1
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
2
|
Chlipała P, Tronina T, Dymarska M, Urbaniak M, Kozłowska E, Stępień Ł, Kostrzewa-Susłow E, Janeczko T. Multienzymatic biotransformation of flavokawain B by entomopathogenic filamentous fungi: structural modifications and pharmacological predictions. Microb Cell Fact 2024; 23:65. [PMID: 38402203 PMCID: PMC10893614 DOI: 10.1186/s12934-024-02338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Flavokawain B is one of the naturally occurring chalcones in the kava plant (Piper methysticum). It exhibits anticancer, anti-inflammatory and antimalarial properties. Due to its therapeutic potential, flavokawain B holds promise for the treatment of many diseases. However, due to its poor bioavailability and low aqueous solubility, its application remains limited. The attachment of a sugar unit impacts the stability and solubility of flavonoids and often determines their bioavailability and bioactivity. Biotransformation is an environmentally friendly way to improve the properties of compounds, for example, to increase their hydrophilicity and thus affect their bioavailability. Recent studies proved that entomopathogenic filamentous fungi from the genera Isaria and Beauveria can perform O-methylglycosylation of hydroxyflavonoids or O-demethylation and hydroxylation of selected chalcones and flavones. RESULTS In the present study, we examined the ability of entomopathogenic filamentous fungal strains of Beauveria bassiana, Beauveria caledonica, Isaria farinosa, Isaria fumosorosea, and Isaria tenuipes to transform flavokawain B into its glycosylated derivatives. The main process occurring during the reaction is O-demethylation and/or hydroxylation followed by 4-O-methylglycosylation. The substrate used was characterized by low susceptibility to transformations compared to our previously described transformations of flavones and chalcones in the cultures of the tested strains. However, in the culture of the B. bassiana KCh J1.5 and BBT, Metarhizium robertsii MU4, and I. tenuipes MU35, the expected methylglycosides were obtained with high yields. Cheminformatic analyses indicated altered physicochemical and pharmacokinetic properties in the derivatives compared to flavokawain B. Pharmacological predictions suggested potential anticarcinogenic activity, caspase 3 stimulation, and antileishmanial effects. CONCLUSIONS In summary, the study provided valuable insights into the enzymatic transformations of flavokawain B by entomopathogenic filamentous fungi, elucidating the structural modifications and predicting potential pharmacological activities of the obtained derivatives. The findings contribute to the understanding of the biocatalytic capabilities of these microbial cultures and the potential therapeutic applications of the modified flavokawain B derivatives.
Collapse
Affiliation(s)
- Paweł Chlipała
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland.
| | - Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland
| | - Monika Urbaniak
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Strzeszyńska 34, 60-479, Poland
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland
| | - Łukasz Stępień
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Strzeszyńska 34, 60-479, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Norwida 25, 50-375, Poland.
| |
Collapse
|
3
|
Wei Z, Gu X, Zhang J, Chen Y, Jiang T, Hu D, Miao M, Zhou H, Cheng R, Teichmann AT, Yang Y. Beneficial biological effects of Flavokawain A, a chalcone constituent from kava, on surgically induced endometriosis rat model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116896. [PMID: 37437790 DOI: 10.1016/j.jep.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shrub kava has long been grown and utilized, primarily in the South Pacific region, for ceremonial, religious, and social occasions. It has been used as a pain reliever and muscle relaxant in medicinal practices from the eighteenth century. Interestingly, relatively low incidence of lung cancer may attribute to the high consumption of kava products in this region. AIM OF THE STUDY Kava extracts were used to produce the kava chalcones Flavokawain A, B and C, which have a variety of bioactivities. In the present study, we show that Flavokawain A has positive effects on endometriosis. MATERIALS AND METHODS The endometriosis rat model was surgically induced by the autologous transplantation of endometrial tissue. Rats were evaluated for clinical ratings and lesion volume following a 6-week Flavokawain A therapy. Peritoneal fluid and blood samples were taken and ELISA assay was used to measure the cytokines and chemokines levels. Transcriptional and expression levels of Akt, PI3K, NF-kB, iNOS, Bcl-2, Bax and caspase-3 were evaluated by Western blotting and RT-qPCR. Implanted tissue sections of the rats were also analyzed by immunofluorescent and histopathological staining. RESULTS Lesion volumes and adhesion scores were successfully decreased. Blood and peritoneal fluid levels of associated cytokines and chemokines were markedly down-regulated. Besides, Flavokawain A also mediated cell apoptosis of endometrial implants. Additionally, VEGF expression was reduced, which inhibited the angiogenesis process. As for the expression of Akt, p-Akt, PI3K, p-PI3K, and NF-kB in endometriosis lesions, Flavokawain A significantly reduced them. CONCLUSION Flavokawain A has beneficial effects on the surgically induced endometriosis rat model, by reducing inflammation, promoting apoptosis, and decreasing angiogenesis. Our findings suggest that these effects may be mediated through the regulation of PI3K/Akt and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zhe Wei
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, Minato City, Tokyo, 105-8512, Japan
| | - Xia Gu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, PR China
| | - Jinrui Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Yuan Chen
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Tao Jiang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Daifeng Hu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Mengyue Miao
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Hui Zhou
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Rui Cheng
- Chengdu Good Doctor Chaoyue Biomedical Co., Ltd., Chengdu, 610041, PR China.
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| | - Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, PR China.
| |
Collapse
|
4
|
Zhao FY, Kennedy GA, Xu P, Conduit R, Wang YM, Zhang WJ, Wang HR, Yue LP, Huang YL, Wang Y, Xu Y, Fu QQ, Zheng Z. Identifying complementary and alternative medicine recommendations for anxiety treatment and care: a systematic review and critical assessment of comprehensive clinical practice guidelines. Front Psychiatry 2023; 14:1290580. [PMID: 38152358 PMCID: PMC10751921 DOI: 10.3389/fpsyt.2023.1290580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/29/2023] Open
Abstract
Background Clinical practice guidelines (CPGs) are used to guide decision-making, especially regarding complementary and alternative medicine (CAM) therapies that are unfamiliar to orthodox healthcare providers. This systematic review aimed to critically review and summarise CAM recommendations associated with anxiety management included in the existing CPGs. Methods Seven databases, websites of six international guidelines developing institutions, and the National Centre for Complementary and Integrative Health website were systematically searched. Their reporting and methodological quality were evaluated using the Reporting Items for practice Guidelines in Healthcare checklist and the Appraisal of Guidelines for Research and Evaluation (2nd version) instrument, respectively. Results Ten CPGs were included, with reporting rates between 51.4 and 88.6%. Seven of these were of moderate to high methodological quality. Seventeen CAM modalities were implicated, involving phytotherapeutics, mind-body practice, art therapy, and homeopathy. Applied relaxation was included in 70% CPGs, which varied in degree of support for its use in the treatment of generalised anxiety disorder. There were few recommendations for other therapies/products. Light therapy was not recommended for use in generalised anxiety disorder, and St John's wort and mindfulness were not recommended for use in social anxiety disorder in individual guidelines. Recommendations for the applicability of other therapies/products for treating a specific anxiety disorder were commonly graded as "unclear, unambiguous, or uncertain". No CAM recommendations were provided for separation anxiety disorder, specific phobia or selective mutism. Conclusion Available guidelines are limited in providing logically explained graded CAM recommendations for anxiety treatment and care. A lack of high-quality evidence and multidisciplinary consultation during the guideline development are two major reasons. High quality and reliable clinical evidence and the engagement of a range of interdisciplinary stakeholders are needed for future CPG development and updating. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022373694, identifier CRD42022373694.
Collapse
Affiliation(s)
- Fei-Yi Zhao
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gerard A. Kennedy
- Institute of Health and Wellbeing, Federation University, Mount Helen, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Institute for Breathing and Sleep, Austin Health, Heidelberg, VIC, Australia
| | - Peijie Xu
- School of Computing Technologies, RMIT University, Melbourne, VIC, Australia
| | - Russell Conduit
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Yan-Mei Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Jing Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui-Ru Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Ping Yue
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| | - Yu-Ling Huang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Xu
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| | - Qiang-Qiang Fu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Zheng
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
5
|
Savage K, Sarris J, Hughes M, Bousman CA, Rossell S, Scholey A, Stough C, Suo C. Neuroimaging Insights: Kava's ( Piper methysticum) Effect on Dorsal Anterior Cingulate Cortex GABA in Generalized Anxiety Disorder. Nutrients 2023; 15:4586. [PMID: 37960239 PMCID: PMC10649338 DOI: 10.3390/nu15214586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Generalised Anxiety Disorder (GAD) is a prevalent, chronic mental health disorder. The measurement of regional brain gamma-aminobutyric acid (GABA) offers insight into its role in anxiety and is a potential biomarker for treatment response. Research literature suggests Piper methysticum (Kava) is efficacious as an anxiety treatment, but no study has assessed its effects on central GABA levels. This study investigated dorsal anterior cingulate (dACC) GABA levels in 37 adult participants with GAD. GABA was measured using proton magnetic resonance spectroscopy (1H-MRS) at baseline and following an eight-week administration of Kava (standardised to 120 mg kavalactones twice daily) (n = 20) or placebo (n = 17). This study was part of the Kava for the Treatment of GAD (KGAD; ClinicalTrials.gov: NCT02219880), a 16-week intervention study. Compared with the placebo group, the Kava group had a significant reduction in dACC GABA (p = 0.049) at eight weeks. Baseline anxiety scores on the HAM-A were positively correlated with GABA levels but were not significantly related to treatment. Central GABA reductions following Kava treatment may signal an inhibitory effect, which, if considered efficacious, suggests that GABA levels are modulated by Kava, independent of reported anxiety symptoms. dACC GABA patterns suggest a functional role of higher levels in clinical anxiety but warrants further research for symptom benefit. Findings suggest that dACC GABA levels previously un-examined in GAD could serve as a biomarker for diagnosis and treatment response.
