1
|
Idasiak-Piechocka I, Lewandowski D, Świgut W, Kalinowski J, Mikosza K, Suchowiejski P, Szałek E, Karbownik A, Miedziaszczyk M. Effect of hypoalbuminemia on drug pharmacokinetics. Front Pharmacol 2025; 16:1546465. [PMID: 40051558 PMCID: PMC11882431 DOI: 10.3389/fphar.2025.1546465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Hypoalbuminemia, defined as serum albumin levels below 35 g/L, is common in patients with conditions such as nephrotic syndrome, cirrhosis, or sepsis. This review examines the impact of hypoalbuminemia on the pharmacokinetics of selected drugs-such as antibiotics, immunosuppressants, antifungals, or anticonvulsants-emphasizing its role in drug efficacy and safety. Albumin is the main drug transporter and key binding protein, which influences the free drug concentration and drug activity. The review includes all studies available in the scientific literature found in the PubMed, Scopus, and Cochrane databases. The paper emphasizes the importance of therapeutic drug monitoring (TDM) in patients with hypoalbuminemia to avoid subtherapeutic or toxic drug levels. Many drugs need for dose adjustments to achieve therapeutic levels, especially in critically ill patients. The results of studies emphasize the need for individualized dosing regimens based on TDM to optimize drug therapy in patients with hypoalbuminemia. Our review is the first article to summarize the influence of hypoalbuminemia on the pharmacokinetic parameters of drugs and may be a useful tool for clinicians in their daily work.
Collapse
Affiliation(s)
- Ilona Idasiak-Piechocka
- Department of General and Transplant Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominik Lewandowski
- The Student Scientific Society of Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Świgut
- The Student Scientific Society of Poznan University of Medical Sciences, Poznan, Poland
| | - Jan Kalinowski
- The Student Scientific Society of Poznan University of Medical Sciences, Poznan, Poland
| | - Klaudia Mikosza
- The Student Scientific Society of Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Suchowiejski
- The Student Scientific Society of Poznan University of Medical Sciences, Poznan, Poland
| | - Edyta Szałek
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Karbownik
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - Miłosz Miedziaszczyk
- Department of General and Transplant Surgery, Poznan University of Medical Sciences, Poznan, Poland
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Miyake T, Fujita Y, Hirabayashi M, Komiyama N, Morita K, Tachibana T, Terao K. Quantitative prediction of drug disposition for uridine diphosphate-glucuronosyltransferase substrates using humanized mice. Drug Metab Dispos 2025; 53:100050. [PMID: 40054035 DOI: 10.1016/j.dmd.2025.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Drug clearance and drug-drug interactions are essential for pharmacokinetic assessment. However, current in vitro systems and animal scale-up approaches often fail to accurately predict drug disposition mediated by metabolizing enzymes, especially uridine diphosphate-glucuronosyltransferase (UGT). This study demonstrates how UGT-mediated drug disposition in humans can be predicted using hu-PXB mice (cDNA-uPA/severe combined immunodeficiency (SCID) mice transplanted with human-derived hepatocytes). To estimate human hepatic intrinsic clearance (CLh,int) in vitro, UGT substrates (acetaminophen, entacapone, ketoprofen, lorazepam, oxazepam, posaconazole, and zidovudine) were incubated with cryopreserved human hepatocytes. CLh,int was calculated based on the rate of substrate disappearance. In vivo human CLh,int values were calculated based on literature. To evaluate human CLh,int predictability, the 7 substrates were administered independently and intravenously to hu-PXB and SCID mice. We calculated the CLh,int in the mice and compared it with that in humans. For predicting UGT-mediated drug-drug interactions, 2 UGT substrates were administered intravenously to hu-PXB mice with or without probenecid (a UGT inhibitor). We compared the changes in clearance with those in humans. The in vitro assay using hepatocytes significantly underpredicted CLh,int in humans. Hu-PXB mice had a much better correlation with humans in CLh,int (R2 = 0.95) compared with SCID mice (R2 = 0.69). Hu-PXB mice predicted the CLh,int of UGT substrate drugs within 2-fold of the clinical values for every compound we evaluated. The decrease in clearance caused by probenecid in hu-PXB mice reflected that in humans. Our findings demonstrate that human drug disposition mediated by UGT can be predicted based on the in vivo studies using hu-PXB mice. SIGNIFICANCE STATEMENT: Human liver chimeric mice can accurately predict the clearance of uridine diphosphate-glucuronosyltransferase (UGT) substrate drugs and are likely to predict the magnitude of UGT-mediated drug-drug interactions. Findings from in vivo studies in humanized mice enable the selection of better candidates in drug discovery and allow for the more precise physiologically based pharmacokinetic modeling of UGT substrate drugs in clinical practice.
Collapse
Affiliation(s)
- Taiji Miyake
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama-shi, Japan.
| | - Yuito Fujita
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama-shi, Japan
| | - Manabu Hirabayashi
- Experimental Technology Department, Chugai Research Institute for Medical Science Inc., Yokohama-shi, Japan
| | - Natsuko Komiyama
- Experimental Technology Department, Chugai Research Institute for Medical Science Inc., Yokohama-shi, Japan
| | - Keiichi Morita
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama-shi, Japan
| | - Tatsuhiko Tachibana
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama-shi, Japan.
| | - Kimio Terao
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., Yokohama-shi, Japan
| |
Collapse
|
3
|
Hamada Y, Yagi Y. Therapeutic drug monitoring of azole antifungal agents. J Infect Chemother 2025; 31:102535. [PMID: 39374735 DOI: 10.1016/j.jiac.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Deep-seated mycoses are generally opportunistic infections that are difficult to diagnose and treat. They are expected to increase with the spread of advanced medical care and aging populations, thus highlighting the need for safe, effective, and rapid drug-based treatments. Depending on a patient's age, sex, underlying diseases, and immune system status, therapeutic drug monitoring (TDM) may be important for assessing variable pharmacokinetic parameters, as well as preventing drug-drug interactions, adverse events, and breakthrough infections caused by fungal resistance. Azole antifungal agents play an important role in the prevention and treatment of deep-seated fungal infections, with each azoles having its own unique pharmacokinetic properties and specific adverse events. Therefore, it is necessary to use national and international guidelines to build evidence for the expansion of TDM indications. This review focuses on the clinical utility and future perspectives of TDM using azole antifungal agents, in the context of recent evidence in the literature.
Collapse
Affiliation(s)
- Yukihiro Hamada
- Department of Pharmacy, Kochi Medical School Hospital, Nankoku, Kochi, Japan.
| | - Yusuke Yagi
- Department of Pharmacy, Kochi Medical School Hospital, Nankoku, Kochi, Japan; Department of Infection Prevention and Control, Kochi Medical School Hospital, Nankoku, Kochi, Japan
| |
Collapse
|
4
|
Gupta AK, Talukder M, Shemer A, Galili E. Safety and efficacy of new generation azole antifungals in the management of recalcitrant superficial fungal infections and onychomycosis. Expert Rev Anti Infect Ther 2024; 22:399-412. [PMID: 38841996 DOI: 10.1080/14787210.2024.2362911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Terbinafine is considered the gold standard for treating skin fungal infections and onychomycosis. However, recent reports suggest that dermatophytes are developing resistance to terbinafine and the other traditional antifungal agents, itraconazole and fluconazole. When there is resistance to terbinafine, itraconazole or fluconazole, or when these agents cannot used, for example, due to potential drug interactions with the patient's current medications, clinicians may need to consider off-label use of new generation azoles, such as voriconazole, posaconazole, fosravuconazole, or oteseconazole. It is essential to emphasize that we do not advocate the use of newer generation azoles unless traditional agents such as terbinafine, itraconazole, or fluconazole have been thoroughly evaluated as first-line therapies. AREAS COVERED This article reviews the clinical evidence, safety, dosage regimens, pharmacokinetics, and management algorithm of new-generation azole antifungals. EXPERT OPINION Antifungal stewardship should be the top priority when prescribing new-generation azoles. First-line antifungal therapy is terbinafine and itraconazole. Fluconazole is a consideration but is generally less effective and its use may be off-label in many countries. For difficult-to-treat skin fungal infections and onychomycosis, that have failed terbinafine, itraconazole and fluconazole, we propose consideration of off-label voriconazole or posaconazole.
Collapse
Affiliation(s)
- Aditya K Gupta
- Division of Dermatology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Mediprobe Research Inc., London, Ontario, Canada
| | - Mesbah Talukder
- Mediprobe Research Inc., London, Ontario, Canada
- School of Pharmacy, BRAC University, Dhaka, Bangladesh
| | - Avner Shemer
- Department of Dermatology, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Galili
- Department of Dermatology, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Heuer L, Wilhelm C, Roy O, Löhlein W, Wolf O, Zschiesche E. Clinical safety and efficacy of a single-dose gentamicin, posaconazole and mometasone furoate otic suspension for treatment of canine otitis externa. Vet Rec 2024; 194:e3955. [PMID: 38462781 DOI: 10.1002/vetr.3955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND A single-dose, in-clinic, veterinary professional-administered treatment for canine otitis externa was developed to improve compliance and canine welfare. METHODS This multicentre, controlled, examiner-masked, randomised field trial was conducted in 316 dogs over 42 days. Dogs were treated once, on day 0, with the investigational product containing gentamicin, posaconazole and mometasone furoate (Mometamax Ultra [MU]) or twice (days 0 and 7) with a control product containing florfenicol, terbinafine and betamethasone acetate (CP). The primary endpoint was a composite otitis index score of 4 or less (of 12) on day 14 and 3 or less (of 12) on day 28. RESULTS On day 28, treatment success was recorded in 128 of 143 MU-treated dogs (89.5%), significantly non-inferior to 116 of 133 (87.2%) CP-treated dogs (Farrington-Manning test, Z = 4.1351, p < 0.0001). For mixed cultures of Staphylococcus pseudintermedius and Malassezia pachydermatis, there was 100% treatment success in MU-treated dogs (n = 33), significantly non-inferior to 90.2% (37 of 41) in CP-treated dogs (Farrington-Manning test, Z = 3.1954, p = 0.0007). LIMITATIONS Efficacy in chronic otitis externa cases was not investigated. Cytology was not used to aid in diagnosis or for identification of secondary pathogens. CONCLUSION This unique combination, single-dose product is safe and effective in dogs with otitis externa. It offers enhanced compliance, canine welfare and quality of life by eliminating the owner burden of treating this painful condition.
