1
|
Sauvé B, Guay F, Létourneau Montminy MP. Impact of deoxynivalenol in a calcium depletion and repletion nutritional strategy in piglets. J Anim Sci 2024; 102:skae099. [PMID: 38613476 PMCID: PMC11056887 DOI: 10.1093/jas/skae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/12/2024] [Indexed: 04/15/2024] Open
Abstract
This study evaluated the effect of dietary calcium (Ca) levels and deoxynivalenol (DON) contamination on Ca and phosphorus (P) utilization and bone mineralization in piglets. During an initial 13-d depletion phase, 64 piglets (15.7 ± 0.7 kg) received a control (DON-) or DON-contaminated treatment (DON+, 2.7 mg DON/kg) with either a low Ca (Ca-, 0.39%) or normal Ca level (Ca+, 0.65%) with a constant digestible P level (0.40%). A second group of 16 piglets received DON- or DON+ treatments for 9 d for gene expression analysis. During the subsequent 14-d repletion phase, all piglets were fed a Ca+ DON- diet containing 0.65% Ca and 0.35% digestible P without DON. After 5 d of the depletion phase, the absorption of P (DON × Ca; P < 0.05) and Ca was increased by the Ca- (P < 0.01) and DON+ (P < 0.01) diet. After 13 d, feed conversion ratio (P < 0.01) and average daily feed intake (P = 0.06) tended to decrease with the Ca- diet. The bone mineral content (BMC) gain was decreased by Ca, especially with Ca- DON + (DON × Ca, P < 0.05). The P absorption was increased by Ca- DON + (DON × Ca, P < 0.01), although the P retention efficiency was only increased by Ca+ DON + (DON × Ca, P < 0.001). The absorption of Ca was increased by DON+ (P < 0.001), and the Ca efficiency was increased by Ca- DON- (DON × Ca, P < 0.01). After 9 d, the gene expression of intestinal claudin 12 (P < 0.01) and CYP24A1 (P < 0.05), femur cortical RANKL (P < 0.05) and OPG (P = 0.06), and renal calbindin D9K (P < 0.05) and Klotho (P = 0.07) were decreased by DON+. The Ca (P = 0.06) and magnesium (P < 0.01) concentrations were decreased by DON+, and the Ca (P = 0.06) and P digestibility (P < 0.01) were increased. After the repletion phase, Ca- piglets recovered their BMC deficit, but not those receiving DON+ (DON × Ca; P = 0.06). The Ca (P < 0.05) and P (P = 0.06) retention efficiency tended to increase with Ca-. The absorption of Ca and P was increased by Ca- and DON+ (DON × Ca, P < 0.05). The results show that piglets increased their Ca and P utilization efficiency, allowing them to recover the BMC deficit caused by Ca-, but not when the piglets were exposed to DON. Pigs previously receiving Ca-deficient diet with DON still have lower body Ca and P, leading to elevated calcitriol concentrations and enhanced Ca and P intestinal absorption. The fact that DON decreased the expression of genes implicated in Ca intestinal and renal transport and P excretion after 9 d can potentially explain the reduced plasma Ca concentration.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Université Laval, Québec (QC), CanadaG1V 0A6
| | - Frédéric Guay
- Department of Animal Sciences, Université Laval, Québec (QC), CanadaG1V 0A6
| | | |
Collapse
|
2
|
Kondo S, Miyake M. Simultaneous Prediction Method for Intestinal Absorption and Metabolism Using the Mini-Ussing Chamber System. Pharmaceutics 2023; 15:2732. [PMID: 38140073 PMCID: PMC10747201 DOI: 10.3390/pharmaceutics15122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Many evaluation tools for predicting human absorption are well-known for using cultured cell lines such as Caco-2, MDCK, and so on. Since the combinatorial chemistry and high throughput screening system, pharmacological assay, and pharmaceutical profiling assay are mainstays of drug development, PAMPA has been used to evaluate human drug absorption. In addition, cultured cell lines from iPS cells have been attracting attention because they morphologically resemble human intestinal tissues. In this review, we used human intestinal tissues to estimate human intestinal absorption and metabolism. The Ussing chamber uses human intestinal tissues to directly assay a drug candidate's permeability and determine the electrophysiological parameters such as potential differences (PD), short circuit current (Isc), and resistance (R). Thus, it is an attractive tool for elucidating human intestinal permeability and metabolism. We have presented a novel prediction method for intestinal absorption and metabolism by utilizing a mini-Ussing chamber using human intestinal tissues and animal intestinal tissues, based on the transport index (TI). The TI value was calculated by taking the change in drug concentrations on the apical side due to precipitation and the total amounts accumulated in the tissue (Tcorr) and transported to the basal side (Xcorr). The drug absorbability in rank order, as well as the fraction of dose absorbed (Fa) in humans, was predicted, and the intestinal metabolism of dogs and rats was also predicted, although it was not quantitative. However, the metabolites formation index (MFI) values, which are included in the TI values, can predict the evaluation of intestinal metabolism and absorption by using ketoconazole. Therefore, the mini-Ussing chamber, equipped with human and animal intestinal tissues, would be an ultimate method to predict intestinal absorption and metabolism simultaneously.
Collapse
Affiliation(s)
- Satoshi Kondo
- Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 460-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan;
- Department of Drug Safety Research, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 460-10 Kagasuno Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masateru Miyake
- Business Integrity and External Affairs, Otsuka Pharmaceutical Co., Ltd., 2-16-4 Konan, Minato-ku, Tokyo 108-8242, Japan
| |
Collapse
|
3
|
Li Z, Wen X, Li N, Zhong C, Chen L, Zhang F, Zhang G, Lyu A, Liu J. The roles of hepatokine and osteokine in liver-bone crosstalk: Advance in basic and clinical aspects. Front Endocrinol (Lausanne) 2023; 14:1149233. [PMID: 37091847 PMCID: PMC10117885 DOI: 10.3389/fendo.2023.1149233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Both the liver and bone are important secretory organs in the endocrine system. By secreting organ factors (hepatokines), the liver regulates the activity of other organs. Similarly, bone-derived factors, osteokines, are created during bone metabolism and act in an endocrine manner. Generally, the dysregulation of hepatokines is frequently accompanied by changes in bone mass, and osteokines can also disrupt liver metabolism. The crosstalk between the liver and bone, particularly the function and mechanism of hepatokines and osteokines, has increasingly gained notoriety as a topic of interest in recent years. Here, based on preclinical and clinical evidence, we summarize the potential roles of hepatokines and osteokines in liver-bone interaction, discuss the current shortcomings and contradictions, and make recommendations for future research.
Collapse
Affiliation(s)
- Zhanghao Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
| | - Xiaoxin Wen
- Department of Anatomy, Jinzhou Medical University, Jinzhou, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
| | - Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- *Correspondence: Jin Liu, ; Aiping Lyu,
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- *Correspondence: Jin Liu, ; Aiping Lyu,
| |
Collapse
|
4
|
Pharmacological Interventions Targeting Pain in Fibrous Dysplasia/McCune-Albright Syndrome. Int J Mol Sci 2023; 24:ijms24032550. [PMID: 36768871 PMCID: PMC9916440 DOI: 10.3390/ijms24032550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Fibrous dysplasia (FD) is a rare, non-inherited bone disease occurring following a somatic gain-of-function R201 missense mutation of the guanine-nucleotide binding protein alpha subunit stimulating activity polypeptide 1 (GNAS) gene. The spectrum of the disease ranges from a single FD lesion to a combination with extraskeletal features; an amalgamation with café-au-lait skin hyperpigmentation, precocious puberty, and other endocrinopathies defines McCune-Albright Syndrome (MAS). Pain in FD/MAS represents one of the most prominent aspects of the disease and one of the most challenging to treat-an outcome driven by (i) the heterogeneous nature of FD/MAS, (ii) the variable presentation of pain phenotypes (i.e., craniofacial vs. musculoskeletal pain), (iii) a lack of studies probing pain mechanisms, and (iv) a lack of rigorously validated analgesic strategies in FD/MAS. At present, a range of pharmacotherapies are prescribed to patients with FD/MAS to mitigate skeletal disease activity, as well as pain. We analyze evidence guiding the current use of bisphosphonates, denosumab, and other therapies in FD/MAS, and also discuss the potential underlying pharmacological mechanisms by which pain relief may be achieved. Furthermore, we highlight the range of presentation of pain in individual cases of FD/MAS to further describe the difficulties associated with employing effective pain treatment in FD/MAS. Potential next steps toward identifying and validating effective pain treatments in FD/MAS are discussed, such as employing randomized control trials and probing new pain pathways in this rare bone disease.
Collapse
|
5
|
Maleitzke T, Hildebrandt A, Dietrich T, Appelt J, Jahn D, Otto E, Zocholl D, Baranowsky A, Duda GN, Tsitsilonis S, Keller J. The calcitonin receptor protects against bone loss and excessive inflammation in collagen antibody-induced arthritis. iScience 2022; 25:103689. [PMID: 35036874 PMCID: PMC8753130 DOI: 10.1016/j.isci.2021.103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/21/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
Pharmacological application of teleost calcitonin (CT) has been shown to exert chondroprotective and anti-resorptive effects in patients with rheumatoid arthritis (RA). However, the role of endogenous CT that signals through the calcitonin receptor (CTR) remains elusive. Collagen II antibody-induced arthritis (CAIA) was stimulated in wild type (WT) and CTR-deficient (Calcr−/−) mice. Animals were monitored over 10 or 48 days. Joint inflammation, cartilage degradation, and bone erosions were assessed by clinical arthritis score, histology, histomorphometry, gene expression analysis, and μ-computed tomography. CAIA was accompanied by elevated systemic CT levels and CTR expression in the articular cartilage. Inflammation, cartilage degradation, and systemic bone loss were more pronounced in Calcr−/− CAIA mice. Expression of various pro-inflammatory, bone resorption, and catabolic cartilage markers were exclusively increased in Calcr−/− CAIA mice. Endogenous CT signaling through the mammalian CTR has the potential to protect against joint inflammation, cartilage degradation, and excessive bone remodeling in experimental RA. CT levels are increased systemically during acute experimental RA CTR is primarily expressed in the superficial articular cartilage layer in CAIA In CAIA CTR-deficiency is associated with increased inflammation marker expression Bone architecture is impaired in experimental RA when CTR signaling is disrupted
Collapse
Affiliation(s)
- Tazio Maleitzke
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 10178 Berlin, Germany
| | - Alexander Hildebrandt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Tamara Dietrich
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Jessika Appelt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Denise Jahn
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Ellen Otto
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Dario Zocholl
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, 10117 Berlin, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Georg N. Duda
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Serafeim Tsitsilonis
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Johannes Keller
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 10178 Berlin, Germany
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
- Corresponding author
| |
Collapse
|
6
|
Roy A, Thulasiraman S, Panneerselvam E, Thulasi Doss G, Selvaraj MN, Ganesh SK, Raja KVB, Kangusamy B. Evaluation of the efficacy of salmon calcitonin nasal spray on bone healing following open reduction and internal fixation of mandibular fractures - A randomized controlled trial. J Craniomaxillofac Surg 2021; 49:1151-1157. [PMID: 34593298 DOI: 10.1016/j.jcms.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/04/2021] [Accepted: 08/28/2021] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to assess the efficacy of calcitonin spray on bone healing following open reduction internal fixation (ORIF) of mandibular fractures. Fourteen patients were subdivided into a study group and a control group. A standardized surgical protocol for ORIF was followed. Postoperatively, salmon calcitonin nasal spray was administered to only the study group. The outcome parameters assessed were serum osteocalcin, pain, and radiographic bone healing. Serum osteocalcin was assessed pre- and postoperatively. Postoperative pain was documented using a visual analogue scale (VAS) on the 7th, 14th, 23rd, and 30th days. An orthopantomogram was used to score fracture healing at four time intervals, as follows: 1 - absence of callus; 2 - presence of minimal callus; 3 - considerable callus; and 4 - complete fusion of fracture. Pain scores were lower for the study group, with no pain from the fifth day, while the control group produced a mean score for day 5 of 2.43 ± 0.98 (p = 0.001). Mean postoperative serum osteocalcin levels were higher for the study group (67.82 ± 8.89) compared with the control group (57.69 ± 6.22; p = 0.029). Bone healing at 12 weeks postoperatively was level 4 for 28.6% of patients in the study group and level 3 for 71.4%. In comparison, 85.7% in the control group demonstrated level 3 healing, while 14.3% remained at level 2 (p = 0.462). Within the limitations of the study, it can be concluded that intranasal salmon calcitonin spray reduces postoperative pain and facilitates fracture healing, although its economic efficiency is still to be proven.
