the match were observed. Additionally, after the futsal match, the CD95 and CD28 expression levels were decreased, and the lymphocytes spontaneously released higher levels of ROS. Regardless of the origin, the situation-specific knowledge of lymphocyte behavior obtained herein may facilitate the design of strategies to control the processes that result in infection and tissue injury and that subsequently decrease athletic performance.
Collapse
Affiliation(s)
- Maria F Cury-Boaventura
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Renata Gorjão
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Nivaldo R de Moura
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Vinicius C Santos
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - José R Bortolon
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Gilson M Murata
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Leandro da Silva Borges
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - César M Momesso
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | - Tania C Pithon-Curi
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Elaine Hatanaka
- Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
14
|
Fernandez-Garrido J, Ruiz-Ros V, Navarro-Martínez R, Buigues C, Martínez-Martínez M, Verdejo Y, Sanantonio-Camps L, Mascarós MC, Cauli O. Frailty and leucocyte count are predictors of all-cause mortality and hospitalization length in non-demented institutionalized older women. Exp Gerontol 2018; 103:80-86. [PMID: 29326085 DOI: 10.1016/j.exger.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/09/2017] [Accepted: 01/04/2018] [Indexed: 01/10/2023]
Abstract
Alteration in the immune system such as the number of white blood cells count (WBC) has been associated with frailty syndrome but their role in institutionalized older individuals have been rarely investigated. We evaluated the relationships between white blood cell subtypes, geriatric assessment, depression and frailty syndrome based on the criteria of physical phenotype. In particular, we aimed to analyze by a two-year follow-up and prospective study the predictive value of alterations in WBC, frailty and functional impairment in terms of hospitalizations and all-cause mortality in institutionalized older women. There was a significant and inverse correlation between the frailty score and lymphocyte count at baseline but it did not display any predictive effect for the outcomes (hospitalizations and mortality). In contrast, monocytes count was significantly correlated with number of hospital stays and predicted hospitalizations in the follow-up. High frailty score directly and better functional status (Barthel score) inversely predicted mortality in the follow-up with an HR of 1.87 (95%CI: 1.04-3.35), and 0.97 (95% CI: 0.96-0.99) (p < .05 in both cases). Further investigation into the role of white blood cell subtypes in aging and its associated adverse outcomes in older adults is warranted. Physical phenotype of frailty besides general population, also predicted mortality in older institutionalized women and deserves specific intervention in this subgroup of older individuals.
Collapse
Affiliation(s)
| | - Vicente Ruiz-Ros
- Department of Nursing, University of Valencia, Valencia, Spain; Servicio de Cardiología, Hospital Clínico Universitario, INCLIVA, Universitat de Valencia, Valencia, Spain
| | | | | | | | | | | | | | - Omar Cauli
- Department of Nursing, University of Valencia, Valencia, Spain.
| |
Collapse
|
15
|
Rokamp KZ, Staalsø JM, Zaar M, Rasmussen P, Petersen LG, Nielsen RV, Secher NH, Olsen NV, Nielsen HB. The Gly 16 Allele of the G16R Single Nucleotide Polymorphism in the β 2 -Adrenergic Receptor Gene Augments the Glycemic Response to Adrenaline in Humans. Front Physiol 2017; 8:661. [PMID: 28928674 PMCID: PMC5591882 DOI: 10.3389/fphys.2017.00661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/21/2017] [Indexed: 11/25/2022] Open
Abstract
Cerebral non-oxidative carbohydrate consumption may be driven by a β2-adrenergic mechanism. This study tested whether the 46G > A (G16R) single nucleotide polymorphism of the β2-adrenergic receptor gene (ADRB2) influences the metabolic and cerebrovascular responses to administration of adrenaline. Forty healthy Caucasian men were included from a group of genotyped individuals. Cardio- and cerebrovascular variables at baseline and during a 60-min adrenaline infusion (0.06 μg kg−1 min−1) were measured by Model flow, near-infrared spectroscopy and transcranial Doppler sonography. Blood samples were obtained from an artery and a retrograde catheter in the right internal jugular vein. The ADRB2 G16R variation had no effect on baseline arterial glucose, but during adrenaline infusion plasma glucose was up to 1.2 mM (CI95: 0.36–2.1, P < 0.026) higher in the Gly16 homozygotes compared with Arg16 homozygotes. The extrapolated steady-state levels of plasma glucose was 1.9 mM (CI95: 1.0 –2.9, PNLME < 0.0026) higher in the Gly16 homozygotes compared with Arg16 homozygotes. There was no change in the cerebral oxygen glucose index and the oxygen carbohydrate index during adrenaline infusion and the two indexes were not affected by G16R polymorphism. No difference between genotype groups was found in cardiac output at baseline or during adrenaline infusion. The metabolic response of glucose during adrenergic stimulation with adrenaline is associated to the G16R polymorphism of ADRB2, although without effect on cerebral metabolism. The differences in adrenaline-induced blood glucose increase between genotypes suggest an elevated β2-adrenergic response in the Gly16 homozygotes with increased adrenaline-induced glycolysis compared to Arg16 homozygotes.
