1
|
Advances of research of Fc-fusion protein that activate NK cells for tumor immunotherapy. Int Immunopharmacol 2022; 109:108783. [PMID: 35561479 DOI: 10.1016/j.intimp.2022.108783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
The rapid development of bioengineering technology has introduced Fc-fusion proteins, representing a novel kind of recombinant protein, as promising biopharmaceutical products in tumor therapy. Numerous related anti-tumor Fc-fusion proteins have been investigated and are in different stages of development. Fc-fusion proteins are constructed by fusing the Fc-region of the antibody with functional proteins or peptides. They retain the bioactivity of the latter and partial properties of the former. This structural and functional advantage makes Fc-fusion proteins an effective tool in tumor immunotherapy, especially for the recruitment and activation of natural killer (NK) cells, which play a critical role in tumor immunotherapy. Even though tumor cells have developed mechanisms to circumvent the cytotoxic effect of NK cells or induce defective NK cells, Fc-fusion proteins have been proven to effectively activate NK cells to kill tumor cells in different ways, such as antibody-dependent cell-mediated cytotoxicity (ADCC), activate NK cells in different ways in order to promote killing of tumor cells. In this review, we focus on NK cell-based immunity for cancers and current research progress of the Fc-fusion proteins for anti-tumor therapy by activating NK cells.
Collapse
|
2
|
Xu Z, Guo D, Jiang Z, Tong R, Jiang P, Bai L, Chen L, Zhu Y, Guo C, Shi J, Yu D. Novel HER2-Targeting Antibody-Drug Conjugates of Trastuzumab Beyond T-DM1 in Breast Cancer: Trastuzumab Deruxtecan(DS-8201a) and (Vic-)Trastuzumab Duocarmazine (SYD985). Eur J Med Chem 2019; 183:111682. [PMID: 31563805 DOI: 10.1016/j.ejmech.2019.111682] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Targeted drug delivery has improved cancer treatment significantly in recent years, although it is difficult to achieve. Different approaches have been developed to apply targeted drug delivery. Among which, antibody-drug conjugate (ADC) provides a potentially ideal solution to such a challenge. ADC is an innovative drug treatment model with three key components: payload, monoclonal antibody, and linker. The monoclonal antibody targets the antigen-expressing tumor cells and internalizes the payload linked by the linker to the target cells to reduce the side effects of the traditional chemotherapy drugs. The off-target effect has an excellent therapeutic prospect. Among them, ado-trastuzumab emtansine (T-DM1) is a successful example of targeting human epidermal growth factor receptor-2 (HER2). Its antibody (trastuzumab) is derived from Herceptin with annual sales of more than $6 billion. It has excellent targeting and specific anti-tumor activity against HER2. Its linker is not cleavable and releases the Lys-linker-payload to kill the cells. The two ADCs described here use the same antibody as T-DM1, but the cleavable linker and the more toxic payload allow them to have the not only targeting of T-DM1, but also the reduce T-DM1 resistance and improve efficacy in heterogeneous tumors. This paper describes the mechanism of action and the biochemical characteristics of different parts and preclinical and clinical progress of trastuzumab deruxtecan(DS-8201a) and (vic-)trastuzumab duocarmazine (SYD985).
Collapse
Affiliation(s)
- Zhuyu Xu
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dandan Guo
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peidu Jiang
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun Guo
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Wang M, Wang T, Guan Y, Wang F, Zhu J. The preparation and therapeutic roles of scFv-Fc antibody against Staphylococcus aureus infection to control bovine mastitis. Appl Microbiol Biotechnol 2019; 103:1703-1712. [PMID: 30607490 DOI: 10.1007/s00253-018-9548-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/30/2023]
Abstract
Staphylococcus aureus-induced bovine mastitis causes significant losses to the dairy industry and available vaccines do not confer adequate protection. As a more attractive alternative, we propose the use of antibody (Ab) therapy. In our previous study, we constructed a bovine single-chain variable fragment (scFv) Ab phage display and successfully obtained scFvs that bound to S. aureus antigens with high affinity. Here, we describe a novel Ab against S. aureus (scFv-Fc Ab). To construct the scFv-Fc Ab, the scFv Ab was genetically fused to the Fc fragment of a bovine IgG1 Ab. Western blot analysis showed that the bovine scFvs-Fc Abs were successfully expressed with horseradish peroxidase-conjugated goat-anti-bovine IgG (Fc) Ab in Escherichia coli cells. The purified bovine scFvs-Fc Abs had good binding activity to S. aureus and effectively inhibited the bacterial growth in culture medium and bovine scFvs-Fc Abs enhanced phagocytosis of S. aureus by neutrophils isolated from peripheral blood in a dose-dependent manner. In the experiment of bovine scFvs-Fc Abs for the treatment of S. aureus-induced bovine mastitis, the total effective percentage reached 82% (9/11). These novel bovine scFvs-Fc Abs may be useful as therapeutic candidates for the prevention and treatment of S. aureus-induced bovine mastitis.
