1
|
Chen Z, Shao XY, Wang C, Hua MH, Wang CN, Wang X, Wang QJ, Yao JY, Fan YH, Qin YW. Mycobacterium marinum Infection in Zebrafish and Microglia Imitates the Early Stage of Tuberculous Meningitis. J Mol Neurosci 2018; 64:321-330. [PMID: 29352446 DOI: 10.1007/s12031-018-1026-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) invading and activating microglia causes the most serious subtypes of tuberculosis called tubercular meningitis. However, the developmental process of tubercular meningitis, especially the early phase, is poorly understood due to lacking well-established and well-accepted visible models in vitro and in vivo. Here, consistent with one recent report, we found Mycobacterium marinum (M. marinum) invade the zebrafish brain and subsequently cause granuloma-like structures. We further showed that M. marinum, which shares similar characteristics with M. tuberculosis, can invade microglia and replicate in microglia, which subsequently promote the secretion of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α. M. marinum infection in microglia can also promote autophagy, which conversely limits the replication of M. marinum. Thus, pharmacological activation of autophagy by rapamycin could prevent M. marinum replication. Our study provides in vivo and in vitro models to study underlying pathogenic mechanisms of tubercular meningitis by using M. marinum. Our results also showed that activation of autophagy could be a meaningful way to prevent tubercular meningitis.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, China
| | - Xiao-Yi Shao
- Department of Immunology, Medical College, Nantong University, Nantong, China
| | - Chao Wang
- Department of Immunology, Medical College, Nantong University, Nantong, China
| | - Min-Hui Hua
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cheng-Niu Wang
- Basic Medical Research Center, Medical College, Nantong University, Nantong, China
| | - Xin Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Qian-Jin Wang
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, China
| | - Jin-Yi Yao
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, China
| | - Yi-Hui Fan
- Department of Immunology, Medical College, Nantong University, Nantong, China.
| | - Yong-Wei Qin
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, China.
| |
Collapse
|
2
|
McPherson CA, Merrick BA, Harry GJ. In vivo molecular markers for pro-inflammatory cytokine M1 stage and resident microglia in trimethyltin-induced hippocampal injury. Neurotox Res 2013; 25:45-56. [PMID: 24002884 DOI: 10.1007/s12640-013-9422-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 12/18/2022]
Abstract
Microglia polarization to the classical M1 activation state is characterized by elevated pro-inflammatory cytokines; however, a full profile has not been generated in the early stages of a sterile inflammatory response recruiting only resident microglia. We characterized the initial M1 state in a hippocampal injury model dependent upon tumor necrosis factor (TNF) receptor signaling for dentate granule cell death. Twenty-one-day-old CD1 male mice were injected with trimethyltin (TMT 2.3 mg/kg, i.p.) and the hippocampus was examined at an early stage (24-h post-dosing) of neuronal death. Glia activation was assessed using a custom quantitative nuclease protection assay. We report elevated mRNA levels for glia response such as ionizing calcium-binding adapter molecule-1 and glial fibrillary acidic protein (Gfap); Fas, hypoxia inducible factor alpha, complement component 1qb, TNF-related genes (Tnf, Tnfaip3, Tnfrsfla); interleukin-1 alpha, Cd44, chemokine (C-C motif) ligand (Ccl)2, Cc14, integrin alpha M, lipocalin (Lcn2), and secreted phosphoprotein 1 (Spp1). These changes occurred in the absence of changes in matrix metalloproteinase 9 and 12, neural cell adhesion molecule, metabotropic glutamate receptor (Grm)3, and Ly6/neurotoxin 1 (Lynx1), as well as, a decrease in neurotrophin 3, glutamate receptor subunit epsilon (Grin)-2b, and neurotrophic tyrosine kinase receptor, type 3. The M2 anti-inflammatory marker, transforming growth factor beta-1 (Tgfb1) was elevated. mRNAs associated with early stage of injury-induced neurogenesis including fibroblast growth factor 21 and Mki67 were elevated. In the "non-injured" temporal cortex receiving projections from the hippocampus, Lynx1, Grm3, and Grin2b were decreased and Gfap increased. Formalin fixed-paraffin-embedded tissue did not generate a comparable profile.
Collapse
Affiliation(s)
- C A McPherson
- Neurotoxicology Group, Division of National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD E1-07, Research Triangle Park, NC, 27709, USA
| | | | | |
Collapse
|
3
|
Austin JW, Gilchrist C, Fehlings MG. High molecular weight hyaluronan reduces lipopolysaccharide mediated microglial activation. J Neurochem 2012; 122:344-355. [PMID: 22587438 DOI: 10.1111/j.1471-4159.2012.07789.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Toll-like receptor-4 (TLR4) signaling has been implicated in microglial activation and propagation of inflammation following spinal cord injury (SCI). As such, modulating microglial activation through TLR4 represents an attractive therapeutic approach to treat SCI. High molecular weight hyaluronan (HMW-HA), a polymer with multiple therapeutic uses, has been previously shown to modulate TLR4 activation in macrophages and has shown early promise as a therapeutic agent in SCI. However, the mechanism associated with HMW-HA has not been fully elucidated or tested in microglia, a similar cell type. In the current study, we sought to determine the effects of HMW-HA on TLR4 activation in microglia and to gain insights into the mechanism of action. Rat primary microglial cultures were exposed to lipopolysaccharides (LPS) and HMW-HA, and the extent and mechanisms of inflammation were studied. HMW-HA decreased LPS mediated IL-1β, IL-6, and Tumor necrosis factor-α gene expression and IL-6 and nitric oxide production. This decrease was associated with a reduction in ERK 1/2 and p38 phosphorylation, was dependent on the continued presence of HMW-HA, and activation of Akt and A20 protein expression was reduced by HMW-HA. Together, our results show that HMW-HA can reduce LPS-mediated inflammatory signaling in microglia. We suggest that HA possibly mediates its effects by blocking the induction of inflammatory signaling through an extracellular mechanism.