Collapse
Affiliation(s)
- Aritra Roy
- Department of Oral and Maxillofacial Surgery, SRM Dental College and Hospital, Ramapuram Campus, Ramapuram, Chennai, India
| | - Selvakumar Thulasiraman
- Department of Oral and Maxillofacial Surgery, SRM Dental College and Hospital, Ramapuram Campus, Ramapuram, Chennai, India
| | - Elavenil Panneerselvam
- Department of Oral and Maxillofacial Surgery, SRM Dental College and Hospital, Ramapuram Campus, Ramapuram, Chennai, India.
| | - Guruprasad Thulasi Doss
- Department of Oral and Maxillofacial Surgery, SRM Dental College and Hospital, Ramapuram Campus, Ramapuram, Chennai, India
| | - Mary Nancy Selvaraj
- Department of Oral and Maxillofacial Surgery, SRM Dental College and Hospital, Ramapuram Campus, Ramapuram, Chennai, India
| | - Sriraam Kasi Ganesh
- Department of Oral and Maxillofacial Surgery, SRM Dental College and Hospital, Ramapuram Campus, Ramapuram, Chennai, India
| | - Krishnakumar V B Raja
- Department of Oral and Maxillofacial Surgery, SRM Dental College and Hospital, Ramapuram Campus, Ramapuram, Chennai, India
| | - Boopathi Kangusamy
- Indian Council of Medical Research - National Institute of Epidemiology, Chennai, India
| |
Collapse
|
7
|
Sonne N, Karsdal MA, Henriksen K. Mono and dual agonists of the amylin, calcitonin, and CGRP receptors and their potential in metabolic diseases. Mol Metab 2021; 46:101109. [PMID: 33166741 PMCID: PMC8085567 DOI: 10.1016/j.molmet.2020.101109] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Therapies for metabolic diseases are numerous, yet improving insulin sensitivity beyond that induced by weight loss remains challenging. Therefore, search continues for novel treatment candidates that can stimulate insulin sensitivity and increase weight loss efficacy in combination with current treatment options. Calcitonin gene-related peptide (CGRP) and amylin belong to the same peptide family and have been explored as treatments for metabolic diseases. However, their full potential remains controversial. SCOPE OF REVIEW In this article, we introduce this rather complex peptide family and its corresponding receptors. We discuss the physiology of the peptides with a focus on metabolism and insulin sensitivity. We also thoroughly review the pharmacological potential of amylin, calcitonin, CGRP, and peptide derivatives as treatments for metabolic diseases, emphasizing their ability to increase insulin sensitivity based on preclinical and clinical studies. MAJOR CONCLUSIONS Amylin receptor agonists and dual amylin and calcitonin receptor agonists are relevant treatment candidates, especially because they increase insulin sensitivity while also assisting weight loss, and their unique mode of action complements incretin-based therapies. However, CGRP and its derivatives seem to have only modest if any metabolic effects and are no longer of interest as therapies for metabolic diseases.
Collapse
Affiliation(s)
- Nina Sonne
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Morten A Karsdal
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark; KeyBioscience AG, Stans, Switzerland.
| |
Collapse
|
8
|
Al‐Bari AA, Al Mamun A. Current advances in regulation of bone homeostasis. FASEB Bioadv 2020; 2:668-679. [PMID: 33205007 PMCID: PMC7655096 DOI: 10.1096/fba.2020-00058] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Bone homeostasis is securely controlled by the dynamic well-balanced actions among osteoclasts, osteoblasts and osteocytes. Osteoclasts are large multinucleated cells that degrade bone matrix and involve in the bone remodelling in conjunction with other bone cells, osteoblasts and osteocytes, the completely matured form of osteoblasts. Disruption of this controlling balance among these cells or any disparity in bone remodelling caused by a higher rate of resorption by osteoclasts over construction of bone by osteoblasts results in a reduction of bone matrix including bone mineral density (BMD) and bone marrow cells (BMCs). The dominating effect of osteoclasts results in advanced risk of bone crack and joint destruction in several diseases including osteoporosis and rheumatoid arthritis (RA). However, the boosted osteoblastic activity produces osteosclerotic phenotype and weakened its action primes to osteomalacia or rickets. On the other hand, senescent osteocytes predominately progress the senescence associated secretory phenotype (SASP) and may contribute to age related bone loss. Here, we discuss an advanced level work on newly identified cellular mechanisms controlling the remodelling of bone and crosstalk among bone cells as these relate to the therapeutic targeting of the skeleton.
Collapse
Affiliation(s)
| | - Abdullah Al Mamun
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh
| |
Collapse
|
9
|
Zhou J, Xiong W, Gou P, Chen Z, Guo X, Huo X, Xue Y. Clinical effect of intramuscular calcitonin compared with oral celecoxib in the treatment of knee bone marrow lesions: a retrospective study. J Orthop Surg Res 2020; 15:230. [PMID: 32576210 PMCID: PMC7310554 DOI: 10.1186/s13018-020-01746-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bone marrow lesions (BMLs) are a common finding in patients with osteoarthritis (OA), which are predictors of progression and pain related to cartilage damage in OA. The objective of the present research was to compare the short-term clinical effect of intramuscular calcitonin and oral celecoxib in treating knee BMLs. PATIENTS AND METHODS Between January 2016 and December 2018, the medical records of patients with knee BMLs treated by intramuscular calcitonin or oral celecoxib were reviewed. Visual analog scale (VAS) and the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) were used to assess knee pain and function, respectively. BMLs were assessed by MRI scans and were scored by the modified Whole-Organ MRI Score (WORMS). The safety of these two medications was also evaluated. RESULTS A total of 123 eligible patients who received calcitonin treatment (n = 66) or celecoxib treatment (n = 57) were included. All patients were followed up clinically and radiographically for 3 months. The VAS and WOMAC scores were lower statistically in calcitonin group than celecoxib group at 4-week and 3-month follow-up. For BMLs, the WORMS scores in the calcitonin group were significantly lower than the celecoxib group. Besides, statistically higher MRI improvement rates were found in the calcitonin group compared with the celecoxib group at 4-week follow-up (21.21% vs. 7.01%; P = 0.039) and 3-month follow-up (37.88% vs. 15.79%; P = 0.006). CONCLUSION Intramuscular calcitonin 50 IU once daily demonstrated a better short-term effect for knee BML patients compared with oral celecoxib 200 mg twice per day.
Collapse
Affiliation(s)
- Jiaming Zhou
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wuyi Xiong
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Pengguo Gou
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Department of Orthopaedic Surgery, The Fifth People's Hospital of Datong, Datong, 037006, China
| | - Zhao Chen
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xing Guo
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaoyang Huo
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuan Xue
- Department of Orthopaedic Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China. .,Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
10
|
Katri A, Dąbrowska A, Löfvall H, Karsdal MA, Andreassen KV, Thudium CS, Henriksen K. A dual amylin and calcitonin receptor agonist inhibits pain behavior and reduces cartilage pathology in an osteoarthritis rat model. Osteoarthritis Cartilage 2019; 27:1339-1346. [PMID: 31176015 DOI: 10.1016/j.joca.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Pain and disability are the main clinical manifestations of osteoarthritis, for which only symptomatic therapies are available. Hence, there is a need for therapies that can simultaneously alter disease progression and provide pain relief. KBP is a dual amylin- and calcitonin-receptor agonist with antiresorptive and chondroprotective properties. In this study we investigated the effect of KBP in a rat model of osteoarthritis. METHODS Medial meniscectomy (MNX) was performed in 39 rats, while 10 underwent sham surgery. Rats were treated with KBP and/or naproxen. Nociception was assessed by mechanical and cold allodynia, weight bearing asymmetry, and burrowing behavior. Blood samples were collected for biomarker measurements, and knees for histology. Cartilage histopathology was evaluated according to the advanced Osteoarthritis Research International (OARSI) score and KBPs in vitro antiresorptive effects were assessed using human osteoclasts cultured on bone. RESULTS The MNX animals displayed an increased nociceptive behavior. Treatment with KBP attenuated the MNX-induced osteoarthritis-associated joint pain. The cartilage histopathology was significantly lower in rats treated with KBP than in MNX animals. Bone and cartilage degradation, assessed by CTX-I and CTX-II plasma levels, were decreased in all KBP-treated groups and KBP potently inhibited bone resorption in vitro. CONCLUSIONS Our study demonstrates the effectiveness of KBP in ameliorating osteoarthritis-associated joint pain and in protecting the articular cartilage, suggesting KBP as a potential drug candidate for osteoarthritis.