Collapse
Affiliation(s)
- Lea Heuer
- MSD Animal Health Innovation, Schwabenheim an der Selz, Germany
| | | | | | | | - Oliver Wolf
- Löhlein & Wolf Vet Research and Consulting, München, Germany
| | - Eva Zschiesche
- MSD Animal Health Innovation, Schwabenheim an der Selz, Germany
| |
Collapse
|
6
|
Boppana M, Sengar M, Jain H, Gurjar M, Ambotkar M, Gota V, Bonda A, Bagal B, Thorat J, Gokarn A, Nayak L, Shetty N, Baheti A, Mokal S, Kannan S, Shetty A, Eipe T. A Prospective Study to Evaluate the Effect of Therapeutic Drug Monitoring-Based Posaconazole Prophylaxis on Invasive Fungal Infection Rate During Acute Myeloid Leukemia Induction Therapy. Indian J Hematol Blood Transfus 2024; 40:204-212. [PMID: 38708158 PMCID: PMC11065854 DOI: 10.1007/s12288-023-01709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/04/2023] [Indexed: 05/07/2024] Open
Abstract
Invasive fungal infections (IFIs) are a significant cause of morbidity and mortality in de-novo acute myeloid leukemia patients receiving induction chemotherapy. Despite using posaconazole, a broad-spectrum antifungal, for IFI prophylaxis, the breakthrough IFI rate is high in the real-world setting. One of the reasons could be frequent suboptimal plasma posaconazole levels. In the present study, we evaluated if therapeutic drug monitoring (TDM) guided posaconazole prophylaxis can reduce the IFI rates in comparison to a historical cohort. We enrolled 90 patients, > / = 16 years of age, without baseline IFIs, planned for remission induction therapy. All patients were started on posaconazole suspension 200 mg TDS and the dose was increased in a stepwise manner if trough levels were found to be suboptimal (< 350 ng/ml for day 2 or < 700 ng/ml subsequently). The TDM based approach resulted in a significant decline in breakthrough IFI rates (18% versus 52%, P < 0.0001) A total of 69 patients (78%) required dose escalation. Thirty-one patients required change in antifungals due to either suboptimal levels, persistent fever, diarrhoea or vomiting. We could not demonstrate an exposure-response relationship but the difference in IFI rates in patients with a median posaconazole level > / = 700 ng/ml (0%) and < 700 ng/ml (21.6%) was clinically meaningful. Posaconazole levels were found to be significantly lower in patients on antacids and prokinetics. The incidence of posaconazole-related grade 3 toxicity was low (2.3%). Thus TDM-based dosing of posaconazole helps reduce breakthrough IFI rate and should be a part of posaconazole prophylaxis. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-023-01709-3.
Collapse
Affiliation(s)
- Mounika Boppana
- Department of Medical Oncology, Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
- Present Address: Department of Medical Oncology, Krishna Institute of Medical Sciences, Minister Road, Secunderabad, Telangana 500003, India
| | - Manju Sengar
- Adult Hematolymphoid Unit, Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National University, Earnest Borges Road, Parel, Mumbai 400012 India
| | - Hasmukh Jain
- Adult Hematolymphoid Unit, Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Murari Gurjar
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Madhavi Ambotkar
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Vikram Gota
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Avinash Bonda
- Department of Medical Oncology, Asian Institute of Gastroenterology (AIG) Hospitals, Mindspace Road, P Janardhan Reddy Nagar, Gachibowli, Hyderabad, Telangana 500032, India
| | - Bhausaheb Bagal
- Adult Hematolymphoid Unit, Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Jayashree Thorat
- Adult Hematolymphoid Unit, Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Anant Gokarn
- Adult Hematolymphoid Unit, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Lingaraj Nayak
- Adult Hematolymphoid Unit, Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Nitin Shetty
- Department of Radiodiagnosis, Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Akshay Baheti
- Department of Radiodiagnosis, Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Smruti Mokal
- Clinical Research Secretariat, Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Sadhana Kannan
- Clinical Research Secretariat, Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Alok Shetty
- Department of Medical Oncology, Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| | - Thomas Eipe
- Department of Medical Oncology, Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, E Borges Road, Mumbai, Maharashtra 400 012 India
| |
Collapse
|
7
|
Holzem FL, Petrig Schaffland J, Brandl M, Bauer-Brandl A, Stillhart C. Using molecularly dissolved drug concentrations in PBBMs improves the prediction of oral absorption from supersaturating formulations. Eur J Pharm Sci 2024; 194:106703. [PMID: 38224722 DOI: 10.1016/j.ejps.2024.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Predicting the absorption of drugs from enabling formulations is still challenging due to the limited capabilities of standard physiologically based biopharmaceutics models (PBBMs) to capture complex absorption processes. Amongst others, it is often assumed that both, molecularly and apparently dissolved drug in the gastrointestinal lumen are prone to absorption. A recently introduced method for measuring concentrations of molecularly dissolved drug in a dynamic in vitro dissolution setup using microdialysis has opened new opportunities to test this hypothesis and refine mechanistic PBBM approaches. In the present study, we compared results of PBBMs that used either molecularly or apparently dissolved concentrations in the simulated gastrointestinal lumen as input parameters. The in vitro dissolution data from three supersaturating formulations of Posaconazole (PCZ) were used as model input. The modeling outcome was verified using PCZ concentration vs. time profiles measured in human intestinal aspirates and in the blood plasma. When using apparently dissolved drug concentrations (i.e., the sum of colloid-associated and molecularly dissolved drug) the simulated systemic plasma exposures were overpredicted, most pronouncedly with the ASD-based tablet. However, if the concentrations of molecularly dissolved drug were used as input values, the PBBM resulted in accurate prediction of systemic exposures for all three PCZ formulations. The present study impressively demonstrated the value of considering molecularly dissolved drug concentrations as input value for PBBMs of supersaturating drug formulations.
Collapse
Affiliation(s)
- Florentin Lukas Holzem
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Jeannine Petrig Schaffland
- Roche Pharmaceutical Research & Early Development, Pre-Clinical CMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Cordula Stillhart
- Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| |
Collapse
|
8
|
Elgammal Y, Salama EA, Seleem MN. Enhanced antifungal activity of posaconazole against Candida auris by HIV protease inhibitors, atazanavir and saquinavir. Sci Rep 2024; 14:1571. [PMID: 38238403 PMCID: PMC10796399 DOI: 10.1038/s41598-024-52012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The increasing incidence and dissemination of multidrug-resistant Candida auris represents a serious global threat. The emergence of pan-resistant C. auris exhibiting resistance to all three classes of antifungals magnifies the need for novel therapeutic interventions. We identified that two HIV protease inhibitors, atazanavir and saquinavir, in combination with posaconazole exhibited potent activity against C. auris in vitro and in vivo. Both atazanavir and saquinavir exhibited a remarkable synergistic activity with posaconazole against all tested C. auris isolates and other medically important Candida species. In a time-kill assay, both drugs restored the fungistatic activity of posaconazole, resulting in reduction of 5 and 5.6 log10, respectively. Furthermore, in contrast to the individual drugs, the two combinations effectively inhibited the biofilm formation of C. auris by 66.2 and 81.2%, respectively. Finally, the efficacy of the two combinations were tested in a mouse model of C. auris infection. The atazanavir/posaconazole and saquinavir/posaconazole combinations significantly reduced the C. auris burden in mice kidneys by 2.04- (99.1%) and 1.44-log10 (96.4%) colony forming unit, respectively. Altogether, these results suggest that the combination of posaconazole with the HIV protease inhibitors warrants further investigation as a new therapeutic regimen for the treatment of C. auris infections.
Collapse
Affiliation(s)
- Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA, 24061, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ehab A Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA, 24061, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA, 24061, USA.
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
9
|
Maldonado C, Peyraube R, Fagiolino P, Oricchio F, Cuñetti L, Vázquez M. Human Data on Pharmacokinetic Interactions of Cannabinoids: A Narrative Review. Curr Pharm Des 2024; 30:241-254. [PMID: 38288797 DOI: 10.2174/0113816128288510240113170116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 05/08/2024]
Abstract
Concomitant use of cannabinoids with other drugs may result in pharmacokinetic drug-drug interactions, mainly due to the mechanism involving Phase I and Phase II enzymes and/or efflux transporters. Cannabinoids are not only substrates but also inhibitors or inducers of some of these enzymes and/or transporters. This narrative review aims to provide the available information reported in the literature regarding human data on the pharmacokinetic interactions of cannabinoids with other medications. A search on Pubmed/Medline, Google Scholar, and Cochrane Library was performed. Some studies were identified with Google search. Additional articles of interest were obtained through cross-referencing of published literature. All original research papers discussing interactions between cannabinoids, used for medical or recreational/adult-use purposes, and other medications in humans were included. Thirty-two studies with medicinal or recreational/adult-use cannabis were identified (seventeen case reports/series, thirteen clinical trials, and two retrospective analyses). In three of these studies, a bidirectional pharmacokinetic drug-drug interaction was reported. In the rest of the studies, cannabinoids were the perpetrators, as in most of them, concentrations of cannabinoids were not measured. In light of the widespread use of prescribed and non-prescribed cannabinoids with other medications, pharmacokinetic interactions are likely to occur. Physicians should be aware of these potential interactions and closely monitor drug levels and/or responses. The existing literature regarding pharmacokinetic interactions is limited, and for some drugs, studies have relatively small cohorts or are only case reports. Therefore, there is a need for high-quality pharmacological studies on cannabinoid-drug interactions.
Collapse
Affiliation(s)
- Cecilia Maldonado
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Raquel Peyraube
- Instituto de Investigaciones Biológicas Clemente Estable - MEC, Montevideo, Uruguay
| | - Pietro Fagiolino
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Florencia Oricchio
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Leticia Cuñetti
- Kidney Transplant Unit, Nephrology and Urology Institute, Montevideo, Uruguay
| | - Marta Vázquez
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
10
|
König C, Göpfert M, Kluge S, Wichmann D. Posaconazole exposure in critically ill ICU patients: a need for action. Infection 2023; 51:1767-1772. [PMID: 37498488 PMCID: PMC10665255 DOI: 10.1007/s15010-023-02078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Posaconazole is an antifungal drug currently being used for prophylaxis and treatment of invasive fungal infections such as aspergillosis. To date, therapeutic drug monitoring (TDM) of posaconazole is recommended with the use of oral suspension, but the potential need of TDM with the use of IV formulations is rising. Therefore, we aimed to investigate the pharmacokinetics of IV posaconazole in critically ill patients. METHODS In a prospective study, we analysed 168 consecutivelly collected posaconazole levels from 10 critically ill patients drawn during a 7 day curse. Posaconazole concentrations were measured using a chromatographic method. Demographic and laboratory data were collected, and the data was analysed using descriptive statistics. RESULTS We included 168 posaconazole levels, resulting in a median trough of 0.62 [0.29-1.05] mg/L with 58% not reaching the suggested target of 0.5 mg/L for fungal prophylaxis. Moreover, 74% of the trough levels were under the target of 1 mg/L which is proposed for the treatment of aspergillosis. CONCLUSION Posaconazole exposure is highly variable in critically ill patients resulting in potentially insufficient drug concentrations in many cases. TDM is highly recommended to identify and avoid underexposure. TRIAL REGISTRATION NUMBER NCT05275179, March 11, 2022.
Collapse
Affiliation(s)
- Christina König
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 42, 20251, Hamburg, Germany
| | - Melanie Göpfert
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 42, 20251, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 42, 20251, Hamburg, Germany
| | - Dominic Wichmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 42, 20251, Hamburg, Germany.
| |
Collapse
|
11
|
Pechacek J, Webb T, Ferré EMN, Schmitt MM, DiMaggio T, Kobrin D, Rajasimhan S, Colton B, Lewis RE, Andes D, Herrera A, Hammoud D, Seyedmousavi S, Hasni S, Bolaños J, Afzali B, Lionakis MS. Successful Treatment of Paecilomyces variotii Pneumonia and Lupus Nephritis With Posaconazole-Cyclophosphamide Co-administration Without Drug Interaction-Induced Toxicity. Open Forum Infect Dis 2023; 10:ofad410. [PMID: 37564740 PMCID: PMC10411043 DOI: 10.1093/ofid/ofad410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Paecilomyces variotii is an opportunistic mold that causes pulmonary infections in immunosuppressed humans that are often treated with triazole therapy. Lupus nephritis is a major cause of progressive kidney disease in patients with systemic lupus erythematosus, often requiring cyclophosphamide-based therapies. Triazole-cyclophosphamide co-administration is challenging as triazoles increase cyclophosphamide concentrations, which can worsen cyclophosphamide toxicity. We describe herein a patient with Paecilomyces variotii pneumonia and concomitant lupus nephritis who was successfully treated with posaconazole and echinocandin-bridged interruptions to allow for cyclophosphamide therapy. This regimen was well-tolerated without cyclophosphamide toxicity and achieved improvements in both fungal pneumonia and renal function.