Collapse
Affiliation(s)
- James W Austin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
4
|
Jonakait GM, Pratt L, Acevedo G, Ni L. Microglial regulation of cholinergic differentiation in the basal forebrain. Dev Neurobiol 2012; 72:857-64. [DOI: 10.1002/dneu.20969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Corthals AP. Multiple sclerosis is not a disease of the immune system. QUARTERLY REVIEW OF BIOLOGY 2012; 86:287-321. [PMID: 22384749 DOI: 10.1086/662453] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Multiple sclerosis is a complex neurodegenerative disease, thought to arise through autoimmunity against antigens of the central nervous system. The autoimmunity hypothesis fails to explain why genetic and environmental risk factors linked to the disease in one population tend to be unimportant in other populations. Despite great advances in documenting the cell and molecular mechanisms underlying MS pathophysiology, the autoimmunity framework has also been unable to develop a comprehensive explanation of the etiology of the disease. I propose a new framework for understanding MS as a dysfunction of the metabolism of lipids. Specifically, the homeostasis of lipid metabolism collapses during acute-phase inflammatory response triggered by a pathogen, trauma, or stress, starting a feedback loop of increased oxidative stress, inflammatory response, and proliferation of cytoxic foam cells that cross the blood brain barrier and both catabolize myelin and prevent remyelination. Understanding MS as a chronic metabolic disorder illuminates four aspects of disease onset and progression: 1) its pathophysiology; 2) genetic susceptibility; 3) environmental and pathogen triggers; and 4) the skewed sex ratio of patients. It also suggests new avenues for treatment.
Collapse
Affiliation(s)
- Angelique P Corthals
- Department of Sciences, John Jay College of Criminal Justice, City University of New York New York, New York 10019, USA.
| |
Collapse
|
6
|
Kaushik DK, Mukhopadhyay R, Kumawat KL, Gupta M, Basu A. Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation. J Neuroinflammation 2012; 9:57. [PMID: 22429472 PMCID: PMC3325890 DOI: 10.1186/1742-2094-9-57] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/19/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Neuroinflammation occurs as a result of microglial activation in response to invading micro-organisms or other inflammatory stimuli within the central nervous system. According to our earlier findings, Krüppel-like factor 4 (Klf4), a zinc finger transcription factor, is involved in microglial activation and subsequent release of proinflammatory cytokines, tumor necrosis factor alpha, macrophage chemoattractant protein-1 and interleukin-6 as well as proinflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-treated microglial cells. Our current study focuses on finding the molecular mechanism of the anti-inflammatory activities of honokiol in lipopolysaccharide-treated microglia with emphasis on the regulation of Klf4. METHODS For in vitro studies, mouse microglial BV-2 cell lines as well as primary microglia were treated with 500 ng/mL lipopolysaccharide as well as 1 μM and 10 μM of honokiol. We cloned full-length Klf4 cDNA in pcDNA3.1 expression vector and transfected BV-2 cells with this construct using lipofectamine for overexpression studies. For in vivo studies, brain tissues were isolated from BALB/c mice treated with 5 mg/kg body weight of lipopolysaccharide either with or without 2.5 or 5 mg/kg body weight of honokiol. Expression of Klf4, cyclooxygenase-2, inducible nitric oxide synthase and phospho-nuclear factor-kappa B was measured using immunoblotting. We also measured the levels of cytokines, reactive oxygen species and nitric oxide in different conditions. RESULTS Our findings suggest that honokiol can substantially downregulate the production of proinflammatory cytokines and inflammatory enzymes in lipopolysaccharide-stimulated microglia. In addition, honokiol downregulates lipopolysaccharide-induced upregulation of both Klf4 and phospho-nuclear factor-kappa B in these cells. We also found that overexpression of Klf4 in BV-2 cells suppresses the anti-inflammatory action of honokiol. CONCLUSIONS Honokiol potentially reduces inflammation in activated microglia in a Klf4-dependent manner.
Collapse
|
7
|
Abstract
Parkinson's disease (PD) is the most common age-related motoric neurodegenerative disease initially described in the 1800's by James Parkinson as the 'Shaking Palsy'. Loss of the neurotransmitter dopamine was recognized as underlying the pathophysiology of the motor dysfunction; subsequently discovery of dopamine replacement therapies brought substantial symptomatic benefit to PD patients. However, these therapies do not fully treat the clinical syndrome nor do they alter the natural history of this disorder motivating clinicians and researchers to further investigate the clinical phenotype, pathophysiology/pathobiology and etiology of this devastating disease. Although the exact cause of sporadic PD remains enigmatic studies of familial and rare toxicant forms of this disorder have laid the foundation for genome wide explorations and environmental studies. The combination of methodical clinical evaluation, systematic pathological studies and detailed genetic analyses have revealed that PD is a multifaceted disorder with a wide-range of clinical symptoms and pathology that include regions outside the dopamine system. One common thread in PD is the presence of intracytoplasmic inclusions that contain the protein, α-synuclein. The presence of toxic aggregated forms of α-synuclein (e.g., amyloid structures) are purported to be a harbinger of subsequent pathology. In fact, PD is both a cerebral amyloid disease and the most common synucleinopathy, that is, diseases that display accumulations of α-synuclein. Here we present our current understanding of PD etiology, pathology, clinical symptoms and therapeutic approaches with an emphasis on misfolded α-synuclein.