Collapse
Affiliation(s)
- Kim Z Rokamp
- Department of Anesthesia, Rigshospitalet, University of CopenhagenCopenhagen, Denmark
| | - Jonatan M Staalsø
- Department of Neuroanesthesia, Rigshospitalet, University of CopenhagenCopenhagen, Denmark
| | - Morten Zaar
- Department of Anesthesia, Rigshospitalet, University of CopenhagenCopenhagen, Denmark
| | - Peter Rasmussen
- Department of Anesthesia, Rigshospitalet, University of CopenhagenCopenhagen, Denmark
| | - Lonnie G Petersen
- Department of Anesthesia, Rigshospitalet, University of CopenhagenCopenhagen, Denmark
| | - Rikke V Nielsen
- Department of Neuroanesthesia, Rigshospitalet, University of CopenhagenCopenhagen, Denmark
| | - Niels H Secher
- Department of Anesthesia, Rigshospitalet, University of CopenhagenCopenhagen, Denmark
| | - Niels V Olsen
- Department of Neuroanesthesia, Rigshospitalet, University of CopenhagenCopenhagen, Denmark.,Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark
| | - Henning B Nielsen
- Department of Anesthesia, Rigshospitalet, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
16
|
Acute bouts of exercise induce a suppressive effect on lymphocyte proliferation in human subjects: A meta-analysis. Brain Behav Immun 2016; 56:343-51. [PMID: 27103377 DOI: 10.1016/j.bbi.2016.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Lymphocyte proliferative responses are commonly used to assess immune function in clinical settings, yet it is unclear how proliferative capacity is altered by exercise. This analysis aims to quantitatively assess the proliferative response of lymphocytes following an acute bout of exercise. METHODS Electronic databases were searched for articles containing the keywords "exercise" OR "acute" OR "aerobic" OR "resistance training" OR "immune function" AND "proliferation" AND "lymphocyte." Initial results yielded 517 articles of which 117 were reviewed in full. Twenty-four articles met the inclusion criteria. Calculated standardized mean difference (SMD) and corresponding standard errors (SE) were integrated using random-effect models. RESULTS Analyses uncovered evidence for suppression of proliferative capacity following acute exercise in general (SMD=-0.18, 95% CI: -0.21, -0.16) with long duration, high intensity exercise exhibiting a moderate suppressive effect (SMD=-0.55, 95% CI: -0.86, -0.24). Discordant proliferative responses for long duration, high intensity exercise in competitive versus non-competitive settings were identified with enhanced proliferation (SMD=0.46, 95% CI: 0.03, 0.89) observed following competitive events and a large suppressive effect detected for similar activities outside of a competitive environment (SMD: -1.28, 95% CI: -1.61, -0.96) (p=0.02). CONCLUSION Evidence suggests lymphocyte proliferation is suppressed following acute bouts of exercise, with exercise lasting longer than one hour having a greater magnitude of effect regardless of exercise intensity. Variations in observed effect sizes across intensity, duration, and competitive environment further highlight our need to acknowledge the impact of study designs in advancing our understanding of exercise immunology.