Collapse
Affiliation(s)
- Karen Savage
- Centre for Human Psychopharmacology, Swinburne University of Technology, 427-451 Burwood Road, Melbourne 3122, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne University, Melbourne 3121, Australia
| | - Jerome Sarris
- Florey Institute of Neuroscience and Mental Health, Melbourne University, Melbourne 3121, Australia
- NICM Health Research Institute, Western Sydney University, Sydney 2751, Australia
| | - Matthew Hughes
- Centre for Mental Health, Swinburne University of Technology, Melbourne 3122, Australia
| | - Chad A. Bousman
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, and Community Health Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne 3122, Australia
- Mental Health, St Vincent’s Hospital Melbourne, Melbourne 3065, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, 427-451 Burwood Road, Melbourne 3122, Australia
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne 3168, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, 427-451 Burwood Road, Melbourne 3122, Australia
| | - Chao Suo
- Brain Park, Turner Institute of Brain and Mind, Monash University, Melbourne 3800, Australia
| |
Collapse
|
6
|
Pont-Fernandez S, Kheyfets M, Rogers JM, Smith KE, Epstein DH. Kava ( Piper methysticum) in the United States: the quiet rise of a substance with often subtle effects. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:85-96. [PMID: 36410029 DOI: 10.1080/00952990.2022.2140292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Piper methysticum, commonly called kava, has long been consumed in beverage form in the Pacific Islands. Kava use in the US has slowly increased since the 1990s, but is not assessed in major epidemiological surveys.Objectives: To analyze social-media posts about kava from current, past, and prospective users, for motivations, patterns of co-use, and effects.Methods: Text from Reddit posts, and accompanying metadata, were collected and thematically coded by two independent raters.Results: 423 posts were collected, spanning January 2006 through December 2021. Of the 1,211 thematic codes applied, 1,098 (90. 7%) were concordant. Motivations for use bifurcated into self-treatment (for psychiatric or physical health conditions) and recreation; these were not mutually exclusive. Kava was rarely considered strongly euphoriant, but was valued as an anxiolytic. Kava was frequently used with other substances, most commonly kratom. Kava was used at lower doses for self-treatment than for other purposes (pseudo-R2 = 0.11). Undesirable effects (gastrointestinal upset, fatigue) were mentioned, though less often than benefits. Hepatotoxicity, reported elsewhere as a rare, non-dose-related risk, was disputed on the basis of its not having been experienced by those posting.Conclusion: Kava appears to be conceptualized among Reddit posters as an anxiolytic with few risks or adverse effects. As it grows in popularity, especially among people who use other drugs that are more liable to misuse or addiction, it should be assessed in probability samples (i.e. in the major national drug surveys) and clinical practice for its risks, potential benefits, and possible drug-drug interactions.
Collapse
Affiliation(s)
- Salma Pont-Fernandez
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Marina Kheyfets
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Jeffrey M Rogers
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Kirsten E Smith
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - David H Epstein
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
7
|
Le TT, McGrath SR, Fasinu PS. Herb-drug Interactions in Neuropsychiatric Pharmacotherapy - A Review of Clinically Relevant Findings. Curr Neuropharmacol 2022; 20:1736-1751. [PMID: 34370637 PMCID: PMC9881059 DOI: 10.2174/1570159x19666210809100357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022] Open
Abstract
The management of neuropsychiatric disorders relies heavily on pharmacotherapy. The use of herbal products as complimentary medicine, often concomitantly, is common among patients taking prescription neuropsychiatric drugs. Herb-drug interaction, a clinical consequence of this practice, may jeopardize the success of pharmacotherapy in neuropsychiatry. Besides the wellknown ability of phytochemicals to inhibit and/or induce drug-metabolizing enzymes and transport proteins, several phytoconstituents are capable of exerting pharmacological effects on the central nervous system. This study reviewed the relevant literature and identified 13 commonly used herbal products - celery, echinacea, ginkgo, ginseng, hydroxycut, kava, kratom, moringa, piperine, rhodiola, St. John's wort, terminalia/commiphora ayurvedic mixture and valerian - which have shown clinically relevant interactions with prescription drugs used in the management of neuropsychiatric disorders. The consequent pharmacokinetic and pharmacodynamic interactions with orthodox medications often result in deleterious clinical consequences. This underscores the importance of caution in herb-drug co-medication.
Collapse
Affiliation(s)
- Tram T. Le
- School of Pharmacy, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, 27501, USA;
| | - Sarah R. McGrath
- School of Pharmacy, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC, 27501, USA;
| | - Pius S. Fasinu
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA,Address correspondence to this author at the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Tel/Fax: +1 205 934 4565; E-mail:
| |
Collapse
|
8
|
An Updated Review on the Psychoactive, Toxic and Anticancer Properties of Kava. J Clin Med 2022; 11:jcm11144039. [PMID: 35887801 PMCID: PMC9315573 DOI: 10.3390/jcm11144039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
Kava (Piper methysticum) has been widely consumed for many years in the South Pacific Islands and displays psychoactive properties, especially soothing and calming effects. This plant has been used in Western countries as a natural anxiolytic in recent decades. Kava has also been used to treat symptoms associated with depression, menopause, insomnia, and convulsions, among others. Along with its putative beneficial health effects, kava has been associated with liver injury and other toxic effects, including skin toxicity in heavy consumers, possibly related to its metabolic profile or interference in the metabolism of other xenobiotics. Kava extracts and kavalactones generally displayed negative results in genetic toxicology assays although there is sufficient evidence for carcinogenicity in experimental animals, most likely through a non-genotoxic mode of action. Nevertheless, the chemotherapeutic/chemopreventive potential of kava against cancer has also been suggested. Both in vitro and in vivo studies have evaluated the effects of flavokavains, kavalactones and/or kava extracts in different cancer models, showing the induction of apoptosis, cell cycle arrest and other antiproliferative effects in several types of cancer, including breast, prostate, bladder, and lung. Overall, in this scoping review, several aspects of kava efficacy and safety are discussed and some pertinent issues related to kava consumption are identified.
Collapse
|
9
|
Goldin D, Salani D. Kalm Down With Kava: What Clinicians Need to Know. J Psychosoc Nurs Ment Health Serv 2022; 60:17-24. [DOI: 10.3928/02793695-20220523-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Vale Junior EPDO, Ferreira MVR, Fernandes BCS, Silva TTDA, Martins FA, Almeida PMDE. Protective effect of kavain in meristematic cells of Allium cepa L. AN ACAD BRAS CIENC 2022; 94:e20200520. [PMID: 35703688 DOI: 10.1590/0001-3765202220200520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/21/2020] [Indexed: 05/10/2025] Open
Abstract
Kavain is one of the main kavalactones of Piper methysticum (Piperaceae) with anxiolytic, analgesic, and antioxidant activities. Therefore, the aim of the study was to evaluate the cytotoxic, mutagenic, and antimutagenic potential of kavain in Allium cepa cells. Roots of A. cepa were transferred to the negative (2% acetone) and positive (10 µg/mL of Methylmethanesulfonate, MMS) controls and to the concentrations of kavain (32, 64 and 128 µg/mL) for 48 h. A total of 5,000 meristematic cells were analyzed under an optical microscope to determine the mitotic index, mean number of chromosomal alterations and percentage of damage reduction. Data were analyzed by Kruskal-Wallis test (p <0.05). All concentrations of kavain were not cytotoxic and did not show significant chromosomal changes when compared to 2% acetone. Kavain showed a cytoprotective effect in the pre (128 μg/mL) and in the post-treatment (32 and 64 μg/mL) and reduced damage against the mutagenic action of MMS in all concentrations of the pre and simultaneous and at the highest of post (128 μg/mL). Kavain promoted a significant reduction in micronuclei, nuclear buds and chromosomal losses in relation to MMS. The observed data indicate the importance of kavain for the inhibition of damage and chemoprevention.