Collapse
Affiliation(s)
- Joseph Pechacek
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Taura Webb
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elise M N Ferré
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Monica M Schmitt
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas DiMaggio
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dale Kobrin
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Suraj Rajasimhan
- Pharmacy Department, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Ben Colton
- Pharmacy Department, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Russell E Lewis
- Dipartimento di Medicine Molecolare, University of Padua, Padua, Italy
| | - David Andes
- Division of Infectious Diseases, Department of Medical Microbiology and Immunology, Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alejandro Herrera
- Virtua Infectious Disease, Virtua Voorhees, Virtua Medical Group, Vorhees, New Jersey, USA
| | - Dima Hammoud
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Seyedmojtaba Seyedmousavi
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan Bolaños
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Behdad Afzali
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Ronda M, Llop-Talaveron JM, Fuset M, Leiva E, Shaw E, Gumucio-Sanguino VD, Diez Y, Colom H, Rigo-Bonnin R, Puig-Asensio M, Carratalà J, Padullés A. Voriconazole Pharmacokinetics in Critically Ill Patients and Extracorporeal Membrane Oxygenation Support: A Retrospective Comparative Case-Control Study. Antibiotics (Basel) 2023; 12:1100. [PMID: 37508196 PMCID: PMC10376825 DOI: 10.3390/antibiotics12071100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Voriconazole, an antifungal agent, displays high intra- and inter-individual variability. The predictive pharmacokinetic (PK) index requires a minimum plasma concentration (Cmin) in patient serum of between 1-5.5 mg/L. It is common to encounter fungal infections in patients undergoing extracorporeal membrane oxygenation (ECMO) support, and data regarding voriconazole PK changes during ECMO are scarce. Our study compared voriconazole PKs in patients with and without ECMO support in a retrospective cohort of critically-ill patients. Fifteen patients with 26 voriconazole Cmin determinations in the non-ECMO group and nine patients with 27 voriconazole Cmin determinations in the ECMO group were recruited. The ECMO group had lower Cmin (0.38 ± 2.98 vs. 3.62 ± 3.88, p < 0.001) and higher infratherapeutic Cmin values (16 vs. 1, p < 0.001) than the non-ECMO group. Multivariate analysis identified ECMO support (-0.668, CI95 -0.978--0.358) and plasma albumin levels (-0.023, CI95 -0.046--0.001) as risk factors for low Cmin values. When comparing pre- and post-therapeutic drug optimisation samples from the ECMO group, the dose required to achieve therapeutic Cmin was 6.44 mg/kg twice a day. Therapeutic drug optimisation is essential to improve target attainment.
Collapse
Affiliation(s)
- Mar Ronda
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Manuel Llop-Talaveron
- Pharmacy Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - MariPaz Fuset
- Critical Care Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Elisabet Leiva
- Pharmacy Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Evelyn Shaw
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28019 Madrid, Spain
- Epidemiologia de les Infeccions Bacterianes, Patologia Infecciosa i Transplantament, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | | | - Yolanda Diez
- Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Raul Rigo-Bonnin
- Clinical Laboratory, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Mireia Puig-Asensio
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Epidemiologia de les Infeccions Bacterianes, Patologia Infecciosa i Transplantament, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Jordi Carratalà
- Infectious Disease Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28019 Madrid, Spain
- Epidemiologia de les Infeccions Bacterianes, Patologia Infecciosa i Transplantament, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Ariadna Padullés
- Pharmacy Department, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, Hospital Universitari de Bellvitge-IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28019 Madrid, Spain
| |
Collapse
|
13
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
14
|
Carmo A, Rocha M, Pereirinha P, Tomé R, Costa E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics (Basel) 2023; 12:884. [PMID: 37237787 PMCID: PMC10215229 DOI: 10.3390/antibiotics12050884] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The use of antifungal drugs started in the 1950s with polyenes nystatin, natamycin and amphotericin B-deoxycholate (AmB). Until the present day, AmB has been considered to be a hallmark in the treatment of invasive systemic fungal infections. Nevertheless, the success and the use of AmB were associated with severe adverse effects which stimulated the development of new antifungal drugs such as azoles, pyrimidine antimetabolite, mitotic inhibitors, allylamines and echinochandins. However, all of these drugs presented one or more limitations associated with adverse reactions, administration route and more recently the development of resistance. To worsen this scenario, there has been an increase in fungal infections, especially in invasive systemic fungal infections that are particularly difficult to diagnose and treat. In 2022, the World Health Organization (WHO) published the first fungal priority pathogens list, alerting people to the increased incidence of invasive systemic fungal infections and to the associated risk of mortality/morbidity. The report also emphasized the need to rationally use existing drugs and develop new drugs. In this review, we performed an overview of the history of antifungals and their classification, mechanism of action, pharmacokinetic/pharmacodynamic (PK/PD) characteristics and clinical applications. In parallel, we also addressed the contribution of fungi biology and genetics to the development of resistance to antifungal drugs. Considering that drug effectiveness also depends on the mammalian host, we provide an overview on the roles of therapeutic drug monitoring and pharmacogenomics as means to improve the outcome, prevent/reduce antifungal toxicity and prevent the emergence of antifungal resistance. Finally, we present the new antifungals and their main characteristics.
Collapse
Affiliation(s)
- Anália Carmo
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Marilia Rocha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Patricia Pereirinha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Rui Tomé
- Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal;
| | - Eulália Costa
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
15
|
Egger M, Bellmann R, Krause R, Boyer J, Jakšić D, Hoenigl M. Salvage Treatment for Invasive Aspergillosis and Mucormycosis: Challenges, Recommendations and Future Considerations. Infect Drug Resist 2023; 16:2167-2178. [PMID: 37077251 PMCID: PMC10106327 DOI: 10.2147/idr.s372546] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Invasive mold diseases are devastating systemic infections which demand meticulous care in selection, dosing, and therapy monitoring of antifungal drugs. Various circumstances regarding PK/PD properties of the applied drug, resistance/tolerance of the causative pathogen or host intolerability can lead to failure of the initial antifungal therapy. This necessitates treatment adaption in the sense of switching antifungal drug class or potentially adding another drug for a combination therapy approach. In the current state of drastically limited options of antifungal drug classes adaption of therapy remains challenging. Current guidelines provide restricted recommendations only and emphasize individual approaches. However, novel antifungals, incorporating innovative mechanisms of action, show promising results in late stage clinical development. These will expand options for salvage therapy in the future potentially as monotherapy or in combination with conventional or other novel antifungals. We outline current recommendations for salvage therapy including PK/PD considerations as well as elucidate possible future treatment options for invasive aspergillosis and mucormycosis.
Collapse
Affiliation(s)
- Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Biotechmed-Graz, Graz, Austria
| | - Romuald Bellmann
- Clinical Pharmacokinetics Unit, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Biotechmed-Graz, Graz, Austria
| | - Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniela Jakšić
- Department of Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Biotechmed-Graz, Graz, Austria
- Clinical and Translational Fungal-Working Group, University of California San Diego, San Diego, CA, USA
- Translational Medical Mycology Research Unit, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| |
Collapse
|
16
|
Jean SS, Yang HJ, Hsieh PC, Huang YT, Ko WC, Hsueh PR. In Vitro Susceptibilities of Worldwide Isolates of Intrapulmonary Aspergillus Species and Important Candida Species in Sterile Body Sites against Important Antifungals: Data from the Antimicrobial Testing Leadership and Surveillance Program, 2017-2020. Microbiol Spectr 2022; 10:e0296522. [PMID: 36314941 PMCID: PMC9769544 DOI: 10.1128/spectrum.02965-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
To understand the changes of resistance in clinically commonly encountered fungi, we used the Antimicrobial Testing Leadership and Surveillance (ATLAS) database to explore in vitro antifungal susceptibilities against clinically important isolates of Aspergillus and Candida species (collected from intrapulmonary and sterile body areas, respectively). We applied the CLSI antifungal 2020 and the EUCAST antifungal 2020 guidelines. From 2017 to 2020, isolates of intrapulmonary Aspergillus fumigatus (n = 660), Aspergillus niger (n = 107), Aspergillus flavus (n = 96), Aspergillus terreus (n = 40), and Aspergillus nidulans species complex (n = 26) and sterile site-originated isolates of Candida albicans (n = 1,810), Candida glabrata (n = 894), Candida krusei (n = 120), Candida dubliniensis (n = 107), Candida lusitaniae (n = 82), Candida guilliermondii (n = 28), and Candida auris (n = 7) were enrolled in this study. Using the EUCAST 2020 breakpoints, it was demonstrated that amphotericin B and posaconazole displayed poor in vitro susceptibility rates against A. fumigatus isolates (<50% and 18.9%, respectively). In contrast, isavuconazole and itraconazole showed high in vitro potency against most Aspergillus isolates (>92%). Most intrapulmonary Aspergillus isolates exhibited MICs of ≤0.06 μg/mL to anidulafungin. Furthermore, intrapulmonary A. fumigatus isolates collected from Italy and the United Kingdom exhibited lower in vitro susceptibility to isavuconazole (72.2% and 69%, respectively) than those in the remaining ATLAS participant countries (>85%). Higher isavuconazole MIC90s against C. auris and C. guilliermondii (1 and 4 μg/mL, respectively) were observed compared to the other five Candida species. Despite the aforementioned MICs and susceptibilities against fungi, research needs to consider the pharmacokinetic (PK) profiles, pharmacodynamic (PD) parameters, and clinical treatment experience with antifungals against specific Aspergillus species. IMPORTANCE In addition to monitoring the antifungal susceptibilities of clinically important fungi, reviewing the PK/PD indices and the clinical therapy experience of antifungals under evaluation are important to guide an appropriate antifungal prescription. The efficacies of liposomal amphotericin B complex and anidulafungin for the treatment of pulmonary aspergillosis caused by different Aspergillus species need to be periodically evaluated in the future.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
- Department of Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Hung-Jen Yang
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
17
|
Khare P, Chogale MM, Kakade P, Patravale VB. Gellan gum-based in situ gelling ophthalmic nanosuspension of Posaconazole. Drug Deliv Transl Res 2022; 12:2920-2935. [PMID: 35538191 PMCID: PMC9089292 DOI: 10.1007/s13346-022-01155-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/16/2022]
Abstract
The formulation and delivery of highly hydrophobic drugs in an optimized dosage form is challenging to formulation scientists. Posaconazole has shown promising action in case studies against fungal keratitis. Biological macromolecules like gellan gum would aid in enhancing the availability of such drugs by increasing the contact time of the formulation. Herein, we propose a transmucosal ocular delivery system of Posaconazole by developing a gellan gum-based in situ gelling nanosuspension. The HPLC method for Posaconazole was developed and validated as per ICH guidelines. The nanosuspension was prepared by microfluidization and optimized by Quality by Design. The gellan gum concentration selected was 0.4% w/v based on the viscosity and mucoadhesion measurements. A greater zone of inhibition of ~ 15 mm was observed for the prepared nanosuspension as compared to ~ 11 mm for the marketed itraconazole nanosuspension. A potential irritancy score of 0.85, considered to be non-irritant, was observed for the developed nanosuspension. Higher drug release of ~ 35% was noted for the nanosuspension compared to about ~ 10% for the coarse suspension. Ex vivo corneal retention studies on excised goat cornea demonstrated ~ 70% drug retention in the tissue. Graphical abstract depicting the central hypothesis of the work.