Collapse
|
17
|
Dirksen C, Hansen BR, Kolte L, Haugaard SB, Andersen O. T-lymphocyte subset dynamics in well-treated HIV-infected men during a bout of exhausting exercise. Infect Dis (Lond) 2015; 47:919-23. [PMID: 26244875 DOI: 10.3109/23744235.2015.1069392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In healthy individuals the substantial lymphocytosis during a bout of exhausting exercise constitutes primarily mature T cells from the peripheral lymphoid organs but naïve T cells are also recruited. This study investigated whether the defective CD4 + T-lymphocyte count in peripheral blood during rest in human immunodeficiency virus (HIV)-infected patients would also be observed following a maximal output ergometer bicycle test. At rest, in 45 well-treated HIV-infected patients, mature and naïve CD4 + T-lymphocyte counts were decreased whereas the less immune active CD8 + T lymphocytes were increased compared with 10 healthy control subjects. In response to exercise mature and naïve CD4 + T lymphocytes increased less and mature and naïve CD8 + T lymphocytes increased most in HIV-infected patients. In conclusion, defective resting mature and naïve CD4 + T lymphocytes in well-treated HIV-infected patients are also reflected in defective acutely mobilized active immune cells following exhausting exercise. The CD4 + T-lymphocyte count is highly sensitive to physical activity.
Collapse
Affiliation(s)
- Carsten Dirksen
- a From the Clinical Research Centre, University of Copenhagen , Hvidovre , Denmark.,c Department of Infectious Diseases , Amager Hvidovre Hospital, University of Copenhagen , Hvidovre , Denmark
| | - Birgitte R Hansen
- a From the Clinical Research Centre, University of Copenhagen , Hvidovre , Denmark.,c Department of Infectious Diseases , Amager Hvidovre Hospital, University of Copenhagen , Hvidovre , Denmark
| | - Lilian Kolte
- a From the Clinical Research Centre, University of Copenhagen , Hvidovre , Denmark.,c Department of Infectious Diseases , Amager Hvidovre Hospital, University of Copenhagen , Hvidovre , Denmark
| | - Steen B Haugaard
- a From the Clinical Research Centre, University of Copenhagen , Hvidovre , Denmark.,b Department of Endocrinology , University of Copenhagen , Hvidovre , Denmark
| | - Ove Andersen
- a From the Clinical Research Centre, University of Copenhagen , Hvidovre , Denmark.,c Department of Infectious Diseases , Amager Hvidovre Hospital, University of Copenhagen , Hvidovre , Denmark
| |
Collapse
|
18
|
Calik MW, Shankarappa SA, Langert KA, Stubbs EB. Forced Exercise Preconditioning Attenuates Experimental Autoimmune Neuritis by Altering Th1 Lymphocyte Composition and Egress. ASN Neuro 2015; 7:7/4/1759091415595726. [PMID: 26186926 PMCID: PMC4550317 DOI: 10.1177/1759091415595726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A short-term exposure to moderately intense physical exercise affords a novel measure of protection against autoimmune-mediated peripheral nerve injury. Here, we investigated the mechanism by which forced exercise attenuates the development and progression of experimental autoimmune neuritis (EAN), an established animal model of Guillain–Barré syndrome. Adult male Lewis rats remained sedentary (control) or were preconditioned with forced exercise (1.2 km/day × 3 weeks) prior to P2-antigen induction of EAN. Sedentary rats developed a monophasic course of EAN beginning on postimmunization day 12.3 ± 0.2 and reaching peak severity on day 17.0 ± 0.3 (N = 12). By comparison, forced-exercise preconditioned rats exhibited a similar monophasic course but with significant (p < .05) reduction of disease severity. Analysis of popliteal lymph nodes revealed a protective effect of exercise preconditioning on leukocyte composition and egress. Compared with sedentary controls, forced exercise preconditioning promoted a sustained twofold retention of P2-antigen responsive leukocytes. The percentage distribution of pro-inflammatory (Th1) lymphocytes retained in the nodes from sedentary EAN rats (5.1 ± 0.9%) was significantly greater than that present in nodes from forced-exercise preconditioned EAN rats (2.9 ± 0.6%) or from adjuvant controls (2.0 ± 0.3%). In contrast, the percentage of anti-inflammatory (Th2) lymphocytes (7–10%) and that of cytotoxic T lymphocytes (∼20%) remained unaltered by forced exercise preconditioning. These data do not support an exercise-inducible shift in Th1:Th2 cell bias. Rather, preconditioning with forced exercise elicits a sustained attenuation of EAN severity, in part, by altering the composition and egress of autoreactive proinflammatory (Th1) lymphocytes from draining lymph nodes.
