1
|
Gorecki L, Pejchal J, Torruellas C, Korabecny J, Soukup O. Midazolam - A diazepam replacement for the management of nerve agent-induced seizures. Neuropharmacology 2024; 261:110171. [PMID: 39362626 DOI: 10.1016/j.neuropharm.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
A benzodiazepine, diazepam, has been the leading antidote for seizures caused by nerve agents, the most toxic chemical weapons of mass destruction, since the 1960s. However, its limitations have often brought questions about its usefulness. Extensive effort has been devoted into exploring alternatives, such as other benzodiazepines, anticholinergics, or glutamate antagonists. However, only few showed clear clinical benefit. The only two options to ultimately reach clinical milestones are Avizafone, a water-soluble prodrug of diazepam adopted by the French and UK armed forces, and intramuscular midazolam, adopted by the US Army. The recently FDA-approved new intramuscular application of midazolam brought several advantages, such as rapid onset of action, short duration with predictable pharmacokinetics, increased water solubility for aqueous injectable solutions, and prolonged storage stability. Herein, we discuss the pitfalls and prospects of using midazolam as a substitute in anticonvulsant therapy with a particular focus on military purposes in combat casualty care. We have also considered and discussed several other alternatives that are currently at the experimental level. Recent studies have shown the superiority of midazolam over other benzodiazepines in the medical management of poisoned casualties. While its use in emergency care is straightforward, the proper dose for soldiers under battlefield conditions is questionable due to its sedative effects.
Collapse
Affiliation(s)
- Lukas Gorecki
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jaroslav Pejchal
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Carilyn Torruellas
- U. S. Army CCDC Chemical Biological Center, Aberdeen Proving Ground, MD, 21010-5424, USA
| | - Jan Korabecny
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Bowell L, Williams MT. Atypical organophosphate poisoning and a successful case of prolonged intubation in a low-resource newly developed intensive care unit in rural Zambia. BMJ Case Rep 2024; 17:e253435. [PMID: 38383128 PMCID: PMC10882451 DOI: 10.1136/bcr-2022-253435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Organophosphate poisoning is a common, under-reported cause of attempted and completed suicide worldwide. Following the resolution of the acute cholinergic syndrome, patients may develop respiratory muscle and proximal limb weakness, known as intermediate syndrome. A young man was brought to our rural hospital unconscious, in extremis, due to organophosphate pesticide poisoning. He developed atypical intermediate syndrome with global paralysis, persistent fasciculations and prolonged cholinergic symptoms, differing from the recognised presentation. He was intubated for fifteen days in our newly developed intensive care unit. Limited treatment options and the absence of blood gases, electrolyte testing, ECGs, invasive monitoring and imaging, in conjunction with regular disruptions to electricity and oxygen, and complications including seizures and pneumonia, all made this prolonged intubation an ambitious and challenging endeavour. We offer learning points for the acute physician and rural intensivist, and a summary of our reflections and hints for best care when adapting to a resource-limited setting.
Collapse
|
3
|
Agarwal G, Tichenor H, Roo S, Lane TR, Ekins S, McElroy CA. Targeted Metabolomics of Organophosphate Pesticides and Chemical Warfare Nerve Agent Simulants Using High- and Low-Dose Exposure in Human Liver Microsomes. Metabolites 2023; 13:metabo13040495. [PMID: 37110155 PMCID: PMC10144572 DOI: 10.3390/metabo13040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Our current understanding of organophosphorus agent (pesticides and chemical warfare nerve agents) metabolism in humans is limited to the general transformation by cytochrome P450 enzymes and, to some extent, by esterases and paraoxonases. The role of compound concentrations on the rate of clearance is not well established and is further explored in the current study. We discuss the metabolism of 56 diverse organophosphorus compounds (both pesticides and chemical warfare nerve agent simulants), many of which were explored at two variable dose regimens (high and low), determining their clearance rates (Clint) in human liver microsomes. For compounds that were soluble at high concentrations, 1D-NMR, 31P, and MRM LC-MS/MS were used to calculate the Clint and the identity of certain metabolites. The determined Clint rates ranged from 0.001 to 2245.52 µL/min/mg of protein in the lower dose regimen and from 0.002 to 98.57 µL/min/mg of protein in the high dose regimen. Though direct equivalency between the two regimens was absent, we observed (1) both mono- and bi-phasic metabolism of the OPs and simulants in the microsomes. Compounds such as aspon and formothion exhibited biphasic decay at both high and low doses, suggesting either the involvement of multiple enzymes with different KM or substrate/metabolite effects on the metabolism. (2) A second observation was that while some compounds, such as dibrom and merphos, demonstrated a biphasic decay curve at the lower concentrations, they exhibited only monophasic metabolism at the higher concentration, likely indicative of saturation of some metabolic enzymes. (3) Isomeric differences in metabolism (between Z- and E- isomers) were also observed. (4) Lastly, structural comparisons using examples of the oxon group over the original phosphorothioate OP are also discussed, along with the identification of some metabolites. This study provides initial data for the development of in silico metabolism models for OPs with broad applications.
Collapse
Affiliation(s)
- Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Hunter Tichenor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah Roo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas R. Lane
- Collaborations Pharmaceutical Inc., Raleigh, NC 27606, USA
| | - Sean Ekins
- Collaborations Pharmaceutical Inc., Raleigh, NC 27606, USA
| | - Craig A. McElroy
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
4
|
Maksimović ŽM, Jović-Stošić J, Vučinić S, Perković-Vukčević N, Vuković-Ercegović G, Škrbić R, Stojiljković MP. Acute organophosphate and carbamate pesticide poisonings - a five-year survey from the National Poison Control Center Of Serbia. Drug Chem Toxicol 2023; 46:113-121. [PMID: 34875948 DOI: 10.1080/01480545.2021.2012481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pesticide poisonings, intentional as well as accidental, are common, especially in undeveloped and developing countries. The goal of this study was to analyze the clinical presentation of patients hospitalized due to acute organophosphate (OPP) or carbamate pesticide (CP) poisoning as well as to analyze the factors that potentially influenced the severity and outcome of the poisonings. A retrospective cross-sectional study was performed. The age and gender of each patient were recorded, the type of ingested pesticide, whether the poisoning was intentional or accidental, number of days of hospitalization, the severity of the poisoning, and the outcome of the treatment (i.e., whether the patient survived or not). Clinical aspects of poisonings were analyzed, as well as the therapeutic measures performed. 60 patients were hospitalized due to acute OPP or CP poisoning, out of 51 (85.00%) were cases of intentional self-poisoning. The majority of patients were poisoned by OPPs (76.67%), in one-third the causative agent was malathion, followed in frequency by chlorpyrifos and diazinon. Dimethoate poisonings were manifested with the most severe clinical picture. A 70% or lower activity of reference values of acetylcholinesterase and butyrylcholinesterase was found in 50% and 58% of patients, respectively. The most common symptom was miosis (58.33%), followed by nausea and vomiting. Pralidoxime reactivated acetylcholinesterase inhibited by chlorpyrifos or diazinon, but not with malathion or dimethoate. Impairment of consciousness and respiratory failure, as well as the degree of acetylcholinesterase and butyrylcholinesterase inhibition, were prognostic signs of the severity of poisoning. The lethal outcome was more often found in older patients (t = 2.41, p = 0.019). The type of ingested pesticide significantly affects the severity and outcome of poisoning as well as the effectiveness of antidotes.