Collapse
Affiliation(s)
- Erasmo P DO Vale Junior
- Universidade Estadual do Piauí, Centro de Ciências da Natureza (CCN), Laboratório de Genética, Rua João Cabral, 2231, 64002-150 Teresina PI, Brazil
| | - Marcos Vitor R Ferreira
- Universidade Estadual do Piauí, Centro de Ciências da Natureza (CCN), Laboratório de Genética, Rua João Cabral, 2231, 64002-150 Teresina PI, Brazil
| | - Bianca Cristina S Fernandes
- Universidade Estadual do Piauí, Centro de Ciências da Natureza (CCN), Laboratório de Genética, Rua João Cabral, 2231, 64002-150 Teresina PI, Brazil
| | - Thais T DA Silva
- Universidade Estadual do Piauí, Centro de Ciências da Natureza (CCN), Laboratório de Genética, Rua João Cabral, 2231, 64002-150 Teresina PI, Brazil
| | - Francielle Alline Martins
- Universidade Estadual do Piauí, Centro de Ciências da Natureza (CCN), Laboratório de Genética, Rua João Cabral, 2231, 64002-150 Teresina PI, Brazil
| | - Pedro Marcos DE Almeida
- Universidade Estadual do Piauí (UESPI/FACIME), Centro de Ciências da Saúde (CCS), Departamento de Genética, Laboratório de Genética. Rua Olavo Bilac, 2335, 64049-570 Teresina PI, Brazil
| |
Collapse
|
11
|
Aporosa S'A, Ballard H, Pandey R, McCarthy MJ. The impact of traditional kava (Piper methysticum) use on cognition: Implications for driver fitness. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115080. [PMID: 35151837 DOI: 10.1016/j.jep.2022.115080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Few studies have examined the impact of kava (Piper methysticum G. Forst. f.) on cognition when consumed at traditionally influenced volumes; most have used modified tablet-form kava, with the results erroneously overlaid on naturalistic kava consumption. Kava is a culturally significant Pacific drink with similar effects to Benzodiazepine. Traditionally influenced kava use sessions last, on average, 6 h in which attendees consume 3.6 L (7.6 pints) each of beverage kava, with some then driving home. AIM OF THE STUDY This study evaluated the impact of traditionally influenced kava consumption on participants' neurological functioning. Testing occurred before, throughout and immediately following a typical faikava (kava-drinking) session, with the data then used to assess kava's potential impacts on driver functionality and safety. METHODS Kava using participants (n = 20) were assessed with the Brain Gauge following and during a traditionally influenced kava session and compared against control (n = 19). Brain Gauge measures slight changes to six cognitive faculties: Speed, Accuracy, Temporal Order Judgement (TOJ), Timing Perception, Plasticity, and Focus. RESULTS AND CONCLUSIONS Comparisons of the within-cohort data showed a positive change in the Focus for the active group at the final testing point following 6-h of kava consumption. Between-cohort data showed a significant level of regression in the active participants' TOJ at the final testing point. No statistically significant level of impairment for the other five cognitive domains was detected. Although the results suggest that kava when consumed at traditional levels may have a slight positive effect on Focus, this result needs to be treated with caution, given the significant level of impairment noted at the final testing point for participants' TOJ. Temporal Order Judgement is associated with executive function, including decision making, behavioral control and information processing, all crucial aspects of driver safety. This is a new finding and suggests kava effects following traditional use differ from those caused by other substances commonly used for social or recreational purposes, such as cannabis, alcohol and other euphoric substances, and may impair driver safety, although again, in a different way to other commonly consumed recreational substances. The findings also add quantitative understanding to ethnographic data on kava effects, suggesting the often-used term 'kava intoxication' is misleading and incorrect.
Collapse
Affiliation(s)
- S 'Apo' Aporosa
- Te Huataki Waiora School of Health and Te Kura Whatu Oho Mauri School of Psychology, University of Waikato, Aotearoa New Zealand.
| | - Hakau Ballard
- School of Computing & Mathematical Sciences, University of Waikato, Aotearoa New Zealand
| | - Rishi Pandey
- Forensic Specialised Analytical Services, Institute of Environmental Science and Research Limited (ESR), Aotearoa New Zealand
| | - Mary Jane McCarthy
- Forensic Specialised Analytical Services, Institute of Environmental Science and Research Limited (ESR), Aotearoa New Zealand
| |
Collapse
|
12
|
Cheng C, Zhao S, Gu YL, Pang J, Zhao Y. Characterization and identification of the metabolites of dihydromethysticin by ultra-high-performance liquid chromatography orbitrap high-resolution mass spectrometry. J Sep Sci 2022; 45:2914-2923. [PMID: 35689602 DOI: 10.1002/jssc.202200250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022]
Abstract
Dihydromethysticin, a natural component from Piper methysticum Forst, has been reported to display pharmacological effects in mental disorders and some malignant tumors. However, the metabolism of this component remained unknown. The goal of this work was conducted to discover the metabolic profiles of dihydromethysticin. The in vitro incubation was performed by incubating dihydromethysticin with rat, monkey, and human liver microsomes and hepatocytes. An analytical assay of ultra-high performance liquid chromatography combined with Orbitrap high-resolution mass spectrometry was utilized to detect and identify the metabolites. With high resolution mass spectrometric determination, the accurate mass, elemental composition, and product ions of the metabolites were determined, which enabled structural characterization to become easy. Under the present conditions, four phase-I metabolites, as well as six phase-II metabolites, were detected and their tentative structures were characterized by mass spectra. M4 was found as the most abundant metabolite both in liver microsomes and hepatocytes. Cytochrome P450 1A2, 2C9, and 3A4 contributed to the formation of this metabolite by using human recombinant P450 enzymes. M4 can be oxidized into reactive ortho-quinone intermediate followed by conjugating with glutathione. M4 was also subject to glucuronidation (M1 and M2) and methylation (M5). Demethylenation, oxidation, hydroxylation, glucuronidation, glutathionylation, and methylation were the primary metabolic pathways of dihydromethysticin. This study provides in vitro metabolism data of dihydromethysticin, which is indispensable for understanding the disposition of this compound.
Collapse
Affiliation(s)
- Cong Cheng
- Department of Pharmacy, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, P. R. China
| | - Shanshan Zhao
- Jiangsu Wanbang Pharmaceutical Technology Co. Ltd, P. R. China
| | - Yong-Li Gu
- Department of Pharmacy, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, P. R. China
| | - Jie Pang
- Department of Pharmacy, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, P. R. China
| | - Yanyun Zhao
- Department of Pharmacy, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, P. R. China
| |
Collapse
|
13
|
Zhang W, Yan Y, Wu Y, Yang H, Zhu P, Yan F, Zhao R, Tian P, Wang T, Fan Q, Su Z. Medicinal herbs for the treatment of anxiety: a systematic review and network meta-analysis. Pharmacol Res 2022; 179:106204. [DOI: 10.1016/j.phrs.2022.106204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
|
14
|
Manto MU. Cerebellotoxic Agents. HANDBOOK OF THE CEREBELLUM AND CEREBELLAR DISORDERS 2022:2363-2408. [DOI: 10.1007/978-3-030-23810-0_96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Anticancer effects of 7,8-dihydromethysticin in human leukemia cells are mediated via cell-cycle dysregulation, inhibition of cell migration and invasion and targeting JAK/STAT pathway. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:645-655. [PMID: 36651559 DOI: 10.2478/acph-2021-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 01/19/2023]
Abstract
The main focus of this research work was to study the anti-cancer properties of 7,8-dihydromethysticin against HL-60 leukemia cells. Investigations were also performed to check its impact on the phases of the cell cycle, cell migration and invasion, JAK/STAT signalling pathway and intracellular mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). Cell proliferation was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and effects on colony formation were examined via clonogenic assay. Flow cytometry and Western blott analysis were performed to investigate the distribution of cell cycle phases. Flow cytometric analysis was performed for the examination of MMP and ROS production. The effect on JAK/STAT signalling pathway was examined through Western blot analysis. Results depicted that 7,8-dihydromethysticin induced concentration- as well as time-dependent inhibition of cell proliferation in leukemia HL-60 cells. Clonogenic assay indicated potential suppression in leukemia HL-60 cell colonies. The 7,8-dihydromethysticin molecule also caused cell cycle arrest at G2/M-phase along with concentration-dependent inhibition of cyclin B1, D1 and E. ROS and MMP measurements indicated significant ROS enhancement and MMP suppression with increasing 7,8-dihydromethysticin concentrations. Additionally, 7,8-dihydromethysticin led to remarkable dose-reliant inhibition of cell invasion as well as cell migration. Therefore, 7,8-dihydromethysticin should be considered a valuable candidate for leukemia research and chemoprevention.
Collapse
|
16
|
Pinto LC, Mesquita FP, Barreto LH, Souza PFN, Ramos INF, Pinto AVU, Soares BM, da Silva MN, Burbano RMR, Montenegro RC. Anticancer potential of limonoids from Swietenia macrophylla: Genotoxic, antiproliferative and proapoptotic effects towards human colorectal cancer. Life Sci 2021; 285:119949. [PMID: 34543640 DOI: 10.1016/j.lfs.2021.119949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022]
Abstract
AIMS Swietenia macrophylla have been considered for the treatment of various diseases, including anticancer activity. This study aimed to investigate the anticancer activity of S. macrophylla leaves extract and its isolated compound towards human colorectal cancer cell line. MAIN METHODS Hexanic extract of S. macrophylla leaves demonstrated relevant cytotoxicity only against colon cancer cell line HCT116. KEY FINDINGS Our results showed significant DNA damage and apoptosis after treatment with the hexanic extract of S. macrophylla. Moreover, no toxicity was noticed for the animal model. The isolated compound limonoid L1 showed potent cytotoxicity against cancer cell lines with IC50 at 55.87 μg mL-1. Limonoid L1 did not trigger any cell membrane rupture in the mice erythrocytes suggesting no toxicity. The antiproliferative effect of L1 was confirmed in colorectal cancer cells by clonogenic assay, inducing G2/M arrest, apoptosis, and DNA damage in cancer-type cells. SIGNIFICANCE L1 reduced BCL2 and increased ATM, CHK2, TP53, ARF, CDK1, CDKN1A, and CASP3 in the colorectal cancer cell line. These findings suggest that limonoid L1 isolated from S. macrophylla can be a promising anticancer agent in managing colorectal cancer.