Collapse
Affiliation(s)
- Purva Khare
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Nathalal Parekh Marg, Matunga, Mumbai-400019 Maharashtra India
| | - Manasi M. Chogale
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Nathalal Parekh Marg, Matunga, Mumbai-400019 Maharashtra India
| | - Pratik Kakade
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Nathalal Parekh Marg, Matunga, Mumbai-400019 Maharashtra India
| | - Vandana B. Patravale
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Nathalal Parekh Marg, Matunga, Mumbai-400019 Maharashtra India
| |
Collapse
|
18
|
Ding Q, Huang S, Sun Z, Chen K, Li X, Pei Q. A Review of Population Pharmacokinetic Models of Posaconazole. Drug Des Devel Ther 2022; 16:3691-3709. [PMID: 36277600 PMCID: PMC9584355 DOI: 10.2147/dddt.s384637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
Posaconazole is often used for the prophylaxis and treatment of invasive fungal infections (IFI). However, intra- and inter-individual differences and drug interactions affect the efficacy and safety of posaconazole. Precision dosing of posaconazole based on the population pharmacokinetic (PopPK) model may assist in making significant clinical decisions. This review aimed to comprehensively summarize the published PopPK models of posaconazole and analyze covariates that significantly influence posaconazole exposure. Articles published until May 2022 for PopPK analysis of posaconazole were searched in PubMed and EMBASE databases. Demographic characteristics, model characteristics, and results of PopPK analysis were extracted from the selected articles. In addition, the steady-state pharmacokinetic profiles of posaconazole were simulated at different covariate levels and dosing regimens. Out of the 13 studies included in our review, nine studies included adults, three included children, and one included both adults and children. All oral administration models were one-compartment models, and all intravenous administration models were two-compartment models. Body weight, proton pump inhibitors, and incidence of diarrhea were found to be important covariates. Clinically, the potential impact of factors such as patient physiopathologic characteristics and comorbid medications on posaconazole pharmacokinetics should be considered. Dose adjustment in combination with TDM or replacement with a tablet or intravenous formulation with higher exposure may be an effective way to ensure drug efficacy as well as to reduce fungal resistance. Meanwhile, published models require further external evaluation to examine extrapolation.
Collapse
Affiliation(s)
- Qin Ding
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Shuqi Huang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Zexu Sun
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, People’s Republic of China
| | - Kaifeng Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Xin Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Xin Li, Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China, Email
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Correspondence: Qi Pei, Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, People’s Republic of China, Tel +86 1 317 041 9804, Email
| |
Collapse
|
19
|
Prayag PS, Panchakshari SP, Mahalle NP, Dhupad S, Patwardhan SA, Naik SS, Narawade S, Melinkeri S, Prayag AP. Factors associated with subtherapeutic levels of oral posaconazole tablet- a detailed analysis from a tertiary care center in India. Int J Infect Dis 2022; 124:76-80. [PMID: 36089153 DOI: 10.1016/j.ijid.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Posaconazole is a broad spectrum triazole antifungal with activity against various clinically important fungi. The delayed release (DR) tablet of posaconazole has been shown to have a superior pharmacokinetic profile in comparison with the oral suspension. METHODS We retrospectively analyzed the factors associated with posaconazole levels < 1.25 μg/ml in 164 patients receiving the DR tablet for therapeutic purposes. RESULTS Of the 164 patients, 53 (32.3%) showed subtherapeutic trough levels of posaconazole. The use of proton pump inhibitors (PPIs) (95% CI: 1.41 - 3.91; p value = 0.028) and the presence of diarrhea (95% CI: 1.95 - 6.93; p value = 0.001) were significantly associated with subtherapeutic levels. Thirteen of the 21 patients receiving posaconazole tablets via the nasogastric (NG) tube had therapeutic levels. CONCLUSION This is the largest study from India analyzing factors associated with subtherapeutic levels of the DR tablet of posaconazole. These findings reinforce the importance of therapeutic drug monitoring. Unlike in previous studies, obesity and hypoalbuminemia were not found to be significant factors in our settings. The use of PPIs and diarrhea remained significant factors as found in previous studies. Administering the DR tablet of posaconazole via the NG tube may be a viable option.
Collapse
Affiliation(s)
- Parikshit S Prayag
- Department of Infectious Diseases, Deenanath Mangeshkar Hospital, Pune, India.
| | | | - Namita P Mahalle
- Department of Biochemistry, Deenanath Mangeshkar Hospital, Pune, India
| | - Surabhi Dhupad
- Department of Infectious Diseases, Deenanath Mangeshkar Hospital, Pune, India
| | | | - Sadanand S Naik
- Department of Biochemistry, Deenanath Mangeshkar Hospital, Pune, India
| | - Sharwari Narawade
- Department of Biochemistry, Deenanath Mangeshkar Hospital, Pune, India
| | - Sameer Melinkeri
- Department of Clinical Hematology, Deenanath Mangeshkar Hospital, Pune, India
| | - Amrita P Prayag
- Department of In-house research, Deenanath Mangeshkar Hospital, Pune, India
| |
Collapse
|
20
|
Dadashpour S, Ghobadi E, Emami S. Chemical and biological aspects of posaconazole as a classic antifungal agent with non-classical properties: highlighting a tetrahydrofuran-based drug toward generation of new drugs. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Wu D, Mi Y, Weng J, Zhuang J, Ke X, Wang C, Liu K, Martinho M, Winchell GA, Zang Y, Xu L. Phase 1b/3 Pharmacokinetics and Safety Study of Intravenous Posaconazole in Adult Asian Participants at High Risk for Invasive Fungal Infections. Adv Ther 2022; 39:1697-1710. [PMID: 35167031 PMCID: PMC8989837 DOI: 10.1007/s12325-021-02012-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
Introduction Antifungal prophylaxis in patients at high risk for invasive fungal infections (IFIs), such as those with acute myeloid leukemia or myelodysplastic syndromes, continues to be underused in Asia, despite the fact that it reduces IFI-related death and increases IFI-free survival. We characterized the pharmacokinetics (PK) and safety of the intravenous (IV) formulation of posaconazole in adult Asian participants at high risk for IFI. Methods Participants received posaconazole IV 300 mg twice on day 1, posaconazole IV 300 mg once daily on days 2–10, and posaconazole IV 300 mg once daily or oral suspension 200 mg 3 times daily for up to 18 days for a maximum of 28 days. There were two PK sampling groups: intensive and sparse. Sparse trough PK sampling was collected from all participants on days 3, 6, 10, 15, 22, and 28/end of treatment. The intensive PK group had additional sampling performed over 24 h on day 10. Primary end points were steady state average concentration (Cavg,ss) and percentage of participants with Cavg,ss ≥ 500 ng/mL. Safety was assessed up to day 30/end of treatment. Results Seventy participants with acute myelogenous leukemia were enrolled, 30 in the intensive PK group and 40 in the sparse PK group; 57 participants completed the study, 26 in the intensive PK group and 31 in the sparse PK group. On day 10, arithmetic mean Cavg,ss was 2986 ng/mL [coefficient of variation (%CV), 36%; range, 1409–5930 ng/mL]; 100% of participants in the intensive PK group (n/N = 27/27) had Cavg,ss ≥ 500 ng/mL. Arithmetic mean (%CV) Cmin was 2474 (50.4%) and 2466 ng/mL (42.4%) in the intensive and sparse PK groups on day 10, respectively. Safety was similar to that of previous posaconazole formulations. Conclusion In Asian participants at high risk for IFIs, IV posaconazole achieved the target exposure associated with efficacy that was previously established for supporting global registration of posaconazole for IV administration and was generally well tolerated. Clinical trial registration ClinicalTrials.gov, NCT03336502. Supplementary Information The online version contains supplementary material available at 10.1007/s12325-021-02012-1.
Collapse
Affiliation(s)
- Depei Wu
- Hematology Department, The First Affiliated Hospital of Soochow University, 296 Shizi Street, Cang Lang Qu, Suzhou, 215006, Jiangsu, China.
| | - Yingchang Mi
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 30020, China
| | - Jianyu Weng
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, 510080, China
| | | | - Xiaoyan Ke
- Peking University Third Hospital, Beijing, China
| | - Chun Wang
- Shanghai General Hospital, Shanghai, China
| | - Kaiyan Liu
- Peking University People's Hospital, Beijing, China
| | | | | | | | - Lianzhe Xu
- Merck & Co., Inc, Kenilworth, NJ, 07033, USA
| |
Collapse
|
22
|
Darwish RM, AlMasri M, Al‐Masri MM. Mucormycosis: The Hidden and Forgotten Disease. J Appl Microbiol 2022; 132:4042-4057. [DOI: 10.1111/jam.15487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Rula M. Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy The University of Jordan Amman Jordan
| | | | | |
Collapse
|
23
|
Dental and Oral Manifestations of COVID-19 Related Mucormycosis: Diagnoses, Management Strategies and Outcomes. J Fungi (Basel) 2021; 8:jof8010044. [PMID: 35049983 PMCID: PMC8781413 DOI: 10.3390/jof8010044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
It has been nearly two years since the pandemic caused by the novel coronavirus disease (COVID-19) has affected the world. Several innovations and discoveries related to COVID-19 are surfacing every day and new problems associated with the COVID-19 virus are also coming to light. A similar situation is with the emergence of deep invasive fungal infections associated with severe acute respiratory syndrome 2 (SARS-CoV-2). Recent literature reported the cases of pulmonary and rhino-cerebral fungal infections appearing in patients previously infected by COVID-19. Histopathological analysis of these cases has shown that most of such infections are diagnosed as mucormycosis or aspergillosis. Rhino-orbital-cerebral mucormycosis usually affects the maxillary sinus with involvement of maxillary teeth, orbits, and ethmoidal sinuses. Diabetes mellitus is an independent risk factor for both COVID-19 as well as mucormycosis. At this point, there is scanty data on the subject and most of the published literature comprises of either case reports or case series with no long-term data available. The aim of this review paper is to present the characteristics of COVID-19 related mucormycosis and associated clinical features, outcome, diagnostic and management strategies. A prompt diagnosis and aggressive treatment planning can surely benefit these patients.
Collapse
|
24
|
Czyrski A, Resztak M, Świderski P, Brylak J, Główka FK. The Overview on the Pharmacokinetic and Pharmacodynamic Interactions of Triazoles. Pharmaceutics 2021; 13:pharmaceutics13111961. [PMID: 34834376 PMCID: PMC8620887 DOI: 10.3390/pharmaceutics13111961] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Second generation triazoles are widely used as first-line drugs for the treatment of invasive fungal infections, including aspergillosis and candidiasis. This class, along with itraconazole, voriconazole, posaconazole, and isavuconazole, is characterized by a broad range of activity, however, individual drugs vary considerably in safety, tolerability, pharmacokinetics profiles, and interactions with concomitant medications. The interaction may be encountered on the absorption, distribution, metabolism, and elimination (ADME) step. All triazoles as inhibitors or substrates of CYP isoenzymes can often interact with many drugs, which may result in the change of the activity of the drug and cause serious side effects. Drugs of this class should be used with caution with other agents, and an understanding of their pharmacokinetic profile, safety, and drug-drug interaction profiles is important to provide effective antifungal therapy. The manuscript reviews significant drug interactions of azoles with other medications, as well as with food. The PubMed and Google Scholar bases were searched to collect the literature data. The interactions with anticonvulsants, antibiotics, statins, kinase inhibitors, proton pump inhibitors, non-nucleoside reverse transcriptase inhibitors, opioid analgesics, benzodiazepines, cardiac glycosides, nonsteroidal anti-inflammatory drugs, immunosuppressants, antipsychotics, corticosteroids, biguanides, and anticoagulants are presented. We also paid attention to possible interactions with drugs during experimental therapies for the treatment of COVID-19.