Collapse
Affiliation(s)
- Timothy R. Mhyre
- Department of Neuroscience, Georgetown University Medical Center, NRB EP08, 3970 Reservoir Road NW, 20057, Washington, DC, USA,
| | - James T. Boyd
- University of Vermont College of Medicine, 1 South Prospect Street, DU-Arnold 4416-UHC, 05401, Burlington, VT, USA,
| | - Robert W. Hamill
- Department of Neurology, University of Vermont College of Medicine, 89 Beaumont Avenue, Given Hall Room C225, 05405, Burlington, VT, USA,
| | - Kathleen A. Maguire-Zeiss
- Department of Neuroscience, Center for Neural Injury and RecoveryGeorgetown University Medical Center, 3970 Reservoir Road, NW NRB EP08, 20057, Washington, DC, USA,
| |
Collapse
|
8
|
Lynch MA, Mills KHG. Immunology meets neuroscience--opportunities for immune intervention in neurodegenerative diseases. Brain Behav Immun 2012; 26:1-10. [PMID: 21664452 DOI: 10.1016/j.bbi.2011.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/05/2011] [Accepted: 05/24/2011] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammatory changes are characteristic of many, if not all, neurodegenerative diseases but the extent to which the immune system is involved in the pathogenesis of these diseases is unclear. The findings of several studies during the past decade has established that there is a well-developed communication between the central nervous system (CNS) and the peripheral immune system, but also has revealed that the immune system in the CNS is much more sophisticated that previously acknowledged. In this mini-review, we discuss two major neurodegenerative disorders, Alzheimer's disease (AD) and multiple sclerosis (MS), and consider whether the therapies most likely to succeed are those that are identified by studying the marriage of neuroscience and immunology.
Collapse
Affiliation(s)
- Marina A Lynch
- Trinity Institute for Neuroscience, Trinity College, Dublin, Ireland.
| | | |
Collapse
|
9
|
Puntambekar SS, Davis DS, Hawel L, Crane J, Byus CV, Carson MJ. LPS-induced CCL2 expression and macrophage influx into the murine central nervous system is polyamine-dependent. Brain Behav Immun 2011; 25:629-39. [PMID: 21237263 PMCID: PMC3081407 DOI: 10.1016/j.bbi.2010.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/30/2010] [Accepted: 12/21/2010] [Indexed: 12/31/2022] Open
Abstract
Increased polyamine production is observed in a variety of chronic neuroinflammatory disorders, but in vitro and in vivo studies yield conflicting data on the immunomodulatory consequences of their production. Ornithine decarboxylase (ODC) is the rate-limiting enzyme in endogenous polyamine production. To identify the role of polyamine production in CNS-intrinsic inflammatory responses, we defined CNS sites of ODC expression and the consequences of inhibiting ODC in response to intracerebral injection of LPS±IFNγ. In situ hybridization analysis revealed that both neurons and non-neuronal cells rapidly respond to LPS±IFNγ by increasing ODC expression. Inhibiting ODC by co-injecting DFMO decreased LPS-induced CCL2 expression and macrophage influx into the CNS, without altering LPS-induced microglial or macrophage activation. Conversely, intracerebral injection of polyamines was sufficient to trigger macrophage influx into the CNS of wild-type but not CCL2KO mice, demonstrating the dependence of macrophage influx on CNS expression of CCL2. Consistent with these data, addition of putrescine and spermine to mixed glial cultures dramatically increased CCL2 expression and to a much lesser extent, TNF expression. Addition of all three polyamines to mixed glial cultures also decreased the numbers and percentages of oligodendrocytes present. However, in vivo, inhibiting the basal levels of polyamine production was sufficient to induce expression of apolipoprotein D, a marker of oxidative stress, within white matter tracts. Considered together, our data indicate that: (1) CNS-resident cells including neurons play active roles in recruiting pro-inflammatory TREM1-positive macrophages into the CNS via polyamine-dependent induction of CCL2 expression and (2) modulating polyamine production in vivo may be a difficult strategy to limit inflammation and promote repair due to the dual homeostatic and pro-inflammatory roles played by polyamines.
Collapse
Affiliation(s)
- Shweta S. Puntambekar
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside, USA,Graduate Program in Cell, Molecular and Developmental Biology, University of California Riverside, USA
| | - Deirdre S. Davis
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside, USA,Graduate Program in Biomedical Sciences, University of California Riverside, USA
| | - Leo Hawel
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside, USA
| | - Janelle Crane
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside, USA
| | - Craig V. Byus
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside, USA
| | - Monica J. Carson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside, USA,To whom correspondence should be addressed: Monica J Carson Division of Biomedical Sciences Center for Glial-Neuronal Interactions University of California Riverside 900 University Ave Riverside, CA 92521
| |
Collapse
|
10
|
Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation. J Neuroinflammation 2010; 7:68. [PMID: 20946687 PMCID: PMC2965135 DOI: 10.1186/1742-2094-7-68] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 10/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Activation of microglia, the resident macrophages of the central nervous system (CNS), is the hallmark of neuroinflammation in neurodegenerative diseases and other pathological conditions associated with CNS infection. The activation of microglia is often associated with bystander neuronal death. Nuclear factor-κB (NF-κB) is one of the important transcription factors known to be associated with microglial activation which upregulates the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (Cox-2) and other pro-inflammatory cytokines. Recent studies have focused on the role of Krüppel-like factor 4 (Klf4), one of the zinc-finger transcription factors, in mediating inflammation. However, these studies were limited to peripheral system and its role in CNS is not understood. Our studies focused on the possible role of Klf4 in mediating CNS inflammation. METHODS For in vitro studies, mouse microglial BV-2 cell lines were treated with 500 ng/ml Salmonella enterica lipopolysacchride (LPS). Brain tissues were isolated from BALB/c mice administered with 5 mg/kg body weight of LPS. Expressions of Klf4, Cox-2, iNOS and pNF-κB were evaluated using western blotting, quantitative real time PCR, and reverse transcriptase polymerase chain reactions (RT-PCRs). Klf4 knockdown was carried out using SiRNA specific for Klf4 mRNA and luciferase assays and electromobility shift assay (EMSA) were performed to study the interaction of Klf4 to iNOS promoter elements in vitro. Co-immunoprecipitation of Klf4 and pNF-κB was done in order to study a possible interaction between the two transcription factors. RESULTS LPS stimulation increased Klf4 expression in microglial cells in a time- and dose-dependent manner. Knockdown of Klf4 resulted in decreased levels of the pro-inflammatory cytokines TNF-α, MCP-1 and IL-6, along with a significant decrease in iNOS and Cox-2 expression. NO production also decreased as a result of Klf4 knockdown. We found that Klf4 can potentially interact with pNF-κB and is important for iNOS and Cox-2 promoter activity in vitro. CONCLUSIONS These studies demonstrate the role of Klf4 in microglia in mediating neuroinflammation in response to the bacterial endotoxin LPS.