Collapse
Affiliation(s)
- Laine C Pinto
- Laboratory of Experimental Neuropathology, Biological Science Institute, Federal University of Pará, Mundurucus street, 4487, Guamá, Belém, Brazil
| | - Felipe P Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, Brazil
| | - Leilane H Barreto
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Pedro F N Souza
- Collaborating professor of Biochemistry and Molecular Biology Graduate Program at the Department of Biochemistry and Molecular Biology, Federal University of Ceará
| | - Ingryd N F Ramos
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Adrielly V U Pinto
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Bruno M Soares
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Milton N da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Rommel M R Burbano
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Raquel C Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, Brazil.
| |
Collapse
|
17
|
Krum BN, de Freitas CM, Busanello A, Schaffer LF, Fachinetto R. Ex vivo and in vitro inhibitory potential of Kava extract on monoamine oxidase B activity in mice. J Tradit Complement Med 2021; 12:115-122. [PMID: 35528470 PMCID: PMC9072822 DOI: 10.1016/j.jtcme.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/13/2023] Open
Abstract
Background and aim Experimental procedure Results Conclusion Kava extract confirmed anxiolytic-like effect in mice. Kava extract reduced MAO-B activity in cortex and in the region containing substantia nigra in mice. Kava extract inhibited reversibly the MAO-B activity in vitro.
Collapse
|
18
|
Garakani A, Murrough JW, Freire RC, Thom RP, Larkin K, Buono FD, Iosifescu DV. Pharmacotherapy of Anxiety Disorders: Current and Emerging Treatment Options. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2021; 19:222-242. [PMID: 34690588 PMCID: PMC8475923 DOI: 10.1176/appi.focus.19203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
(Appeared originally in Frontiers in Psychiatry 2020 Dec 23; 11:595584)
Collapse
|
19
|
Abstract
AbstractKavalactones are classes of α-pyrone and 5,6-dihydropyrone derivatives showing various biological activities, and numerous approaches have been reported for the preparation of these molecules. In this review, we discuss the different synthetic approaches towards these naturally occurring lactones, in both racemic and enantiomerically pure forms, that have been reported in the literature to date. It is hoped that this review will assist researchers in the development of additional and efficient synthetic routes towards kavalactones. 1 Introduction2 Synthetic Approaches for the Preparation of Kavalactones3 Conclusion
Collapse
|
20
|
Manto MU. Cerebellotoxic Agents. HANDBOOK OF THE CEREBELLUM AND CEREBELLAR DISORDERS 2021:1-46. [DOI: 10.1007/978-3-319-97911-3_96-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 09/02/2023]
|
21
|
Bian T, Corral P, Wang Y, Botello J, Kingston R, Daniels T, Salloum RG, Johnston E, Huo Z, Lu J, Liu AC, Xing C. Kava as a Clinical Nutrient: Promises and Challenges. Nutrients 2020; 12:E3044. [PMID: 33027883 PMCID: PMC7600512 DOI: 10.3390/nu12103044] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Kava beverages are typically prepared from the root of Piper methysticum. They have been consumed among Pacific Islanders for centuries. Kava extract preparations were once used as herbal drugs to treat anxiety in Europe. Kava is also marketed as a dietary supplement in the U.S. and is gaining popularity as a recreational drink in Western countries. Recent studies suggest that kava and its key phytochemicals have anti-inflammatory and anticancer effects, in addition to the well-documented neurological benefits. While its beneficial effects are widely recognized, rare hepatotoxicity had been associated with use of certain kava preparations, but there are no validations nor consistent mechanisms. Major challenges lie in the diversity of kava products and the lack of standardization, which has produced an unmet need for quality initiatives. This review aims to provide the scientific community and consumers, as well as regulatory agencies, with a broad overview on kava use and its related research. We first provide a historical background for its different uses and then discuss the current state of the research, including its chemical composition, possible mechanisms of action, and its therapeutic potential in treating inflammatory and neurological conditions, as well as cancer. We then discuss the challenges associated with kava use and research, focusing on the need for the detailed characterization of kava components and associated risks such as its reported hepatotoxicity. Lastly, given its growing popularity in clinical and recreational use, we emphasize the urgent need for quality control and quality assurance of kava products, pharmacokinetics, absorption, distribution, metabolism, excretion, and foundational pharmacology. These are essential in order to inform research into the molecular targets, cellular mechanisms, and creative use of early stage human clinical trials for designer kava modalities to inform and guide the design and execution of future randomized placebo controlled trials to maximize kava's clinical efficacy and to minimize its risks.
Collapse
Affiliation(s)
- Tengfei Bian
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| | - Pedro Corral
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| | - Yuzhi Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| | - Jordy Botello
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| | - Rick Kingston
- College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Tyler Daniels
- Thorne Research Inc., Industrial Road, 620 Omni Dr, Summerville, SC 29483, USA;
| | - Ramzi G. Salloum
- Department of Health Outcome & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Edward Johnston
- The Association for Hawaiian Awa (kava), Pepe’ekeo, HI 96783, USA;
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Junxuan Lu
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Andrew C. Liu
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| |
Collapse
|
22
|
Evaluation of Anti-Convulsive Properties of Aqueous Kava Extract on Zebrafish Using the PTZ-Induced Seizure Model. Brain Sci 2020; 10:brainsci10080541. [PMID: 32796575 PMCID: PMC7463627 DOI: 10.3390/brainsci10080541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022] Open
Abstract
Kava roots have been extensively studied in clinical trials as potential candidate anti-anxiety drugs. However, anti-convulsive properties of various tissues of stems of Kava have not been reported to date. The objective of the study was to evaluate the anti-convulsive potential of aqueous extracts prepared from specific tissues of Kava (Piper methysticum) stems in zebrafish, using the PTZ-induced seizure model. The potency of each extract was compared in terms of the intensity of seizure scores and onset time after pre-treating the zebrafish before the PTZ challenge. The results indicate that aqueous extract of Kava stems without peel after 45 min of pre-treatment exhibited anti-convulsive potential at the dose of 50 mg/L. This study provides evidence to the anti-convulsive properties of peeled Kava stems and its potential for investigation and design of candidate anti-convulsive drugs.
Collapse
|
23
|
Adnan M, Chy MNU, Kamal AM, Chowdhury KAA, Rahman MA, Reza ASMA, Moniruzzaman M, Rony SR, Nasrin MS, Azad MOK, Park CH, Lim YS, Cho DH. Intervention in Neuropsychiatric Disorders by Suppressing Inflammatory and Oxidative Stress Signal and Exploration of In Silico Studies for Potential Lead Compounds from Holigarna caustica (Dennst.) Oken leaves. Biomolecules 2020; 10:E561. [PMID: 32268590 PMCID: PMC7226598 DOI: 10.3390/biom10040561] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Holigarna caustica (Dennst.), a popular plant used in folk medicine in Bangladesh, is often used by the local folk practitioner to treat a variety of chronic diseases. The present research is an attempt to find out an innovative therapeutic prospect for the management of neuropsychiatric disorders. The methanol extract of H. caustica leaves (MEHC) were utilized on various behavioral tests for assessing anxiolytic, anti-depressant, and anti-inflammatory activities. The antioxidant potentials and quantitative phytochemicals were evaluated through spectrophotometric methods. Results revealed that treatment of MEHC (200 and 400 mg/kg) significantly reduced anxiety like behaviors in mice, particularly, 400 mg/kg efficiently improved % of entries and time spent (p < 0.05) in the open arms in elevated plus maze test, whereas, superior head dipping tendency (p < 0.05) was observed in hole-board test. In contrast, mice treated with 200 mg/kg revealed better anxiolytic effect in both open field and hole-cross tests. During antidepressant evaluation, mice administrated with MEHC exhibited active behaviors (swimming and struggling) in forced swimming and tail suspension tests. In parallel, MEHC manifested a noteworthy (p < 0.001) suppression of inflammatory response induced by histamine. The MEHC also showed strong antioxidant activities in 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) (IC50: 57.64 μg/mL) scavenging, H2O2 (IC50: 51.60 μg/mL) scavenging, and ferric reducing power assay. The levels of total phenol, flavonoid, flavonol, condensed tannin, and antioxidant were estimated as higher in MEHC. Moreover, 11 compounds were documented as bioactive, displayed good binding affinities to potassium channel receptor, human serotonin receptor, cyclooxygenase (COX-1 and 2), and xanthine oxidoreductase enzyme targets in molecular docking experiments. Furthermore, ADME/T and Prediction of Activity Spectra for Substances (PASS) analyses exposed their drug-likeness, nontoxic upon consumption, and likely pharmacological actions. Overall, the H. caustica is potentially bioactive as evident by in vivo, in vitro, and computational analysis. Our findings support the folkloric value of this plant, which may provide a potential source towards developing drug leads.
Collapse
Affiliation(s)
- Md. Adnan
- Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (M.O.K.A.); (C.H.P.)
| | - Md. Nazim Uddin Chy
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.N.U.C.); (K.A.A.C.); (A.S.M.A.R.); (M.S.N.)