Collapse
Affiliation(s)
- Man Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tingting Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yu Guan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fengqing Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianguo Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
4
|
|
5
|
Chaffey PK, Guan X, Li Y, Tan Z. Using Chemical Synthesis To Study and Apply Protein Glycosylation. Biochemistry 2018; 57:413-428. [PMID: 29309128 DOI: 10.1021/acs.biochem.7b01055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein glycosylation is one of the most common post-translational modifications and can influence many properties of proteins. Abnormal protein glycosylation can lead to protein malfunction and serious disease. While appreciation of glycosylation's importance is growing in the scientific community, especially in recent years, a lack of homogeneous glycoproteins with well-defined glycan structures has made it difficult to understand the correlation between the structure of glycoproteins and their properties at a quantitative level. This has been a significant limitation on rational applications of glycosylation and on optimizing glycoprotein properties. Through the extraordinary efforts of chemists, it is now feasible to use chemical synthesis to produce collections of homogeneous glycoforms with systematic variations in amino acid sequence, glycosidic linkage, anomeric configuration, and glycan structure. Such a technical advance has greatly facilitated the study and application of protein glycosylation. This Perspective highlights some representative work in this research area, with the goal of inspiring and encouraging more scientists to pursue the glycosciences.
Collapse
Affiliation(s)
- Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| |
Collapse
|
6
|
Grandal MM, Havrylov S, Poulsen TT, Koefoed K, Dahlman A, Galler GR, Conrotto P, Collins S, Eriksen KW, Kaufman D, Woude GF, Jacobsen HJ, Horak ID, Kragh M, Lantto J, Bouquin T, Park M, Pedersen MW. Simultaneous Targeting of Two Distinct Epitopes on MET Effectively Inhibits MET- and HGF-Driven Tumor Growth by Multiple Mechanisms. Mol Cancer Ther 2017; 16:2780-2791. [DOI: 10.1158/1535-7163.mct-17-0374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/03/2017] [Accepted: 08/02/2017] [Indexed: 11/16/2022]
|
7
|
Wang X, An Z, Luo W, Xia N, Zhao Q. Molecular and functional analysis of monoclonal antibodies in support of biologics development. Protein Cell 2017; 9:74-85. [PMID: 28733914 PMCID: PMC5777976 DOI: 10.1007/s13238-017-0447-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
Monoclonal antibody (mAb)-based therapeutics are playing an increasingly important role in the treatment or prevention of many important diseases such as cancers, autoimmune disorders, and infectious diseases. Multi-domain mAbs are far more complex than small molecule drugs with intrinsic heterogeneities. The critical quality attributes of a given mAb, including structure, post-translational modifications, and functions at biomolecular and cellular levels, need to be defined and profiled in details during the developmental phases of a biologics. These critical quality attributes, outlined in this review, serve an important database for defining the drug properties during commercial production phase as well as post licensure life cycle management. Specially, the molecular characterization, functional assessment, and effector function analysis of mAbs, are reviewed with respect to the critical parameters and the methods used for obtaining them. The three groups of analytical methods are three essential and integral facets making up the whole analytical package for a mAb-based drug. Such a package is critically important for the licensure and the post-licensure life cycle management of a therapeutic or prophylactic biologics. In addition, the basic principles on the evaluation of biosimilar mAbs were discussed briefly based on the recommendations by the World Health Organization.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361105, China
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361105, China.,School of Life Sciences, Xiamen University, Xiamen, 361105, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361105, China.,School of Life Sciences, Xiamen University, Xiamen, 361105, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361105, China.
| |
Collapse
|
8
|
Borrok MJ, Mody N, Lu X, Kuhn ML, Wu H, Dall'Acqua WF, Tsui P. An “Fc-Silenced” IgG1 Format With Extended Half-Life Designed for Improved Stability. J Pharm Sci 2017; 106:1008-1017. [DOI: 10.1016/j.xphs.2016.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 11/24/2022]
|
9
|
Chen W, Kong L, Connelly S, Dendle JM, Liu Y, Wilson IA, Powers ET, Kelly JW. Stabilizing the CH2 Domain of an Antibody by Engineering in an Enhanced Aromatic Sequon. ACS Chem Biol 2016; 11:1852-61. [PMID: 27128252 DOI: 10.1021/acschembio.5b01035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monoclonal antibodies (mAbs) exhibiting highly selective binding to a protein target constitute a large and growing proportion of the therapeutics market. Aggregation of mAbs results in the loss of their therapeutic efficacy and can result in deleterious immune responses. The CH2 domain comprising part of the Fc portion of Immunoglobulin G (IgG) is typically the least stable domain in IgG-type antibodies and therefore influences their aggregation propensity. We stabilized the CH2 domain by engineering an enhanced aromatic sequon (EAS) into the N-glycosylated C'E loop and observed a 4.8 °C increase in the melting temperature of the purified IgG1 Fc fragment. This EAS-stabilized CH2 domain also conferred enhanced stability against thermal and low pH induced aggregation in the context of a full-length monoclonal IgG1 antibody. The crystal structure of the EAS-stabilized (Q295F/Y296A) IgG1 Fc fragment confirms the design principle, i.e., the importance of the GlcNAc1•F295 interaction, and surprisingly reveals that the core fucose attached to GlcNAc1 also engages in an interaction with F295. Inhibition of core fucosylation confirms the contribution of the fucose-Phe interaction to the stabilization. The Q295F/Y296A mutations also modulate the binding affinity of the full-length antibody to Fc receptors by decreasing the binding to low affinity Fc gamma receptors (FcγRIIa, FcγRIIIa, and FcγRIIIb), while maintaining wild-type binding affinity to FcRn and FcγRI. Our results demonstrate that engineering an EAS into the N-glycosylated reverse turn on the C'E loop leads to stabilizing N-glycan-protein interactions in antibodies and that this modification modulates antibody-Fc receptor binding.