Collapse
Affiliation(s)
- Žana M Maksimović
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Jasmina Jović-Stošić
- National Poison Control Center, Medical Faculty, Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Slavica Vučinić
- National Poison Control Center, Medical Faculty, Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Nataša Perković-Vukčević
- National Poison Control Center, Medical Faculty, Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Gordana Vuković-Ercegović
- National Poison Control Center, Medical Faculty, Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Ranko Škrbić
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina.,Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Miloš P Stojiljković
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina.,Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
5
|
Cruz-Hernandez A, Roney A, Goswami DG, Tewari-Singh N, Brown JM. A review of chemical warfare agents linked to respiratory and neurological effects experienced in Gulf War Illness. Inhal Toxicol 2022; 34:412-432. [PMID: 36394251 PMCID: PMC9832991 DOI: 10.1080/08958378.2022.2147257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Over 40% of veterans from the Persian Gulf War (GW) (1990-1991) suffer from Gulf War Illness (GWI). Thirty years since the GW, the exposure and mechanism contributing to GWI remain unclear. One possible exposure that has been attributed to GWI are chemical warfare agents (CWAs). While there are treatments for isolated symptoms of GWI, the number of respiratory and cognitive/neurological issues continues to rise with minimum treatment options. This issue does not only affect veterans of the GW, importantly these chronic multisymptom illnesses (CMIs) are also growing amongst veterans who have served in the Afghanistan-Iraq war. What both wars have in common are their regions and inhaled exposures. In this review, we will describe the CWA exposures, such as sarin, cyclosarin, and mustard gas in both wars and discuss the various respiratory and neurocognitive issues experienced by veterans. We will bridge the respiratory and neurological symptoms experienced to the various potential mechanisms described for each CWA provided with the most up-to-date models and hypotheses.
Collapse
Affiliation(s)
- Angela Cruz-Hernandez
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Roney
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Dinesh G Goswami
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
6
|
Countermeasures in organophosphorus intoxication: pitfalls and prospects. Trends Pharmacol Sci 2022; 43:593-606. [DOI: 10.1016/j.tips.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/24/2022]
|
7
|
Chen J, Zhang Y, Chai Y, Meng Z, Zhang Y, Chen L, Quan D, Wang Y, Meng Q, Li C. Synergistic enhancement of the emergency treatment effect of organophosphate poisoning by a supramolecular strategy. Chem Sci 2021; 12:5202-5208. [PMID: 34163757 PMCID: PMC8179580 DOI: 10.1039/d1sc00426c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/24/2021] [Indexed: 01/19/2023] Open
Abstract
Poisoning by organophosphorus agents (OPs) is a serious public health issue across the world. These compounds irreversibly inhibit acetylcholinesterase (AChE), resulting in the accumulation of acetylcholine (ACh) and overstimulation of ACh receptors. A supramolecular detoxification system (SDS) has been designed with a view to deliver pyridine-2-aldoxime methochloride (PAM) with a synergistic inhibition effect on the ACh-induced hyperstimulation through host-guest encapsulation. NMR and fluorescence titration served to confirm the complexation between carboxylatopillar[6]arene (CP6A) and PAM as well as ACh with robust affinities. Patch-clamp studies proved that CP6A could exert an inhibition effect on the ACh-induced hyperstimulation of ACh receptors. Support for the feasibility of this strategy came from fluorescence imaging results. In vivo studies revealed that complexation by CP6A serves to increase the AChE reactivation efficiency of PAM. The formation of the PAM/CP6A complex contributed to enhance in a statistically significant way the ability of PAM not only to relieve symptoms of seizures but also to improve the survival ratio in paraoxon-poisoned model rats. These favorable findings are attributed to synergistic effects that PAM reactivates AChE to hydrolyze ACh and excess ACh is encapsulated in the cavity of CP6A to relieve cholinergic crisis symptoms.
Collapse
Affiliation(s)
- Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
- College of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 P. R. China
| | - Yadan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Yao Chai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Dongqin Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology Beijing 100850 P. R. China
| | - Chunju Li
- College of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
8
|
Yu C, Zhao M, Pan Z, Bo Y, Zhao W, He X, Zhang J. Butyrylcholinesterase nanodepots with enhanced prophylactic and therapeutic performance for acute organophosphorus poisoning management. J Mater Chem B 2021; 9:1877-1887. [PMID: 33533366 DOI: 10.1039/d0tb02478c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute organophosphorus pesticide poisoning (AOPP) is a worldwide health concern that has threatened human lives for decades, which attacks acetylcholinesterase (AChE) and causes nervous system disorders. Classical treatment options are associated with short in vivo half-life and side effects. As a potential alternative, delivery of mammalian-derived butyrylcholinesterase (BChE) offers a cost-effective way to block organophosphorus attack on acetylcholinesterase, a key enzyme in the neurotransmitter cycle. Yet the use of exotic BChE as a prophylactic or therapeutic agent is compromised by short plasma residence, immune response and unfavorable biodistribution. To overcome these obstacles, BChE nanodepots (nBChE) composed of a BChE core/polymorpholine shell structure were prepared via in situ polymerization, which showed enhanced stability, prolonged plasma circulation, attenuated antigenicity and reduced accumulation in non-targeted tissues. In vivo administration of nBChE pre- or post-organophosphorus exposure in a BALB/C mouse model resulted in potent prophylactic and therapeutic efficiency. To our knowledge, this is the first systematic delivery of non-human BChE to tackle AOPP. In addition, this work also opens up a new avenue for real applications in both research and clinical settings to cope with acute intoxication-related diseases.