- Drug Discovery, GUSTO A Research Group, Chittagong 4000, Bangladesh
| | - A.T.M. Mostafa Kamal
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.N.U.C.); (K.A.A.C.); (A.S.M.A.R.); (M.S.N.)
| | - Kazi Asfak Ahmed Chowdhury
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.N.U.C.); (K.A.A.C.); (A.S.M.A.R.); (M.S.N.)
| | - Md. Atiar Rahman
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
| | - A. S. M. Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.N.U.C.); (K.A.A.C.); (A.S.M.A.R.); (M.S.N.)
| | - Md. Moniruzzaman
- Designated Reference Institute for Chemical Measurement (DRiCM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka 1205, Bangladesh;
| | - Satyajit Roy Rony
- BCSIR Laboratories, Chittagong, Bangladesh Council of Scientific & Industrial Research (BCSIR), Chittagong 4220, Bangladesh;
| | - Mst. Samima Nasrin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.N.U.C.); (K.A.A.C.); (A.S.M.A.R.); (M.S.N.)
| | - Md Obyedul Kalam Azad
- Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (M.O.K.A.); (C.H.P.)
| | - Cheol Ho Park
- Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (M.O.K.A.); (C.H.P.)
| | - Young Seok Lim
- Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (M.O.K.A.); (C.H.P.)
| | - Dong Ha Cho
- Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Korea; (M.A.); (M.O.K.A.); (C.H.P.)
| |
Collapse
|
24
|
Yang Y, Wei Z, Teichmann AT, Wieland FH, Wang A, Lei X, Zhu Y, Yin J, Fan T, Zhou L, Wang C, Chen L. Development of a novel nitric oxide (NO) production inhibitor with potential therapeutic effect on chronic inflammation. Eur J Med Chem 2020; 193:112216. [PMID: 32208222 DOI: 10.1016/j.ejmech.2020.112216] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 02/08/2023]
Abstract
Inflammation is a complex biological response to stimuli. Activated macrophages induced excessively release of pro-inflammatory cytokines and mediators such as endogenous radical nitric oxide (NO) play a significant role in the progression of multiple inflammatory diseases. Both natural and synthetic chalcones possess a wide range of bioactivities. In this work, thirty-nine chalcones and three related compounds, including several novel ones, based on bioactive kava chalcones were designed, synthesized and their inhibitory effects on NO production in RAW 264.7 cells were evaluated. The novel compound (E)-1-(2'-hydroxy-4',6'-dimethoxyphenyl)-3-(3-methoxy-4-(3-morpholinopropoxy)phenyl)prop-2-en-1-one (53) exhibited a better inhibitory activity (84.0%) on NO production at 10 μM (IC50 = 6.4 μM) with the lowest cytotoxicity (IC50 > 80 μM) among the tested compounds. Besides, western blot analysis indicated that compound 53 was a potent down-regulator of inducible nitric oxide synthase (iNOS) protein. Docking study revealed that compound 53 also can dock into the active site of iNOS. Furthermore, at the dose of 10 mg/kg/day, compound 53 could both significantly suppress the progression of inflammation on collagen-induced arthritis (CIA) and adjuvant-induced arthritis (AIA) models. In addition, the structure-activity relationship (SAR) of the kava chalcones based analogs was also depicted.
Collapse
Affiliation(s)
- Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, PR China; Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Zhe Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, PR China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Frank Heinrich Wieland
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Amu Wang
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Xiangui Lei
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yue Zhu
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Jinxiang Yin
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Tiantian Fan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Li Zhou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Chao Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, PR China.
| |
Collapse
|
25
|
A new method for vibration-based neurophenotyping of zebrafish. J Neurosci Methods 2020; 333:108563. [DOI: 10.1016/j.jneumeth.2019.108563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
|
26
|
Vázquez-Amaya LY, Quintero L, Rodrı Guez-Molina B, Sartillo-Piscil F. Transition-Metal-Free Total Synthesis and Revision of the Absolute Configuration of Pipermethystine. J Org Chem 2020; 85:3949-3953. [PMID: 31994875 DOI: 10.1021/acs.joc.9b03218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Starting from 3-hydroxy piperidines, a novel transition-metal-free strategy to 5-hydroxy-5,6-dihydro-2(1H)pyridones is reported. This unprecedented approach, which provides a practical, economical, and ecofriendly alternative to either the classical ring-closing metathesis of N-homoallyl-unsaturated amides or the dehydrogenation of amides, occurs by means of a triple C-H functionalization of three unreactive piperidine sp3 carbons. The completion of the total synthesis revealed that the natural levo-isomer possesses the R absolute configuration, not S.
Collapse
Affiliation(s)
- Laura Y Vázquez-Amaya
- Centro de Investigación de la Facultad de Ciencias Quı́micas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, Puebla 72570, México
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Quı́micas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, Puebla 72570, México
| | - Braulio Rodrı Guez-Molina
- Instituto de Quı́mica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Quı́micas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, Puebla 72570, México
| |
Collapse
|
27
|
Volgin A, Yang L, Amstislavskaya T, Demin K, Wang D, Yan D, Wang J, Wang M, Alpyshov E, Hu G, Serikuly N, Shevyrin V, Wappler-Guzzetta E, de Abreu M, Kalueff A. DARK Classics in Chemical Neuroscience: Kava. ACS Chem Neurosci 2020; 11:3893-3904. [PMID: 31904216 DOI: 10.1021/acschemneuro.9b00587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kava (kava kava, Piper methysticum) is a common drug-containing plant in the Pacific islands. Kavalactones, its psychoactive compounds, exert potent central nervous system (CNS) action clinically and in animal models. However, the exact pharmacological profiles and mechanisms of action of kava on the brain and behavior remain poorly understood. Here, we discuss clinical and experimental data on kava psychopharmacology and summarize chemistry and synthesis of kavalactones. We also review its societal impact, drug use and abuse potential, and future perspectives on translational kava research.
Collapse
Affiliation(s)
- Andrey Volgin
- School of Pharmacy, Southwest University, Chongqing 400700, China
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russia
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Tamara Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk 630117, Russia
| | - Konstantin Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg 194156, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Erik Alpyshov
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing 400700, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing 400700, China
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana 70458, United States
| | | | - Edina Wappler-Guzzetta
- Department of Pathology, Loma Linda University Medical Center and School of Medicine, Loma Linda, California 92350, United States
| | - Murilo de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Allan Kalueff
- School of Pharmacy, Southwest University, Chongqing 400700, China
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Ural Federal University, Ekaterinburg 620002, Russia
- Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg 197758, Russia
| |
Collapse
|
28
|
Garakani A, Murrough JW, Freire RC, Thom RP, Larkin K, Buono FD, Iosifescu DV. Pharmacotherapy of Anxiety Disorders: Current and Emerging Treatment Options. Front Psychiatry 2020; 11:595584. [PMID: 33424664 PMCID: PMC7786299 DOI: 10.3389/fpsyt.2020.595584] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Anxiety disorders are the most prevalent psychiatric disorders and a leading cause of disability. While there continues to be expansive research in posttraumatic stress disorder (PTSD), depression and schizophrenia, there is a relative dearth of novel medications under investigation for anxiety disorders. This review's first aim is to summarize current pharmacological treatments (both approved and off-label) for panic disorder (PD), generalized anxiety disorder (GAD), social anxiety disorder (SAD), and specific phobias (SP), including selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), azapirones (e.g., buspirone), mixed antidepressants (e.g., mirtazapine), antipsychotics, antihistamines (e.g., hydroxyzine), alpha- and beta-adrenergic medications (e.g., propranolol, clonidine), and GABAergic medications (benzodiazepines, pregabalin, and gabapentin). Posttraumatic stress disorder and obsessive-compulsive disorder are excluded from this review. Second, we will review novel pharmacotherapeutic agents under investigation for the treatment of anxiety disorders in adults. The pathways and neurotransmitters reviewed include serotonergic agents, glutamate modulators, GABAergic medications, neuropeptides, neurosteroids, alpha- and beta-adrenergic agents, cannabinoids, and natural remedies. The outcome of the review reveals a lack of randomized double-blind placebo- controlled trials for anxiety disorders and few studies comparing novel treatments to existing anxiolytic agents. Although there are some recent randomized controlled trials for novel agents including neuropeptides, glutamatergic agents (such as ketamine and d-cycloserine), and cannabinoids (including cannabidiol) primarily in GAD or SAD, these trials have largely been negative, with only some promise for kava and PH94B (an inhaled neurosteroid). Overall, the progression of current and future psychopharmacology research in anxiety disorders suggests that there needs to be further expansion in research of these novel pathways and larger-scale studies of promising agents with positive results from smaller trials.