Collapse
Affiliation(s)
- Wentao Chen
- Department
of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Leopold Kong
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Stephen Connelly
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Julia M. Dendle
- Department
of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yu Liu
- Department
of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ian A. Wilson
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
- The
Skaggs Institute for Chemical Biology, The Scripps Research Institute, La
Jolla, California 92037, United States
| | - Evan T. Powers
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffery W. Kelly
- Department
of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
- The
Skaggs Institute for Chemical Biology, The Scripps Research Institute, La
Jolla, California 92037, United States
| |
Collapse
|
10
|
Abstract
The presence of α2,6-sialic acids on the Fc N-glycan provides anti-inflammatory properties to the IgGs through a mechanism that remains unclear. Fc-sialylated IgGs are rare in humans as well as in industrial host cell lines such as Chinese hamster ovary (CHO) cells. Facilitated access to well-characterized α2,6-sialylated IgGs would help elucidate the mechanism of this intriguing IgG's effector function. This study presents a method for the efficient Fc glycan α2,6-sialylation of a wild-type and a F243A IgG1 mutant by transient co-expression with the human α2,6-sialyltransferase 1 (ST6) and β1,4-galactosyltransferase 1 (GT) in CHO cells. Overexpression of ST6 alone only had a moderate effect on the glycoprofiles, whereas GT alone greatly enhanced Fc-galactosylation, but not sialylation. Overexpression of both GT and ST6 was necessary to obtain a glycoprofile dominated by α2,6-sialylated glycans in both antibodies. The wild-type was composed of the G2FS(6)1 glycan (38%) with remaining unsialylated glycans, while the mutant glycoprofile was essentially composed of G2FS(6)1 (25%), G2FS(3,6)2 (16%) and G2FS(6,6)2 (37%). The α2,6-linked sialic acids represented over 85% of all sialic acids in both antibodies. We discuss how the limited sialylation level in the wild-type IgG1 expressed alone or with GT results from the glycan interaction with Fc's amino acid residues or from intrinsic galactosyl- and sialyl-transferases substrate specificities.
Collapse
Key Words
- B4GALT1
- CHO cells
- ECL, Erythrina Cristagalli lectin
- GT, β1,4-galactosyltransferase 1
- HILIC, hydrophilic interaction liquid chromatography
- IgG1
- LC-ESI-MS, liquid chromatography coupled to electrospray ionization mass spectrometry
- MAL-II, Maackia Amurensis lectin II
- N-glycosylation
- PEI, polyethylenimine
- SIAT1
- SNA, Sambucus Nigra agglutinin
- ST6, α2,6-sialyltransferase 1
- TZM, trastuzumab (Herceptin®)
- cIEF, capillary zone electrophoresis isoelectric focusing
- mAbs, monoclonal antibodies
- sialylation
- transfection
- α2,3SA, α2,3-linked sialic acid
- α2,6SA, α2,6-linked sialic acid
Collapse
Affiliation(s)
- Céline Raymond
- a Human Health Therapeutics Portfolio; National Research Council of Canada ; Montreal , Canada
| | | | | | | | | | | |
Collapse
|
11
|
Clementi N, Criscuolo E, Cappelletti F, Burioni R, Clementi M, Mancini N. Novel therapeutic investigational strategies to treat severe and disseminated HSV infections suggested by a deeper understanding of in vitro virus entry processes. Drug Discov Today 2016; 21:682-91. [PMID: 26976690 DOI: 10.1016/j.drudis.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/11/2016] [Accepted: 03/04/2016] [Indexed: 01/28/2023]
Abstract
The global burden of herpes simplex virus (HSV) legitimates the critical need to develop new prevention strategies, such as drugs and vaccines that are able to fight either primary HSV infections or reactivations. Moreover, the ever-growing number of patients receiving transplants increases the number of severe HSV infections that are unresponsive to current therapies. Finally, the high global incidence of genital HSV-2 infection increases the risk of perinatal transmission to newborns, in which disseminated infection or central nervous system (CNS) involvement is frequent, with associated high morbidity and mortality rates. There are several key features shared by novel anti-HSV drugs, from currently available optimized drugs to small molecules able to interfere with various virus replication steps. However, several virological aspects of the disease and associated clinical needs highlight why an ideal anti-HSV drug has yet to be developed.