Collapse
Affiliation(s)
- A Katri
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - A Dąbrowska
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - H Löfvall
- Division of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund, Sweden.
| | - M A Karsdal
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - K V Andreassen
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - C S Thudium
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - K Henriksen
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| |
Collapse
|
11
|
Adeyemi WJ, Olayaki LA. Additive and nonadditive effects of salmon calcitonin and omega-3 fatty acids on antioxidant, hematological and bone and cartilage markers in experimental diabetic-osteoarthritic rats. CHINESE J PHYSIOL 2019; 62:108-116. [PMID: 31249264 DOI: 10.4103/cjp.cjp_8_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Reports on the coexistence of diabetes mellitus and osteoarthritis in human subjects dated back to the 1960s. However, there is no account in literature on the co-manifestation of these disease conditions in experimental animals. In our previous study, we reported for the first time, the effects of pharmacological agents on glucoregulatory indices, lipid profile, and inflammatory markers in experimental diabetic-knee osteoarthritic rat. However, in the present study, the effects of salmon calcitonin (Sct), and/or omega-3 fatty acids (N-3) were further investigated on other biomarkers. Forty-nine rats of seven animals per group were used for this study. Diabetes was induced by the administration of streptozotocin (65 mg/kg) and nicotinamide (110 mg/kg). Thereafter, knee osteoarthritis was induced by the intra-articular injection of 4 mg of sodium monoiodoacetate in 40 μl of saline. Nine days after the inductions, treatments started, and they lasted for 4 weeks. N-3 was administered at 200 mg/kg/day, while Sct was administered at 2.5 and 5.0 IU/kg/day. The results of the study indicated that the induced diabetes-knee osteoarthritis caused significant alterations in all the observed biomarkers. Sct showed a dose-specific effect and an additive action with N-3 in reducing malondialdehyde and lactate dehydrogenase, and in elevating total bilirubin and total antioxidant capacity. However, it largely demonstrated a nondose-specific effect and nonadditive action with N-3 on superoxide dismutase, catalase, glutathione peroxidase, total alkaline phosphatase, c-telopeptide of type-I collagen, collagen type-2 alpha 1, and hematological indices. In conclusion, the combined administration of Sct and N-3 proffer better therapeutic effects than the single therapy; therefore, they could be used in the management of diabetic-osteoarthritic condition.
Collapse
Affiliation(s)
- Wale J Adeyemi
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Luqman A Olayaki
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
12
|
Adeyemi WJ, Olayaki LA. Effects of salmon calcitonin and omega – 3 fatty acids on selected biomarkers in experimental diabetic – osteoarthritic rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.synres.2018.100045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Katri A, Dąbrowska A, Löfvall H, Ding M, Karsdal MA, Andreassen KV, Thudium CS, Henriksen K. Combining naproxen and a dual amylin and calcitonin receptor agonist improves pain and structural outcomes in the collagen-induced arthritis rat model. Arthritis Res Ther 2019; 21:68. [PMID: 30795801 PMCID: PMC6387482 DOI: 10.1186/s13075-019-1819-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Background Pain is a debilitating symptom of rheumatoid arthritis (RA), caused by joint inflammation and cartilage and bone destruction. Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to treat pain and inflammation in RA, but are not disease-modifying and do not prevent joint destruction when administered alone. KBPs (Key Bioscience peptides) are synthetic peptides based on salmon calcitonin and are expected to inhibit bone resorption and to be chondroprotective. In this study, we investigated if combining a standard of care NSAID (naproxen) with a KBP resulted in improvement in pain scores, as well as disease activity and structural damage in a rat model of RA. Methods Collagen-induced arthritis (CIA) was induced in 40 female Lewis rats by immunization with porcine type II collagen; 10 rats were given sham injections. CIA rats were treated with KBP and/or naproxen. Health scores and joint scores were evaluated daily. Mechanical and cold allodynia tests and burrowing tests were used to assess pain-like behaviors. Blood samples were collected for biomarker testing, and paws were collected for histology and microcomputed tomography. Results Naproxen monotherapy increased the time until humane endpoints was reached, and improved health score, pain assessments, and trabecular thickness, while KBP monotherapy did not result in improvements. Combination therapy had improved efficacy over naproxen monotherapy; combination therapy resulted in improved health scores, and importantly reduced mechanical and cold allodynia assessment. Furthermore, protection of articular cartilage structure and preservation of bone structure and bone volume were also observed. Conclusions This study demonstrates that combining KBP and naproxen may be a relevant therapeutic strategy for RA, resulting in improvements to the overall health, pain, inflammation, and joint structure. Electronic supplementary material The online version of this article (10.1186/s13075-019-1819-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Katri
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Aneta Dąbrowska
- Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Henrik Löfvall
- Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark.,Division of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund, Sweden
| | - Ming Ding
- Department of Orthopaedics and Traumatology, Institute of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Morten A Karsdal
- Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Kim V Andreassen
- Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Christian S Thudium
- Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Kim Henriksen
- Biomarkers and Research, Nordic Bioscience, Hovedgade 205-207, 2730, Herlev, Denmark.
| |
Collapse
|
14
|
Zhou J, Li T, Li L, Xue Y. Clinical efficacy of calcitonin compared to diclofenac sodium in chronic nonspecific low back pain with type I Modic changes: a retrospective study. J Pain Res 2018; 11:1335-1342. [PMID: 30046250 PMCID: PMC6054296 DOI: 10.2147/jpr.s158718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The objective of this study was to compare the efficacy of calcitonin with diclofenac sodium in the treatment of patients with nonspecific low back pain (LBP) and type I Modic changes (MC1). Patients and methods The study was a retrospective observational study with 109 patients who had nonspecific LBP and MC1 that appeared as bone marrow lesions on magnetic resonance imaging (MRI). Between October 2013 and March 2016, 62 patients were injected intramuscularly with calcitonin 50 IU once daily and 47 patients were treated with diclofenac 75 mg once per day for 4 weeks for the treatment of LBP associated with MC1 on MRI. Visual analog scale (VAS) (0–10) and Oswestry Disability Index (ODI) (0–100) questionnaires were acquired from clinical records to evaluate LBP perception and degree of disability. Imaging data were also collected before and after treatment. Results Significant improvements were found in VAS and ODI at posttreatment compared with baseline in both groups (P < 0.05). Meanwhile, there was a significant difference between calcitonin group and diclofenac group at both 4 weeks and 3 months of follow-up (4 weeks: VAS 4.46 ± 1.58 vs 5.08 ± 1.50, ODI 20.32 ± 9.64 vs 24.35 ± 7.95; 3 months: VAS 3.70 ± 1.74 vs 4.51 ± 1.67, ODI 16.67 ± 9.04 vs 21.18 ± 9.56; P < 0.05 for all). Moreover, the proportion of patients with a significant change in LBP scales was higher in the calcitonin group (4 weeks: VAS 50.00% vs 23.40%, ODI 54.83% vs 25.53%; 3 months: VAS 58.06% vs 38.29%, ODI 59.67% vs 38.29%; P < 0.05 for all). According to MRI, 43.54% patients in the calcitonin group showed improvement compared with 21.27% patients in the diclofenac group (P < 0.05). Conclusion There was greater short-term efficacy of calcitonin compared with diclofenac in patients with LBP and MC1 on MRI.
Collapse
Affiliation(s)
- Jiaming Zhou
- Department of Orthopaedics Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China, .,Graduate School, Tianjin Medical University, Tianjin, People's Republic of China
| | - Tengshuai Li
- Department of Orthopaedics Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China,
| | - Liandong Li
- Department of Orthopaedics Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China,
| | - Yuan Xue
- Department of Orthopaedics Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China,
| |
Collapse
|
15
|
Adeyemi WJ, Olayaki LA. Calcitonin and Omega-3 Fatty Acids Exhibit Antagonistic and Non-Additive Effects in Experimental Diabetes. ACTA ACUST UNITED AC 2018; 25:117-123. [PMID: 29449103 DOI: 10.1016/j.pathophys.2018.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 01/26/2023]
Abstract
Because optimising therapy for the management of diabetes mellitus remains challenging, the study investigated the effects of salmon calcitonin (Sct) and/or omega-3 fatty acids (N-3 - eicosapentaenoic acid and docosahexaenoic acid-3:2), compared to metformin, on selected biochemical parameters in male Wistar rats, in an experimental model of diabetes. Forty rats were used for this study. They were divided into eight groups of five rats each, which included: Normal control; Diabetic (D) control; D + N-3; D + low dose Sct (Sct. Lw); D + high dose Sct (Sct. Hi); D + N-3 + Sct.Lw; D + N-3 + Sct.Hi; and D + metformin. Diabetes was induced in overnight fasted rats by the administration of streptozotocin (65 mg/kg b.w., i.p.), 15 min after the administration of nicotinamide (110 mg/kg b.w., i.p.). Nine days later, Sct was administered at 2.5 and 5.0 IU/kg b.w./day (i.m.), while N-3 and metformin were administered at 200 and 180 mg/kg b.w./day (p.o.) respectively, for four weeks. Sct, N-3, and metformin significantly reduced total cholesterol, LDL-C, cortisol, c-telopeptide of type 1 collagen, and collagen type 2 alpha-1. The combined administration of Sct and N-3 had more favorable effects on triglyceride and HDL-C than either monotherapy. Unlike metformin and Sct. Hi, N-3 significantly reduced alkaline phosphatase activity. Moreover, N-3 significantly suppressed the hypocalcaemic, hyperglycaemic, and insulin resistance provoking actions of Sct. Furthermore, N-3 contradicted the hepatic glycogen depletion and inhibition of nitric oxide synthesis brought about by Sct. In conclusion, N-3 demonstrated antagonistic and non-additive actions with Sct. Moreover, the effects of the combined administration of Sct and N-3 were comparable to that of metformin; therefore, they might be considered as therapeutic alternatives in diabetes.