Collapse
Affiliation(s)
- Amir Garakani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Silver Hill Hospital, New Canaan, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - James W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rafael C Freire
- Department of Psychiatry and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Robyn P Thom
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kaitlyn Larkin
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Frank D Buono
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dan V Iosifescu
- Clinical Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
29
|
Recent advances in the applications of Wittig reaction in the total synthesis of natural products containing lactone, pyrone, and lactam as a scaffold. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02465-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Firman JW, Belfield SJ, Chen G, Jackson M, Lam FH, Richmond C, Smith J, Steinmetz FP, Cronin MTD. Chemoinformatic Consideration of Novel Psychoactive Substances: Compilation and Preliminary Analysis of a Categorised Dataset. Mol Inform 2019; 38:e1800142. [DOI: 10.1002/minf.201800142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/04/2018] [Indexed: 12/28/2022]
Affiliation(s)
- James W. Firman
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street Liverpool L3 3AF UK
| | - Samuel J. Belfield
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street Liverpool L3 3AF UK
| | - George Chen
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street Liverpool L3 3AF UK
| | - Megan Jackson
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street Liverpool L3 3AF UK
| | - Fai Hou Lam
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street Liverpool L3 3AF UK
| | - Callum Richmond
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street Liverpool L3 3AF UK
| | - James Smith
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street Liverpool L3 3AF UK
| | | | - Mark T. D. Cronin
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores University Byrom Street Liverpool L3 3AF UK
| |
Collapse
|
31
|
Yuan Y, Yang JX, Nie LH, Li BL, Qin XB, Wu JW, Qiu SX. Three new kavalactone dimers from Piper methysticum (kava). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:837-843. [PMID: 28868919 DOI: 10.1080/10286020.2017.1367768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Three new dimeric kavalactones, designated as diyangonins A-C (1-3), along with two known analogs were isolated from the roots of Piper methysticum. Their structures were elucidated by means of extensive analysis of their 1D, 2D NMR, and mass spectroscopic data. All these dimers possess a skeleton featuring a cyclobutane ring connecting two kavalactone units in head-to-tail or head-to-head mode. Compounds 1-5 were evaluated for their cytotoxic activities against human tumor cell lines.
Collapse
Affiliation(s)
- Yao Yuan
- a Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 570650 , China
- b College of Life Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jian-Xiang Yang
- a Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 570650 , China
| | - Ling-Hui Nie
- c College of Traditional Chinese Medicine , Southern Medical University , Guangzhou 510515 , China
| | - Bai-Lin Li
- a Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 570650 , China
- b College of Life Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xu-Bing Qin
- a Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 570650 , China
- b College of Life Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jie-Wei Wu
- a Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 570650 , China
| | - Sheng-Xiang Qiu
- a Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 570650 , China
| |
Collapse
|
32
|
Yamashita H, Hoenerhoff MJ, Shockley KR, Peddada SD, Gerrish KE, Sutton D, Cummings CA, Wang Y, Julie FF, Behl M, Waidyanatha S, Sills RC, Pandiri AR. Reduced Disc Shedding and Phagocytosis of Photoreceptor Outer Segment Contributes to Kava Kava Extract-induced Retinal Degeneration in F344/N Rats. Toxicol Pathol 2018; 46:564-573. [PMID: 29806545 DOI: 10.1177/0192623318778796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There was a significant increase in the incidence of retinal degeneration in F344/N rats chronically exposed to Kava kava extract (KKE) in National Toxicology Program (NTP) bioassay. A retrospective evaluation of these rat retinas indicated a similar spatial and morphological alteration as seen in light-induced retinal degeneration in albino rats. Therefore, it was hypothesized that KKE has a potential to exacerbate the light-induced retinal degeneration. To investigate the early mechanism of retinal degeneration, we conducted a 90-day F344/N rat KKE gavage study at doses of 0 and 1.0 g/kg (dose which induced retinal degeneration in the 2-year NTP rat KKE bioassay). The morphological evaluation indicated reduced number of phagosomes in the retinal pigment epithelium (RPE) of the superior retina. Transcriptomic alterations related to retinal epithelial homeostasis and melatoninergic signaling were observed in microarray analysis. Phagocytosis of photoreceptor outer segment by the underlying RPE is essential to maintain the homeostasis of the photoreceptor layer and is regulated by melatonin signaling. Therefore, reduced photoreceptor outer segment disc shedding and subsequent lower number of phagosomes in the RPE and alterations in the melatonin pathway may have contributed to the increased incidences of retinal degeneration observed in F344/N rats in the 2-year KKE bioassay.
Collapse
Affiliation(s)
- Haruhiro Yamashita
- 1 National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA.,2 Taisho Pharmaceutical Co. Ltd., Saitama, Japan
| | - Mark J Hoenerhoff
- 1 National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA.,6 In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Keith R Shockley
- 3 Biostatistics and Computational Biology Branch, NIEHS, Research Triangle Park, North Carolina, USA
| | - Shyamal D Peddada
- 3 Biostatistics and Computational Biology Branch, NIEHS, Research Triangle Park, North Carolina, USA
| | - Kevin E Gerrish
- 4 Molecular Genomics Core Laboratory, NIEHS, Research Triangle Park, North Carolina, USA
| | - Deloris Sutton
- 1 National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | - Yu Wang
- 1 National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Foley F Julie
- 1 National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Mamta Behl
- 1 National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Suramya Waidyanatha
- 1 National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Robert C Sills
- 1 National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Arun R Pandiri
- 1 National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
33
|
Osorio-Nieto U, Vázquez-Amaya LY, Höpfl H, Quintero L, Sartillo-Piscil F. The direct and highly diastereoselective synthesis of 3,4-epoxy-2-piperidones. Application to the total synthesis and absolute configurational assignment of 3α,4α-epoxy-5β-pipermethystine. Org Biomol Chem 2018; 16:77-88. [DOI: 10.1039/c7ob02700a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The substrate-controlled asymmetric total synthesis and absolute configurational assignment of biologically active 3α,4α-epoxy-5β-pipermethystine is reported.
Collapse
Affiliation(s)
- Urbano Osorio-Nieto
- Centro de Investigación de la Facultad de Ciencias Químicas
- Benemérita Universidad Autónoma de Puebla (BUAP)
- Puebla
- México
| | - Laura Y. Vázquez-Amaya
- Centro de Investigación de la Facultad de Ciencias Químicas
- Benemérita Universidad Autónoma de Puebla (BUAP)
- Puebla
- México
| | - Herbert Höpfl
- Centro de Investigaciones Químicas
- Instituto de Investigación en Ciencias Básicas y Aplicadas
- Universidad Autónoma del Estado de Morelos
- Cuernavaca
- México
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Químicas
- Benemérita Universidad Autónoma de Puebla (BUAP)
- Puebla
- México
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas
- Benemérita Universidad Autónoma de Puebla (BUAP)
- Puebla
- México
| |
Collapse
|
34
|
Savage K, Firth J, Stough C, Sarris J. GABA-modulating phytomedicines for anxiety: A systematic review of preclinical and clinical evidence. Phytother Res 2017; 32:3-18. [DOI: 10.1002/ptr.5940] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Karen Savage
- ARCADIA Mental Health Research Group, Professorial Unit, The Melbourne Clinic, Department of Psychiatry; The University of Melbourne; 2 Salisbury Street Richmond Victoria 3121 Australia
- Centre for Human Psychopharmacology; Swinburne University of Technology; John St Hawthorn Victoria 3122 Australia
| | - Joseph Firth
- Division of Psychology and Mental Health; University of Manchester; Oxford Rd Manchester M13 9PL UK
- NICM, School of Science and Health; Western Sydney University; Sydney NSW Australia
| | - Con Stough
- Centre for Human Psychopharmacology; Swinburne University of Technology; John St Hawthorn Victoria 3122 Australia
| | - Jerome Sarris
- ARCADIA Mental Health Research Group, Professorial Unit, The Melbourne Clinic, Department of Psychiatry; The University of Melbourne; 2 Salisbury Street Richmond Victoria 3121 Australia
- NICM, School of Science and Health; Western Sydney University; Sydney NSW Australia
| |
Collapse
|
35
|
Fragoulis A, Siegl S, Fendt M, Jansen S, Soppa U, Brandenburg LO, Pufe T, Weis J, Wruck CJ. Oral administration of methysticin improves cognitive deficits in a mouse model of Alzheimer's disease. Redox Biol 2017; 12:843-853. [PMID: 28448946 PMCID: PMC5406548 DOI: 10.1016/j.redox.2017.04.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 11/20/2022] Open
Abstract
Introduction There is increasing evidence for the involvement of chronic inflammation and oxidative stress in the pathogenesis of Alzheimer's disease (AD). Nuclear factor erythroid 2-related factor 2 (Nrf2) is an anti-inflammatory transcription factor that regulates the oxidative stress defense. Our previous experiments demonstrated that kavalactones protect neuronal cells against Amyloid β (Aβ)-induced oxidative stress in vitro by Nrf2 pathway activation. Here, we tested an in vivo kavalactone treatment in a mouse model of AD. Methods The kavalactone methysticin was administered once a week for a period of 6 months to 6 month old transgenic APP/Psen1 mice by oral gavage. Nrf2 pathway activation was measured by methysticin treatment of ARE-luciferase mice, by qPCR of Nrf2-target genes and immunohistochemical detection of Nrf2. Aβ burden was analyzed by CongoRed staining, immunofluorescent detection and ELISA. Neuroinflammation was assessed by immunohistochemical stainings for microglia and astrocytes. Pro-inflammatory cytokines in the hippocampus was determined by Luminex multi-plex assays. The hippocampal oxidative damage was detected by oxyblot technique and immunohistochemical staining against DT3 and 4-HNE. The cognitive ability of mice was evaluated using Morris water maze. Results Methysticin treatment activated the Nrf2 pathway in the hippocampus and cortex of mice. The Aβ deposition in brains of methysticin-treated APP/Psen1 mice was not altered compared to untreated mice. However, methysticin treatment significantly reduced microgliosis, astrogliosis and secretion of the pro-inflammatory cytokines TNF-α and IL-17A. In addition, the oxidative damage of hippocampi from APP/Psen1 mice was reduced by methysticin treatment. Most importantly, methysticin treatment significantly attenuated the long-term memory decline of APP/Psen1 mice. Conclusion In summary, these findings show that methysticin administration activates the Nrf2 pathway and reduces neuroinflammation, hippocampal oxidative damage and memory loss in a mouse model of AD. Therefore, kavalactones might be suitable candidates to serve as lead compounds for the development of a new class of neuroprotective drugs. Methysticin activates the Nrf2/ARE system in the hippocampus of mice. Methysticin protects AD mice against oxidative stress and associated neuroinflammation due to Nrf2 activation. Methysticin improves long-term memory impairment in this mouse model of AD.