Collapse
Affiliation(s)
- Andrzej Czyrski
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland; (M.R.); (F.K.G.)
- Correspondence: ; Tel.: +48-61-854-64-33
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland; (M.R.); (F.K.G.)
| | - Paweł Świderski
- Department of Forensic Medicine, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland;
| | - Jan Brylak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznań, Poland;
| | - Franciszek K. Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland; (M.R.); (F.K.G.)
| |
Collapse
|
25
|
Panagopoulou P, Roilides E. Evaluating posaconazole, its pharmacology, efficacy and safety for the prophylaxis and treatment of fungal infections. Expert Opin Pharmacother 2021; 23:175-199. [PMID: 34758695 DOI: 10.1080/14656566.2021.1996562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Invasive fungal diseases (IFDs) are a significant cause of morbidity and mortality among immunocompromised patients. Safe and effective antifungal medications used for prophylaxis and treatment are pivotal in their management. Posaconazole is a promising triazole antifungal agent. AREAS COVERED The authors discuss the pharmacological properties of posaconazole, including pharmacokinetics/pharmacodynamics, safety and tolerability profile, together with efficacy data for prophylaxis and treatment as well as its use in special populations based on current literature. EXPERT OPINION Posaconazole has a favorable safety and tolerability profile; however, caution is advised when co-administered with agents that are CYP3A4 inhibitors, because their concentration may significantly increase, and their levels should be closely monitored. It has an extended spectrum of activity against yeasts and filamentous fungi. It is successfully used as prophylaxis for patients with acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) and post-hematopoietic cell transplantation (HCT) with graft-versus-host disease (GVHD). It is the first line treatment for oropharyngeal candidiasis and is also used as a salvage treatment for refractory IFDs. Currently available formulations include the oral suspension, delayed-release tablets and solution for intravenous infusion, all with different PK/PD properties and indications. Its use in children and adolescents is currently being examined in Phase-II clinical trials.
Collapse
Affiliation(s)
- Paraskevi Panagopoulou
- 4th Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, and Papageorgiou General Hospital, Thessaloniki, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, and Hippokration General Hospital, Thessaloniki, Greece.,Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
26
|
Kataoka M, Minami K, Takagi T, Amidon GE, Yamashita S. In Vitro-In Vivo Correlation in Cocrystal Dissolution: Consideration of Drug Release Profiles Based on Coformer Dissolution and Absorption Behavior. Mol Pharm 2021; 18:4122-4130. [PMID: 34618448 DOI: 10.1021/acs.molpharmaceut.1c00537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study assessed the in vitro-in vivo correlation in cocrystal dissolution based on the coformer behavior. 4-Aminobenzoic acid (4ABA) was used as a coformer. Cocrystals of poorly water-soluble drugs with 4ABA, ketoconazole cocrystal (KTZ-4ABA), posaconazole cocrystal (PSZ-4ABA), and itraconazole cocrystal (ITZ-4ABA) were used. These three cocrystals generated supersaturated solutions in fasted state simulated intestinal fluid (FaSSIF) in a small-scale, 8 mL dissolution vessel. The time profile of the dissolved amount of 4ABA, an indicator of cocrystal dissolution, was significantly different among the three cocrystals. Under the conditions utilized, half of the KTZ-4ABA cocrystal solid rapidly dissolved within 5 min and the dissolved amount (% of applied amount) of KTZ and 4ABA was the same. Then, even though the residual solid cocrystal gradually dissolved, KTZ precipitated with time. The PSZ-4ABA cocrystal dissolved in a linear fashion with time but the dissolved concentration of PSZ reached a plateau in the supersaturated state and was maintained for at least 2 h. The dissolution rate of ITZ-4ABA was very slow compared to those of the other cocrystals, but a similar tendency was observed between cocrystal dissolution and the dissolved amount of ITZ. The rank order of the cocrystal dissolution rate based on the conformer concentration was KTZ-4ABA > PSZ-4ABA > ITZ-4ABA. Furthermore, cocrystallization of the three drugs with 4ABA significantly enhanced the oral drug absorption in rats. The rank order of the in vivo cocrystal dissolution rate by a deconvolution analysis with the plasma concentration-time profile of 4ABA was KTZ-4ABA > PSZ-4ABA > ITZ-4ABA, which corresponded well with the in vitro dissolution profiles of the cocrystals. These results indicate that analysis of cocrystal dissolution based on the coformer behavior may be useful to evaluate the in vitro and in vivo cocrystal dissolution.
Collapse
Affiliation(s)
- Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan.,College of Pharmacy, University of Michigan, Ann Arbor, Michigan 498109-1065, United States
| | - Keiko Minami
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Toshihide Takagi
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Gregory E Amidon
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 498109-1065, United States
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
27
|
Shubitz LF, Schlacks S, Vishkautsan P, Butkiewicz CD, Worthing KA. Posaconazole treatment of refractory coccidioidomycosis in dogs. J Vet Intern Med 2021; 35:2772-2777. [PMID: 34658074 PMCID: PMC8692207 DOI: 10.1111/jvim.16282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background The majority of dogs with coccidioidomycosis recover with administration of fluconazole or itraconazole, although some cases are refractory or the dogs do not tolerate administration of these medications. Objectives The objective was to describe the treatment outcomes and therapeutic monitoring of 8 dogs with refractory coccidioidomycosis treated with posaconazole. Animals Eight dogs with refractory coccidioidomycosis. Methods Retrospective case series. Medical records from Veterinary Specialty Center of Tucson were searched to identify dogs with refractory coccidioidomycosis that were treated with posaconazole. Clinical information and the results of monitoring trough serum posaconazole concentrations were retrieved. Results Eight dogs with refractory coccidioidomycosis were treated with 2.5 to 10 mg/kg per day of posaconazole. Six of 8 dogs recovered or developed clinical remission while administered posaconazole. Thirteen serum concentrations from 8 dogs tested were >1 μg/mL (range, 1.52 to >6 μg/mL) and the drug was well‐tolerated by 7 dogs. One dog required dosage reductions and treatment was ultimately discontinued because of hepatotoxicosis. Conclusions and Clinical Importance Posaconazole should be considered as a treatment option for dogs with refractory coccidioidomycosis. Monitoring of indicators of liver function or injury along with therapeutic drug monitoring is recommended to tailor dosage in the event of hepatic toxicosis.
Collapse
Affiliation(s)
- Lisa F Shubitz
- Valley Fever Center for Excellence, The University of Arizona, Tucson, Arizona, USA.,Veterinary Specialty Center of Tucson, Tucson, Arizona, USA
| | | | | | | | - Kate A Worthing
- University of Arizona College of Veterinary Medicine, Oro Valley, Arizona, USA
| |
Collapse
|
28
|
Bennett MJ, Balcerek MI, Lewis EAD, Zhang RLL, Bachmeier C, Tey S, Faux S, Girgis L, Greenfield JR, Lazarus S. Voriconazole‐Associated Periostitis: New Insights into Pathophysiology and Management. JBMR Plus 2021; 6:e10557. [PMID: 35229058 PMCID: PMC8861987 DOI: 10.1002/jbm4.10557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022] Open
Abstract
Voriconazole‐associated periostitis (VAP) is an underrecognized and unpredictable side effect of long‐term voriconazole therapy. We report two cases of VAP occurring in the post‐transplant setting: a 68‐year‐old lung transplant recipient who required ongoing voriconazole therapy, in whom urinary alkalinization was used to promote fluoride excretion and minimize voriconazole‐related skeletal toxicity, and a 68‐year‐old stem‐cell transplant recipient with a high voriconazole dose requirement, identified on pharmacogenomic testing to be a CYP2C19 ultrarapid metabolizer, the dominant enzyme in voriconazole metabolism. This is the first reported case of pharmacogenomic profiling in VAP and may explain the variability in individual susceptibility to this uncommon adverse effect. Our findings provide new insights into both the management and underlying pathophysiology of VAP. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael J Bennett
- Department of Endocrinology and Diabetes St Vincent's Hospital Darlinghurst Australia
- St Vincent's Clinical School, UNSW Medicine Darlinghurst Australia
| | - Matthew I Balcerek
- Department of Endocrinology and Diabetes Royal Brisbane and Women's Hospital Herston Australia
| | - Edward AD Lewis
- Department of Rehabilitation Sacred Heart Health Service, St Vincent's Hospital Darlinghurst Australia
| | - Roland LL Zhang
- Heart and Lung Transplant Unit St Vincent's Hospital Darlinghurst Australia
| | - Caroline Bachmeier
- Chemical Pathology Pathology Queensland, Royal Brisbane and Women's Hospital Herston Australia
| | - Siok Tey
- Department of Haematology and Bone Marrow Transplantation Royal Brisbane and Women's Hospital Herston Australia
| | - Steven Faux
- Department of Rehabilitation Sacred Heart Health Service, St Vincent's Hospital Darlinghurst Australia
| | - Laila Girgis
- Department of Rheumatology St Vincent's Hospital Darlinghurst Australia
| | - Jerry R Greenfield
- Department of Endocrinology and Diabetes St Vincent's Hospital Darlinghurst Australia
| | - Syndia Lazarus
- Department of Endocrinology and Diabetes Royal Brisbane and Women's Hospital Herston Australia
- School of Clinical Medicine – Royal Brisbane Clinical Unit The University of Queensland Herston Australia
| |
Collapse
|
29
|
Elkayal O, Spriet I, Uyttebroeck A, Colita A, Annaert P, Allegaert K, Smits A, Van Daele R, Dreesen E. A Population Pharmacokinetic Modeling and Simulation Study of Posaconazole Oral Suspension in Immunocompromised Pediatric Patients: A Short Communication. Ther Drug Monit 2021; 43:512-518. [PMID: 33560094 DOI: 10.1097/ftd.0000000000000877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Posaconazole oral suspension emerged as a promising candidate for prophylaxis of invasive fungal infections in immunocompromised children. Its pharmacodynamic advantages include a broad-spectrum activity and a favorable safety profile; however, they are overshadowed by its large pharmacokinetic (PK) variability, which might cause subtherapeutic exposure. The aim of this study was to develop a population (pop) PK model based on rich sampling data to better understand the PK of posaconazole oral suspension in pediatric patients. METHODS Data were obtained from a prospective interventional study involving hospitalized pediatric patients with a hematologic malignancy and prophylactically treated with posaconazole oral suspension. After constructing the popPK model, the probability of target attainment (PTA; 100% T ≥ 0.7 mg/L) for prophylaxis under fixed, body weight-based, and body surface area-based dosing was evaluated using Monte Carlo simulation. RESULTS Fourteen patients contributed 112 posaconazole plasma concentrations. The PK of posaconazole was adequately described by a 1-compartment model with lag time 2.71 hours [13%]; nonlinear bioavailability ED50 99.1 mg/m2 (fixed); first-order absorption rate constant 0.325 hour-1 [27%]; apparent volume of distribution 1150 L [34%]; and apparent clearance 15.4 L/h [24%] (∼70-kg individual). The bioavailability decreased in the presence of diarrhea and co-treatment with a proton pump inhibitor (PPI). The unexplained interindividual variability in posaconazole PK remained large. The PTA was <85%, irrespective of the simulated dosing strategy. Patients without diarrhea and not administered a PPI had the highest PTA (85% under the fixed 300-mg dosing 4 times per day). CONCLUSIONS Therapeutic drug monitoring is recommended during prophylactic posaconazole therapy in immunocompromised pediatric patients. Large-scale comparative studies are needed to characterize the PK variability between different posaconazole formulations in this cohort.