Collapse
Affiliation(s)
- Congwei Yu
- College of Science, China Agricultural University, Beijing 100193, P. R. China.
| | - Ming Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
| | - Zuchen Pan
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China. and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Yiyang Bo
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China. and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Weiwei Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China. and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Xiongkui He
- College of Science, China Agricultural University, Beijing 100193, P. R. China.
| | - Jiaheng Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China. and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
9
|
Hrvat NM, Kovarik Z. Counteracting poisoning with chemical warfare nerve agents. Arh Hig Rada Toksikol 2020; 71:266-284. [PMID: 33410774 PMCID: PMC7968514 DOI: 10.2478/aiht-2020-71-3459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphylation of the pivotal enzyme acetylcholinesterase (AChE) by nerve agents (NAs) leads to irreversible inhibition of the enzyme and accumulation of neurotransmitter acetylcholine, which induces cholinergic crisis, that is, overstimulation of muscarinic and nicotinic membrane receptors in the central and peripheral nervous system. In severe cases, subsequent desensitisation of the receptors results in hypoxia, vasodepression, and respiratory arrest, followed by death. Prompt action is therefore critical to improve the chances of victim's survival and recovery. Standard therapy of NA poisoning generally involves administration of anticholinergic atropine and an oxime reactivator of phosphylated AChE. Anticholinesterase compounds or NA bioscavengers can also be applied to preserve native AChE from inhibition. With this review of 70 years of research we aim to present current and potential approaches to counteracting NA poisoning.
Collapse
Affiliation(s)
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
10
|
Pereska Z, Chaparoska D, Bekarovski N, Jurukov I, Simonovska N, Babulovska A. Pulmonary thrombosis in acute organophosphate poisoning-Case report and literature overview of prothrombotic preconditioning in organophosphate toxicity. Toxicol Rep 2019; 6:550-555. [PMID: 31285996 PMCID: PMC6587046 DOI: 10.1016/j.toxrep.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Acute OP poisoning complicated with pulmonary thrombosis during the first week of poisoning. Antidote treatment included atropine, whereas diazepam was administered in the first 48 h. There was no administration of oximes due to unavailability. Prolonged hypoxemia in acute OP intoxication indicates exclusion of thrombotic pulmonary event.
Objective Acute organophosphate (OP) poisonings are presented with acetylcholine-receptor overstimulation. There have been a few case reports of thrombotic complications in acute OP poisonings, as well as prolonged thrombosis preconditions in patients who survived this type of intoxications. The paper presents a case with pulmonary thrombosis (PT) that develops in the subacute phase of intentional acute OP poisoning, treated only with atropine, as well as a literature overview of OP-induced prothrombotic toxicity. Case report A middle aged woman was brought to the hospital after ingestion of unknown insecticide with suicidal intentions. She had a history of HTA (arterial hypertension), hyperlipidemia and untreated depression. The clinical features of poisoning were miosis, vomiting, dizziness, abdominal cramps and diarrhea. Soon after admission, she developed difficulties in breathing with decrease of serum pseudocholinesterase (2590...1769...1644...800 U/l), bibasal pulmonary crackles, drop of SpO2 to 84%. Antidote treatment included carbo medicinalis, atropine, and diazepam, without use of oximes. The seventh day pseudocholinesterase, the levels started to rise but the patient’s hyposaturation (SpO2 86-88%) persisted. Chest ultrasound detected hypoechoic subpleural lesion to the right. Haemostatic tests showed increased D-Dimmer (2312 ng/ml) with hypercoagulability. The CT pulmonary angiography confirmed PT and after the administration of low molecular heparin, her clinical condition improved. Conclusion Acute organophosphate poisoning treated with atropine showed a potential for inducing prothrombotic coagulation abnormalities, presented with PT. This life-threatening complication may additionally contribute to prolonged morbidity and mortality in OP poisonings, especially in patients with medical history of comorbidites.
Collapse
Affiliation(s)
- Zanina Pereska
- University Clinic of Toxicology, Medical Faculty, University "St. Cyril and Methodius", Clinical Campus Mother Theresa, Vodnjanska 17, 1000 Skopje, Republic of North Macedonia
| | - Daniela Chaparoska
- University Clinic of Toxicology, Medical Faculty, University "St. Cyril and Methodius", Clinical Campus Mother Theresa, Vodnjanska 17, 1000 Skopje, Republic of North Macedonia
| | - Niko Bekarovski
- University Clinic of Toxicology, Medical Faculty, University "St. Cyril and Methodius", Clinical Campus Mother Theresa, Vodnjanska 17, 1000 Skopje, Republic of North Macedonia
| | - Irena Jurukov
- University Clinic of Toxicology, Medical Faculty, University "St. Cyril and Methodius", Clinical Campus Mother Theresa, Vodnjanska 17, 1000 Skopje, Republic of North Macedonia
| | - Natasha Simonovska
- University Clinic of Toxicology, Medical Faculty, University "St. Cyril and Methodius", Clinical Campus Mother Theresa, Vodnjanska 17, 1000 Skopje, Republic of North Macedonia
| | - Aleksandra Babulovska
- University Clinic of Toxicology, Medical Faculty, University "St. Cyril and Methodius", Clinical Campus Mother Theresa, Vodnjanska 17, 1000 Skopje, Republic of North Macedonia
| |
Collapse
|
11
|
Castañeda-Duque J, Molina Díaz VM. Uso de pralidoxima en la intoxicación con metomilo en pastor collie en Medellín (Colombia). Reporte de caso. REVISTA DE LA FACULTAD DE MEDICINA VETERINARIA Y DE ZOOTECNIA 2019. [DOI: 10.15446/rfmvz.v66n2.82436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Se describe el uso de la pralidoxima en el tratamiento de una intoxicación con metomiloen un canino en la ciudad de Medellín (Colombia). Un macho de raza pastor colliesufrió intoxicación accidental con metomilo, presentó cuadro colinérgico, con miosis,sialorrea, delirio, excitación y emesis, fue sometido a descontaminación con carbónactivado y terapia con atropina (0,04 mg/kg IM) cada 30 minutos hasta atropinizar,difenhidramina (2 mg/kg EV) y pralidoxima (10 mg/kg EV) cada 8 horas y pentobarbital(12 mg/kg EV) por 24 horas, además de terapia de sostén. Se realizaron pruebashematológicas, creatinina, alanino aminotrasferasa, tiempo de protrombina y tiempoparcial tromboplastina que resultaron normales para la especie. Después de una terapiade 7 días el paciente presentó mejoría total de los signos nerviosos y se dio de alta encondición normal. El uso de pralidoxima como activador de la acetilcolinesterasa es unaopción en el tratamiento de la intoxicación grave por metomilo en la especie canina quemuestra sensibilidad a los carbamatos.