Collapse
Affiliation(s)
- Nicola Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy.
| | - Elena Criscuolo
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Francesca Cappelletti
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Roberto Burioni
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Massimo Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| | - Nicasio Mancini
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, 20132 Milan, Italy
| |
Collapse
|
12
|
Könitzer JD, Sieron A, Wacker A, Enenkel B. Reformatting Rituximab into Human IgG2 and IgG4 Isotypes Dramatically Improves Apoptosis Induction In Vitro. PLoS One 2015; 10:e0145633. [PMID: 26713448 PMCID: PMC4694715 DOI: 10.1371/journal.pone.0145633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/06/2015] [Indexed: 12/31/2022] Open
Abstract
The direct induction of cell death, or apoptosis, in target cells is one of the effector mechanisms for the anti CD20 antibody Rituximab. Here we provide evidence that Rituximab’s apoptotic ability is linked to the antibody IgG isotype. Reformatting Rituximab from the standard human IgG1 heavy chain into IgG2 or IgG4 boosted in vitro apoptosis induction in the Burkitt’s lymphoma B cell line Ramos five and four-fold respectively. The determinants for this behavior are located in the hinge region and CH1 domain of the heavy chain. By transplanting individual IgG2 or IgG4 specific amino acid residues onto otherwise IgG1 like backbones, thereby creating hybrid antibodies, the same enhancement of apoptosis induction could be achieved. The cysteines at position 131 of the CH1 domain and 219 in the hinge region, involved in IgG2 and IgG4 disulfide formation, were found to be of particular structural importance. Our data indicates that the hybrid antibodies possess a different CD20 binding mode than standard Rituximab, which appears to be key in enhancing apoptotic ability. The presented work opens up an interesting engineering route for enhancing the direct cytotoxic ability of therapeutic antibodies.
Collapse
Affiliation(s)
- Jennifer D. Könitzer
- Boehringer Ingelheim, Division Research Germany, Immune Modulation and Biotherapeutics Discovery, Biberach/Riß, Germany
- * E-mail:
| | - Annette Sieron
- Boehringer Ingelheim, Biopharma Operations Germany, Biberach/Riß, Germany
| | - Angelika Wacker
- Boehringer Ingelheim, Bioprocess and Pharmaceutical Development Germany, Biberach/Riß, Germany
| | - Barbara Enenkel
- Boehringer Ingelheim, Bioprocess and Pharmaceutical Development Germany, Biberach/Riß, Germany
| |
Collapse
|
13
|
Irani V, Guy AJ, Andrew D, Beeson JG, Ramsland PA, Richards JS. Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases. Mol Immunol 2015; 67:171-82. [DOI: 10.1016/j.molimm.2015.03.255] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
|
14
|
Walsh G. Therapeutic Antibodies. Proteins 2015. [DOI: 10.1002/9781119117599.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
CF750-A33scFv-Fc-Based Optical Imaging of Subcutaneous and Orthotopic Xenografts of GPA33-Positive Colorectal Cancer in Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:505183. [PMID: 26090413 PMCID: PMC4454727 DOI: 10.1155/2015/505183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/24/2015] [Indexed: 02/05/2023]
Abstract
Antibody-based imaging agents are attractive as adjuvant diagnostic tools for solid tumors. GPA33 is highly expressed in most human colorectal cancers and has been verified as a diagnostic and therapeutic target. Here, we built an A33scFv-Fc antibody against GPA33 by fusing A33scFv to the Fc fragment of human IgG1 antibodies. The A33scFv-Fc specifically binds GPA33-positive colorectal cancer cells and tumor tissues. After the intravenous injection of mice bearing subcutaneous GPA33-positive LS174T tumor grafts with near-infrared fluorescence probe CF750-labeled A33scFv-Fc (CF750-A33scFv-Fc), high contrast images of the tumor grafts could be kinetically documented within 24 h using an optical imaging system. However, GPA33-negative SMMC7721 tumor grafts could not be visualized by injecting the same amount of CF750-A33scFv-Fc. Moreover, in subcutaneous LS174T tumor-bearing mice, tissue scanning revealed that the CF750-A33scFv-Fc accumulated in the tumor grafts, other than the kidney and liver. In mice with orthotopic tumor transplantations, excrescent LS174T tumor tissues in the colon were successfully removed under guidance by CF750-A33scFv-Fc-based optical imaging. These results indicate that CF750-A33scFv-Fc can target GPA33, suggesting the potential of CF750-A33scFv-Fc as an imaging agent for the diagnosis of colorectal cancer.