Collapse
Affiliation(s)
- Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, Aachen, Germany.
| | - Stephanie Siegl
- Department of Pharmacology and Toxicology, Uniklinik RWTH Aachen University, Aachen, Germany.
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Medical Faculty, University of Magdeburg, Magdeburg, Germany; Center of Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany.
| | - Sandra Jansen
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, Aachen, Germany.
| | - Ulf Soppa
- Department of Pharmacology and Toxicology, Uniklinik RWTH Aachen University, Aachen, Germany.
| | - Lars-Ove Brandenburg
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, Aachen, Germany.
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, Aachen, Germany.
| | - Joachim Weis
- Institute of Neuropathology, Uniklinik RWTH Aachen and JARA Brain Translational Medicine, Aachen, Germany.
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
36
|
Song JL, Li BL, Yuan Y, Nie LH, Niu J, Chiu D, Xu ZF, Wu JW, Qiu SX. Yangonindimers A-C, three new kavalactone dimers from Piper methysticum (kava). Nat Prod Res 2017; 31:2459-2466. [DOI: 10.1080/14786419.2017.1312395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jia-Ling Song
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bai-Lin Li
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Yuan
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Hui Nie
- College Of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Niu
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - David Chiu
- Intern, High School Junior of Davis Senior High School, Davis, CA, USA
| | - Zhi-Fang Xu
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jie-Wei Wu
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sheng-Xiang Qiu
- Program for Natural Products Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
37
|
Neuroprotective effects of gabaergic phenols correlated with their pharmacological and antioxidant properties. Life Sci 2017; 175:11-15. [DOI: 10.1016/j.lfs.2017.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/21/2017] [Accepted: 03/09/2017] [Indexed: 01/07/2023]
|
38
|
Abstract
A number of drugs have been withdrawn from the market or severely restricted in their use because of unexpected toxicities that become apparent only after the launch of new drug entities. Circumstantial evidence suggests that, in most cases, reactive metabolites are responsible for these unexpected toxicities. In this review, a general overview of the types of reactive metabolites and the consequences of their formation are presented. The current approaches to evaluate bioactivation potential of new compounds with particular emphasis on the advantages and limitation of these procedures will be discussed. Reasonable reasons for the excellent safety record of certain drugs susceptible to bioactivation will also be explored and should provide valuable guidance in the use of reactive-metabolite assessments when nominating drug candidates for development. This will, in turn, help us to design and bring safer drugs to the market.
Collapse
Affiliation(s)
- Sabry M Attia
- Department of Pharmacology and Toxicology; College of Pharmacy; King Saud University; Riyadh, Saudi Arabia.
| |
Collapse
|
39
|
Yamashita H, Hoenerhoff MJ, Peddada SD, Sills RC, Pandiri AR. Chemical Exacerbation of Light-induced Retinal Degeneration in F344/N Rats in National Toxicology Program Rodent Bioassays. Toxicol Pathol 2016; 44:892-903. [PMID: 27230502 DOI: 10.1177/0192623316650050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Retinal degeneration due to chronic ambient light exposure is a common spontaneous age-related finding in albino rats, but it can also be related to exposures associated with environmental chemicals and drugs. Typically, light-induced retinal degeneration has a central/hemispherical localization whereas chemical-induced retinal degeneration has a diffuse localization. This study was conducted to identify and characterize treatment-related retinal degeneration in National Toxicology Program rodent bioassays. A total of 3 chronic bioassays in F344/N rats (but not in B6C3F1/N mice) were identified that had treatment-related increases in retinal degeneration (kava kava extract, acrylamide, and leucomalachite green). A retrospective light microscopic evaluation of the retinas from rats in these 3 studies showed a dose-related increase in the frequencies of retinal degeneration, beginning with the loss of photoreceptor cells, followed by the inner nuclear layer cells. These dose-related increased frequencies of degenerative retinal lesions localized within the central/hemispherical region are suggestive of exacerbation of light-induced retinal degeneration.
Collapse
Affiliation(s)
- Haruhiro Yamashita
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA Taisho Pharmaceutical Co. Ltd., Saitama, Japan
| | - Mark J Hoenerhoff
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shyamal D Peddada
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Robert C Sills
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Arun R Pandiri
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
40
|
Fajemiroye JO, da Silva DM, de Oliveira DR, Costa EA. Treatment of anxiety and depression: medicinal plants in retrospect. Fundam Clin Pharmacol 2016; 30:198-215. [DOI: 10.1111/fcp.12186] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
Affiliation(s)
- James O. Fajemiroye
- Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; 74001-970 Goiânia GO Brazil
| | - Dayane M. da Silva
- Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; 74001-970 Goiânia GO Brazil
| | - Danillo R. de Oliveira
- Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; 74001-970 Goiânia GO Brazil
| | - Elson A. Costa
- Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; 74001-970 Goiânia GO Brazil
| |
Collapse
|
41
|
Manto M. Toxic Agents. ESSENTIALS OF CEREBELLUM AND CEREBELLAR DISORDERS 2016:601-611. [DOI: 10.1007/978-3-319-24551-5_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
42
|
Wainiqolo I, Kool B, Nosa V, Ameratunga S. Is driving under the influence of kava associated with motor vehicle crashes? A systematic review of the epidemiological literature. Aust N Z J Public Health 2015; 39:495-9. [PMID: 26337520 DOI: 10.1111/1753-6405.12435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/01/2015] [Accepted: 04/01/2015] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Kava is marketed as a herbal anxiolytic in several countries and is consumed recreationally in high doses in many indigenous Pacific and Australian Aboriginal communities. We reviewed the published literature examining the association (if any) between kava use and motor vehicle crashes (MVCs), MVC-related injuries or driving performance. METHODS Search of MEDLINE, EMBASE, PsycINFO, CINAHL, Scopus, AMED, Australian Medical Index, Australian Transport Index and trials registries and injury journals up to August 2014. RESULTS No studies quantifying the effects of kava on MVCs or related injury were located. Four experimental studies using computer-based driving simulation examined the effects of pharmacological doses of kavalactones on cognitive and visuomotor performance. While no statistically significant adverse changes attributable to kava were found, there was weak evidence of slowed reaction time. One study found the visuo-motor performance on driving simulation to be significantly impaired when kava was consumed with alcohol. CONCLUSIONS With equivocal evidence limited to experimental studies using simulated driving settings, the contribution of kava to MVCs is unknown. IMPLICATIONS The gap in knowledge regarding the potential risk of injuries associated with therapeutic and recreational use of kava requires priority attention.
Collapse
Affiliation(s)
- Iris Wainiqolo
- School of Population Health, University of Auckland, New Zealand
| | - Bridget Kool
- School of Population Health, University of Auckland, New Zealand
| | - Vili Nosa
- School of Population Health, University of Auckland, New Zealand
| | | |
Collapse
|
43
|
Wang CZ, Moss J, Yuan CS. Commonly Used Dietary Supplements on Coagulation Function during Surgery. MEDICINES (BASEL, SWITZERLAND) 2015; 2:157-185. [PMID: 26949700 PMCID: PMC4777343 DOI: 10.3390/medicines2030157] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
BACKGROUND Patients who undergo surgery appear to use dietary supplements significantly more frequently than the general population. Because they contain pharmacologically active compounds, dietary supplements may affect coagulation and platelet function during the perioperative period through direct effects, pharmacodynamic interactions, and pharmacokinetic interactions. However, in this regard, limited studies have been conducted that address the pharmacological interactions of dietary supplements. To avoid possible bleeding risks during surgery, information of potential complications of dietary supplements during perioperative management is important for physicians. METHODS Through a systematic database search of all available years, articles were identified in this review if they included dietary supplements and coagulation/platelet function, while special attention was paid to studies published after 1990. RESULTS Safety concerns are reported in commercially available dietary supplements. Effects of the most commonly used natural products on blood coagulation and platelet function are systematically reviewed, including 11 herbal medicines (echinacea, ephedra, garlic, ginger, ginkgo, ginseng, green tea, kava, saw palmetto, St John's wort, and valerian) and 4 other dietary supplements (coenzyme Q10, glucosamine and chondroitin sulfate, fish oil, and vitamins). Bleeding risks of garlic, ginkgo, ginseng, green tea, saw palmetto, St John's wort, and fish oil are reported. Cardiovascular instability was observed with ephedra, ginseng, and kava. Pharmacodynamic and pharmacokinetic interactions between dietary supplements and drugs used in the perioperative period are discussed. CONCLUSIONS To prevent potential problems associated with the use of dietary supplements, physicians should be familiar with the perioperative effects of commonly used dietary supplements. Since the effects of dietary supplements on coagulation and platelet function are difficult to predict, it is prudent to advise their discontinuation before surgery.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-773-702-0166; Fax: +1-773-834-0601
| | | | | |
Collapse
|
44
|
Vandenbroucke H, Mournet P, Malapa R, Glaszmann JC, Chaïr H, Lebot V. Comparative analysis of genetic variation in kava (Piper methysticum) assessed by SSR and DArT reveals zygotic foundation and clonal diversification. Genome 2015; 58:1-11. [PMID: 25973616 DOI: 10.1139/gen-2014-0166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kava (Piper methysticum) is a major cash crop in the Pacific. The aim of this study was to assess genetic variation among 103 accessions of kava using SSRs and DArTs. Genetic structure was determined using clustering analyses (WPGMA) and principal coordinate analyses (PCA). Thirteen SSR primers and 75 DArT markers were found polymorphic, and the two types of markers generated similar clustering patterns. Genetic distances ranged from 0 to 0.65 with an average of 0.24 using SSRs and from 0 to 0.64 with an average of 0.24 using DArT. Eleven genotypes were identified with SSR while 28 genotypes were identified with DArT markers. By combining the two sets of markers, a total of only 30 distinct genotypes were observed. In the Vanuatu archipelago, noble cultivars originating from different islands clustered together within a very narrow genetic base despite their diversity of morphotypes. SSR and DArT fingerprints allowed the identification of kava cultivars unsuitable for consumption, so called two-days, and clearly differentiated the wild types classified as P. methysticum var. wichmannii from the cultivars as var. methysticum. Molecular data reveals that all noble cultivars evolved by the predominance of clonal selection. Although they are represented by clearly distinct morphotypes, these cultivars are genetically vulnerable and their potential to adapt to forthcoming changes is limited. These newly developed markers provide high resolution and will be useful for kava diversity analyses and quality assessment.