Collapse
Affiliation(s)
- Omar Elkayal
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven
| | - Isabel Spriet
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven
- Pharmacy Department, University Hospitals Leuven
| | - Anne Uyttebroeck
- Paediatric Oncology Unit, Department of Oncology, KU Leuven
- Pediatric Oncology and Hematology Department, University Hospitals Leuven, Leuven, Belgium
| | - Anca Colita
- Department of Pediatrics, Fundeni Clinical Institute
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Pieter Annaert
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven
| | - Karel Allegaert
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven
- Woman and Child Unit, Department of Development and Regeneration, KU Leuven
| | - Anne Smits
- Woman and Child Unit, Department of Development and Regeneration, KU Leuven
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium ; and
| | - Ruth Van Daele
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven
- Pharmacy Department, University Hospitals Leuven
| | - Erwin Dreesen
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
In vitro activity of posaconazole and comparators versus opportunistic filamentous fungal pathogens globally collected during 8 years. Diagn Microbiol Infect Dis 2021; 101:115473. [PMID: 34352433 DOI: 10.1016/j.diagmicrobio.2021.115473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
The epidemiology of invasive filamentous fungal diseases requires monitoring due to changes in susceptibility patterns of new and established antifungal agents that may affect clinical practices. We evaluated the activity of posaconazole against 2,157 invasive moulds collected worldwide from 2010-2017. The isolates included 1,775 Aspergillus spp. and 382 non-Aspergillus moulds, including 81 Fusarium spp., 62 Mucorales group, and 57 Scedosporium spp. Isolates were tested using the CLSI reference broth microdilution method. Posaconazole showed similar activity to itraconazole and voriconazole against A. fumigatus. Applying published ECV, 98.0% of the A. fumigatus and 97.7% to 100.0% of other common Aspergillus species were wildtype to posaconazole. Categorical agreement between posaconazole and the other azoles tested against A. fumigatus was 98.7%. Notably, most of the Aspergillus spp. isolates recovered from this large collection were wildtype to echinocandins and all azoles. Posaconazole non-wildtype rates of A. fumigatus varied across the different geographic regions, with 2.1% in Europe, 2.2% in North America, 1.8% in Latin America, and 0.7% in the Asia-Pacific region. The frequency of azole non-wildtype A. fumigatus isolates from Europe increased steadily from 2010-2017 for all 3 triazoles (0.0%-5.0%). The azole non-wildtype A. fumigatus rates from the other geographic areas were stable over time. Fusarium and/or Scedosporium spp. isolates were highly resistant to azoles and echinocandins. Posaconazole and amphotericin B were the most active agents against the Mucorales. Posaconazole was very active against most species of Aspergillus and was comparable to itraconazole and voriconazole against the less common moulds. Posaconazole should provide a useful addition to the anti-mould grouping of antifungal agents.
Collapse
|
31
|
Tielli A, Jullien V, Pull L, Bouchaud O, Siriez JY. Unintentional artenimol/piperaquine overdose in two children occurring without evidence of subsequent cardiotoxicity. Int J Antimicrob Agents 2021; 57:106347. [PMID: 33892107 DOI: 10.1016/j.ijantimicag.2021.106347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/20/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
At the emergency department of the Robert-Debré children's hospital in Paris, France, artenimol/piperaquine (AP) has been the first-line antimalarial treatment since September 2012. Most children receive the first dose at the hospital and return home if, after 1 hour's observation, there have been no episodes of vomiting. Here we report the case of two children, aged 11 years and 5 years, respectively, in whom the entire cumulative 3 days' treatment course combined was accidentally administered instead of just the first-day treatment dose. Serum piperaquine levels were measured between Hour 40 (H40) and Day 29 (D29) post-ingestion for the first patient, and between H17 and D7 for the second patient. Corrected QT (QTc) values were measured between H12 and D20 for the first patient and between H17 and H64 for the second patient. Despite reports of adverse electrophysiological events, AP overdose occurred without consequence on the QTc interval or clinical cardiac state in these two children.
Collapse
Affiliation(s)
- Alexandra Tielli
- Hôpital Robert-Debré, Service d'Accueil des Urgences pédiatriques, Assistance Publique-Hôpitaux de Paris, 48 boulevard Sérurier, 75019 Paris, France.
| | - Vincent Jullien
- Groupe hospitalier Paris Seine Saint-Denis, UF de Pharmacologie, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lauren Pull
- Hôpital Robert-Debré, Service d'Accueil des Urgences pédiatriques, Assistance Publique-Hôpitaux de Paris, 48 boulevard Sérurier, 75019 Paris, France
| | - Olivier Bouchaud
- Hôpital Avicenne, Service des Maladies Infectieuses et Tropicales, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France
| | - Jean-Yves Siriez
- Hôpital Robert-Debré, Service d'Accueil des Urgences pédiatriques, Assistance Publique-Hôpitaux de Paris, 48 boulevard Sérurier, 75019 Paris, France
| |
Collapse
|
32
|
Bercusson A, Jarvis G, Shah A. CF Fungal Disease in the Age of CFTR Modulators. Mycopathologia 2021; 186:655-664. [PMID: 33813719 PMCID: PMC8536598 DOI: 10.1007/s11046-021-00541-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Fungi are increasingly recognised to have a significant role in the progression of lung disease in Cystic fibrosis with Aspergillus fumigatus the most common fungus isolated during respiratory sampling. The emergence of novel CFTR modulators has, however, significantly changed the outlook of disease progression in CF. In this review we discuss what impact novel CFTR modulators will have on fungal lung disease and its management in CF. We discuss how CFTR modulators affect antifungal innate immunity and consider the impact of Ivacaftor on fungal disease in individuals with gating mutations. We further review the increasing complication of drug-drug interactions with concurrent use of azole antifungal medication and highlight key unknowns that require addressing to fully understand the impact of CFTR modulators on fungal disease.
Collapse
Affiliation(s)
- Amelia Bercusson
- Cystic Fibrosis Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - George Jarvis
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Anand Shah
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK. .,Department of Infectious Disease Epidemiology, MRC Centre of Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
33
|
Beck KR, Odermatt A. Antifungal therapy with azoles and the syndrome of acquired mineralocorticoid excess. Mol Cell Endocrinol 2021; 524:111168. [PMID: 33484741 DOI: 10.1016/j.mce.2021.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The syndromes of mineralocorticoid excess describe a heterogeneous group of clinical manifestations leading to endocrine hypertension, typically either through direct activation of mineralocorticoid receptors or indirectly by impaired pre-receptor enzymatic regulation or through disturbed renal sodium homeostasis. The phenotypes of these disorders can be caused by inherited gene variants and somatic mutations or may be acquired upon exposures to exogenous substances. Regarding the latter, the symptoms of an acquired mineralocorticoid excess have been reported during treatment with azole antifungal drugs. The current review describes the occurrence of mineralocorticoid excess particularly during the therapy with posaconazole and itraconazole, addresses the underlying mechanisms as well as inter- and intra-individual differences, and proposes a therapeutic drug monitoring strategy for these two azole antifungals. Moreover, other therapeutically used azole antifungals and ongoing efforts to avoid adverse mineralocorticoid effects of azole compounds are shortly discussed.
Collapse
Affiliation(s)
- Katharina R Beck
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
34
|
Abou El-Alamin MM, Sultan MA, Atia MA, Aboul-Enein HY. Novel Application of Pentabromobenzyl Column for Simultaneous Determination of Eight Antifungal Drugs Using High-performance Liquid Chromatography. Comb Chem High Throughput Screen 2020; 23:991-1001. [DOI: 10.2174/1386207323666200220114818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/02/2020] [Accepted: 01/29/2020] [Indexed: 11/22/2022]
Abstract
Aim:
A new, accurate and sensitive reversed-phase high-performance liquid
chromatography (RP-HPLC) as an analytical method for the quantitative determination of eight
antifungal drugs in spiked human plasma has been described optimized and validated.
Methods and Materials:
The analyzed compounds were voriconazole (VOR), luliconazole (LUL),
clotrimazole (CLO), tioconazole (TIO), posaconazole (POS), ketoconazole (KET), sertaconazole
(SER) and terconazole (TER).
Results:
The separation of the analyzed compounds was conducted using a novel pentabromobenzyl
column known as COSMOSIL PBB-R (150 mm × 4.6 mm I.D., particle size 5 μm). The analysis of
the studied drugs was determined within 14 min using a diode array detector and the mobile phase
consisted of: 10 mM potassium dihydrogen phosphate buffer (pH 2.1): Methanol (2: 98 v/v). A linear
response was observed for all compounds in the range of concentration studied. Sample preparation
was done through liquid-liquid extraction using diethyl ether.
Conclusion:
This proposed method was validated in terms of linearity, limit of quantification, limit
of detection, accuracy, precision and selectivity. The method was successfully applied for the
determination of these drugs in their pharmaceutical formulations and in human plasma samples.
Collapse
Affiliation(s)
- Maha M. Abou El-Alamin
- Department of Analytical Chemistry, Faculty of Pharmacy Helwan University, Cairo 11795, Egypt
| | - Maha A. Sultan
- Department of Analytical Chemistry, Faculty of Pharmacy Helwan University, Cairo 11795, Egypt
| | - Mostafa A. Atia
- Department of Analytical Chemistry, Faculty of Pharmacy Helwan University, Cairo 11795, Egypt
| | - Hassan Y. Aboul-Enein
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki 12622, Giza, Egypt
| |
Collapse
|
35
|
Lin C, Chen G, Huang J, Cheng Y, Xu Y, Zhang A, Xue H, Chen C. Posaconazole aggravates vincristine-related hypertension in children with acute lymphoblastic leukemia: a case report. J Int Med Res 2020; 48:300060520969579. [PMID: 33213238 PMCID: PMC7686620 DOI: 10.1177/0300060520969579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vincristine-related secondary hypertension is rare. This study reports two
children who were treated with vincristine for acute lymphoblastic leukemia
(ALL) and posaconazole for fungal infections who experienced vincristine-related
secondary hypertension. Blood pressure normalized in both children after halting
the drugs and providing antihypertensive treatment. Thus, posaconazole can
interact with vincristine and induce secondary hypertension in children with
ALL. As an adverse event, this interaction is a rare occurrence.
Collapse
Affiliation(s)
- Chao Lin
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Guohua Chen
- Department of Pediatrics, First People's Hospital of Huizhou, Huizhou, China
| | - Junbin Huang
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yucai Cheng
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yahong Xu
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Airun Zhang
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Hongman Xue
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
36
|
Docci L, Klammers F, Ekiciler A, Molitor B, Umehara K, Walter I, Krähenbühl S, Parrott N, Fowler S. In Vitro to In Vivo Extrapolation of Metabolic Clearance for UGT Substrates Using Short-Term Suspension and Long-Term Co-cultured Human Hepatocytes. AAPS JOURNAL 2020; 22:131. [DOI: 10.1208/s12248-020-00482-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023]
|
37
|
Scarim CB, Chin CM. Current Approaches to Drug Discovery for Chagas Disease: Methodological Advances. Comb Chem High Throughput Screen 2020; 22:509-520. [PMID: 31608837 DOI: 10.2174/1386207322666191010144111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. OBJECTIVE Current approaches to drug discovery for Chagas disease. METHOD This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. RESULTS Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. CONCLUSION There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.