Collapse
|
16
|
Jacobsen HJ, Poulsen TT, Dahlman A, Kjær I, Koefoed K, Sen JW, Weilguny D, Bjerregaard B, Andersen CR, Horak ID, Pedersen MW, Kragh M, Lantto J. Pan-HER, an Antibody Mixture Simultaneously Targeting EGFR, HER2, and HER3, Effectively Overcomes Tumor Heterogeneity and Plasticity. Clin Cancer Res 2015; 21:4110-22. [PMID: 25908781 DOI: 10.1158/1078-0432.ccr-14-3312] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 04/01/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Accumulating evidence indicates a high degree of plasticity and compensatory signaling within the human epidermal growth factor receptor (HER) family, leading to resistance upon therapeutic intervention with HER family members. EXPERIMENTAL DESIGN/RESULTS We have generated Pan-HER, a mixture of six antibodies targeting each of the HER family members EGFR, HER2, and HER3 with synergistic pairs of antibodies, which simultaneously remove all three targets, thereby preventing compensatory tumor promoting mechanisms within the HER family. Pan-HER induces potent growth inhibition in a range of cancer cell lines and xenograft models, including cell lines with acquired resistance to therapeutic antibodies. Pan-HER is also highly efficacious in the presence of HER family ligands, indicating that it is capable of overcoming acquired resistance due to increased ligand production. All three target specificities contribute to the enhanced efficacy, demonstrating a distinct benefit of combined HER family targeting when compared with single-receptor targeting. CONCLUSIONS Our data show that simultaneous targeting of three receptors provides broader efficacy than targeting a single receptor or any combination of two receptors in the HER family, especially in the presence of HER family ligands. Pan-HER represents a novel strategy to deal with primary and acquired resistance due to tumor heterogeneity and plasticity in terms of HER family dependency and as such may be a viable alternative in the clinic.
Collapse
Affiliation(s)
| | | | | | - Ida Kjær
- Symphogen A/S, Ballerup, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Deyev SM, Lebedenko EN, Petrovskaya LE, Dolgikh DA, Gabibov AG, Kirpichnikov MP. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4459] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Respaud R, Vecellio L, Diot P, Heuzé-Vourc’h N. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin Drug Deliv 2015; 12:1027-39. [DOI: 10.1517/17425247.2015.999039] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Abstract
Cytokines, currently known to be more than 130 in number, are small MW (<30 kDa) key signaling proteins that modulate cellular activities in immunity, infection, inflammation and malignancy. Key to understanding their function is recognition of their pleiotropism and often overlapping and functional redundancies. Classified here into 9 main families, most of the 20 approved cytokine preparations (18 different cytokines; 3 pegylated), all in recombinant human (rh) form, are grouped in the hematopoietic growth factor, interferon, platelet-derived growth factor (PDGF) and transforming growth factor β (TGFβ) families. In the hematopoietin family, approved cytokines are aldesleukin (rhIL-2), oprelvekin (rhIL-11), filgrastim and tbo-filgrastim (rhG-CSF), sargramostim (rhGM-CSF), metreleptin (rh-leptin) and the rh-erythropoietins, epoetin and darbepoietin alfa. Anakinra, a recombinant receptor antagonist for IL-1, is in the IL-1 family; recombinant interferons alfa-1, alfa-2, beta-1 and gamma-1 make up the interferon family; palifermin (rhKGF) and becaplermin (rhPDGF) are in the PDGF family; and rhBMP-2 and rhBMP-7 represent the TGFβ family. The main physicochemical features, FDA-approved indications, modes of action and side effects of these approved cytokines are presented. Underlying each adverse events profile is their pleiotropism, potency and capacity to release other cytokines producing cytokine 'cocktails'. Side effects, some serious, occur despite cytokines being endogenous proteins, and this therefore demands caution in attempts to introduce individual members into the clinic. This caution is reflected in the relatively small number of cytokines currently approved by regulatory agencies and by the fact that 14 of the FDA-approved preparations carry warnings, with 10 being black box warnings.
Collapse
|
20
|
Azevedo VF, Galli N, Kleinfelder A, D'Ippolito J, Urbano PCM. Etanercept biosimilars. Rheumatol Int 2014; 35:197-209. [PMID: 24980068 PMCID: PMC4308636 DOI: 10.1007/s00296-014-3080-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/18/2014] [Indexed: 12/14/2022]
Abstract
Etanercept was the first tumour necrosis factor alpha antagonist approved in the USA for the treatment of rheumatoid arthritis, in 1998, and then for other diseases. With the etanercept patent set to expire in the EU in 2015, a number of etanercept copies have reached the production phase and are undergoing clinical trials, with the promise of being cheaper alternatives to the reference product. In a global scenario that is favourable to the entry of biosimilars, this article discusses the stage of development, manufacture, clinical trials and the regulatory process involved in the approval of etanercept biosimilars, compiling the literature data. Reducing treatment cost is the principal attraction for biosimilars to emerge in the global market. It is essential for the doctors’ decision on the prescription of these medications, as well as for payers, to have clearly defined studies of clinical equivalence, quality, and safety in order to better evaluate the various copies of etanercept. The authors discuss the need to harmonize different national regulations and the introduction of effective pharmacosurveillance systems for prompt recognition of adverse effects in copies of biopharmaceuticals that differ from those found in the reference products.