Collapse
|
12
|
Eddleston M. Novel Clinical Toxicology and Pharmacology of Organophosphorus Insecticide Self-Poisoning. Annu Rev Pharmacol Toxicol 2019; 59:341-360. [DOI: 10.1146/annurev-pharmtox-010818-021842] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organophosphorus insecticide self-poisoning is a major global health problem, killing over 100,000 people annually. It is a complex multi-organ condition, involving the inhibition of cholinesterases, and perhaps other enzymes, and the effects of large doses of ingested solvents. Variability between organophosphorus insecticides—in lipophilicity, speed of activation, speed and potency of acetylcholinesterase inhibition, and in the chemical groups attached to the phosphorus—results in variable speed of poisoning onset, severity, clinical toxidrome, and case fatality. Current treatment is modestly effective, aiming only to reactivate acetylcholinesterase and counter the effects of excess acetylcholine at muscarinic receptors. Rapid titration of atropine during resuscitation is lifesaving and can be performed in the absence of oxygen. The role of oximes in therapy remains unclear. Novel antidotes have been tested in small trials, but the great variability in poisoning makes interpretation of such trials difficult. More effort is required to test treatments in adequately powered studies.
Collapse
Affiliation(s)
- Michael Eddleston
- Pharmacology, Toxicology, and Therapeutics Unit, Centre for Cardiovascular Science, and Centre for Pesticide Suicide Prevention, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
13
|
Alves VM, Muratov EN, Zakharov A, Muratov NN, Andrade CH, Tropsha A. Chemical toxicity prediction for major classes of industrial chemicals: Is it possible to develop universal models covering cosmetics, drugs, and pesticides? Food Chem Toxicol 2017; 112:526-534. [PMID: 28412406 DOI: 10.1016/j.fct.2017.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/16/2017] [Accepted: 04/10/2017] [Indexed: 01/15/2023]
Abstract
Computational models have earned broad acceptance for assessing chemical toxicity during early stages of drug discovery or environmental safety assessment. The majority of publicly available QSAR toxicity models have been developed for datasets including mostly drugs or drug-like compounds. We have evaluated and compared chemical spaces occupied by cosmetics, drugs, and pesticides, and explored whether current computational models of toxicity endpoints can be universally applied to all these chemicals. Our analysis of the chemical space overlap and applicability domain (AD) of models built previously for twenty different toxicity endpoints showed that most of these models afforded high coverage (>90%) for all three classes of compounds analyzed herein. Only T. pyriformis models demonstrated lower coverage for drugs and pesticides (38% and 54%, respectively). These results show that, for the most part, historical QSAR models built with data available for different toxicity endpoints can be used for toxicity assessment of novel chemicals irrespective of the intended commercial use; however, the AD restriction is necessary to assure the expected prediction accuracy. Local models may need to be developed to capture chemicals that appear as outliers with respect to global models.
Collapse
Affiliation(s)
- Vinicius M Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA; Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, 74605-170, Brazil
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA; Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Alexey Zakharov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, 20850, USA
| | - Nail N Muratov
- Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Carolina H Andrade
- Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, 74605-170, Brazil
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
14
|
Singh S, Prakash A, Kaur S, Ming LC, Mani V, Majeed ABA. The role of multifunctional drug therapy as an antidote to combat experimental subacute neurotoxicity induced by organophosphate pesticides. ENVIRONMENTAL TOXICOLOGY 2016; 31:1017-1026. [PMID: 25864908 DOI: 10.1002/tox.22111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 12/21/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Organophosphate pesticides are used in agriculture where they are associated with numerous cases of intentional and accidental misuse. These toxicants are potent inhibitors of cholinesterases leading to a massive build-up of acetylcholine which induces an array of deleterious effects, including convulsions, oxidative damage and neurobehavioral deficits. Antidotal therapies with atropine and oxime yield a remarkable survival rate, but fail to prevent neuronal damage and behavioral problems. It has been indicated that multifunction drug therapy with potassium channel openers, calcium channel antagonists and antioxidants (either single-agent therapy or combination therapy) may have the potential to prevent cell death and/or slow down the processes of secondary neuronal damage. The aim of the present study, therefore, was to make a relative assessment of the potential effects of nicorandil (2 mg/kg), clinidipine (10 mg/kg), and grape seed proanthocyanidin (GSPE) extract (200 mg/kg) individually against subacute chlorpyrifos induced toxicity. The test drugs were administered to Wistar rats 2 h after exposure to Chlorpyrifos (CPF). Different behavioral studies and biochemical estimation has been carried in the study. The results showed that chronic administration of CPF significantly impaired learning and memory, along with motor coordination, and produced a marked increase in oxidative stress along with significantly reduced acetylcholine esterase (AChE) activity. Treatment with nicorandil, clinidipine and GSPE was shown to significantly improve memory performance, attenuate oxidative damage and enhance AChE activity in rats. The present study also suggests that a combination of nicorandil, clinidipine, and GSPE has a better neuroprotective effect against subacute CPF induced neurotoxicity than if applied individually. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1017-1026, 2016.
Collapse
Affiliation(s)
- Satinderpal Singh
- Department of Pharmacology, Indo Soviet Friendship (ISF) College of Pharmacy, Moga, 142001, Punjab, India
| | - Atish Prakash
- Department of Pharmacology, Indo Soviet Friendship (ISF) College of Pharmacy, Moga, 142001, Punjab, India
- Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
- Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Shamsherjit Kaur
- Department of Pharmacology, Indo Soviet Friendship (ISF) College of Pharmacy, Moga, 142001, Punjab, India
| | - Long Chiau Ming
- Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
- Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Vasudevan Mani
- Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
- Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
- Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
15
|
Betten DP, Vohra RB, Cook MD, Matteucci MJ, Clark RF. Antidote Use in the Critically Ill Poisoned Patient. J Intensive Care Med 2016; 21:255-77. [PMID: 16946442 DOI: 10.1177/0885066606290386] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proper use of antidotes in the intensive care setting when combined with appropriate general supportive care may reduce the morbidity and mortality associated with severe poisonings. The more commonly used antidotes that may be encountered in the intensive care unit ( N-acetylcysteine, ethanol, fomepizole, physostigmine, naloxone, flumazenil, sodium bicarbonate, octreotide, pyridoxine, cyanide antidote kit, pralidoxime, atropine, digoxin immune Fab, glucagon, calcium gluconate and chloride, deferoxamine, phytonadione, botulism antitoxin, methylene blue, and Crotaline snake antivenom) are reviewed. Proper indications for their use and knowledge of the possible adverse effects accompanying antidotal therapy will allow the physician to appropriately manage the severely poisoned patient.