Collapse
Affiliation(s)
- Michael W Calik
- Center for Narcolepsy, Sleep and Health Research, Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Sahadev A Shankarappa
- Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA Program in Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA Center for Nanoscience and Molecular Medicine, Amrita institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Kelly A Langert
- Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA Program in Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Evan B Stubbs
- Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA Program in Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
19
|
van de Vyver M, Myburgh KH. Variable inflammation and intramuscular STAT3 phosphorylation and myeloperoxidase levels after downhill running. Scand J Med Sci Sports 2014; 24:e360-71. [PMID: 24383415 DOI: 10.1111/sms.12164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2013] [Indexed: 12/30/2022]
Abstract
Individual responses in creatine kinase (CK) release after eccentric exercise are divergent. This study aimed to identify whether this could be related to selected humoral or intramuscular inflammatory factors. Twenty-three subjects were divided into non-exercising (n = 5) and downhill run (DHR; n = 18) groups (12 × 5 min, 10% decline at 15 km/h). Blood samples were analyzed for white blood cell differential count, CK, myoglobin, tumor necrosis factor-α, granulocyte colony-stimulating factor, interleukin (IL)-1β, IL-6, and IL-10. Muscle biopsies were analyzed for signal transducer and activator of transcription-3 (STAT3), IκBα, and myeloperoxidase (MPO). DHR participants clustered as early (DHR1) recovery, biphasic response (DHR2), or classic delayed exaggerated CK response (DHR3), with a delayed CK peak (4784 ± 1496 U/L) on day 4. For DHR1 and DHR2, CK peaked on day 1 (DHR1: 1198 ± 837 U/L) or on day 1 and day 4 (DHR2: 1583 ± 448 U/L; 1878 ± 427 U/L), respectively. Immediately post-DHR, IL-6 increased in DHR2 and DHR3 whereas IL-10 increased in all DHR groups. STAT3 signaling increased for DHR1 and DHR2 at 4 h, but MPO at day 2 only in DHR2. Objective cluster analysis uncovered a group of subjects with a characteristic biphasic CK release after DHR. The second elevation was related to their early cytokine response. The results provide evidence that early responses following eccentric exercise are indicative of later variation.
Collapse
Affiliation(s)
- M van de Vyver
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | |
Collapse
|
20
|
Fernández-Garrido J, Navarro-Martínez R, Buigues-González C, Martínez-Martínez M, Ruiz-Ros V, Cauli O. The value of neutrophil and lymphocyte count in frail older women. Exp Gerontol 2013; 54:35-41. [PMID: 24316038 DOI: 10.1016/j.exger.2013.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/08/2013] [Accepted: 11/28/2013] [Indexed: 01/10/2023]
Abstract
Increasing evidence suggests that systemic inflammation is associated with many pathophysiological processes including frailty in older adults. We evaluated the relationships between white blood cell subtypes, geriatric assessment, and frailty syndrome and in particular, how they correlate with individual frailty criteria (involuntary loss of weight, low energy or exhaustion, slow mobility, muscle weakness, and low physical activity) in frail older women. There was a significant and positive correlation between the frailty score and neutrophil count, but a significantly negative correlation was found when this score was compared to the lymphocyte count. These associations were significant only for two frailty criteria: poor muscular strength and low physical activity. Further investigation into the role of white blood cell subtypes in ageing and its associated adverse outcomes in older adults is warranted, in particular in the loss of muscular strength and for poor physical activity.