Collapse
Affiliation(s)
- Valderilio F Azevedo
- Internal Medicine, Universidade Federal do Paraná, Rua Alvaro Alvin 224 casa 18, Curitiba, Paraná, 80440080, Brazil,
| | | | | | | | | |
Collapse
|
21
|
Abstract
Monoclonal antibodies have been successfully used for the therapy of various diseases. However, because of their large size (∼150 kD), many limitations have also been found during their development and manufacture. The use of antibody fragments with smaller sizes is one of the strategies to overcome these limitations. Antibody heavy chain variable domains (12∼15 kD) have already been widely used for the development of variable domain-based engineered antibody domains (termed V-based eAds) targeting different antigens. Recently, antibody second heavy chain constant domains (∼12 kD) were proposed as novel scaffolds for library construction and selection of specific binders termed constant domain-based eAds (C-based eAds) as novel candidate therapeutics, which might also confer additional crystallizable fragment functions. Both V- and C-based eAds are promising therapeutic candidates. This review summarizes progress in the development of eAds, and discusses the related patents and their potential applications.
Collapse
|
22
|
Maximizing Antibody Production in Suspension-Cultured Mammalian Cells by the Customized Transient Gene Expression Method. Biosci Biotechnol Biochem 2014; 77:1207-13. [DOI: 10.1271/bbb.120968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Biological evaluation of 131I- and CF750-labeled Dmab(scFv)-Fc antibodies for xenograft imaging of CD25-positive tumors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:459676. [PMID: 24864244 PMCID: PMC4017786 DOI: 10.1155/2014/459676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 02/05/2023]
Abstract
A Dmab(scFv)-Fc antibody containing the single chain variable fragment of a humanized daclizumab antibody and the Fc fragment of a human IgG1 antibody was produced via recombinant expression in Pichia pastoris. The Dmab(scFv)-Fc antibody forms a dimer in solution, and it specifically binds CD25-positive tumor cells and tumor tissues. For tumor imaging, the Dmab(scFv)-Fc antibody was labeled with the 131I isotope and CF750 fluorescent dye, respectively. After intravenous injection of mice bearing CD25-positive tumor xenografts, tumor uptake of the (131)I-Dmab(scFv)-Fc antibody was visible at 1 h, and clear images were obtained at 5 h using SPECT/CT. After systemic administration of the CF750-Dmab(scFv)-Fc antibody, tumor uptake was present as early as 1 h, and tumor xenografts could be kinetically imaged within 9 h after injection. These results indicate that the Dmab(scFv)-Fc antibody rapidly and specifically targets CD25-positive tumor cells, suggesting the potential of this antibody as an imaging agent for the diagnosis of lymphomatous-type ATLL.
Collapse
|
24
|
Ponomarenko N, Chatziefthimiou SD, Kurkova I, Mokrushina Y, Mokrushina Y, Stepanova A, Smirnov I, Avakyan M, Bobik T, Mamedov A, Mitkevich V, Belogurov A, Fedorova OS, Dubina M, Golovin A, Lamzin V, Friboulet A, Makarov AA, Wilmanns M, Gabibov A. Role of κ→λ light-chain constant-domain switch in the structure and functionality of A17 reactibody. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:708-19. [PMID: 24598740 PMCID: PMC3949517 DOI: 10.1107/s1399004713032446] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 11/27/2013] [Indexed: 11/10/2022]
Abstract
The engineering of catalytic function in antibodies requires precise information on their structure. Here, results are presented that show how the antibody domain structure affects its functionality. The previously designed organophosphate-metabolizing reactibody A17 has been re-engineered by replacing its constant κ light chain by the λ chain (A17λ), and the X-ray structure of A17λ has been determined at 1.95 Å resolution. It was found that compared with A17κ the active centre of A17λ is displaced, stabilized and made more rigid owing to interdomain interactions involving the CDR loops from the VL and VH domains. These VL/VH domains also have lower mobility, as deduced from the atomic displacement parameters of the crystal structure. The antibody elbow angle is decreased to 126° compared with 138° in A17κ. These structural differences account for the subtle changes in catalytic efficiency and thermodynamic parameters determined with two organophosphate ligands, as well as in the affinity for peptide substrates selected from a combinatorial cyclic peptide library, between the A17κ and A17λ variants. The data presented will be of interest and relevance to researchers dealing with the design of antibodies with tailor-made functions.