Collapse
Affiliation(s)
- Wale Johnson Adeyemi
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| | | |
Collapse
|
16
|
Dittus N, Hahn K, Stokar-Regenscheit N, Gerber V, Unger L. Calcitonin as a potential tumour marker for medullary thyroid carcinoma in an 11-year-old Spanish Pure Bred gelding with two independent carcinomas. EQUINE VET EDUC 2017. [DOI: 10.1111/eve.12744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- N. Dittus
- Vetsuisse Faculty; Swiss Institute of Equine Medicine (ISME); University of Bern and Agroscope; Bern Switzerland
| | - K. Hahn
- Vetsuisse Faculty; Institute of Animal Pathology; University of Bern; Bern Switzerland
| | - N. Stokar-Regenscheit
- Vetsuisse Faculty; Institute of Animal Pathology; University of Bern; Bern Switzerland
| | - V. Gerber
- Vetsuisse Faculty; Swiss Institute of Equine Medicine (ISME); University of Bern and Agroscope; Bern Switzerland
| | - L. Unger
- Vetsuisse Faculty; Swiss Institute of Equine Medicine (ISME); University of Bern and Agroscope; Bern Switzerland
| |
Collapse
|
17
|
Hutchinson JA, Burholt S, Hamley IW. Peptide hormones and lipopeptides: from self-assembly to therapeutic applications. J Pept Sci 2017; 23:82-94. [PMID: 28127868 PMCID: PMC5324658 DOI: 10.1002/psc.2954] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 12/18/2022]
Abstract
This review describes the properties and activities of lipopeptides and peptide hormones and how the lipidation of peptide hormones could potentially produce therapeutic agents combating some of the most prevalent diseases and conditions. The self-assembly of these types of molecules is outlined, and how this can impact on bioactivity. Peptide hormones specific to the uptake of food and produced in the gastrointestinal tract are discussed in detail. The advantages of lipidated peptide hormones over natural peptide hormones are summarised, in terms of stability and renal clearance, with potential application as therapeutic agents. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- J A Hutchinson
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - S Burholt
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - I W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
18
|
Yeh CB, Weng SJ, Chang KW, Chan JYH, Huang SM, Chu TH, Wei NK, Ma HS, Cheng JT, Ma KH, Chen TH, Shyu JF. Calcitonin alleviates hyperalgesia in osteoporotic rats by modulating serotonin transporter activity. Osteoporos Int 2016; 27:3355-3364. [PMID: 27260496 DOI: 10.1007/s00198-016-3652-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 05/24/2016] [Indexed: 02/03/2023]
Abstract
UNLABELLED Calcitonin may relieve pain by modulating central serotonin activity. Calcitonin partly reversed the hypersensitivity to pain induced by ovariectomy. This suggests that the anti-nociceptive effects of calcitonin in the treatment of osteoporosis may be mediated by alterations in neural serotonin transporter (SERT) activity. INTRODUCTION This study used a rat model of osteoporosis to evaluate the role of the cerebral serotonin system in the anti-nociceptive effect of calcitonin, a drug used to treat post-menopausal osteoporosis. METHODS Osteoporosis was induced in rats by ovariectomy (OVX). Rats were then randomized to the following four groups: sham operation, OVX, OVX plus calcitonin, or OVX plus alendronate. RESULTS OVX led to alterations in bone micro-architecture; alendronate strongly reversed this effect, and calcitonin moderately reversed this effect. OVX increased hyperalgesia (determined as the time for hind paw withdrawal from a heat source); calcitonin reduced this effect, but alendronate had no effect. OVX increased the expression of c-Fos (a neuronal marker of pain) in the thalamus; calcitonin strongly reversed this effect, and alendronate moderately reversed this effect. OVX also reduced SERT but increased 5-HT1A receptor expression and activity; calcitonin aggravated this effect, but alendronate had no effect on recovery of SERT/5-HT1A activity and expression. CONCLUSIONS Our study of a rat model of osteoporosis suggests that OVX-induced enhancement of the serotonergic system may protect against hyperalgesia. However, the anti-nociceptive effects of calcitonin in osteoporosis may be mediated by decreased neural SERT activity and increased activation of 5-HT1 receptors in the thalamus.
Collapse
Affiliation(s)
- C-B Yeh
- Department of Psychiatry, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - S-J Weng
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, Taiwan, 114, People's Republic of China
| | - K-W Chang
- Atomic Energy Council, Executive Yuan, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - J Y-H Chan
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - S-M Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - T-H Chu
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, Taiwan, 114, People's Republic of China
| | - N-K Wei
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, Taiwan, 114, People's Republic of China
| | - H-S Ma
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, Taiwan, 114, People's Republic of China
| | - J-T Cheng
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, Taiwan, 114, People's Republic of China
| | - K-H Ma
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, Taiwan, 114, People's Republic of China
| | - T-H Chen
- School of Medicine, Institute of Anatomy and Cell Biology, National Yang Ming University, Taipei, Taiwan
- Department of Surgery, Veteran General Hospital, Taipei, Taiwan
| | - J-F Shyu
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, Taiwan, 114, People's Republic of China.
| |
Collapse
|
19
|
Osteoimmunology: memorandum for rheumatologists. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1241-1258. [DOI: 10.1007/s11427-016-5105-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022]
|
20
|
Komatsu DE, Hadjiargyrou M, Udin SMZ, Trasolini NA, Pentyala S. Identification and Characterization of a Synthetic Osteogenic Peptide. Calcif Tissue Int 2015; 97:611-23. [PMID: 26319675 PMCID: PMC4628865 DOI: 10.1007/s00223-015-0055-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Osteoporosis is the most common metabolic bone disorder and its management represents a tremendous public health encumbrance. While several classes of therapeutics have been approved to treat this disease, all are associated with significant adverse effects. An algorithm was developed and utilized to discover potential bioactive peptides, which led to the identification of an osteogenic peptide that mapped to the C-terminal region of the calcitonin receptor and has been named calcitonin receptor fragment peptide (CRFP). In vitro treatment of human mesenchymal stem cells with CRFP resulted in dose-specific effects on both proliferation and osteoblastic differentiation. Similarly, in vitro treatment of rat RCJ3.1C5.18 cells led to dose- and species-specific effects on proliferation. A rat ovariectomy (OVX) model was used to assess the potential efficacy of CRFP in treating osteoporosis. MicroCT analysis of distal femoral samples showed that OVX rats treated with CRFP were significantly protected from losses of 55 % in trabecular bone volume fraction (BVF), 42 % in connectivity density, and 18 % in trabecular thickness in comparison to vehicle-treated controls. MicroCT analyses of vertebrae revealed CRFP to significantly prevent a 25 % reduction in BVF. MicroCT evaluation of femoral and vertebral cortical bone found a significant reduction of 2 % in vertebral bone mineral density. In summary, our in vitro studies indicate that CRFP is both bioactive and osteogenic and our in vivo studies indicate that CRFP is skeletally bioactive. These promising data indicate that further in vitro and in vivo evaluation of CRFP as a new treatment for osteoporosis is warranted.
Collapse
Affiliation(s)
- David E Komatsu
- Department of Orthopaedics, HSC-T18, Stony Brook University, Room 085, Stony Brook, NY, 11794-8181, USA.
| | - Michael Hadjiargyrou
- Department of Life Sciences, Theobald Science Center, New York Institute of Technology, Room 420, Old Westbury, NY, 11568-8000, USA
| | - Sardar M Z Udin
- Department of Orthopaedics, HSC-T18, Stony Brook University, Room 085, Stony Brook, NY, 11794-8181, USA
| | - Nicholas A Trasolini
- School of Medicine, HSC-T4, Stony Brook University, Room 147, Stony Brook, NY, 11794-8434, USA
| | - Srinivas Pentyala
- Department of Anesthesiology, HSC-L4, Stony Brook University Medical Center, Room 85, Stony Brook, NY, 11794-8480, USA.
| |
Collapse
|
21
|
Wang K, Xu J, Hunter DJ, Ding C. Investigational drugs for the treatment of osteoarthritis. Expert Opin Investig Drugs 2015; 24:1539-1556. [PMID: 26429673 DOI: 10.1517/13543784.2015.1091880] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is a common joint disease with multiple pathophysiological processes, affecting the whole joint. Current therapeutic options such as NSAIDs can provide a palliative effect on symptoms but have limited effect on disease progression. New drugs targeting OA structures may retard disease progression at an earlier stage and delay the need for joint replacement. AREAS COVERED Some drugs have entered into clinical trials and a few, such as strontium ranelate, do have improvements in both pain and structure changes. However, most of them have failed in clinical trials largely due to increased side effects or the failure to identify the right OA phenotype for the right drug in clinical design. This review describes various investigational drugs developed for the treatment of OA covering those at stages from preclinical experiments to early phase clinical trials. They include drugs for slowing cartilage degradation, regulating cartilage metabolism, targeting subchondral bone, controlling inflammation and relieving pain. EXPERT OPINION Treatment options for OA remain limited. However, with the emergence of sensitive tools to detect early disease progression and identification of different OA phenotypes, disease-modifying anti-OA drugs with increased benefit and reduced risks will become available for OA treatment in the near future.
Collapse
Affiliation(s)
- Kang Wang
- a 1 The First Affiliated Hospital of Anhui Medical University, Arthritis Research Institute, Department of Rheumatology and Immunology , Hefei, China
| | - Jianhua Xu
- a 1 The First Affiliated Hospital of Anhui Medical University, Arthritis Research Institute, Department of Rheumatology and Immunology , Hefei, China
| | - David J Hunter
- b 2 University of Sydney, Kolling Institute, Institute of Bone and Joint Research, Royal North Shore Hospital, Rheumatology Department , Sydney, NSW, Australia
| | - Changhai Ding
- a 1 The First Affiliated Hospital of Anhui Medical University, Arthritis Research Institute, Department of Rheumatology and Immunology , Hefei, China
- c 3 University of Tasmania, Menzies Institute for Medical Research , Private Bag 23, Hobart, Tasmania 7000, Australia +61 3 62 26 77 30 ; +61 3 62 26 77 04 ;
| |
Collapse
|
22
|
Karsdal MA, Riis BJ, Mehta N, Stern W, Arbit E, Christiansen C, Henriksen K. Lessons learned from the clinical development of oral peptides. Br J Clin Pharmacol 2015; 79:720-32. [PMID: 25408230 PMCID: PMC4415709 DOI: 10.1111/bcp.12557] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/14/2014] [Indexed: 01/11/2023] Open
Abstract
The oral delivery of peptides and proteins has been hampered by an array of obstacles. However, several promising novel oral delivery systems have been developed. This paper reviews the most advanced oral formulation technologies, and highlights key lessons and implications from studies undertaken to date with these oral formulations. Special interest is given to oral salmon calcitonin (CT), glucagon-like peptide-1 (GLP-1), insulin, PYY-(3-36), recombinant human parathyroid hormone (rhPTH(1-31)-NH2) and PTH(1-34), by different technologies. The issues addressed include (i) interaction with water, (ii) interaction with food, (iii) diurnal variation, (iv) inter- and intra-subject variability, (v) correlation between efficacy and exposure and (vi) key deliverables of different technologies. These key lessons may aid research in the development of other oral formulations.