Collapse
|
11
|
Liu S, Kielian T. Microglial activation by Citrobacter koseri is mediated by TLR4- and MyD88-dependent pathways. THE JOURNAL OF IMMUNOLOGY 2009; 183:5537-47. [PMID: 19812209 DOI: 10.4049/jimmunol.0900083] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Citrobacter koseri is a Gram-negative bacterium that can cause a highly aggressive form of neonatal meningitis, which often progresses to establish multifocal brain abscesses. Despite its tropism for the brain parenchyma, microglial responses to C. koseri have not yet been examined. Microglia use TLRs to recognize invading pathogens and elicit proinflammatory mediator expression important for infection containment. In this study, we investigated the importance of the LPS receptor TLR4 and MyD88, an adaptor molecule involved in the activation of the majority of TLRs in addition to the IL-1 and IL-18 receptors, for their roles in regulating microglial activation in response to C. koseri. Proinflammatory mediator release was significantly reduced in TLR4 mutant and MyD88 knockout microglia compared with wild-type cells following exposure to either live or heat-killed C. koseri, indicating a critical role for both TLR4- and MyD88-dependent pathways in microglial responses to this pathogen. However, residual proinflammatory mediator expression was still observed in TLR4 mutant and MyD88 KO microglia following C. koseri exposure, indicating a contribution of TLR4- and MyD88-independent pathway(s) for maximal pathogen recognition. Interestingly, C. koseri was capable of surviving intracellularly in both primary microglia and macrophages, suggesting that these cells may serve as a reservoir for the pathogen during CNS infections. These results demonstrate that microglia respond to C. koseri with the robust expression of proinflammatory molecules, which is dictated, in part, by TLR4- and MyD88-dependent signals.
Collapse
Affiliation(s)
- Shuliang Liu
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
12
|
Schmid CD, Melchior B, Masek K, Puntambekar SS, Danielson PE, Lo DD, Sutcliffe JG, Carson MJ. Differential gene expression in LPS/IFNgamma activated microglia and macrophages: in vitro versus in vivo. J Neurochem 2009; 109 Suppl 1:117-25. [PMID: 19393017 PMCID: PMC2766614 DOI: 10.1111/j.1471-4159.2009.05984.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Two different macrophage populations contribute to CNS neuroinflammation: CNS-resident microglia and CNS-infiltrating peripheral macrophages. Markers distinguishing these two populations in tissue sections have not been identified. Therefore, we compared gene expression between LPS (lipopolysaccharide)/interferon (IFN)γ-treated microglia from neonatal mixed glial cultures and similarly treated peritoneal macrophages. Fifteen molecules were identified by quantative PCR (qPCR) as being enriched from 2-fold to 250-fold in cultured neonatal microglia when compared with peritoneal macrophages. Only three of these molecules (C1qA, Trem2, and CXCL14) were found by qPCR to be also enriched in adult microglia isolated from LPS/IFNγ-injected CNS when compared with infiltrating peripheral macrophages from the same CNS. The discrepancy between the in vitro and in vivo qPCR data sets was primarily because of induced expression of the ‘microglial’ molecules (such as the tolerance associated transcript, Tmem176b) in CNS-infiltrating macrophages. Bioinformatic analysis of the ∼19000 mRNAs detected by TOGA gene profiling confirmed that LPS/IFNγ-activated microglia isolated from adult CNS displayed greater similarity in total gene expression to CNS-infiltrating macrophages than to microglia isolated from unmanipulated healthy adult CNS. In situ hybridization analysis revealed that nearly all microglia expressed high levels of C1qA, while subsets of microglia expressed Trem2 and CXCL14. Expression of C1qA and Trem2 was limited to microglia, while large numbers of GABA+ neurons expressed CXCL14. These data suggest that (i) CNS-resident microglia are heterogeneous and thus a universal microglia-specific marker may not exist; (ii) the CNS micro-environment plays significant roles in determining the phenotypes of both CNS-resident microglia and CNS-infiltrating macrophages; (iii) the CNS microenvironment may contribute to immune privilege by inducing macrophage expression of anti-inflammatory molecules.