Collapse
Affiliation(s)
- Natalia Ponomarenko
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117871, Russian Federation
| | - Spyros D. Chatziefthimiou
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Inna Kurkova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117871, Russian Federation
| | - Yuliana Mokrushina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117871, Russian Federation
| | - Yuliana Mokrushina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117871, Russian Federation
| | - Anastasiya Stepanova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117871, Russian Federation
| | - Ivan Smirnov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117871, Russian Federation
| | - Marat Avakyan
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117871, Russian Federation
| | - Tatyana Bobik
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117871, Russian Federation
| | - Azad Mamedov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117871, Russian Federation
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Alexey Belogurov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117871, Russian Federation
- Institute of Gene Biology, Moscow 117334, Russian Federation
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Michael Dubina
- St Petersburg Academic University, St Petersburg 194021, Russian Federation
| | - Andrey Golovin
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Victor Lamzin
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Alain Friboulet
- Université de Technologie de Compiègne, Unité Mixte de Recherche 6022, Centre National de la Recherche Scientifique, 60205 Compiègne, France
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Alexander Gabibov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow 117871, Russian Federation
- Institute of Gene Biology, Moscow 117334, Russian Federation
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
25
|
Yuan Y, Wan L, Chen Y, Shi M, Wang C, Zhao J, Lu X, Wang H, Lu Y, Cheng J. Production and characterization of human soluble CD83 fused with the fragment crystallizable region of human IgG1 in Pichia pastoris. Appl Microbiol Biotechnol 2013; 97:9409-17. [PMID: 23392767 DOI: 10.1007/s00253-013-4732-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 02/05/2023]
Abstract
The cell surface protein CD83 belongs to the immunoglobulin superfamily and is highly expressed on mature dendritic cells. The soluble form of CD83, sCD83, is a potential immune suppressor. In a previous study, recombinant soluble CD83 was expressed in Escherichia coli, resulting in a lack of functional glycosylation. Although eukaryotic cell systems for producing sCD83 offer the advantages of protein processing, folding, and posttranslational modification, these systems are complicated, expensive, and produce low levels of protein. To obtain more efficient expression of sCD83, we expressed human sCD83 fused with fragment crystallizable region of human IgG1 (hIgG1 Fc) in Pichia pastoris. Under the optimal conditions (time of induction, 48 h; inoculum density (OD600), 80; concentration of methanol, 3.0 %; pH 7.0-8.0; concentration of casamino acid, 5.0 %), the purified human sCD83-hIgG1 Fc (hsCD83-Ig) fusion protein existed as dimers at 25-30 mg/L culture. Treatment with PNGase F showed that purified hsCD83-Ig was modified by N-linked glycosylation. Moreover, the hsCD83-Ig expressed in the P. pastoris system could suppress lymphocyte proliferation in ConA-stimulated and one-way mixed lymphocyte reaction systems. Thus, hsCD83-Ig expressed in P. pastoris is functional and may be used in experimental therapies for graft rejection, graft-versus-host disease, and autoimmune diseases.
Collapse
Affiliation(s)
- Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Aggregates, crystals, gels, and amyloids: intracellular and extracellular phenotypes at the crossroads of immunoglobulin physicochemical property and cell physiology. Int J Cell Biol 2013; 2013:604867. [PMID: 23533417 PMCID: PMC3603282 DOI: 10.1155/2013/604867] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/27/2013] [Indexed: 12/20/2022] Open
Abstract
Recombinant immunoglobulins comprise an important class of human therapeutics. Although specific immunoglobulins can be purposefully raised against desired antigen targets by various methods, identifying an immunoglobulin clone that simultaneously possesses potent therapeutic activities and desirable manufacturing-related attributes often turns out to be challenging. The variable domains of individual immunoglobulins primarily define the unique antigen specificities and binding affinities inherent to each clone. The primary sequence of the variable domains also specifies the unique physicochemical properties that modulate various aspects of individual immunoglobulin life cycle, starting from the biosynthetic steps in the endoplasmic reticulum, secretory pathway trafficking, secretion, and the fate in the extracellular space and in the endosome-lysosome system. Because of the diverse repertoire of immunoglobulin physicochemical properties, some immunoglobulin clones' intrinsic properties may manifest as intriguing cellular phenotypes, unusual solution behaviors, and serious pathologic outcomes that are of scientific and clinical importance. To gain renewed insights into identifying manufacturable therapeutic antibodies, this paper catalogs important intracellular and extracellular phenotypes induced by various subsets of immunoglobulin clones occupying different niches of diverse physicochemical repertoire space. Both intrinsic and extrinsic factors that make certain immunoglobulin clones desirable or undesirable for large-scale manufacturing and therapeutic use are summarized.