Collapse
|
23
|
Li L, Chen X, Lv S, Dong M, Zhang L, Tu J, Yang J, Zhang L, Song Y, Xu L, Zou J. Influence of exercise on bone remodeling-related hormones and cytokines in ovariectomized rats: a model of postmenopausal osteoporosis. PLoS One 2014; 9:e112845. [PMID: 25393283 PMCID: PMC4231162 DOI: 10.1371/journal.pone.0112845] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 10/17/2014] [Indexed: 11/18/2022] Open
Abstract
This study aims to explore the effects of exercise on postmenopausal osteoporosis and the mechanisms by which exercise affects bone remodeling. Sixty-three Wistar female rats were randomly divided into five groups: (1) control group, (2) sham-operated group, (3) OVX (Ovariectomy) group, (4) DES-OVX (Diethylstilbestrol-OVX) group, and (5) Ex-OVX (Exercise-OVX) group. The rat osteoporosis model was established through ovariectomy. The Ex-OVX rats were made to run 251.2 meters every day, 6 d/wk for 3 months in a running wheel. Trabecular bone volume (TBV%), total resorption surface (TRS%), trabecular formation surface (TFS%), mineralization rate (MAR), bone cortex mineralization rate (mAR), and osteoid seam width (OSW) were determined by bone histomorphometry. The mRNA and protein levels of interleukin-1β (IL-1β2), interleukin-6 (IL-6), and cyclooxygenase-2 (Cox-2) were determined by in situ hybridization and immunohistochemistry, respectively. Serum levels of estrogen estradiol (E2), calcitonin (CT), osteocalcin (BGP), and parathyroid hormone (PTH) were determined by ELISA assays. The investigation revealed that compared to the control and the sham-operated groups, the OVX group showed significantly lower levels of TBV%, E2, and CT, but much higher levels of TRS%, TFS%, MAR, OSW, BGP, and PTH. The Ex-OVX group showed increased TBV% and serum levels of E2 and CT compared to the OVX group. Ovariectomy also led to a significant increase in IL-1β mRNA and protein levels in the bone marrow and IL-6 and Cox-2 protein levels in tibias. In addition, the Ex-OVX group showed lower levels of IL-1 mRNA and protein, IL-6 mRNA, and Cox-2 mRNA and protein than those in the OVX group. The upshot of the study suggests that exercise can significantly increase bone mass in postmenopausal osteoporosis rat models by inhibiting bone resorption and increasing bone formation, especially in trabecular bones.
Collapse
Affiliation(s)
- Lihui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xi Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Shuang Lv
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Miaomiao Dong
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Li Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jiaheng Tu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jie Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yinan Song
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Leiting Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Medical School of Ningbo University, Ningbo, China
| | - Jun Zou
- Scientific Research Department, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
24
|
Yuan XL, Meng HY, Wang YC, Peng J, Guo QY, Wang AY, Lu SB. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage 2014; 22:1077-89. [PMID: 24928319 DOI: 10.1016/j.joca.2014.05.023] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 02/02/2023]
Abstract
Currently, osteoarthritis (OA) is considered a disease of the entire joint, which is not simply a process of wear and tear but rather abnormal remodelling and joint failure of an organ. The bone-cartilage interface is therefore a functioning synergistic unit, with a close physical association between subchondral bone and cartilage suggesting the existence of biochemical and molecular crosstalk across the OA interface. The crosstalk at the bone-cartilage interface may be elevated in OA in vivo and in vitro. Increased vascularisation and formation of microcracks associated with abnormal bone remodelling in joints during OA facilitate molecular transport from cartilage to bone and vice versa. Recent reports suggest that several critical signalling pathways and biological factors are key regulators and activate cellular and molecular processes in crosstalk among joint compartments. Therapeutic interventions including angiogenesis inhibitors, agonists/antagonists of molecules and drugs targeting bone remodelling are potential candidates for this interaction. This review summarised the premise for the presence of crosstalk in bone-cartilage interface as well as the current knowledge of the major signalling pathways and molecular interactions that regulate OA progression. A better understanding of crosstalk in bone-cartilage interface may lead to development of more effective strategies for treating OA patients.
Collapse
Affiliation(s)
- X L Yuan
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing 28# Road, Beijing, China
| | - H Y Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing 28# Road, Beijing, China
| | - Y C Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing 28# Road, Beijing, China
| | - J Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing 28# Road, Beijing, China
| | - Q Y Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing 28# Road, Beijing, China
| | - A Y Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing 28# Road, Beijing, China.
| | - S B Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing 28# Road, Beijing, China
| |
Collapse
|
25
|
Association between periodontal disease and inflammatory arthritis reveals modulatory functions by melanocortin receptor type 3. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2333-41. [PMID: 24979595 DOI: 10.1016/j.ajpath.2014.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/14/2014] [Accepted: 04/22/2014] [Indexed: 12/21/2022]
Abstract
Because there is clinical evidence for an association between periodontal disease and rheumatoid arthritis, it is important to develop suitable experimental models to explore pathogenic mechanisms and therapeutic opportunities. The K/BxN serum model of inflammatory arthritis was applied using distinct protocols, and modulation of joint disruption afforded by dexamethasone and calcitonin was established in comparison to the melanocortin (MC) receptor agonist DTrp(8)-γ-melanocyte stimulating hormone (MSH; DTrp). Wild-type and MC receptor type 3 (MC3)-null mice of different ages were also used. There was significant association between severity of joint disease, induced with distinct protocols and volumes of the arthritogenic K/BxN serum, and periodontal bone damage. Therapeutic treatment with 10 μg dexamethasone, 30 ng elcatonin, and 20 μg DTrp per mouse revealed unique and distinctive pharmacological properties, with only DTrp protecting both joint and periodontal tissue. Further analyses in nonarthritic animals revealed higher susceptibility to periodontal bone loss in Mc3r(-/-) compared with wild-type mice, with significant exacerbation at 14 weeks of age. These data reveal novel protective properties of endogenous MC3 on periodontal status in health and disease and indicate that MC3 activation could lead to the development of a new genus of anti-arthritic bone-sparing therapeutics.
Collapse
|
26
|
Abstract
Biological therapy is a thriving area of research and development, and is well established for chronic forms of rheumatoid arthritis (RA) and ankylosing spondylitis (AS). However, there is no clinically validated biological therapy for osteoarthritis (OA). Chronic forms of OA are increasingly viewed as an inflammatory disease. OA was largely regarded as a “wear and tear disease”. However, the disease is now believed to involve “low grade” inflammation and the growth of blood vessels and nerves from the subchondral bone into articular cartilage. This realization has focused research effort on the development and evaluation of biological therapy that targets proinflammatory mediators, angiogenic factors and cytokines in articular cartilage, subchondral bone and synovium in chronic forms of OA. This review article provides an overview of emerging biological therapy for OA, and discusses recent molecular targets implicated in angiogenesis and neurogenesis and progress with antibody-based therapy, calcitonin, and kartogenin, the small molecule stimulator of chondrogenesis.
Collapse
Affiliation(s)
- A Mobasheri
- D-BOARD European Consortium for Biomarker Discovery, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK,
| |
Collapse
|
27
|
Abstract
Delivery of peptides by the oral route greatly appeals due to commercial, patient convenience and scientific arguments. While there are over 60 injectable peptides marketed worldwide, and many more in development, most delivery strategies do not yet adequately overcome the barriers to oral delivery. Peptides are sensitive to chemical and enzymatic degradation in the intestine, and are poorly permeable across the intestinal epithelium due to sub-optimal physicochemical properties. A successful oral peptide delivery technology should protect potent peptides from presystemic degradation and improve epithelial permeation to achieve a target oral bioavailability with acceptable intra-subject variability. This review provides a comprehensive up-to-date overview of the current status of oral peptide delivery with an emphasis on patented formulations that are yielding promising clinical data.
Collapse
|
28
|
Prolonged hypocalcemic effect by pulmonary delivery of calcitonin loaded poly(methyl vinyl ether maleic acid) bioadhesive nanoparticles. BIOMED RESEARCH INTERNATIONAL 2014; 2014:932615. [PMID: 24701588 PMCID: PMC3950494 DOI: 10.1155/2014/932615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/08/2013] [Accepted: 01/12/2014] [Indexed: 11/17/2022]
Abstract
The purpose of the present study was to design a pulmonary controlled release system of salmon calcitonin (sCT). Therefore, poly(methyl vinyl ether maleic acid) [P(MVEMA)] nanoparticles were prepared by ionic cross-linking method using Fe2+ and Zn2+ ions. Physicochemical properties of nanoparticles were studied in vitro. The stability of sCT in the optimized nanoparticles was studied by electrophoretic gel method. Plasma calcium levels until 48 h were determined in rats as pulmonary-free sCT solution or nanoparticles (25 μg·kg−1), iv solution of sCT (5 μg·kg−1), and pulmonary blank nanoparticles. The drug remained stable during fabrication and tests on nanoparticles. The optimized nanoparticles showed proper physicochemical properties. Normalized reduction of plasma calcium levels was at least 2.76 times higher in pulmonary sCT nanoparticles compared to free solution. The duration of hypocalcemic effect of pulmonary sCT nanoparticles was 24 h, while it was just 1 h for the iv solution. There was not any significant difference between normalized blood calcium levels reduction in pulmonary drug solution and iv injection. Pharmacological activity of nanoparticles after pulmonary delivery was 65% of the iv route. Pulmonary delivery of P(MVEMA) nanoparticles of sCT enhanced and prolonged the hypocalcemic effect of the drug significantly.
Collapse
|
29
|
Karsdal MA, Bay-Jensen AC, Lories RJ, Abramson S, Spector T, Pastoureau P, Christiansen C, Attur M, Henriksen K, Goldring SR, Kraus V. The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann Rheum Dis 2014; 73:336-48. [PMID: 24285494 DOI: 10.1136/annrheumdis-2013-204111] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is the most common form of arthritic disease, and a major cause of disability and impaired quality of life in the elderly. OA is a complex disease of the entire joint, affecting bone, cartilage and synovium that thereby presents multiple targets for treatment. This manuscript will summarise emerging observations from cell biology, preclinical and preliminary clinical trials that elucidate interactions between the bone and cartilage components in particular. Bone and cartilage health are tightly associated. Ample evidence has been found for bone changes during progression of OA including, but not limited to, increased turnover in the subchondral bone, undermineralisation of the trabecular structure, osteophyte formation, bone marrow lesions and sclerosis of the subchondral plate. Meanwhile, a range of investigations has shown positive effects on cartilage health when bone resorption is suppressed, or deterioration of the cartilage when resorption is increased. Known bone therapies, namely oestrogens, selective oestrogen receptor modifiers (SERMs), bisphosphonates, strontium ranelate, calcitonin and parathyroid hormone, might prove useful for treating two critical tissue components of the OA joint, the bone and the cartilage. An optimal treatment for OA likely targets at least these two tissue components. The patient subgroups for whom these therapies are most appropriate have yet to be fully defined but would likely include, at a minimum, those with high bone turnover.