Collapse
|
13
|
Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox Res 2009; 16:238-54. [PMID: 19526281 DOI: 10.1007/s12640-009-9053-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 01/14/2023]
Abstract
Microglia provide immune surveillance for the brain through both the removal of cellular debris and protection against infection by microorganisms and "foreign" molecules. Upon activation, microglia display an altered morphology and increased expression of proinflammatory molecules. Increased numbers of activated microglia have been identified in a number of neurodegenerative diseases including Parkinson's disease (PD). What remains to be determined is whether activated microglia result from ongoing cell death or are involved in disease initiation and progression. To address this question we utilized a transgenic mouse model that expresses a mutated form of a key protein involved in Parkinson's disease, alpha-synuclein. Herein, we report an increase in activated microglia and proinflammatory molecules in 1-month-old transgenic mice well before cell death occurs in this model. Frank microglial activation is resolved by 6 months of age while a subset of proinflammatory molecules remain elevated for 12 months. Both tyrosine hydroxylase mRNA expression and alpha-synuclein protein are decreased in the striatum of older animals evidence of dystrophic neuritic projections. To determine whether mutated alpha-synuclein could directly activate microglia primary microglia-enriched cell cultures were treated with exogenous mutated alpha-synuclein. The data reveal an increase in activated microglia and proinflammatory molecules due to direct interaction with mutated alpha-synuclein. Together, these data demonstrate that mutated alpha-synuclein mediates a proinflammatory response in microglia and this activity may participate in PD pathogenesis.
Collapse
|
14
|
Henry CJ, Huang Y, Wynne AM, Godbout JP. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 2009; 23:309-17. [PMID: 18814846 PMCID: PMC2692986 DOI: 10.1016/j.bbi.2008.09.002] [Citation(s) in RCA: 436] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 12/21/2022] Open
Abstract
In the elderly, systemic infection is associated with an increased frequency of behavioral and cognitive complications. We have reported that peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes an exaggerated neuroinflammatory response and prolonged sickness/depressive-like behaviors in aged BALB/c mice. Therefore, the purpose of this study was to determine the degree to which LPS-induced neuroinflammation was associated with microglia-specific induction of neuroinflammatory mediators. Here, we show that peripheral LPS challenge caused a hyperactive microglial response in the aged brain associated with higher induction of inflammatory IL-1beta and anti-inflammatory IL-10. LPS injection caused a marked induction of mRNA expression of both IL-1beta and IL-10 in the cortex of aged mice compared to adults. In the next set of studies, microglia (CD11b(+)/CD45(low)) were isolated from the brain of adult and aged mice following experimental treatments. An age-dependent increase in major histocompatibility complex (MHC) class II mRNA and protein expression was detected in microglia. Moreover, peripheral LPS injection caused a more pronounced increase in IL-1beta, IL-10, Toll-like receptor (TLR)-2, and indoleamine 2,3-dioxygenase (IDO) mRNA levels in microglia isolated from aged mice than adults. Intracellular cytokine protein detection confirmed that peripheral LPS caused the highest increase in IL-1beta and IL-10 levels in microglia of aged mice. Finally, the most prominent induction of IL-1beta was detected in MHC II(+) microglia from aged mice. Taken together, these findings provide novel evidence that age-associated priming of microglia plays a central role in exaggerated neuroinflammation induced by activation of the peripheral innate immune system.
Collapse
Affiliation(s)
- Christopher J. Henry
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Yan Huang
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Angela M. Wynne
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Jonathan P. Godbout
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA,Institute for Behavioral Medicine Research, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA,To whom correspondence should be addressed: J.P. Godbout, 2166B Graves Hall, 333 W. 10th Ave, The Ohio State University, Columbus, OH 43210, USA. Tel: (614) 292-7000 Fax: (614) 333-8286,
| |
Collapse
|
15
|
Spinal Microglia in Neuropathic Pain Plasticity. Mol Pain 2009. [DOI: 10.1007/978-0-387-75269-3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 2008; 5:15. [PMID: 18477398 PMCID: PMC2412862 DOI: 10.1186/1742-2094-5-15] [Citation(s) in RCA: 497] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 05/13/2008] [Indexed: 01/12/2023] Open
Abstract
Background Activation of the peripheral innate immune system stimulates the secretion of CNS cytokines that modulate the behavioral symptoms of sickness. Excessive production of cytokines by microglia, however, may cause long-lasting behavioral and cognitive complications. The purpose of this study was to determine if minocycline, an anti-inflammatory agent and purported microglial inhibitor, attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. Methods In the first set of experiments the effect of minocycline pretreatment on LPS-induced microglia activation was assessed in BV-2 microglia cell cultures. In the second study, adult (3–6 m) BALB/c mice received an intraperitoneal (i.p.) injection of vehicle or minocycline (50 mg/kg) for three consecutive days. On the third day, mice were also injected (i.p.) with saline or Escherichia coli LPS (0.33 mg/kg) and behavior (i.e., sickness and anhedonia) and markers of neuroinflammation (i.e., microglia activation and inflammatory cytokines) were determined. In the final study, adult and aged BALB/c mice were treated with the same minocycline and LPS injection regimen and markers of neuroinflammation were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results Minocycline blocked LPS-stimulated inflammatory cytokine secretion in the BV-2 microglia-derived cell line and reduced LPS-induced Toll-like-receptor-2 (TLR2) surface expression on brain microglia. Moreover, minocycline facilitated the recovery from sickness behavior (i.e., anorexia, weight loss, and social withdrawal) and prevented anhedonia in adult mice challenged with LPS. Furthermore, the minocycline associated recovery from LPS-induced sickness behavior was paralleled by reduced mRNA levels of Interleukin (IL)-1β, IL-6, and indoleamine 2, 3 dioxygenase (IDO) in the cortex and hippocampus. Finally, in aged mice, where exaggerated neuroinflammation was elicited by LPS, minocycline pretreatment was still effective in markedly reducing mRNA levels of IL-1β, TLR2 and IDO in the hippocampus. Conclusion These data indicate that minocycline mitigates neuroinflammation in the adult and aged brain and modulates the cytokine-associated changes in motivation and behavior.