Collapse
Affiliation(s)
- Cauê B Scarim
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.,Lapdesf - Laboratory of Research and Development of Drugs, Araraquara, São Paulo, Brazil
| | - Chung M Chin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.,Lapdesf - Laboratory of Research and Development of Drugs, Araraquara, São Paulo, Brazil
| |
Collapse
|
38
|
PBPK modeling of CYP3A and P-gp substrates to predict drug-drug interactions in patients undergoing Roux-en-Y gastric bypass surgery. J Pharmacokinet Pharmacodyn 2020; 47:493-512. [PMID: 32710209 DOI: 10.1007/s10928-020-09701-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Roux-en-Y gastric bypass surgery (RYGBS) is an effective surgical intervention to reduce mortality in morbidly obese patients. Following RYGBS, the disposition of drugs may be affected by anatomical alterations and changes in intestinal and hepatic drug metabolizing enzyme activity. The aim of this study was to better understand the drug-drug interaction (DDI) potential of CYP3A and P-gp inhibitors. The impacts of RYGBS on the absorption and metabolism of midazolam, acetaminophen, digoxin, and their major metabolites were simulated using physiologically-based pharmacokinetic (PBPK) modeling. PBPK models for verapamil and posaconazole were built to evaluate CYP3A- and P-gp-mediated DDIs pre- and post-RYGBS. The simulations suggest that for highly soluble drugs, such as verapamil, the predicted bioavailability was comparable pre- and post-RYGBS. For verapamil inhibition, RYGBS did not affect the fold-change of the predicted inhibited-to-control plasma AUC ratio or predicted inhibited-to-control peak plasma concentration ratio for either midazolam or digoxin. In contrast, the predicted bioavailability of posaconazole, a poorly soluble drug, decreased from 12% pre-RYGBS to 5% post-RYGBS. Compared to control, the predicted posaconazole-inhibited midazolam plasma AUC increased by 2.0-fold pre-RYGBS, but only increased by 1.6-fold post-RYGBS. A similar trend was predicted for pre- and post-RYGBS inhibited-to-control midazolam peak plasma concentration ratios (2.0- and 1.6-fold, respectively) following posaconazole inhibition. Absorption of highly soluble drugs was more rapid post-RYGBS, resulting in higher predicted midazolam peak plasma concentrations, which was further increased following inhibition by verapamil or posaconazole. To reduce the risk of a drug-drug interaction in patients post-RYGBS, the dose or frequency of object drugs may need to be decreased when administered with highly soluble inhibitor drugs, especially if toxicities are associated with plasma peak concentrations.
Collapse
|
39
|
Binjubair FA, Parker JE, Warrilow AG, Puri K, Braidley PJ, Tatar E, Kelly SL, Kelly DE, Simons C. Small-Molecule Inhibitors Targeting Sterol 14α-Demethylase (CYP51): Synthesis, Molecular Modelling and Evaluation Against Candida albicans. ChemMedChem 2020; 15:1294-1309. [PMID: 32459374 PMCID: PMC7496091 DOI: 10.1002/cmdc.202000250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/25/2020] [Indexed: 12/20/2022]
Abstract
Fungal infections are a global issue affecting over 150 million people worldwide annually, with 750 000 of these caused by invasive Candida infections. Azole drugs are the frontline treatment against fungal infections; however, resistance to current azole antifungals in C. albicans poses a threat to public health. Two series of novel azole derivatives, short and extended derivatives, have been designed, synthesised and investigated for CYP51 inhibitory activity, binding affinity and minimum inhibitory concentration (MIC) against C. albicans strains. The short derivatives were more potent against the C. albicans strains (e. g., MIC 2-(4-chlorophenyl)-N-(2,4-dichlorobenzyl)-3-(1H-imidazol-1-yl)propanamide (5 f) <0.03 μg/mL, N-(4-((4-chlorophenyl)sulfonamido)benzyl)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propanamide (12 c), 1 μg/mL, fluconazole 0.125 μg/mL) but both displayed comparable enzyme binding and inhibition (5 f Kd 62±17 nM, IC50 0.46 μM; 12 c Kd 43±18 nM, IC50 0.33 μM, fluconazole Kd 41±13 nM, IC50 0.31 μM, posaconazole Kd 43±11 nM, IC50 0.2 μM). The short series had poor selectivity for CaCYP51 over the human homologue, whereas the selectivity of the extended series, for example, compound 12 c, was higher (21.5-fold) than posaconazole (4.7-fold) based on Kd values, although posaconazole was more selective (615-fold) than 12 c (461-fold) based on IC50 values. Based on inhibitory activity and selectivity profile, the extended series are the better of the two series for further development.
Collapse
Affiliation(s)
- Faizah A. Binjubair
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
| | - Josie E. Parker
- Centre for Cytochrome P450 BiodiversityInstitute of Life ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Andrew G. Warrilow
- Centre for Cytochrome P450 BiodiversityInstitute of Life ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Kalika Puri
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
| | - Peter J. Braidley
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
| | - Esra Tatar
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
- Department of Pharmaceutical ChemistryFaculty of PharmacyMarmara University34668IstanbulTurkey
| | - Steven L. Kelly
- Centre for Cytochrome P450 BiodiversityInstitute of Life ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Diane E. Kelly
- Centre for Cytochrome P450 BiodiversityInstitute of Life ScienceSwansea UniversitySwanseaSA2 8PPUK
| | - Claire Simons
- School of Pharmacy & Pharmaceutical SciencesCardiff UniversityKing Edward VII AvenueCardiffCF10 3NBUK
| |
Collapse
|
40
|
Škríba A, Patil RH, Hubáček P, Dobiáš R, Palyzová A, Marešová H, Pluháček T, Havlíček V. Rhizoferrin Glycosylation in Rhizopus microsporus. J Fungi (Basel) 2020; 6:jof6020089. [PMID: 32570979 PMCID: PMC7344610 DOI: 10.3390/jof6020089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Rhizopus spp. are the most common etiological agents of mucormycosis, causing over 90% mortality in disseminated infections. The diagnosis relies on histopathology, culture, and/or polymerase chain reaction. For the first time, the glycosylation of rhizoferrin (RHF) was described in a Rhizopus microsporus clinical isolate by liquid chromatography and accurate tandem mass spectrometry. The fermentation broth lyophilizate contained 345.3 ± 13.5, 1.2 ± 0.03, and 0.03 ± 0.002 mg/g of RHF, imido-RHF, and bis-imido-RHF, respectively. Despite a considerable RHF secretion rate, we did not obtain conclusive RHF detection from a patient with disseminated mucormycosis caused by the same R. microsporus strain. We hypothesize that parallel antimycotic therapy, RHF biotransformation, and metabolism compromised the analysis. On the other hand, the full profile of posaconazole metabolites was retrieved by our in house software CycloBranch.
Collapse
Affiliation(s)
- Anton Škríba
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.Š.); (R.H.P.); (A.P.); (H.M.); (T.P.)
| | - Rutuja Hiraji Patil
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.Š.); (R.H.P.); (A.P.); (H.M.); (T.P.)
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Petr Hubáček
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic;
| | - Radim Dobiáš
- Public Health Institute in Ostrava, 702 00 Ostrava, Czech Republic;
| | - Andrea Palyzová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.Š.); (R.H.P.); (A.P.); (H.M.); (T.P.)
| | - Helena Marešová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.Š.); (R.H.P.); (A.P.); (H.M.); (T.P.)
| | - Tomáš Pluháček
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.Š.); (R.H.P.); (A.P.); (H.M.); (T.P.)
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; (A.Š.); (R.H.P.); (A.P.); (H.M.); (T.P.)
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
41
|
|
42
|
Durgun ME, Kahraman E, Güngör S, Özsoy Y. Optimization and Characterization of Aqueous Micellar Formulations for Ocular Delivery of an Antifungal Drug, Posaconazole. Curr Pharm Des 2020; 26:1543-1555. [DOI: 10.2174/1381612826666200313172207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/08/2020] [Indexed: 01/12/2023]
Abstract
Background:
Topical therapy is preferred for the management of ocular fungal infections due to its
superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the
site of disease. However, the optimization of effective ocular formulations has always been a major challenge due
to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic
agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to
its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs
and, overcome ocular barriers.
Objective:
In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve
aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical
stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH)
conditions.
Method:
Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed
to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle
size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS.
The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was
depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution,
zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion
cells.
Results:
Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a
combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at
specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately
neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole
from the micelles was higher than that of suspension.
Conclusion:
The results revealed that the optimized micellar formulation of posaconazole offers a potential approach
for topical ocular administration.
Collapse
Affiliation(s)
- Meltem E. Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Emine Kahraman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Sevgi Güngör
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
43
|
Liu K, Wu D, Li J, Chen H, Ning H, Zhao T, Dai H, Chen L, Mangin E, Winchell GA, Waskin H, Jiang J, Qiu Y, Zhao XM. Pharmacokinetics and Safety of Posaconazole Tablet Formulation in Chinese Participants at High Risk for Invasive Fungal Infection. Adv Ther 2020; 37:2493-2506. [PMID: 32319040 DOI: 10.1007/s12325-020-01341-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION This study characterized the multidose pharmacokinetic (PK) characteristics of posaconazole tablets used as prophylactic antifungal therapy in Chinese patients with acute myelogenous leukemia (AML) at risk for invasive fungal infection (IFI). METHODS Participants in this open-label, single-arm, phase 1b study received posaconazole 300 mg twice daily on day 1 and then once daily for up to 28 days. In the intensive PK sampling subgroup, posaconazole was administered under fasting conditions on days 1 and 8, and blood samples were regularly collected over 24 h. Trough PK sampling was conducted in all participants on days 1, 2, 3, 8, 14, 21, and 28 without regard for food intake. Population PK characteristics were predicted using PK modeling. Primary endpoints were steady-state average concentration (Cavg) and percentage of participants with steady-state Cavg (predicted and observed) > 500 ng/ml. Treatment safety and efficacy were secondary endpoints. RESULTS Sixty-five adult Chinese participants were enrolled. On day 8, steady-state arithmetic mean Cavg was 1610 ng/ml (% coefficient of variation [%CV] 42.8%) in the intensive PK subgroup (n = 20). All participants achieved a steady-state Cavg > 500 ng/ml. Predicted Cavg (pCavg) was 1770 ng/ml (%CV 33.7%) in the total population (n = 64); 92.2% of participants had pCavg values ≥ 500 ng/ml (n = 59). The posaconazole tablet safety profile was consistent with that of the oral formulation, and the IFI rate was 3%. CONCLUSION In Chinese AML patients, the posaconazole 300-mg tablet provided PK data comparable with those of previous studies and was generally well tolerated and efficacious. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT02387983.
Collapse
|
44
|
Abstract
Posaconazole is a triazole antifungal with activity against Rhizopus, but data on its use and pharmacokinetics in preterm infants are scarce. In this case, a 24 4/7-week neonate's Rhizopus infection is successfully treated with debridement and combination antifungal therapy with amphotericin B, micafungin and enteral posaconazole. This is the first reported posaconazole use in a preterm neonate with Rhizopus.