Collapse
Affiliation(s)
- David P Betten
- Department of Emergency Medicine, Sparrow Health System, Michigan State University College of Human Medicine, Lansing, Michigan 48912-1811, USA.
| | | | | | | | | |
Collapse
|
16
|
Ulu A, Inceoglu B, Yang J, Singh V, Vito S, Wulff H, Hammock BD. Inhibition of soluble epoxide hydrolase as a novel approach to high dose diazepam induced hypotension. ACTA ACUST UNITED AC 2016; 6. [PMID: 28255523 DOI: 10.4172/2161-0495.1000300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Hypotension is one of the dose limiting side effects of benzodiazepines (BZDs), in particular of diazepam (DZP) which is still widely used in the clinic. Currently, only one FDA approved antidote exists for BZD overdose and novel approaches are needed to improve management of DZP overdose, dependency and withdrawal. OBJECTIVE Here, we hypothesized that increasing bioactive lipid mediators termed epoxy fatty acids (EpFAs) will prevent hypotension, as was shown previously in a murine model of LPS-induced hypotension. Therefore, we first characterized the time and dose dependent profile of DZP induced hypotension in mice, and then investigated the reversal of the hypotensive effect by inhibiting the soluble epoxide hydrolase (sEH), an enzyme that regulates the levels of EpFAs. MATERIALS AND METHODS Following baseline systolic BP recording using tail cuffs, mice were administered a sEH inhibitor (TPPU) before DZP and BP was monitored. Blood and brain levels of DZP and TPPU were quantified to examine distribution and metabolism. Plasma EpFAs levels were quantified to determine TPPU target engagement. RESULTS In this murine model, DZP induced dose dependent hypotension which was more severe than midazolam. The temporal profile was consistent with the reported pharmacokinetics/pharmacodynamics of DZP. Treatment with TPPU reversed the hypotension resulting from high doses of DZP and decreased the sEH metabolites of EpFAs in the plasma demonstrating target engagement. DISCUSSION AND CONCLUSION Overall, these findings demonstrate the similarity of a murine model of DZP induced hypotension to clinical observations in humans. Furthermore, we demonstrate that stabilization of EpFAs by inhibiting sEH is a novel approach to overcome DZP-induced hypotension and this beneficial effect can be enhanced by an omega three diet probably acting through epoxide metabolites of the fatty acids.
Collapse
Affiliation(s)
- Arzu Ulu
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, USA
| | - Bora Inceoglu
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, USA
| | - Jun Yang
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, USA
| | - Vikrant Singh
- Department of Pharmacology, School of Medicine, University of California, Davis, USA
| | - Stephen Vito
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, USA
| |
Collapse
|
17
|
Eddleston M, Chowdhury FR. Pharmacological treatment of organophosphorus insecticide poisoning: the old and the (possible) new. Br J Clin Pharmacol 2015; 81:462-70. [PMID: 26366467 DOI: 10.1111/bcp.12784] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 01/31/2023] Open
Abstract
Despite being a major clinical and public health problem across the developing world, responsible for at least 5 million deaths over the last three decades, the clinical care of patients with organophosphorus (OP) insecticide poisoning has little improved over the last six decades. We are still using the same two antidotes - atropine and oximes - that first came into clinical use in the late 1950s. Clinical research in South Asia has shown how improved regimens of atropine can prevent deaths. However, we are still unsure about which patients are most likely to benefit from the use of oximes. Supplemental antidotes, such as magnesium, clonidine and sodium bicarbonate, have all been proposed and studied in small trials without production of definitive answers. Novel antidotes such as nicotinic receptor antagonists, beta-adrenergic agonists and lipid emulsions are being studied in large animal models and in pilot clinical trials. Hopefully, one or more of these affordable and already licensed antidotes will find their place in routine clinical care. However, the large number of chemically diverse OP insecticides, the varied poisoning they produce and their varied response to treatment might ultimately make it difficult to determine definitively whether these antidotes are truly effective. In addition, the toxicity of the varied solvents and surfactants formulated with the OP active ingredients complicates both treatment and studies. It is possible that the only effective way to reduce deaths from OP insecticide poisoning will be a steady reduction in their agricultural use worldwide.
Collapse
Affiliation(s)
- Michael Eddleston
- Pharmacology, Toxicology, & Therapeutics, University of Edinburgh, Edinburgh, UK.,National Poisons Information Service - Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
18
|
Valiveti AK, Acharya J, Pratap A, Halve AK, Kaushik MP. Synthesis and in vitro screening of N-phenacylpyridinium oximes as reactivators of organophosphorus (OP)-inhibited electric eel acetylcholinesterase (AChE). Med Chem Res 2015. [DOI: 10.1007/s00044-015-1384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Vale A, Lotti M. Organophosphorus and carbamate insecticide poisoning. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:149-68. [PMID: 26563788 DOI: 10.1016/b978-0-444-62627-1.00010-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both organophosphorus (OP) and carbamate insecticides inhibit acetylcholinesterase (AChE), which results in accumulation of acetylcholine (ACh) at autonomic and some central synapses and at autonomic postganglionic and neuromuscular junctions. As a consequence, ACh binds to, and stimulates, muscarinic and nicotinic receptors, thereby producing characteristic features. With OP insecticides (but not carbamates), "aging" may also occur by partial dealkylation of the serine group at the active site of AChE; recovery of AChE activity requires synthesis of new enzyme in the liver. Relapse after apparent resolution of cholinergic symptoms has been reported with OP insecticides and is termed the intermediate syndrome. This involves the onset of muscle paralysis affecting particularly upper-limb muscles, neck flexors, and cranial nerves some 24-96 hours after OP exposure and is often associated with the development of respiratory failure. OP-induced delayed neuropathy results from phosphorylation and subsequent aging of at least 70% of neuropathy target esterase. Cramping muscle pain in the lower limbs, distal numbness, and paresthesiae are followed by progressive weakness, depression of deep tendon reflexes in the lower limbs and, in severe cases, in the upper limbs. The therapeutic combination of oxime, atropine, and diazepam is well established experimentally in the treatment of OP pesticide poisoning. However, there has been controversy as to whether oximes improve morbidity and mortality in human poisoning. The explanation may be that the solvents in many formulations are primarily responsible for the high morbidity and mortality; oximes would not be expected to reduce toxicity in these circumstances. even if given in appropriate dose.