Collapse
Affiliation(s)
| | - Rut Navarro-Martínez
- Department of Nursing, Faculty of Nursing, University of Valencia, Valencia, Spain
| | | | | | - Vicente Ruiz-Ros
- Department of Nursing, Faculty of Nursing, University of Valencia, Valencia, Spain; Cardiology Department, Hospital Clínico Universitario, Valencia, Spain
| | - Omar Cauli
- Department of Nursing, Faculty of Nursing, University of Valencia, Valencia, Spain.
| |
Collapse
|
21
|
Marin DP, Bolin AP, Campoio TR, Guerra BA, Otton R. Oxidative stress and antioxidant status response of handball athletes: Implications for sport training monitoring. Int Immunopharmacol 2013; 17:462-70. [DOI: 10.1016/j.intimp.2013.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/06/2013] [Accepted: 07/12/2013] [Indexed: 12/30/2022]
|
22
|
Six weeks of aerobic dance exercise improves blood oxidative stress status and increases interleukin-2 in previously sedentary women. J Bodyw Mov Ther 2011; 15:355-62. [DOI: 10.1016/j.jbmt.2010.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
|
23
|
Effect of exercise on glutamine metabolism in macrophages of trained rats. Eur J Appl Physiol 2009; 107:309-15. [DOI: 10.1007/s00421-009-1130-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
|
24
|
Markovitch D, Tyrrell RM, Thompson D. The effect of prior exercise onex vivoinduction of heme oxygenase-1 in human lymphocytes. Free Radic Res 2009; 41:1125-34. [PMID: 17886034 DOI: 10.1080/10715760701589230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It was postulated that prior demanding exercise would suppress the induction of the oxidant-responsive protein Heme Oxygenase-1 (HO-1) in mononuclear cells following subsequent ex vivo H(2)O(2) treatment. Eight male subjects completed two trials in a randomized order (one rest and one exercise) and ex vivo HO-1 protein induction was determined following H(2)O(2) treatment in lymphocytes and monocytes before and after each trial using a newly developed and reproducible assay. Lymphocytes obtained 2 h post-exercise showed a modest reduction in HO-1 protein expression in response to ex vivo treatment with H(2)O(2) (p<0.05). The plasma concentration of the HO-1 suppressor alpha1-antitrypsin increased immediately post-exercise (p<0.05) and it is tentatively suggested that this may explain the modest transient reduction in ex vivo HO-1 protein induction in lymphocytes in response to an independent oxidant challenge following a prior bout of demanding exercise.