Collapse
Affiliation(s)
- Christopher J Henry
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W, 10th Ave, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Papenfuss TL, Thrash JC, Danielson PE, Foye PE, Hllbrush BS, Sutcliffe JG, Whitacre CC, Carson MJ. Induction of Golli-MBP expression in CNS macrophages during acute LPS-induced CNS inflammation and experimental autoimmune encephalomyelitis (EAE). ScientificWorldJournal 2007; 7:112-20. [PMID: 17982583 PMCID: PMC2626137 DOI: 10.1100/tsw.2007.251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microglia are the tissue macrophages of the CNS. Microglial activation coupled with macrophage infiltration is a common feature of many classic neurodegenerative disorders. The absence of cell-type specific markers has confounded and complicated the analysis of cell-type specific contributions toward the onset, progression, and remission of neurodegeneration. Molecular screens comparing gene expression in cultured microglia and macrophages identified Golli-myelin basic protein (MBP) as a candidate molecule enriched in peripheral macrophages. In situ hybridization analysis of LPS/IFNg and experimental autoimmune encephalomyelitis (EAE)–induced CNS inflammation revealed that only a subset of CNS macrophages express Golli-MBP. Interestingly, the location and morphology of Golli-MBP+ CNS macrophages differs between these two models of CNS inflammation. These data demonstrate the difficulties of extending in vitro observations to in vivo biology and concretely illustrate the complex heterogeneity of macrophage activation states present in region- and stage-specific phases of CNS inflammation. Taken altogether, these are consistent with the emerging picture that the phenotype of CNS macrophages is actively defined by their molecular interactions with the CNS microenvironment.
Collapse
|
18
|
Carson MJ, Bilousova TV, Puntambekar SS, Melchior B, Doose JM, Ethell IM. A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics 2007; 4:571-9. [PMID: 17920538 PMCID: PMC2637868 DOI: 10.1016/j.nurt.2007.07.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microglial activation and macrophage infiltration into the CNS are common features of CNS autoimmune disease and of chronic neurodegenerative diseases. Because these cells largely express an overlapping set of common macrophage markers, it has been difficult to separate their respective contributions to disease onset and progression. This problem is further confounded by the many types of macrophages that have been termed microglia. Several approaches, ranging from molecular profiling of isolated cells to the generation of irradiation chimeric rodent models, are now beginning to generate rudimentary definitions distinguishing the various types of microglia and macrophages found within the CNS and the potential roles that these cells may play in health and disease.
Collapse
Affiliation(s)
- Monica J. Carson
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California-Riverside, 92521 Riverside, CA
| | - Tina V. Bilousova
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California-Riverside, 92521 Riverside, CA
| | - Shweta S. Puntambekar
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California-Riverside, 92521 Riverside, CA
| | - Benoit Melchior
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California-Riverside, 92521 Riverside, CA
| | - Jonathan M. Doose
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California-Riverside, 92521 Riverside, CA
| | - Iryna M. Ethell
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California-Riverside, 92521 Riverside, CA
| |
Collapse
|
19
|
El Ghouzzi V, Csaba Z, Olivier P, Lelouvier B, Schwendimann L, Dournaud P, Verney C, Rustin P, Gressens P. Apoptosis-Inducing Factor Deficiency Induces Early Mitochondrial Degeneration in Brain Followed by Progressive Multifocal Neuropathology. J Neuropathol Exp Neurol 2007; 66:838-47. [PMID: 17805014 DOI: 10.1097/nen.0b013e318148b822] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Apoptosis-inducing factor (AIF) deficiency compromises oxidative phosphorylation. Harlequin mice, in which AIF is downregulated, develop a severe mitochondrial complex I (CI) deficiency, suggesting that Harlequin mice may represent a natural model of the most common oxidative phosphorylation disorders. However, the brain phenotype specifically involves the cerebellum, whereas human CI deficiencies often manifest as complex multifocal neuropathologies. To evaluate whether this model can be used as to study CI-deficient disorders, the whole brain of Harlequin mice was investigated during the course of the disease. Neurodegeneration was not restricted to the cerebellum but progressively affected thalamic, striatal, and cortical regions as well. Strong astroglial and microglial activation with extensive vascular proliferation was observed by 4 months of age in thalamic, striatal, and cerebellar nuclei associated with somatosensory-motor pathways. At 2 months of age, degenerating mitochondria were observed in most cells in these structures, even in nondegenerating neurons, a finding that indicates mitochondrial injury is a cause rather than an effect of neuronal cell death. Thus, apoptosis-inducing factor deficiency induces early mitochondrial degeneration, followed by progressive multifocal neuropathology (a phenotype broader than previously described), and resembles some histopathologic features of devastating human neurodegenerative mitochondriopathies associated with CI deficiency.