Collapse
Affiliation(s)
- Allister Vale
- National Poisons Information Service (Birmingham Unit) and West Midlands Poisons Unit, City Hospital, Birmingham, UK; Honorary Professor, School of Biosciences, University of Birmingham, UK.
| | - Marcello Lotti
- Department of Cardiology, Thoracic and Vascular Sciences, School of Medicine, University of Padua, Padua, Italy
| |
Collapse
|
20
|
Kaur S, Singh S, Chahal KS, Prakash A. Potential pharmacological strategies for the improved treatment of organophosphate-induced neurotoxicity. Can J Physiol Pharmacol 2014; 92:893-911. [DOI: 10.1139/cjpp-2014-0113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Organophosphates (OP) are highly toxic compounds that cause cholinergic neuronal excitotoxicity and dysfunction by irreversible inhibition of acetylcholinesterase, resulting in delayed brain damage. This delayed secondary neuronal destruction, which arises primarily in the cholinergic areas of the brain that contain dense accumulations of cholinergic neurons and the majority of cholinergic projection, could be largely responsible for persistent profound neuropsychiatric and neurological impairments such as memory, cognitive, mental, emotional, motor, and sensory deficits in the victims of OP poisoning. The therapeutic strategies for reducing neuronal brain damage must adopt a multifunctional approach to the various steps of brain deterioration: (i) standard treatment with atropine and related anticholinergic compounds; (ii) anti-excitotoxic therapies to prevent cerebral edema, blockage of calcium influx, inhibition of apoptosis, and allow for the control of seizure; (iii) neuroprotection by aid of antioxidants and N-methyl-d-aspartate (NMDA) antagonists (multifunctional drug therapy), to inhibit/limit the secondary neuronal damage; and (iv) therapies targeting chronic neuropsychiatric and neurological symptoms. These neuroprotective strategies may prevent secondary neuronal damage in both early and late stages of OP poisoning, and thus may be a beneficial approach to treating the neuropsychological and neuronal impairments resulting from OP toxicity.
Collapse
Affiliation(s)
- Shamsherjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
- Punjab Technical University, Kapurthala 144601, Punjab, India
| | - Satinderpal Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Karan Singh Chahal
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Atish Prakash
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| |
Collapse
|
21
|
Chowdhary S, Bhattacharyya R, Banerjee D. Acute organophosphorus poisoning. Clin Chim Acta 2014; 431:66-76. [DOI: 10.1016/j.cca.2014.01.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 11/25/2022]
|
22
|
Sharma R, Gupta B, Acharya J, Kaushik M, Ghosh KK. Interactions between xylene-linked carbamoyl bis-pyridinium mono-oximes and organophosphates inhibited-AChE: A kinetic study. Toxicology 2014; 316:1-8. [DOI: 10.1016/j.tox.2013.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
|
23
|
Vani N, Mohan B, Nagendrappa G. A new high-performance thin-layer chromatographic method for determination of diazepam in spiked blood samples. JPC-J PLANAR CHROMAT 2013. [DOI: 10.1556/jpc.26.2013.4.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013; 11:315-35. [PMID: 24179466 PMCID: PMC3648782 DOI: 10.2174/1570159x11311030006] [Citation(s) in RCA: 1502] [Impact Index Per Article: 125.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 01/04/2013] [Accepted: 02/02/2013] [Indexed: 12/12/2022] Open
Abstract
Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer's disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases.
Collapse
Affiliation(s)
- Mirjana B Čolović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Danijela Z Krstić
- University School of Medicine, Institute of Medical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara D Lazarević-Pašti
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Aleksandra M Bondžić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vesna M Vasić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Magnesium sulfate treatment against sarin poisoning: dissociation between overt convulsions and recorded cortical seizure activity. Arch Toxicol 2012; 87:347-60. [DOI: 10.1007/s00204-012-0916-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/24/2012] [Indexed: 10/27/2022]
|
26
|
Vale A, Bradberry S, Proudfoot A. Clinical Toxicology of Insecticides. MAMMALIAN TOXICOLOGY OF INSECTICIDES 2012. [DOI: 10.1039/9781849733007-00312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Some insects compete for our food, some damage construction materials and some are important disease vectors in humans and animals. Hence, it is not surprising that chemicals (insecticides) have been developed that kill insects and other arthropods. More recently introduced insecticides, such as the neonicotinoids, have been produced with the intent that humans and animals will not be harmed by their appropriate use. This chapter reviews the clinical features and management of exposure to organophosphorus (OP) and carbamate insecticides, neonicotinoids, phosphides and pyrethroids. In the developing world where the ambient temperature is often high and personal protection equipment often not worn, poisoning particularly from OP and carbamate insecticides is common in an occupational setting, though more severe cases are due to deliberate ingestion of these pesticides. Both of these insecticides produce the cholinergic syndrome. The neonicotinoids, a major new class of insecticide, were introduced on the basis that they were highly specific for subtypes of nicotinic receptors that occur only in insect tissues. However, deliberate ingestion of substantial amounts of a neonicotinoid has resulted in features similar to those found in nicotine (and OP and carbamate) poisoning, though the solvent in some formulations may have contributed to their toxicity. Phosphides interact with moisture in air (or with water or acid) to liberate phosphine, which is the active pesticide. Inhalation of phosphine, however, is a much less frequent cause of human poisoning than ingestion of a metal phosphide, though the toxicity by the oral route is also due to phosphine liberated by contact of the phosphide with gut fluids. It is then absorbed through the alimentary mucosa and distributed to tissues where it depresses mitochondrial respiration by inhibiting cytochrome c oxidase and other enzymes. Dermal exposure to pyrethroids may result in paraesthesiae, but systemic toxicity usually only occurs after ingestion, when irritation of the gastrointestinal tract and CNS toxicity, predominantly coma and convulsions, result.