Collapse
Affiliation(s)
- Henri Vandenbroucke
- UMR AGAP, CIRAD, TA A108/03, Avenue Agropolis, 34398 Montpellier, Cédex 5, France
| | | | | | | | | | | |
Collapse
|
45
|
Psychophytomedicine: an overview of clinical efficacy and phytopharmacology for treatment of depression, anxiety and insomnia. Holist Nurs Pract 2015; 28:275-80. [PMID: 24919098 DOI: 10.1097/hnp.0000000000000040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Hannam S, Murray M, Romani L, Tuicakau M, J Whitfeld M. Kava dermopathy in Fiji: an acquired ichthyosis? Int J Dermatol 2014; 53:1490-4. [DOI: 10.1111/ijd.12546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sarah Hannam
- Skin and Cancer Foundation Victoria Melbourne Victoria Australia
| | - Michael Murray
- Discipline of Pharmacology School of Medical Sciences, Sydney Medical School, University of Sydney Sydney New South Wales Australia
| | - Lucia Romani
- Kirby Institute University of New South Wales Sydney New South Wales Australia
| | | | - Margot J Whitfeld
- Faculty of Medicine University of NSW Sydney New South Wales Australia
- St. Vincent's Hospital Sydney New South Wales Australia
| |
Collapse
|
47
|
How Does Male Ritual Behavior Vary Across the Lifespan? HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2014; 25:136-60. [DOI: 10.1007/s12110-014-9191-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Sen T, Samanta SK. Medicinal plants, human health and biodiversity: a broad review. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 147:59-110. [PMID: 25001990 DOI: 10.1007/10_2014_273] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biodiversity contributes significantly towards human livelihood and development and thus plays a predominant role in the well being of the global population. According to WHO reports, around 80 % of the global population still relies on botanical drugs; today several medicines owe their origin to medicinal plants. Natural substances have long served as sources of therapeutic drugs, where drugs including digitalis (from foxglove), ergotamine (from contaminated rye), quinine (from cinchona), and salicylates (willow bark) can be cited as some classical examples.Drug discovery from natural sources involve a multifaceted approach combining botanical, phytochemical, biological, and molecular techniques. Accordingly, medicinal-plant-based drug discovery still remains an important area, hitherto unexplored, where a systematic search may definitely provide important leads against various pharmacological targets.Ironically, the potential benefits of plant-based medicines have led to unscientific exploitation of the natural resources, a phenomenon that is being observed globally. This decline in biodiversity is largely the result of the rise in the global population, rapid and sometimes unplanned industrialization, indiscriminate deforestation, overexploitation of natural resources, pollution, and finally global climate change.Therefore, it is of utmost importance that plant biodiversity be preserved, to provide future structural diversity and lead compounds for the sustainable development of human civilization at large. This becomes even more important for developing nations, where well-planned bioprospecting coupled with nondestructive commercialization could help in the conservation of biodiversity, ultimately benefiting mankind in the long run.Based on these findings, the present review is an attempt to update our knowledge about the diverse therapeutic application of different plant products against various pharmacological targets including cancer, human brain, cardiovascular function, microbial infection, inflammation, pain, and many more.
Collapse
Affiliation(s)
- Tuhinadri Sen
- Department of Pharmaceutical Technology and School of Natural Product Studies, Jadavpur University, Kolkata, 700032, India,
| | | |
Collapse
|
49
|
Hong SI, Kwon SH, Kim MJ, Ma SX, Kwon JW, Choi SM, Choi SI, Kim SY, Lee SY, Jang CG. Anxiolytic-Like Effects of Chrysanthemum indicum Aqueous Extract in Mice: Possible Involvement of GABAA Receptors and 5-HT1A Receptors. Biomol Ther (Seoul) 2013; 20:413-7. [PMID: 24009829 PMCID: PMC3762266 DOI: 10.4062/biomolther.2012.20.4.413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 11/05/2022] Open
Abstract
Chrysanthemum indicum Linne is an ancient herbal medicine used to treat bone and muscle deterioration, ocular infl ammation, headache, and anxiety in Korea, China, and Japan. Furthermore, tea derived from Chrysanthemum indicum Linne has been used to treat anxiety by facilitating relaxation and curing insomnia. However, no reports exist on the anxiolytic-like effects of Chrysanthemum indicum Linne water extract (CWE) in mice. In the present study, we investigated the anxiolytic-like effects of CWE using the elevated plus-maze (EPM) test in mice. CWE, at a dose of 500 mg/kg (p.o.), signifi cantly increased the time spent in the open arms of the EPM compared to a vehicle-injected control group. Moreover, the effect of CWE (500 mg/kg) was blocked by bicuculline (a selective GABAA receptor antagonist) and WAY 100635 (a selective 5-HT1A receptor antagonist). Taken together, these fi ndings suggest that the anxiolytic-like effects of CWE might be mediated by the GABAA receptor and the 5-HT1A receptor.
Collapse
Affiliation(s)
- Sa-Ik Hong
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tawfiq RA, Nassar NN, El-Eraky WI, El-Denshary ES. Enhanced efficacy and reduced side effects of diazepam by kava combination. J Adv Res 2013; 5:587-94. [PMID: 25685527 PMCID: PMC4294317 DOI: 10.1016/j.jare.2013.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/18/2013] [Accepted: 08/15/2013] [Indexed: 11/29/2022] Open
Abstract
The long term use of antiepileptic drugs possesses many unwanted effects; thus, new safe combinations are urgently mandated. Hence, the present study aimed to investigate the anticonvulsant effect of kava alone or in combination with a synthetic anticonvulsant drug, diazepam (DZ). To this end, female Wistar rats were divided into two subsets, each comprising 6 groups as follows: group (i) received 1% Tween 80 p.o. and served as control, while groups (ii) and (iii) received kava at two dose levels (100 and 200 mg/kg, p.o.). The remaining three groups received (iv) DZ alone (10 mg/kg p.o.) or kava in combination with DZ (v) (5 mg/kg, p.o.) or (vi) (10 mg/kg, p.o.). Results of the present study revealed that kava increased the maximal electroshock seizure threshold (MEST) and enhanced the anticonvulsant effect of diazepam following both acute and chronic treatment. Moreover, neither kava nor its combination with DZ impaired motor co-ordination either acutely or chronically. Furthermore, kava ameliorated both the reduction in locomotor activity as well as changes in liver function tests induced by chronic administration of DZ. Moreover, no elevation was shown in the creatinine concentration vs. control group following chronic administration of kava or DZ either alone or in combination with kava. In conclusion, the present study suggests the possibility of combining a low dose DZ with kava to reduce harmful effects and might be recommended for clinical use in patients chronically treated with this synthetic anticonvulsant drug.
Collapse
Key Words
- AED, antiepileptic drug
- ALP, alkaline phosphatase
- ALT, alanine transaminase
- AST, aspartate transaminase
- Anticonvulsant
- BDZ, benzodiazepine
- DZ, diazepam
- Diazepam
- ECT, electroconvulsive treatment
- FDA, Food and Drug Administration
- GABA, γ-aminobutyric acid
- GABAA, γ-aminobutyric acid type A
- Kava
- Locomotor activity
- MEST
- MEST, maximal electroshock threshold
- OTC, over the counter
- WHO, World Health Organization
Collapse
Affiliation(s)
- Rasha A Tawfiq
- Egyptian Patent Office, Academy of Scientific Research and Technology, 101 Kasr El-Eini St., Cairo, Egypt
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Eini St., Cairo, Egypt
| | - Wafaa I El-Eraky
- Department of Pharmacology, National Research Center, El-Tahrir St., Giza, Egypt
| | - Ezzeldein S El-Denshary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Eini St., Cairo, Egypt
| |
Collapse
|