Collapse
|
25
|
Whistler T, Fletcher MA, Lonergan W, Zeng XR, Lin JM, Laperriere A, Vernon SD, Klimas NG. Impaired immune function in Gulf War Illness. BMC Med Genomics 2009; 2:12. [PMID: 19265525 PMCID: PMC2657162 DOI: 10.1186/1755-8794-2-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 03/05/2009] [Indexed: 11/25/2022] Open
Abstract
Background Gulf War Illness (GWI) remains a serious health consequence for at least 11,000 veterans of the first Gulf War in the early 1990s. Our understanding of the health consequences that resulted remains inadequate, and this is of great concern with another deployment to the same theater of operations occurring now. Chronic immune cell dysfunction and activation have been demonstrated in patients with GWI, although the literature is not uniform. We exposed GWI patients and matched controls to an exercise challenge to explore differences in immune cell function measured by classic immune assays and gene expression profiling. Methods This pilot study enrolled 9 GWI cases identified from the Department of Veterans Affairs GWI registry, and 11 sedentary control veterans who had not been deployed to the Persian Gulf and were matched to cases by sex, body mass index (BMI) and age. We measured peripheral blood cell numbers, NK cytotoxicity, cytokines and expression levels of 20,000 genes immediately before, immediately after and 4 hours following a standard bicycle ergometer exercise challenge. Results A repeated-measures analysis of variance revealed statistically significant differences for three NK cell subsets and NK cytotoxicity between cases and controls (p < 0.05). Linear regression analysis correlating NK cell numbers to the gene expression profiles showed high correlation of genes associated with NK cell function, serving as a biologic validation of both the in vitro assays and the microarray platform. Intracellular perforin levels in NK and CD8 T-cells trended lower and showed a flatter profile in GWI cases than controls, as did the expression levels of the perforin gene PRF1. Genes distinguishing cases from controls were associated with the glucocorticoid signaling pathway. Conclusion GWI patients demonstrated impaired immune function as demonstrated by decreased NK cytotoxicity and altered gene expression associated with NK cell function. Pro-inflammatory cytokines, T-cell ratios, and dysregulated mediators of the stress response (including salivary cortisol) were also altered in GWI cases compared to control subjects. An interesting and potentially important observation was that the exercise challenge augments these differences, with the most significant effects observed immediately after the stressor, possibly implicating some block in the NK and CD8 T-cells ability to respond to "stress-mediated activation". This has positive implications for the development of laboratory diagnostic tests for this syndrome and provides a paradigm for exploration of the immuno-physiological mechanisms that are operating in GWI, and similar complex syndromes. Our results do not necessarily elucidate the cause of GWI, but they do reveal a role for immune cell dysfunction in sustaining illness.
Collapse
Affiliation(s)
- Toni Whistler
- Chronic Viral Diseases Branch, Centers for Disease Control & Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yavasoglu I, Arslan E, Gok M. Effect of Exercise on Tick Bite Laboratory Evaluation in Humans: Table 1. Lab Med 2009. [DOI: 10.1309/lm10c1xvhenzhsss] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
27
|
Campbell JP, Guy K, Cosgrove C, Florida-James GD, Simpson RJ. Total lymphocyte CD8 expression is not a reliable marker of cytotoxic T-cell populations in human peripheral blood following an acute bout of high-intensity exercise. Brain Behav Immun 2008; 22:375-80. [PMID: 17949944 DOI: 10.1016/j.bbi.2007.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 08/27/2007] [Accepted: 09/05/2007] [Indexed: 11/16/2022] Open
Abstract
Cytotoxic T-lymphocytes co-express the T-cell receptor, CD3 and the MHC I restricted antigen CD8. Although total CD8 expression is often used to identify CD8(+) T-cells in blood, errors are associated with this method as some CD3 negative natural killer (NK)-cells are known to express CD8. As greater relative proportions of NK-cells are found in the blood compartment after exercise, these errors are likely to be amplified in post exercise blood samples. To test this, isolated blood lymphocytes obtained from aerobically trained male subjects before, immediately after and 1h after an exhaustive treadmill-running protocol were surface stained for CD3, CD4, CD8, CD16, and CD56 and analysed by multi-colour flow cytometry. It was found that 25.4+/-16.9% of all CD8(+) cells at rest were CD3 negative, CD8(dim+) and expressed the NK-cell markers CD16 and CD56. The magnitude of this error increased to 40.8+/-20.7% immediately after exercise due to an influx of CD8(dim+) NK-cells. Although all CD8(bright+) cells expressed CD3, gating around the CD8(bright+) cells only identified 79.2+/-8.7% of the total CD3(+)/CD8(+) T-cell population; however, the magnitude of this error did not change after exercise despite the altered proportions of CD8(bright+) and CD8(dim+) cells. In conclusion, total lymphocyte expression of CD8 should not be used as a single antigenic marker to identify CD8(+) T-cells after an acute bout of exercise. Although there are errors associated with using CD8(bright+) as a single antigenic marker to identify CD3(+) T-cells, these are not amplified in response to exercise.