Collapse
Affiliation(s)
- Allister Vale
- National Poisons Information Service (Birmingham Unit) City Hospital, Birmingham UK. *
- West Midlands Poisons Unit City Hospital, Birmingham UK
- School of Biosciences and College of Medical and Dental Sciences University of Birmingham, Birmingham UK
| | - Sally Bradberry
- National Poisons Information Service (Birmingham Unit) City Hospital, Birmingham UK. *
- West Midlands Poisons Unit City Hospital, Birmingham UK
- School of Biosciences and College of Medical and Dental Sciences University of Birmingham, Birmingham UK
| | - Alex Proudfoot
- National Poisons Information Service (Birmingham Unit) City Hospital, Birmingham UK. *
| |
Collapse
|
27
|
Melzer M, Heidenreich A, Dorandeu F, Gäb J, Kehe K, Thiermann H, Letzel T, Blum MM. In vitro and in vivo efficacy of PEGylated diisopropyl fluorophosphatase (DFPase). Drug Test Anal 2011; 4:262-70. [DOI: 10.1002/dta.363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | | | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology; 80937; Munich; Germany
| | - Thomas Letzel
- Competence Pool Weihenstephan (CPW); Technische Universität München; 85354; Freising-Weihenstephan; Germany
| | | |
Collapse
|
28
|
Abstract
The use of organophosphorus pesticides results in toxicity risk to non-target organisms. Organophosphorus compounds share a common mode of action, exerting their toxic effects primarily via acetylcholinesterase (AChE) inhibition. Consequently, acetylcholine accumulates in the synaptic clefts of muscles and nerves, leading to overstimulation of cholinergic receptors. Acute cholinergic crisis immediately follows exposure to organophosphate and includes signs and symptoms resulting from hyperstimulation of central and peripheral muscarinic and nicotinic receptors. The current view of the treatment of organophosphate poisoning includes three strategies, i.e. the use of an anticholinergic drug (e.g., atropine), cholinesterase-reactivating agents (e.g., oximes) and anticonvulsant drugs (e.g., benzodiazepines). Oximes, as a part of antidotal therapy, ensure the recovery of phosphylated enzymes via a process denoted as reactivation of inhibited AChE. However, both experimental results and clinical findings have demonstrated that different oximes are not equally effective against poisonings caused by structurally different organophosphorus compounds. Therefore, antidotal characteristics of conventionally used oximes can be evaluated regarding how close the certain substance is to the theoretical concept of the universal oxime. Pralidoxime (PAM-2), trimedoxime (TMB-4), obidoxime (LüH-6), HI-6 and HLö-7 have all been demonstrated to be very effective in experimental poisonings with sarin and VX. TMB-4 and LüH-6 may reactivate tabun-inhibited AChE, whereas HI-6 possesses the ability to reactivate the soman-inhibited enzyme. An oxime HLö-7 seems to be an efficient reactivator of AChE inhibited by any of the four organophosphorus warfare agents. According to the available literature, the oximes LüH-6 and TMB-4, although relatively toxic, are the most potent to induce reactivation of AChE inhibited by the majority of organophosphorus pesticides. Since there are no reports of controlled clinical trials on the use of TMB-4 in human organophosphate pesticide poisoning, LüH-6 may be a better option.
Collapse
Affiliation(s)
- Biljana Antonijevic
- Institute of Toxicological Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | | |
Collapse
|
29
|
Thiermann H, Szinicz L, Eyer P, Felgenhauer N, Zilker T, Worek F. Lessons to be learnt from organophosphorus pesticide poisoning for the treatment of nerve agent poisoning. Toxicology 2006; 233:145-54. [PMID: 17161895 DOI: 10.1016/j.tox.2006.11.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 10/17/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
The increasing threat of nerve agent use for terrorist purposes against civilian and military population calls for effective therapeutic preparedness. At present, administration of atropine and an oxime are recommended, although effectiveness of this treatment is not proved in clinical trials. Here, monitoring of intoxications with organophosphorus (OP) pesticides may be of help, as their actions are closely related to those of nerve agents and intoxication and therapy follow the same principles. To this end, the clinical course of poisoning and the effectiveness of antidotal therapy were investigated in patients requiring artificial ventilation being treated with atropine and obidoxime. However, poisoning with OP pesticides shows extremely heterogeneous pictures of cholinergic crisis frequently associated with clinical complications. To achieve valuable information for the therapy of nerve agent poisoning, cases resembling situations in nerve agent poisoning had to be extracted: (a) intoxication with OPs forming reactivatable OP-AChE-complexes with short persistence of the OP in the body resembling inhalational sarin intoxication; (b) intoxication with OPs resulting rapidly in an aged OP-AChE-complex resembling inhalational soman intoxication; (c) intoxications with OPs forming a reactivatable AChE-OP complex with prolonged persistence of the OP in the body resembling percutaneous VX intoxication. From these cases it was concluded that sufficient reactivation of nerve agent inhibited non-aged AChE should be possible, if the poison load was not too high and the effective oximes were administered early and with an appropriate duration. When RBC-AChE activity was higher than some 30%, neuromuscular transmission was relatively normal. Relatively low atropine doses (several milligrams) should be sufficient to cope with muscarinic symptoms during oxime therapy.
Collapse
Affiliation(s)
- H Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Sivilotti MLA, Bird SB, Lo JCY, Dickson EW. Multiple centrally acting antidotes protect against severe organophosphate toxicity. Acad Emerg Med 2006; 13:359-64. [PMID: 16531591 DOI: 10.1197/j.aem.2005.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Accumulation of acetylcholine in the central nervous system is believed to account for the rapid lethality of organophosphate pesticides and chemical nerve agents. Diazepam is known to supplement atropine therapy, but its specific mechanism of action is uncertain. OBJECTIVES To test four centrally acting agents for early antidotal efficacy in severe dichlorvos poisoning in the murine model. METHODS The up-and-down method was used to dose four candidate antidotes: diazepam, xylazine, morphine, and ketamine. Antidotes were administered subcutaneously to unsedated adult Sprague-Dawley rats who were pretreated with 3 mg/kg intraperitoneal glycopyrrolate. All animals received 20 mg/kg of dichlorvos subcutaneously 5 minutes later. A blinded observer adjudicated the outcomes of 10-minute mortality and survival time. RESULTS All animals pretreated with either no antidote (8/8 deaths) or glycopyrrolate alone (8/8) died within 10 minutes of dichlorvos injection. Pretreatment with diazepam (3/9 deaths), or xylazine (3/9), decreased lethality substantially (Fisher p = 0.007; median effective doses, 0.12 mg/kg and 3.0 mg/kg, respectively). Intermediate doses of morphine (3.1 to 5.5 mg/kg) resulted in survival, but higher doses did not, presumably because of excessive respiratory depression (7/11 deaths; p = 0.09). Ketamine (7/8 deaths) was ineffective as an antidote. Survival times also were prolonged in the diazepam and xylazine groups (log-rank p < 0.001) and, to a lesser degree, the morphine group (p = 0.07). CONCLUSIONS Doses of diazepam, xylazine, and morphine below those used for deep sedation protect against severe dichlorvos poisoning, implying that several distinct central mechanisms are each sufficient to avert lethality. These findings suggest new possibilities for prophylaxis or therapy.