Collapse
Affiliation(s)
- Vincent El Ghouzzi
- Institut National de la Santé et de la Recherche Médicale, U676, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Venneti S, Lopresti BJ, Wang G, Slagel SL, Mason NS, Mathis CA, Fischer ML, Larsen NJ, Mortimer AD, Hastings TG, Smith AD, Zigmond MJ, Suhara T, Higuchi M, Wiley CA. A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 2007; 102:2118-2131. [PMID: 17555551 DOI: 10.1111/j.1471-4159.2007.04690.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activated microglia are an important feature of many neurological diseases and can be imaged in vivo using 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a ligand that binds the peripheral benzodiazepine receptor (PBR). N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl) acetamide (DAA1106) is a new PBR-specific ligand that has been reported to bind to PBR with higher affinity compared with PK11195. We hypothesized that this high-affinity binding of DAA1106 to PBR will enable better delineation of microglia in vivo using positron emission tomography. [(3)H]DAA1106 showed higher binding affinity compared with [(3)H](R)-PK11195 in brain tissue derived from normal rats and the rats injected intrastriatally with 6-hydroxydopamine or lipopolysaccharide at the site of the lesion. Immunohistochemistry combined with autoradiography in brain tissues as well as correlation analyses showed that increased [(3)H]DAA1106 binding corresponded mainly to activated microglia. Finally, ex vivo autoradiography and positron emission tomography imaging in vivo showed greater retention of [(11)C]DAA1106 compared with [(11)C](R)-PK11195 in animals injected with either lipopolysaccaride or 6-hydroxydopamine at the site of lesion. These results indicate that DAA1106 binds with higher affinity to microglia in rat models of neuroinflammation when compared with PK11195, suggesting that [(11)C]DAA1106 may represent a significant improvement over [(11)C](R)-PK11195 for in vivo imaging of activated microglia in human neuroinflammatory disorders.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Brian J Lopresti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Guoji Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Susan L Slagel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - N Scott Mason
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Chester A Mathis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Michelle L Fischer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Niccole J Larsen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Amanda D Mortimer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Teresa G Hastings
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Amanda D Smith
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Michael J Zigmond
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Tetsuya Suhara
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Makoto Higuchi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Clayton A Wiley
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
21
|
Abstract
Central nervous system (CNS) immune privilege is an experimentally defined phenomenon. Tissues that are rapidly rejected by the immune system when grafted in sites, such as the skin, show prolonged survival when grafted into the CNS. Initially, CNS immune privilege was construed as CNS isolation from the immune system by the blood-brain barrier (BBB), the lack of draining lymphatics, and the apparent immunoincompetence of microglia, the resident CNS macrophage. CNS autoimmunity and neurodegeneration were presumed automatic consequences of immune cell encounter with CNS antigens. Recent data have dramatically altered this viewpoint by revealing that the CNS is neither isolated nor passive in its interactions with the immune system. Peripheral immune cells can cross the intact BBB, CNS neurons and glia actively regulate macrophage and lymphocyte responses, and microglia are immunocompetent but differ from other macrophage/dendritic cells in their ability to direct neuroprotective lymphocyte responses. This newer view of CNS immune privilege is opening the door for therapies designed to harness autoreactive lymphocyte responses and also implies (i) that CNS autoimmune diseases (i.e. multiple sclerosis) may result as much from neuronal and/or glial dysfunction as from immune system dysfunctions and (ii) that the severe neuronal and glial dysfunction associated with neurodegenerative disorders (i.e. Alzheimer's disease) likely alters CNS-specific regulation of lymphocyte responses affecting the utility of immune-based therapies (i.e. vaccines).
Collapse
Affiliation(s)
- Monica J Carson
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
22
|
Melchior B, Puntambekar SS, Carson MJ. Microglia and the control of autoreactive T cell responses. Neurochem Int 2006; 49:145-53. [PMID: 16759751 PMCID: PMC2626134 DOI: 10.1016/j.neuint.2006.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/03/2006] [Accepted: 04/06/2006] [Indexed: 11/28/2022]
Abstract
Microglial activation is one of the earliest and most prominent features of nearly all CNS neuropathologies often occurring prior to other indicators of overt neuropathology. Whether microglial activation in seemingly healthy CNS tissue during the early stages of several is a response to early stages of neuronal or glial distress or an early sign of microglial dysfunction causing subsequent neurodegeneration is unknown. Here we characterize and discuss how changes in the CNS microenvironment (neuronal activity/viability, glial activation) lead to specific forms of microglial activation. Specifically, we examine the potential role that TREM-2 expressing microglia may play in regulating the effector function of autoreactive T cell responses. Thus, we suggest that ubiquitous suppression of microglial activation during CNS inflammatory disorders rather than targeted manipulation of microglial activation, may in the end be maladaptive leading to incomplete remission of symptoms.
Collapse
|
23
|
Abstract
Toll-like receptors (TLRs) are a family of pattern-recognition receptors expressed on cells of the innate immune system that allow for the recognition of conserved structural motifs on a wide array of pathogens, referred to as pathogen-associated molecular patterns, as well as some endogenous molecules. The recent emergence of studies examining TLRs in the central nervous system (CNS) indicates that these receptors not only play a role in innate immunity in response to infectious diseases but may also participate in CNS autoimmunity, neurodegeneration, and tissue injury. This review summarizes the experimental evidence demonstrating a role for TLRs in the context of CNS inflammation in both infectious and noninfectious conditions.