Collapse
|
30
|
Mucoadhesive intestinal devices for oral delivery of salmon calcitonin. J Control Release 2013; 172:753-62. [PMID: 24035976 DOI: 10.1016/j.jconrel.2013.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/24/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022]
Abstract
One of the major challenges faced by therapeutic polypeptides remains their invasive route of delivery. Oral administration offers a potential alternative to injections; however, this route cannot be currently used for peptides due to their limited stability in the stomach and poor permeation across the intestine. Here, we report mucoadhesive devices for oral delivery that are inspired by the design of transdermal patches and demonstrate their capabilities in vivo for salmon calcitonin (sCT). The mucoadhesive devices were prepared by compressing a polymeric matrix containing carbopol, pectin and sodium carboxymethylcellulose (1:1:2), and were coated on all sides but one with an impermeable and flexible ethyl cellulose (EC) backing layer. Devices were tested for in vitro dissolution, mucoadhesion to intestinal mucosa, enhancement of drug absorption in vitro (Caco-2 monolayer transport) and in vivo in rats. Devices showed steady drug release with ≈75% cumulative drug released in 5h. Devices also demonstrated strong mucoadhesion to porcine small intestine to withstand forces up to 100 times their own weight. sCT-loaded mucoadhesive devices exhibited delivery of sCT across Caco-2 monolayers and across the intestinal epithelium in vivo in rats. A ≈52-fold (pharmacokinetic) and ≈44-fold (pharmacological) enhancement of oral bioavailability was observed with mucoadhesive devices when compared to direct intestinal injections. Oral delivery of devices in enteric coated capsules resulted in significant bioavailability enhancement.
Collapse
|
31
|
Karsdal MA, Henriksen K, Bay-Jensen AC, Molloy B, Arnold M, John MR, Byrjalsen I, Azria M, Riis BJ, Qvist P, Christiansen C. Lessons Learned From the Development of Oral Calcitonin: The First Tablet Formulation of a Protein in Phase III Clinical Trials. J Clin Pharmacol 2013; 51:460-71. [DOI: 10.1177/0091270010372625] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Al-Kashi A, Montero-Melendez T, Moradi-Bidhendi N, Gilligan JP, Mehta N, Perretti M. The calcitonin and glucocorticoids combination: mechanistic insights into their class-effect synergy in experimental arthritis. PLoS One 2013; 8:e54299. [PMID: 23393556 PMCID: PMC3564948 DOI: 10.1371/journal.pone.0054299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Previous work reported the anti-arthritic synergy afforded by combining calcitonin (CT) and glucocorticoids (GC). Here we focus on the pairing of elcatonin (eCT) and dexamethasone (Dex), querying whether: i) this was a class-effect action; ii) mechanistic insights could be unveiled; iii) the synergy affected canonical GC adverse effects. METHODS Using the rat collagen-induced arthritis model, different combinations of eCT and Dex, were administered from disease onset to peak (day 11 to 18). Macroscopic disease score was monitored throughout, with biochemical and histological analyses conducted on plasma and tissues at day 18. The effect on acute hyperglycaemia and liver enzyme message were also assessed. RESULTS Whilst eCT alone was inactive, it synergised at 1 µg/kg with low doses of Dex (7.5 or 15 µg/kg) to yield an anti-arthritic efficacy equivalent to a 4- to 7-fold higher Dex dose. Mechanistically, the anti-arthritic synergy corresponded to a marked attenuation in RA-relevant analytes. CXCL5 expression, in both plasma and joint, was markedly inhibited by the co-therapy. Finally, co-administration of eCT did not exacerbate metrics of GC adverse effects, and rescued some of them. CONCLUSIONS We present evidence of a class-effect action for the anti-arthritic synergy of CT/GC combination, underpinned by the powerful inhibition of joint destruction markers. Furthermore, we identify CXCL5 as a marker for the combination therapy with potential diagnostic and prognostic utility. Substantial GC dose reduction, together with the absence of exacerbated adverse effects, indicated a significant clinical potential for this co-therapy in RA and beyond.
Collapse
Affiliation(s)
- Adam Al-Kashi
- The William Harvey Research Institute, Barts and The London School of Medicine, London, United Kingdom
| | - Trinidad Montero-Melendez
- The William Harvey Research Institute, Barts and The London School of Medicine, London, United Kingdom
| | - Niloufar Moradi-Bidhendi
- The William Harvey Research Institute, Barts and The London School of Medicine, London, United Kingdom
| | - James P. Gilligan
- Tarsa Therapeutics, Philadelphia, Pennsylvania, United States of America
| | - Nozer Mehta
- Unigene Corporation, Fairfield, New Jersey, United States of America
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, London, United Kingdom
| |
Collapse
|
33
|
Colonic absorption of salmon calcitonin using tetradecyl maltoside (TDM) as a permeation enhancer. Eur J Pharm Sci 2013; 48:726-34. [PMID: 23354154 DOI: 10.1016/j.ejps.2013.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/14/2012] [Accepted: 01/09/2013] [Indexed: 11/21/2022]
Abstract
Calcitonin is used as a second line treatment of postmenopausal osteoporosis, but widespread acceptance is somewhat limited by subcutaneous and intranasal routes of delivery. This study attempted to enable intestinal sCT absorption in rats using the mild surfactant, tetradecyl maltoside (TDM) as an intestinal permeation enhancer. Human Caco-2 and HT29-MTX-E12 mucus-covered intestinal epithelial monolayers were used for permeation studies. Rat in situ intestinal instillation studies were conducted to evaluate the absorption of sCT with and without 0.1 w/v% TDM in jejunum, ileum and colon. TDM significantly enhanced sCT permeation across intestinal epithelial monolayers, most likely due to combined paracellular and transcellular actions. In situ, TDM caused an increased absolute bioavailability of sCT in rat colon from 1.0% to 4.6%, whereas no enhancement increase was observed in ileal and jejunal instillations. Histological analysis suggested mild perturbation of colonic epithelia in segments instilled with sCT and TDM. These data suggest that the membrane composition of the colon is different to the small intestine and that it is more amenable to permeation enhancement. Thus, formulations designed to release payload in the colon could be advantageous for systemic delivery of poorly permeable molecules.
Collapse
|
34
|
Abstract
Calcitonin is a hormone secreted by the C-cells of the thyroid gland in response to elevations of the plasma calcium level. It reduces bone resorption by inhibiting mature active osteoclasts and increases renal calcium excretion. It is used in the management of postmenopausal osteoporosis, Paget’s disease of bone, and malignancy-associated hypercalcemia. Synthetic and recombinant calcitonin preparations are available; both have similar pharmacokinetic and pharmacodynamic profiles. As calcitonin is a peptide, the traditional method of administration has been parenteral or intranasal. This hinders its clinical use: adherence with therapy is notoriously low, and withdrawal from clinical trials has been problematic. An oral formulation would be more attractive, practical, and convenient to patients. In addition to its effect on active osteoclasts and renal tubules, calcitonin has an analgesic action, possibly mediated through β-endorphins and the central modulation of pain perception. It also exerts a protective action on cartilage and may be useful in the management of osteoarthritis and possibly rheumatoid arthritis. Oral formulations of calcitonin have been developed using different techniques. The most studied involves drug-delivery carriers such as Eligen® 8-(N-2hydroxy-5-chloro-benzoyl)-amino-caprylic acid (5-CNAC) (Emisphere Technologies, Cedar Knolls, NJ). Several factors affect the bioavailability and efficacy of orally administered calcitonin, including amount of water used to take the tablet, time of day the tablet is taken, and proximity to intake of a meal. Preliminary results looked promising. Unfortunately, in two Phase III studies, oral calcitonin (0.8 mg with 200 mg 5-CNAC, once a day for postmenopausal osteoporosis and twice a day for osteoarthritis) failed to meet key end points, and in December 2011, Novartis Pharma AG announced that it would not pursue further clinical development of oral calcitonin for postmenopausal osteoporosis or osteoarthritis. A unique feature of calcitonin is that it is able to uncouple bone turnover, reducing bone resorption without affecting bone formation and therefore increasing bone mass and improving bone quality. This effect, however, may be dose-dependent, with higher doses inhibiting both resorption and formation. Because so many factors affect the pharmacokinetics and pharmacodynamics of calcitonin, especially orally administered calcitonin, much work remains to be done to explore the full pharmacologic spectrum and potential of calcitonin and determine the optimum dose and timing of administration, as well as water and food intake.
Collapse
Affiliation(s)
- Ronald C Hamdy
- Osteoporosis Center, College of Medicine, East Tennessee State University, Johnson City, TN, USA ; Veterans Affairs Medical Center, Johnson City, TN, USA
| | | |
Collapse
|
35
|
Fraser LA, Adachi JD. Glucocorticoid-induced osteoporosis: treatment update and review. Ther Adv Musculoskelet Dis 2012; 1:71-85. [PMID: 22870429 DOI: 10.1177/1759720x09343729] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIO) is a serious consequence of glucocorticoid therapy leading to fractures in 30-50% of patients. A wide range of protective medications have been studied in this condition including calcium, vitamin D, vitamin D analogs, oral and intravenous bisphosphonates, sex hormones, anabolic agents and calcitonin. The mechanism of action, and evidence for these therapies, are reviewed - focusing on important trials and new evidence. Recently published guidelines are also reviewed and compared. Bisphosphonates are currently the recommended first-line therapy for the prevention and treatment of GIO. They have been shown to increase bone mineral density (BMD) at the spine and hip and to decrease the incidence of vertebral fractures (especially in postmenopausal women). Testosterone therapy and female hormone replacement therapy (HRT) have been found to increase lumbar spine BMD in hypogonadal patients on glucocorticoid therapy, but effects on hip BMD have not been consistent and there is no fracture data in the GIO population. Similarly, calcitonin increases lumbar spine BMD but has no proven fracture efficacy. The effect of selective estrogen receptor modulators, the oral contraceptive pill and strontium on GIO is relatively unknown. Parathyroid hormone (PTH 1-34) and zoledronic acid have emerged as exciting new options for the treatment of GIO. Both therapies have been found to result in gains in BMD at the spine and hip that are either noninferior or superior to those seen with oral bisphosphonate therapy. PTH 1-34 has also been found to decrease the incidence of new vertebral fractures and may be an option in high-risk patients established on long-term glucocorticoid therapy.