Collapse
Affiliation(s)
- John P Campbell
- Biomedicine and Sports Science Research Group, School of Life Sciences, Napier University, 10 Colinton Road, Edinburgh EH10 5DT, UK
| | | | | | | | | |
Collapse
|
28
|
Simpson RJ, Florida-James GD, Whyte GP, Black JR, Ross JA, Guy K. Apoptosis does not contribute to the blood lymphocytopenia observed after intensive and downhill treadmill running in humans. Res Sports Med 2007; 15:157-74. [PMID: 17987505 DOI: 10.1080/15438620701405339] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The lymphocytopenia that occurs during the recovery stage of exercise may be a result of apoptosis through an increased expression of CD95, a loss of the complement regulatory proteins CD55 and CD59, or both. Trained subjects completed intensive, moderate, and downhill treadmill-running protocols. Blood lymphocytes isolated before, immediately after, 1h after, and 24h after each exercise test were assessed for markers of apoptosis (Annexin-V(+), HSP60(+)), and CD55, CD59, and CD95 expression by flow cytometry. Lymphocytopenia occurred 1h after intensive and downhill running exercise, but no changes in the percentage of Annexin-V + or HSP60 + lymphocytes were found. Numbers of CD95(+), CD55(dim), and CD59(dim) lymphocytes increased immediately after intensive and downhill exercise, which were attributed to the selective mobilization and subsequent efflux of CD8(+) and CD56(+) lymphocyte subsets. No differences were found between the intensive and downhill protocols. In conclusion, apoptosis of circulating lymphocytes does not appear to contribute to exercise-induced lymphocytopenia.
Collapse
Affiliation(s)
- Richard J Simpson
- Biomedicine and Sport and Exercise Science Research Group, School of Life Sciences, Napier University, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|
29
|
Santos RVT, Caperuto EC, Costa Rosa LFBP. Effects of acute exhaustive physical exercise upon glutamine metabolism of lymphocytes from trained rats. Life Sci 2007; 80:573-8. [PMID: 17123550 DOI: 10.1016/j.lfs.2006.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 10/08/2006] [Indexed: 11/17/2022]
Abstract
Transitory immunosupression is reported after intense exercise, especially after an increase in training overload and in overtraining. The influence of intense exercise on plasma hormones and glutamine concentration may contribute to this effect. However, the effect of such exercise-induced changes upon lymphocyte and glutamine metabolism is not known. We compared glutamine metabolism in lymphocytes in sedentary (SED) and trained rats. Rats from the moderate group (MOD) swam for 6 weeks, 1 h/day, in water at 32+/-1 degrees C, with a load of 5.5% body weight attached to the tail. Animals from the exhaustive group (EXT) trained like MOD, with training increasing to 3 times 1 h a day during the last week, with 150 min rest between each bout. Animals were killed immediately after the last training bout. We observed reduced concentrations of plasma glucose (p<0.05), glutamine (p<0.05), glutamate (p<0.05) in EXT compared to SED. In MOD, decreases in glutamine (p<0.05) were observed. Analyzing lymphocyte metabolism, we observed an increase in lactate production and glutamine consumption (p<0.05) in MOD (p<0.05) compared to SED and a decrease in glutamine consumption (p<0.05) and aspartate production in EXT. An increase in the proliferative response of lymphocytes in MOD and EXT was also observed when stimulated by ConA and LPS similarly to SED. Acute exercise promoted decreased glutamine plasma concentration and changes in glutamine metabolism that did not impair lymphocyte proliferation in exhaustive trained rats.