Collapse
Affiliation(s)
- Tammy Kielian
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| |
Collapse
|
24
|
Potula R, Haorah J, Knipe B, Leibhart J, Chrastil J, Heilman D, Dou H, Reddy R, Ghorpade A, Persidsky Y. Alcohol abuse enhances neuroinflammation and impairs immune responses in an animal model of human immunodeficiency virus-1 encephalitis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1335-44. [PMID: 16565506 PMCID: PMC1606563 DOI: 10.2353/ajpath.2006.051181] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuroinflammatory disorders (including human immunodeficiency virus-1 encephalitis, HIVE) are associated with oxidative stress and inflammatory brain injury, and excessive alcohol use can exacerbate tissue damage. Using a murine model of HIVE, we investigated the effects of alcohol abuse on the clearance of virus-infected macrophages and neuroinflammation. Severe combined immunodeficient mice were reconstituted with human lymphocytes, and encephalitis was induced by intracranial injection of HIV-1-infected monocyte-derived macrophages (HIV-1(+) MDM). Animals were fed an ethanol-containing diet beginning 2 weeks before lymphocyte engraftment and for the entire duration of the experiment. Lymphocyte engraftment was not altered by ethanol exposure. Alcohol-mediated immunosuppression in ethanol-fed mice was manifested by a significant decrease in CD8(+)/interferon-gamma(+) T lymphocytes, a fivefold increase in viremia, and diminished expression of immunoproteasomes in the spleen. Although both groups showed similar amounts of CD8(+) T-lymphocyte infiltration in brain areas containing HIV-1(+) MDMs, ethanol-fed mice featured double the amounts of HIV-1(+) MDMs in the brain compared to controls. Ethanol-exposed mice demonstrated higher microglial reaction and enhanced oxidative stress. Alcohol exposure impaired immune responses (increased viremia, decreased immunoproteasome levels, and prevented efficient elimination of HIV-1(+) MDMs) and enhanced neuroinflammation in HIVE mice. Thus, alcohol abuse could be a co-factor in progression of HIV-1 infection of the brain.
Collapse
Affiliation(s)
- Raghava Potula
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, 985215 Nebraska Medical Center, Omaha, NE 68198-5215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Research into human central nervous system (CNS) disorders has traditionally focused on interconnecting neurons, thought to be the most important functional elements in the CNS. Consequently, animal models have developed as the central paradigm in CNS drug development. However, evidence is accumulating that suggests glial cells play a much more important role in health and disease in the CNS than has been previously acknowledged. Brain development, neurotransmission, inflammatory and neuroprotective pathways and blood-brain barrier functions rely on glial cells. It is also the case that human glial cell cultures adequately mimic in vivo glial cell behaviour, providing a novel and valuable tool for CNS drug discovery and development.
Collapse
Affiliation(s)
- Johannes M van Noort
- Business Unit Biomedical Research, TNO Quality of Life, P.O. Box 2215, 2301 CE Leiden, The Netherlands.
| |
Collapse
|
26
|
Wirenfeldt M, Babcock AA, Ladeby R, Lambertsen KL, Dagnaes-Hansen F, Leslie RGQ, Owens T, Finsen B. Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury. J Neurosci Res 2006; 82:507-14. [PMID: 16237722 DOI: 10.1002/jnr.20659] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microglia are bone marrow-derived cells that constitute a facultative macrophage population when activated by trauma or pathology in the CNS. Endogenous CNS-resident microglia as well as exogenous (immigrant) bone marrow-derived cells contribute to reactive microgliosis, raising fundamental questions about the cellular composition, kinetics, and functional characteristics of the reactive microglial cell population. Bone marrow chimeric mice reconstituted with green fluorescent protein-expressing (GFP(+)) donor bone marrow cells were subjected to entorhinal cortex lesion, resulting in selective axonal degeneration and a localized microglial reaction in the hippocampus. Flow cytometric evaluation of individually dissected hippocampi differentiated immigrant GFP(+) microglia from resident GFP(-) microglia (CD11b(+)CD45(dim)) and identified a subset of mainly resident CD11b(+) microglia that was induced to express CD34. The proportion of immigrant GFP(+) microglia (CD11b(+)CD45(dim)) increased signficantly by 3 and 5 days postlesion and reached a maximum of 13% by 7 days. These cells expressed lower CD11b levels than resident microglia, forming a distinct subpopulation on CD11b/CD45 profiles. The proportion of CD34(+)CD11b(+) microglia was significantly increased at 3 days postlesion but had normalized by 5 and 7 days, when the microglial reaction is known to be at its maximum. Our results show that distinct subpopulations of microglia respond to minor CNS injury. The heterogeneity in microglial response may have functional consequences for repair and possibly therapy.
Collapse
Affiliation(s)
- Martin Wirenfeldt
- Medical Biotechnology Center, University of Southern Denmark, Odense.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Meeuwsen S, Bsibsi M, Persoon-Deen C, Ravid R, van Noort JM. Cultured human adult microglia from different donors display stable cytokine, chemokine and growth factor gene profiles but respond differently to a pro-inflammatory stimulus. Neuroimmunomodulation 2005; 12:235-45. [PMID: 15990454 DOI: 10.1159/000085655] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 02/22/2005] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Brain microglia are highly responsive cells in the central nervous system that exert key functions in host defense as well as in neuroprotection and regeneration. In this study the gene expression profiles for 268 cytokines, chemokines, growth factors and their receptors were examined in cultures of purified human adult microglia, using cDNA array profiling. METHODS Microglia from 9 different donors were compared, also following challenge of such microglia with the pro-inflammatory cytokines TNF-alpha and IFN-gamma. RESULTS A stable pattern was observed of genes abundantly expressed in the different cultures under standard conditions. Genes abundantly expressed in all microglia cultures include CCL2 (MCP-1), thymosin beta-10, migration-inhibitory factor-related protein 8 (MRP8), MRP14, corticotropin-releasing factor receptor 1 and endothelin 2. Abundant gene products novel to microglia were neuromodulin (GAP43) and Flt3 ligand. Yet, treatment with TNF-alpha and IFN-gamma led to widely different response profiles among the different cultures. CONCLUSION These data show a surprising level of heterogeneity among human adult microglia cultures in their response to a pro-inflammatory stimulus despite the standardized methodology to examine this response.
Collapse
Affiliation(s)
- Sonja Meeuwsen
- Division Biomedical Research, TNO Prevention and Health, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|