Collapse
Affiliation(s)
- Lisa-Ann Fraser
- Division of Endocrinology and Metabolism, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
36
|
Kulpiya A, Mahachoklertwattana P, Pakakasama S, Hongeng S, Poomthavorn P. Hypercalcemia and altered biochemical bone markers in post-bone marrow transplantation osteopetrosis: a case report and literature review. Pediatr Transplant 2012; 16:E140-5. [PMID: 21323826 DOI: 10.1111/j.1399-3046.2011.01475.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Autosomal recessive osteopetrosis is a rare disorder of bone resorption defect that results in generalized sclerotic bones and bone marrow failure. Allogeneic BMT is the only treatment for cure. One of the complications following a successful BMT is hypercalcemia that is a unique complication in this group of patients. We report a three-yr-old boy with osteopetrosis who developed hypercalcemia following the successful BMT. His maximal calcium level was 13.3 mg/dL. Markedly increased both bone formation and resorption markers were demonstrated along with hypercalcemia. These findings indicated an active donor-derived osteoclastic function and thus bone resorption following the successful donor engraftment in the patient. Treatment with hyperhydration, furosemide and bone resorption inhibitors, calcitonin, and bisphosphonate led to normalization of the serum calcium level. Bone resorption but not bone formation marker was persistently elevated despite having normocalcemia during a 16.5-month follow-up period.
Collapse
Affiliation(s)
- Alisa Kulpiya
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
37
|
Kuo YJ, Tsuang FY, Sun JS, Lin CH, Chen CH, Li JY, Huang YC, Chen WY, Yeh CB, Shyu JF. Calcitonin inhibits SDCP-induced osteoclast apoptosis and increases its efficacy in a rat model of osteoporosis. PLoS One 2012; 7:e40272. [PMID: 22792258 PMCID: PMC3391248 DOI: 10.1371/journal.pone.0040272] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/04/2012] [Indexed: 12/13/2022] Open
Abstract
Introduction Treatment for osteoporosis commonly includes the use of bisphosphonates. Serious side effects of these drugs are caused by the inhibition of bone resorption as a result of osteoclast apoptosis. Treatment using calcitonin along with bisphosphonates overcomes these side-effects in some patients. Calcitonin is known to inhibit bone resorption without reducing the number of osteoclasts and is thought to prolong osteoclast survival through the inhibition of apoptosis. Further understanding of how calcitonin inhibits apoptosis could prove useful to the development of alternative treatment regimens for osteoporosis. This study aimed to analyze the mechanism by which calcitonin influences osteoclast apoptosis induced by a bisphosphate analog, sintered dicalcium pyrophosphate (SDCP), and to determine the effects of co-treatment with calcitonin and SDCP on apoptotic signaling in osteoclasts. Methods Isolated osteoclasts were treated with CT, SDCP or both for 48 h. Osteoclast apoptosis assays, pit formation assays, and tartrate-resistant acid phosphatase (TRAP) staining were performed. Using an osteoporosis rat model, ovariectomized (OVX) rats received calcitonin, SDCP, or calcitonin + SDCP. The microarchitecture of the fifth lumbar trabecular bone was investigated, and histomorphometric and biochemical analyses were performed. Results Calcitonin inhibited SDCP-induced apoptosis in primary osteoclast cultures, increased Bcl-2 and Erk activity, and decreased Mcl-1 activity. Calcitonin prevented decreased osteoclast survival but not resorption induced by SDCP. Histomorphometric analysis of the tibia revealed increased bone formation, and microcomputed tomography of the fifth lumbar vertebrate showed an additive effect of calcitonin and SDCP on bone volume. Finally, analysis of the serum bone markers CTX-I and P1NP suggests that the increased bone volume induced by co-treatment with calcitonin and SDCP may be due to decreased bone resorption and increased bone formation. Conclusions Calcitonin reduces SDCP-induced osteoclast apoptosis and increases its efficacy in an in vivo model of osteoporosis.
Collapse
Affiliation(s)
- Yi-Jie Kuo
- Department of Orthopaedic, Taipei Medical University Hospital, Taipei, Taiwan, Republic of China
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Fon-Yih Tsuang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Jui-Sheng Sun
- Department of Orthopaedic Surgery, National Taiwan University Hospital-Hsin Chu, Hsin-Chu, Taiwan, Republic of China
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Chia-Hsien Chen
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Jia-Ying Li
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yi-Chian Huang
- Institute of Anatomy and Cell Biology National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Wei-Yu Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chin-Bin Yeh
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
38
|
Tang H, Zhao J, Hao C. Osteoporotic vertebral compression fractures: surgery versus non-operative management. J Int Med Res 2012; 39:1438-47. [PMID: 21986146 DOI: 10.1177/147323001103900432] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This 12-month retrospective study compared pain relief, quality of life (QoL), treatment cost-effectiveness and complication rates in patients with acute osteoporotic vertebral compression fracture (OVCF) undergoing percutaneous vertebroplasty (PVP; n = 58), percutaneous kyphoplasty (PKP; n = 55), or conservative medical therapy (CMT; n = 55). After surgery, Cobb angle and vertebral height were significantly improved in the PKP group. PVP and PKP patients had significantly less pain immediately after surgery than CMT patients, but this difference disappeared between weeks 2-8, only to return from months 6-12. QoL was significantly better among the surgical groups after surgery and was lower in the CMT group than in the surgical groups. Treatment times were shorter with PVP and PKP, but costs were lower with CMT. The rate of secondary fractures during follow-up was greater with CMT. Overall, PVP was considered the first choice treatment for OVCF with refractory pain.
Collapse
Affiliation(s)
- H Tang
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | | | | |
Collapse
|
39
|
Sondergaard BC, Catala-Lehnen P, Huebner AK, Bay-Jensen AC, Schinke T, Henriksen K, Schilling S, Haberland M, Nielsen RH, Amling M, Karsdal MA. Mice over-expressing salmon calcitonin have strongly attenuated osteoarthritic histopathological changes after destabilization of the medial meniscus. Osteoarthritis Cartilage 2012; 20:136-43. [PMID: 22122987 DOI: 10.1016/j.joca.2011.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 10/18/2011] [Accepted: 11/04/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Calcitonin is well-known for its inhibitory actions on bone-resorbing osteoclasts and recently potential beneficial effects on cartilage were shown. We investigated effects of salmon calcitonin (sCT) on the articular cartilage and bone, after destabilization of the medial meniscus (DMM) in normal and sCT over-expressing mice. DESIGN Bone phenotype of transgenic (TG) C57Bl/6 mice over-expressing sCT at 6 months and 12 months was investigated by (1) serum osteocalcin and urinary deoxypyridinoline and (2) dynamic and normal histomorphometry of vertebrae bodies. In subsequent evaluation of cartilage and subchondral bone changes, 44 10-week old TG or wild-type (WT) mice were randomized into four groups and subjected to DMM or sham-operations. After 7 weeks animals were sacrificed, and knee joints were isolated for histological analysis. RESULTS Trabecular bone volume (BV/TV) increased 150% after 6 months and 300% after 12 months in sCT-expressing mice when compared to WT controls (P<0.05). Osteoblast number, bone formation rate and osteocalcin measurements were not affected in TG mice over-expressing sCT. In WT animals, a 5-fold increase in the quantitative erosion index was observed after DMM, and the semi-quantitative OARSI score showed over 400% (P<0.001) increase, compared to sham-operated WT mice. DMM-operated TG mice were protected against cartilage erosion and showed a 65% and 64% (P<0.001) reduction, respectively, for the two histopathological evaluation methods. CONCLUSIONS sCT over-expressing mice had higher bone volume, and were protected against cartilage erosion. These data suggest that increased levels of sCT may hamper the pathogenesis of osteoarthritis (OA). However more studies are necessary to confirm these preliminary results.
Collapse
Affiliation(s)
- B C Sondergaard
- Cartilage Biology and Biomarker R&D, Nordic Bioscience, Herlev, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lee TH, Lin SY. Additives affecting thermal stability of salmon calcitonin in aqueous solution and structural similarity in lyophilized solid form. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Affiliation(s)
- Adele L. Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | - Eve Donnelly
- Musculoskeletal Integrity Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA
| | | |
Collapse
|
42
|
Chen BL, Xie DH, Zheng ZM, Lu W, Ning CY, Li YQ, Li FB, Liao WM. Comparison of the effects of alendronate sodium and calcitonin on bone-prosthesis osseointegration in osteoporotic rats. Osteoporos Int 2011; 22:265-70. [PMID: 20204600 DOI: 10.1007/s00198-010-1186-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
Abstract
UNLABELLED Alendronate (ALO) and calcitonin (CT), as commonly used antiosteoporosis drugs in current clinical practice, have been experimentally confirmed to produce the effectiveness of promoting osseointegration at the interface between prosthesis and host bone and enhancing the long-term stability of the prosthesis. Our current study compared these two drugs' effects on the osseointegration of prosthesis and found that both of them could promote bone attachment between prosthesis and host bone; moreover, ALO produced more pronounced effectiveness. INTRODUCTION A series of findings confirmed that ALO and CT improved bone attachment of implant in animals. However, which one shows stronger effectiveness has not yet been reported by previous researches. Our study compared the effects of the two commonly used antiosteoporosis drugs on the bone-prosthesis osseointegration so as to provide valuable reference for current clinical options of medication. METHODS Forty female SD rats aged 5 months were randomly set into A, B, C, and D groups. Except for group A, the others were ovariectomized to establish osteoporosis model (lumbar bone mineral density (BMD) decreased by 20% 4 weeks after ovariectomy). All the rats received prosthesis implantation at their tibial plateau. Then, the rats in groups C and D were given ALO (7 mg/kg/w) orally and CT (5 IU/kg/day) subcutaneously for 12 weeks, respectively. Prior to the execution, application of tetracycline hydrochloride for staining in vivo was done. After harvesting and embedding, the tibia with implants were cut into thin slides, then the bone histomorphometry was measured to observe the new bone around prosthesis and to calculate the osseointegration rate of the implants. By comparison, the effect of the two drugs on osseointegration was evaluated. RESULTS (1) Both ALO and CT can effectively enhance the volume of bone mass surrounding the hydroxyapatite (HA) prosthesis and also significantly lever up osseointegration rate to 63.7% and 45.7%, respectively (p < 0.05). However, ALO produced more periprosthesis osseointegration rate than CT, with difference of 18% (p < 0.05). (2) The rats' lumber BMD increased in both ALO and CT groups, from 0.081 ± 0.009 and 0.078 ± 0.009 to 0.116 ± 0.008 and 0.109 ± 0.010 g/cm(2), respectively. Moreover, the effect of ALO was observed more pronounced than that of CT. CONCLUSIONS In osteoporotic conditions, both administration of ALO orally and CT subcutaneously can enhance periprosthesis bone mass and the effects on osseointegration between host bone and prosthesis. Compared with CT, the effect of ALO is more pronounced.