Collapse
|
45
|
Houšť J, Spížek J, Havlíček V. Antifungal Drugs. Metabolites 2020; 10:metabo10030106. [PMID: 32178468 PMCID: PMC7143493 DOI: 10.3390/metabo10030106] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
We reviewed the licensed antifungal drugs and summarized their mechanisms of action, pharmacological profiles, and susceptibility to specific fungi. Approved antimycotics inhibit 1,3-β-d-glucan synthase, lanosterol 14-α-demethylase, protein, and deoxyribonucleic acid biosynthesis, or sequestrate ergosterol. Their most severe side effects are hepatotoxicity, nephrotoxicity, and myelotoxicity. Whereas triazoles exhibit the most significant drug–drug interactions, echinocandins exhibit almost none. The antifungal resistance may be developed across most pathogens and includes drug target overexpression, efflux pump activation, and amino acid substitution. The experimental antifungal drugs in clinical trials are also reviewed. Siderophores in the Trojan horse approach or the application of siderophore biosynthesis enzyme inhibitors represent the most promising emerging antifungal therapies.
Collapse
|
46
|
Ruland MO, Egelund TA, Ng JS, Bradfield SM, Egelund EF. Intravenous and Oral Posaconazole Pharmacokinetics in a Five-Year-Old With Mucor: A Case Report and Review of the Literature. J Pediatr Pharmacol Ther 2019; 24:528-533. [PMID: 31719815 DOI: 10.5863/1551-6776-24.6.528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Posaconazole is a lipophilic triazole antifungal that exhibits variable absorption when administered orally. It possesses a broad spectrum of activity against various fungi, such as Aspergillus and traditionally resistant molds such as Rhizopus and Mucor, which carry a poor prognosis. Unfortunately, the tablet and suspension formulations of posaconazole are Food and Drug Administration approved for treatment of fungal diseases only in patients older than 13 years of age. Furthermore, the approval of the IV formulation is exclusively for adult patients. Nevertheless, the extended spectrum of activity and available dosage forms make it an attractive option for pediatric use. The data that exist to guide dosing of posaconazole in young pediatric patients are limited primarily to case series and case reports. Thus, we recommend therapeutic drug monitoring to ensure both safety and efficacy in pediatric patients. Herein we describe our experience with both oral and IV posaconazole in the salvage therapy of a 5-year-old female with extensive cutaneous Mucor. In contrast to previous reports, which show larger doses may be necessary to obtain therapeutic concentrations in pediatric patients as compared with adults, our patient reached targeted concentrations with weight-based dosing.
Collapse
|
47
|
Li H, Wei Y, Zhang S, Xu L, Jiang J, Qiu Y, Mangin E, Zhao XM, Xie S. Pharmacokinetics and Safety of Posaconazole Administered by Intravenous Solution and Oral Tablet in Healthy Chinese Subjects and Effect of Food on Tablet Bioavailability. Clin Drug Investig 2019; 39:1109-1116. [PMID: 31432392 DOI: 10.1007/s40261-019-00833-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND OBJECTIVES New intravenous and solid oral formulations of the antifungal agent posaconazole have been developed. This randomized, open-label, crossover study in 18 healthy adult Chinese male and female subjects evaluated the pharmacokinetics of single-dose posaconazole (oral 300-mg posaconazole tablet fasted, intravenous 300-mg posaconazole solution fasted, and oral 300-mg posaconazole tablet with standard high-fat breakfast). Primary objectives were to determine the single-dose pharmacokinetics of posaconazole in healthy Chinese subjects when administered as an intravenous solution and as an oral tablet under fasted conditions and the effect of food on the absorption of posaconazole. METHODS The three treatments consisted of the following: a single oral dose of posaconazole 300 mg (fasted), a single oral dose of posaconazole 300 mg (high-fat breakfast), and a single intravenous dose of posaconazole 300 mg (fasted). Blood samples for pharmacokinetic analysis were collected before dosing and at regular intervals after dosing. Adverse events were monitored throughout. The pharmacokinetic population included the per-protocol population. The safety population included all subjects who received one or more doses of the study drug. RESULTS Time to maximum plasma concentration of intravenous posaconazole coincided with the end of infusion; the half-life (t½) was 25.76 h. Geometric mean (% coefficient of variation) values of area under the plasma concentration-time curve from time 0 extrapolated to infinity (AUC0-∞) and maximum plasma concentration (Cmax) were 59,925 (36.2%) h·ng/mL and 3999 (28.5%) ng/mL, respectively. The posaconazole tablet had a time to maximum plasma concentration of 4 h and a t½ of 25.21 h after fasting. Geometric mean (coefficient of variation) values of AUC0-∞ and Cmax were 25,263 (39.9%) h·ng/mL and 674.5 (29.6%) ng/mL, respectively. Standard high-fat breakfast increased the exposure of posaconazole approximately twofold with geometric mean ratios (high-fat breakfast/fasted) for AUC0-∞ and Cmax of 2.06 (90% confidence interval 1.86-2.30) and 1.95 (90% confidence interval 1.65-2.31), respectively. The geometric mean absolute bioavailability of the tablet formulation was 42.2% in the fasted state and 87.1% under high-fat breakfast conditions. The most commonly reported adverse events were nausea, vomiting, dizziness, and first-degree atrioventricular block for intravenous posaconazole 300 mg and nausea for oral posaconazole 300 mg (high-fat breakfast). All adverse events were mild and resolved without sequelae. CONCLUSIONS Posaconazole was generally well tolerated in healthy Chinese male and female subjects. The safety and the high-fat breakfast and fasted pharmacokinetics of posaconazole in healthy Chinese subjects are within exposures demonstrated to be generally well tolerated and efficacious and compare reasonably well with the overall posaconazole data across Western countries.
Collapse
Affiliation(s)
- Haiyan Li
- Peking University 3rd Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Yudong Wei
- Peking University 3rd Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Shuang Zhang
- Peking University 3rd Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lin Xu
- Peking University 3rd Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Jun Jiang
- MSD China, Building 21 Rongda Road, Chaoyang District, Beijing, 100012, China
| | - Yanping Qiu
- MSD China, Building 21 Rongda Road, Chaoyang District, Beijing, 100012, China
| | - Eric Mangin
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Xu Min Zhao
- MSD China, Building 21 Rongda Road, Chaoyang District, Beijing, 100012, China
| | - Shuang Xie
- MSD China, Building 21 Rongda Road, Chaoyang District, Beijing, 100012, China
| |
Collapse
|
48
|
Thompson GR, Beck KR, Patt M, Kratschmar DV, Odermatt A. Posaconazole-Induced Hypertension Due to Inhibition of 11 β-Hydroxylase and 11 β-Hydroxysteroid Dehydrogenase 2. J Endocr Soc 2019; 3:1361-1366. [PMID: 31286100 PMCID: PMC6608555 DOI: 10.1210/js.2019-00189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022] Open
Abstract
We describe two cases of hypertension and hypokalemia due to mineralocorticoid excess caused by posaconazole treatment of coccidioidomycosis and rhinocerebral mucormycosis infections, respectively. Clinical laboratory evaluations, including a comprehensive analysis of blood and urine steroid profiles, revealed low renin and aldosterone and indicated as the underlying mechanism primarily a block of 11β-hydroxylase activity in patient 1, whereas patient 2 displayed weaker 11β-hydroxylase but more pronounced 11β-hydroxysteroid dehydrogenase 2 inhibition. The results show that both previously suggested mechanisms must be considered and emphasize significant interindividual differences in the contribution of each enzyme to the observed mineralocorticoid excess phenotype. The mineralocorticoid symptoms of patient 1 resolved after replacement of posaconazole therapy by isavoconazole, and posaconazole dosage de-escalation ameliorated the effects in patient 2. By providing a thorough analysis of the patients’ blood and urine steroid metabolites, this report adds further evidence for two individually pronounced mechanisms of posaconazole-induced hypertension and hypokalemia. The elucidation of the factors responsible for the individual phenotype warrants further research.
Collapse
Affiliation(s)
- George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases and the Department of Medical Microbiology and Immunology, University of California Davis Medical Center, Davis, California
| | - Katharina R Beck
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Melanie Patt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Denise V Kratschmar
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
49
|
Prakash K, Richman D. A case report of disseminated histoplasmosis and concurrent cryptococcal meningitis in a patient treated with ruxolitinib. BMC Infect Dis 2019; 19:287. [PMID: 30917797 PMCID: PMC6437885 DOI: 10.1186/s12879-019-3922-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022] Open
Abstract
Background Ruxolitinib is a highly potent janus kinase inhibitor that places its users at risk for various bacterial infections and viral reactivation. However new reports are also emerging that suggest greater immunosuppression and risk for fungal disease. Case presentation We report the case of a 51 year-old veteran from Guam, treated with ruxolitinib for polycythemia vera, who developed disseminated histoplasmosis and concurrent cryptococcal meningitis. Conclusion This case draws attention to the degree of immunosuppression that may be seen with this drug and the need for heightened vigilance for opportunistic infections in those treated with inhibitors of janus kinase/signal transducers and activators of transcription (JAK/STAT) such as ruxolitinib.
Collapse
Affiliation(s)
- Katya Prakash
- Division of Infectious Diseases, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0711, USA.
| | - Douglas Richman
- Division of Infectious Diseases, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0711, USA.,VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| |
Collapse
|
50
|
Vuletić L, Herceg M, Ferderber K, Tunjić I, Rizea-Savu S, Duna SN, Cetina-Čižmek B, Filipović-Grčić J. Single-Dose Pharmacokinetic Properties and Relative Bioavailability of Different Formulations of Posaconazole Oral Suspension in Healthy Volunteers. Clin Pharmacol Drug Dev 2018; 8:827-836. [PMID: 30536797 DOI: 10.1002/cpdd.636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/05/2018] [Indexed: 11/10/2022]
Abstract
The rate and extent of absorption of drugs belonging to Biopharmaceutics Classification System class II are rate-limited by dissolution and highly dependent on the performance of the formulated product. The purpose of the present study was to investigate the potential impact of a surfactant and the particle size of the active substance on the in vitro drug dissolution profiles and in vivo pharmacokinetics of the poorly soluble drug posaconazole. A comparative physicochemical evaluation was conducted, and 3 formulations of posaconazole oral suspension were tested in various dissolution media compared with the reference product. In addition, a comparative bioavailability study was conducted in healthy volunteers under high-fat fed conditions. Bioequivalence was assessed based on plasma concentrations of the parent drug (posaconazole) measured by a validated high-pressure liquid chromatography-tandem mass spectrometry method. The 90% confidence intervals for Cmax and AUC0-72 least-squares mean T/R ratios of all 3 posaconazole formulations were within the bioequivalence acceptance range of 80.00% to 125.00%. The study was useful in the formulation development process and demonstrated that neither surfactant type nor particle size of the active substance within the studied range affected the extent or rate of absorption of posaconazole under the tested fed conditions.
Collapse
Affiliation(s)
- Lucija Vuletić
- R&D, PLIVA Croatia Ltd, TEVA Group Member, Zagreb, Croatia.,University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, Zagreb, Croatia
| | - Marina Herceg
- R&D, PLIVA Croatia Ltd, TEVA Group Member, Zagreb, Croatia
| | | | - Iva Tunjić
- R&D, PLIVA Croatia Ltd, TEVA Group Member, Zagreb, Croatia
| | | | | | | | - Jelena Filipović-Grčić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, Zagreb, Croatia
| |
Collapse
|