Collapse
|
30
|
Zaldivar F, Wang-Rodriguez J, Nemet D, Schwindt C, Galassetti P, Mills PJ, Wilson LD, Cooper DM. Constitutive pro- and anti-inflammatory cytokine and growth factor response to exercise in leukocytes. J Appl Physiol (1985) 2006; 100:1124-33. [PMID: 16357073 DOI: 10.1152/japplphysiol.00562.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Leukocytosis following exercise is a well-described phenomenon of stress/inflammatory activation in healthy humans. We hypothesized that, despite this increase in circulating inflammatory cells, exercise would paradoxically induce expression of both pro- and anti-inflammatory cytokines and growth factors within these cells. To test this hypothesis, 11 healthy adult men, 18–30 yr old, performed a 30-min bout of heavy cycling exercise; blood sampling was at baseline, end-exercise, and 60 min into recovery. The percentage of leukocytes positive for intracellular cytokines and growth factors and mean fluorescence intensity was obtained by flow cytometry. Proinflammatory cytokines (IL-1α, IL-2, IFN-γ, and TNF-α), a pleiotropic cytokine (IL-6), and anti-inflammatory cytokines and growth factors [IL-4, IL-10, growth hormone (GH), and IGF-I] were examined. Median fluorescence intensity was not affected by exercise; however, we found a number of significant changes ( P < 0.05 by mixed linear model and modified t-test) in the numbers of circulating cells positive for particular mediators. The pattern of expression reflected both pro- and anti-inflammatory functions. In T-helper lymphocytes, TNF-α, but also IL-6, and IL-4 were significantly increased. In monocytes, both IFN-γ and IL-4 increased. B-lymphocytes positive for GH and IGF-I increased significantly. GH-positive granulocytes also significantly increased. Collectively, these observations indicate that exercise primes an array of pro- and anti-inflammatory and growth factor expression within circulating leukocytes, perhaps preparing the organism to effectively respond to a variety of stressors imposed by exercise.
Collapse
Affiliation(s)
- Frank Zaldivar
- Department of Pediatrics, Pediatric Exercise Research Center, University Children's Hospital, University of California, Irvine, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hoffman-Goetz L, Quadrilatero J, Boudreau J, Guan J. Adrenalectomy in mice does not prevent loss of intestinal lymphocytes after exercise. J Appl Physiol (1985) 2005; 96:2073-81. [PMID: 15133013 DOI: 10.1152/japplphysiol.01262.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exhaustive exercise is associated with an increase in circulating glucocorticoids (GCs), lymphocyte apoptosis, and a reduction in intestinal lymphocyte number. The present study examined the role of GCs on the numerical changes seen in intestinal lymphocytes after exercise. Female C57BL/6 mice were bilaterally adrenalectomized (ADX; n = 18) or given sham surgery (Sham; n = 18) and assigned to one of three exercise conditions: treadmill running (28 m/min, 90 min, 2 degrees slope) and killed immediately or after 24 h recovery, or not exercised and killed immediately after 90-min exposure to the treadmill environment. Lymphocytes were isolated from the intestines with CD45(+) cells collected by positive selection using magnetic bead separation columns, and lymphocyte subpopulations were analyzed by flow cytometry for CD45(+), CD3alphabeta(+), CD3gammadelta(+), CD8beta(+), CD8alpha(+), CD4(+), and NK(+) phenotypic markers. ADX mice had significantly more intestinal CD45(+) leukocytes (P < 0.05) and CD3alphabeta(+) (P < 0.05), CD3gammadelta(+) (P < 0.01), CD8alpha(+) (P < 0.001), and NK(+) (P < 0.05) intestinal lymphocytes than Sham mice. There was a significant effect of exercise condition on total intestinal CD45(+) leukocytes (P < 0.01) and CD3alphabeta(+) (P < 0.05), CD8alpha(+) (P < 0.001), and CD4(+) (P < 0.05) intestinal lymphocytes, with fewer cells at 24 h postexercise compared with the other treatment conditions. There were no surgical x exercise interaction effects on the CD3 and CD8 phenotype numbers. Plasma corticosterone was virtually nil in ADX mice regardless of exercise condition but was significantly elevated in Sham mice immediately postexercise (P < 0.001). The data indicate that ADX does not prevent the loss of lymphocytes from the intestinal mucosa 24 h after strenuous exercise and GCs are not directly causal in the leukopenia of exercise.
Collapse
Affiliation(s)
- L Hoffman-Goetz
- Department of Health Studies and Gerontology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|