Collapse
Affiliation(s)
- Marco L A Sivilotti
- Department of Emergency Medicine, Queen's University, Kingston, Ontario, Canada.
| | | | | | | |
Collapse
|
31
|
Hoffmann U, Papendorf T. Organophosphate poisonings with parathion and dimethoate. Intensive Care Med 2006; 32:464-8. [PMID: 16479380 DOI: 10.1007/s00134-005-0051-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Organophosphate toxicity is the leading cause of morbidity and death in poisoning by insecticides. The clinical symptoms of pesticide toxicity range from the classic cholinergic syndrome to flaccid paralysis and intractable seizures. The mainstays of therapy are atropine, oximes, benzodiazepines and supportive care. The toxicokinetics vary not only with the extent of exposure, but also with the chemical structure of the agent. PATIENTS We report two cases of poisoning with parathion-ethyl and dimethoate. The patients developed a cholinergic syndrome immediately, accompanied by bradycardia and hypotension. INTERVENTIONS The patients were admitted to the intensive care unit (ICU) a few hours after ingestion. Atropine was administered according to the cholinergic symptoms. The patients recovered in the ICU after 10-12 days and were discharged after 3 and 4 weeks. MEASUREMENTS AND RESULTS Organophosphate blood and urine levels were determined on admission and during hospitalisation. The pesticides were rapidly distributed and slow elimination rate of the poisons was documented. In the case of parathion-ethyl the distribution half-life estimated was t(1/2alpha) = 3.1h while the terminal half-life was t(1/2beta) = 17.9 h. Using a one-compartment model for dimethoate the elimination half-life was t(1/2beta) = 30.4 h in plasma and 23.8 h in urine. The serum pseudo-cholinesterase activity was below the limit of detection at admission and recovered during the following 3weeks.
Collapse
Affiliation(s)
- Ulrich Hoffmann
- Ernst-Moritz-Arndt University Greifswald, Institute of Pharmacology, Friedrich-Loeffler-Strasse 23d, 17487, Greifswald, Germany.
| | | |
Collapse
|
32
|
Harrison PK, Sheridan RD, Green AC, Tattersall JEH. Effects of anticonvulsants on soman-induced epileptiform activity in the guinea-pig in vitro hippocampus. Eur J Pharmacol 2005; 518:123-32. [PMID: 16054127 DOI: 10.1016/j.ejphar.2005.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 06/14/2005] [Accepted: 06/21/2005] [Indexed: 11/18/2022]
Abstract
Seizures arising from acetylcholinesterase inhibition are a feature of organophosphate anticholinesterase intoxication. Although benzodiazepines are effective against these seizures, alternative anticonvulsant drugs may possess greater efficacy and fewer side-effects. We have investigated in the guinea-pig hippocampal slice preparation the ability of a series of anticonvulsants to suppress epileptiform bursting induced by the irreversible organophosphate anticholinesterase, soman (100 nM). Carbamazepine (300 microM), phenytoin (100 microM), topiramate (100-300 microM) and retigabine (1-30 microM) reduced the frequency of bursting but only carbamazepine and phenytoin induced a concurrent reduction in burst duration. Felbamate (100-500 microM) and clomethiazole (100-300 microM) had no effect on burst frequency but decreased burst duration. Clozapine (3-30 microM) reduced the frequency but did not influence burst duration. Levetiracetam (100-300 microM) and gabapentin (100-300 microM) were without effect. These data suggest that several compounds, in particular clomethiazole, clozapine, felbamate, topiramate and retigabine, merit further evaluation as possible treatments for organophosphate poisoning.
Collapse
Affiliation(s)
- Patrick K Harrison
- Department of Biomedical Sciences, Dstl, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | | | | | | |
Collapse
|
33
|
Marrs TC. The role of diazepam in the treatment of nerve agent poisoning in a civilian population. ACTA ACUST UNITED AC 2005; 23:145-57. [PMID: 15862082 DOI: 10.2165/00139709-200423030-00002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The main site of action of diazepam, as with other benzodiazepines, is at the GABA(A) receptor, although it has been suggested that some of the potentially beneficial actions of diazepam in nerve agent poisoning are mediated through other means. It is likely that convulsions may have long-term sequelae in the central nervous system, because of damage by anoxia and/or excitotoxicity. Numerous pharmacodynamic studies of the action of diazepam in animals experimentally poisoned with nerve agents have been undertaken. In nearly all of these, diazepam has been studied in combination with other antidotes, such as atropine and/or pyridinium oximes, sometimes in combination with pyridostigmine pretreatment. These studies show that diazepam is an efficacious anticonvulsant in nerve agent poisoning. There is considerable experimental evidence to support the hypothesis that diazepam (and other anticonvulsants) may prevent structural damage to the central nervous system as evidenced by neuropathological changes such as neuronal necrosis at autopsy. In instances of nerve agent poisoning during terrorist use in Japan, diazepam seems to have been an effective anticonvulsant. Consequently, the use of diazepam is an important part of the treatment regimen of nerve agent poisoning, the aim being to prevent convulsions or reduce their duration. Diazepam should be given to patients poisoned with nerve agents whenever convulsions or muscle fasciculation are present. In severe poisoning, diazepam administration should be considered even before these complications occur. Diazepam is also useful as an anxiolytic in those exposed to nerve agents.
Collapse
Affiliation(s)
- Timothy C Marrs
- Food Standards Agency, London and National Poisons Information Service, (Birmingham Centre), City Hospital, Birmingham, UK
| |
Collapse
|