Collapse
Affiliation(s)
- B-L Chen
- Department of Orthopaedics, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou, 510080, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Osteoarthritis (OA) is a prevalent and disabling condition for which few safe and effective therapeutic options are available. Current approaches are largely palliative and in an effort to mitigate the rising tide of increasing OA prevalence and disease impact, modifying the structural progression of OA has become a focus of drug development. This Review describes disease modification and discusses some of the challenges involved in the discovery and development of disease-modifying OA drugs (DMOADs). A variety of targeted agents are in mature phases of development; specific agents that are beyond preclinical development in phase II and III trials and show promise as potential DMOADs are discussed. A research agenda with respect to disease modification in OA is also provided, and some of the future challenges we face in this field are discussed.
Collapse
Affiliation(s)
- David J Hunter
- Rheumatology Department and Northern Clinical School, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
44
|
PK/PD modelling of comb-shaped PEGylated salmon calcitonin conjugates of differing molecular weights. J Control Release 2010; 149:126-32. [PMID: 20946924 DOI: 10.1016/j.jconrel.2010.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/29/2010] [Accepted: 10/03/2010] [Indexed: 11/23/2022]
Abstract
Salmon calcitonin (sCT) was conjugated via cysteine-1 to novel comb-shaped end-functionalised (poly(PEG) methyl ether methacrylate) (sCT-P) polymers, to yield conjugates of total molecular weights (MW) inclusive of sCT: 6.5, 9.5, 23 and 40kDa. The conjugates were characterised by HPLC and their in vitro and in vivo bioactivity was measured by cAMP assay on human T47D cells and following intravenous (i.v.) injection to rats, respectively. Stability against endopeptidases, rat serum and liver homogenates was assessed. There were linear and exponential relationships between conjugate MW with potency and efficacy respectively, however the largest MW conjugate still retained 70% of E(max) and an EC(50) of 3.7nM. In vivo, while free sCT and the conjugates reduced serum [calcium] to a maximum of 15-30% over 240 min, the half-life (T(1/2)) was increased and the area under the curve (AUC) was extended in proportion to conjugate MW. Likewise, the polymer conferred protection on sCT against attack by trypsin, chymotrypsin, elastase, rat serum and liver homogenates, with the best protection afforded by sCT-P (40kDa). Mathematical modelling accurately predicted the MW relationships to in vitro efficacy, potency, in vivo PK and enzymatic stability. With a significant increase in T(1/2) for sCT, the 40kDa MW comb-shaped PEG conjugate of sCT may have potential as a long-acting injectable formulation.
Collapse
|
45
|
Henriksen K, Bay-Jensen AC, Christiansen C, Karsdal MA. Oral salmon calcitonin--pharmacology in osteoporosis. Expert Opin Biol Ther 2010; 10:1617-29. [PMID: 20932224 DOI: 10.1517/14712598.2010.526104] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
IMPORTANCE OF THE FIELD Osteoporosis is a slow progressive disease with develops over decades, and where intervention is needed for an extended number of years. This highlights the need for safe intervention possibilities, which have sustained beneficial effects post-treatment. AREAS COVERED IN THIS REVIEW Articles on salmon calcitonin appearing on Pubmed from 1960 until today, with focus on a newly developed oral formulation showing increased exposure and efficacy compared with nasal formulation is reviewed. The second half focuses on long-term phenomena, such as bone quality and resolution effects. The final part discusses potential additional benefits of salmon calcitonin. WHAT THE READER WILL GAIN Insight into the clinical development of an orally formulated peptide, as well as a detailed understanding of why this approach could revive salmon calcitonin as a treatment for osteoporosis. TAKE HOME MESSAGE The oral formulation of salmon calcitonin provides additional benefits and increased efficacy on bone based on Phase I and II clinical trials data, as compared with the nasal formulation. Hence, the results on the ongoing Phase III fracture trial are awaited with great interest.
Collapse
Affiliation(s)
- Kim Henriksen
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | | | | | | |
Collapse
|
46
|
Ezzat BA. Validity of prevention of glucocorticoid-induced alveolar bone loss in rat by either calcitonin or alendronate administration. Arch Oral Biol 2010; 55:788-96. [PMID: 20728871 DOI: 10.1016/j.archoralbio.2010.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/30/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The aim of the present study was to compare between two osteoporotic treatments in prevention of glucocorticoid-induced osteoporosis. DESIGN Forty adult male Wistar rats with an average weight of 150-200g were randomized into 4 groups, control, glucocorticoid administration, glucocorticoid administration with concomitant administration of calcitonin or alendronate. After 60 days, the rats were sacrificed. The mandibles were examined histologically, histomorphometrically, radiographically and ultrastructurally. RESULTS Histopathologically the glucocorticoid group showed irregular bone trabeculae with wide and abundant medullary cavities. These marrow cavities were reduced in the other prophylactic groups (III and IV). Histomorphometric analysis showed significant reduction in area percentage of alveolar bone trabeculae in glucocorticoid group (p=0.0025), while group IV showed significant increase in the area percentage of bone compared to the group I (p=0.0003). Radiographic analysis showed significant decrease in the alveolar bone density of group II at line 1 when compared to group I (p=0.0009). Moreover, significant reduction in bone density was detected in both groups II and III at line 2 when compared to the group I (p=0.007, 0.0273). Ultrastructurally, disorganized wide osteocyte lacunae and Haversian canals were observed in group II. However, group IV showed almost complete obliteration of Haversian canals as well as osteocytic lacunae. CONCLUSIONS In a rat model the administration of anti-osteoporotic drugs prevents the bone loss caused by the administration of glucocorticoids.
Collapse
Affiliation(s)
- Bassant A Ezzat
- Oral Biology Dept., Faculty of Oral and Dental Medicine, Cairo University, Egypt.
| |
Collapse
|
47
|
Sun PN, Zhang XC, Chen YS, Zang XN. Application of the yeast-surface-display system for orally administered salmon calcitonin and safety assessment. Biotechnol Prog 2010; 26:968-74. [PMID: 20730756 DOI: 10.1002/btpr.413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High manufacturing costs and oral delivery are the constraints in clinical application of calcitonin. We selected surface-displayed Saccharomyces cerevisiae as a low-cost and safe carrier for oral delivery of salmon calcitonin (sCT). The sCT DNA fragment, optimized according to the codon preference of S. cerevisiae, was synthesized and cloned into the plasmid M-pYD1 to yield recombinant yAGA2-sCT, which was induced to express sCT by galactose for 0, 12, and 24 h. sCT expression was detected on the cell surface by indirect immunofluorescence and peaked at 12 h. About 65% recombinants expressed sCT on flow cytometry. The in vivo and in vitro activity of recombinant sCT was determined by detecting bioactivity of antiosteoclastic absorption on bone wafers and orally administering yAGA2-sCT to Wistar rats, respectively. For safety assessment of yAGA2-sCT, we observed abnormalities, morbidity, and mortality and determined body weight, serum chemistry parameters, hematological parameters, and organ weight. In vitro bioactivity of the recombinant sCT was similar to that of commercial sCT, Miacalcic; oral administration of 5 g/kg yAGA2-sCT induced a long-term hypocalcemic effect in Wistar rats and no adverse effects. This study demonstrates that yAGA2-sCT anchoring sCT protein on a S. cerevisiae surface has potential for low-cost and safe oral delivery of sCT.
Collapse
Affiliation(s)
- Ping-Nan Sun
- Department of Pathology, Shantou University Medical College, Shantou, China.
| | | | | | | |
Collapse
|
48
|
Karsdal MA, Byrjalsen I, Bay-Jensen AC, Henriksen K, Riis BJ, Christiansen C. Biochemical markers identify influences on bone and cartilage degradation in osteoarthritis--the effect of sex, Kellgren-Lawrence (KL) score, body mass index (BMI), oral salmon calcitonin (sCT) treatment and diurnal variation. BMC Musculoskelet Disord 2010; 11:125. [PMID: 20565725 PMCID: PMC2902412 DOI: 10.1186/1471-2474-11-125] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 06/17/2010] [Indexed: 11/30/2022] Open
Abstract
Background Osteoarthritis (OA) involves changes in both bone and cartilage. These processes might be associated under some circumstances. This study investigated correlations between bone and cartilage degradation in patients with OA as a function of sex, Kellgren-Lawrence (KL) score, Body Mass Index (BMI), oral salmon calcitonin (sCT) treatment and diurnal variation. Methods This study was a 2-week, double-blind, double-dummy, randomized study including 37 postmenopausal women and 36 men, aged 57-75 years, with painful knee OA, and a KL-score of I - III. Subjects were allocated to one of three treatment arms: 0.6 mg or 0.8 mg oral sCT, or placebo given twice-daily for 14 days. Correlations between gender, KL score, or BMI and the bone resorption marker, serum C-terminal telopeptide of collagen type I (CTX-I), or the cartilage degradation marker, urine C-terminal telopeptide of collagen type II (CTX-II) were investigated. Results At baseline, biomarkers indicated women with OA experienced higher bone and cartilage degradation than men. CTX-I levels were significantly higher, and CTX-II levels only marginally higher, in women than in men (p = 0.04 and p = 0.06, respectively). Increasing KL score was not correlated with bone resorption, but was significantly associated with the cartilage degradation CTX-II marker in both men and women (p = 0.007). BMI was significantly and negatively correlated to the bone resorption marker CTX-I, r = -0.40 (p = 0.002), but showed only a borderline positive correlation to CTX-II, r = 0.25 (p = 0.12). Before morning treatments on days 1 and 14, no correlation was seen between CTX-I and CTX-II in either the sCT or placebo group. However, oral sCT and food intake induced a clear correlation between these bone and cartilage degradation markers. Four hours after the first sCT dose on treatment days 1 and 14, a significant correlation (r = 0.71, p < 0.001) between changes in both CTX-I and CTX-II was seen. In the placebo group a weakly significant correlation between changes in both markers was found on day 1 (r = 0.49, p = 0.02), but not on day 14. Conclusion Bone resorption was higher in females than males, while cartilage degradation was correlated with increasing KL-score and only weakly associated with BMI. Bone and cartilage degradation were not correlated in untreated individuals, but dosing with oral sCT with or without food, and a mid-day meal, decreased bone and cartilage degradation and induced a correlation between both markers. Changes in bone and cartilage markers may aid in the identification of potential new treatment opportunities for OA. Trial Registration Clinical trial registration number (EUDRACT2006-005532-24 & NCT00486369)
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience A/S, Herlev, Herlev, Denmark.
| | | | | | | | | | | |
Collapse
|
49
|
Berkoz M, Yalin S, Comelekoglu U, Bagis S. Effect of calcitonin on lipid peroxidation in ovariectomized rats. ACTA ACUST UNITED AC 2010. [DOI: 10.5155/eurjchem.1.1.44-46.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Schnitzer TJ. New pharmacologic approaches in the management of osteoarthritis. Arthritis Care Res (Hoboken) 2010; 62:1174-80. [DOI: 10.1002/acr.20260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|