Collapse
|
27
|
Proctor EA, Kota P, Demarest SJ, Caravella JA, Dokholyan NV. Highly covarying residues have a functional role in antibody constant domains. Proteins 2013; 81:884-95. [PMID: 23280585 DOI: 10.1002/prot.24247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/05/2012] [Accepted: 12/14/2012] [Indexed: 01/25/2023]
Abstract
The ability to generate and design antibodies recognizing specific targets has revolutionized the pharmaceutical industry and medical imaging. Engineering antibody therapeutics in some cases requires modifying their constant domains to enable new and altered interactions. Engineering novel specificities into antibody constant domains has proved challenging due to the complexity of inter-domain interactions. Covarying networks of residues that tend to cluster on the protein surface and near binding sites have been identified in some proteins. However, the underlying role these networks play in the protein resulting in their conservation remains unclear in most cases. Resolving their role is crucial, because residues in these networks are not viable design targets if their role is to maintain the fold of the protein. Conversely, these networks of residues are ideal candidates for manipulating specificity if they are primarily involved in binding, such as the myriad interdomain interactions maintained within antibodies. Here, we identify networks of evolutionarily-related residues in C-class antibody domains by evaluating covariation, a measure of propensity with which residue pairs vary dependently during evolution. We computationally test whether mutation of residues in these networks affects stability of the folded antibody domain, determining their viability as design candidates. We find that members of covarying networks cluster at domain-domain interfaces, and that mutations to these residues are diverse and frequent during evolution, precluding their importance to domain stability. These results indicate that networks of covarying residues exist in antibody domains for functional reasons unrelated to thermodynamic stability, making them ideal targets for antibody design.
Collapse
Affiliation(s)
- Elizabeth A Proctor
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | | | |
Collapse
|
28
|
Yang X, Kallarakal A, Saptharishi N, Jiang H, Yang Z, Xie Y, Mitra G, Zheng XX, Strom TB, Soman G. Molecular characterization and functional activity of an IL-15 antagonist MutIL-15/Fc human fusion protein. Mol Pharm 2013; 10:717-27. [PMID: 23311475 PMCID: PMC3573692 DOI: 10.1021/mp300513j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fc fusion proteins are a new emerging class of molecules for immune-targeted delivery of therapeutic proteins. Biophysical and bioanalytical characterization is critical for clinical development and delivery of therapeutic proteins. Here we report molecular and functional characterization of a recombinant human fusion protein Mutant IL-15/Fc. MutIL-15/Fc has a molecular weight of ∼95 kDa as determined by multiangle laser light scattering with online size exclusion chromatography and migrated at a faster rate (lower retention time) in gel filtration column. The kinetics of binding of MutIL-15/Fc to Fcγ receptor is best fitted in a bivalent modal with K(D1) 5 μM and K(D2) 9 μM determined by surface plasmon resonance (BIAcore). N-Glycoprofiling analysis revealed extensive glycosylation of MutIL-15/Fc. The Fc and IL-15 components in the MutIL-15/Fc are detected using the dual mode ELISA. The HT-2 cell proliferation inhibition assay is qualified as a quantitative in vitro marker functional assay. Molecular state changes associated with forced stress analyzed by SEC-MALS resulted in changes in bioactivity and Fc:Fcγ receptor interaction affinity. These data provide a systematic approach to molecular and functional characterization of the MutIL-15/Fc to establish product consistency and stability monitoring during storage and under drug delivery conditions.
Collapse
Affiliation(s)
- Xiaoyi Yang
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Abraham Kallarakal
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Nirmala Saptharishi
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Hengguang Jiang
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Zhiwen Yang
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Yueqing Xie
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - George Mitra
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Xin Xiao Zheng
- Thomas Starzl Transplant Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261
| | - Terry B. Strom
- Harvard Medical School, Department of Surgery and Medicine, Transplant Institute at Beth Israel Deaconess Medical Center, Massachusetts General Hospital, Boston, MA 02215
| | - Gopalan Soman
- Biopharmaceutical Development Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| |
Collapse
|
29
|
Production and characterization of a CD25-specific scFv-Fc antibody secreted from Pichia pastoris. Appl Microbiol Biotechnol 2012; 97:3855-63. [PMID: 23250227 DOI: 10.1007/s00253-012-4632-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/29/2012] [Accepted: 12/01/2012] [Indexed: 02/05/2023]
Abstract
Antibodies against CD25 would be novel tools for the diagnosis and treatment of adult T cell leukemia lymphoma (ATLL) and many other immune disorders. In our previous work, we successfully produced the single-chain fragment of a variable antibody against CD25, the Dmab(scFv) antibody, using Pichia pastoris. Here, we describe a novel form of an antibody against CD25, the Dmab(scFv)-Fc antibody, also produced by P. pastoris. To construct the Dmab(scFv)-Fc antibody, the Dmab(scFv) antibody was genetically fused to the Fc fragment of a human IgG1 antibody. A fusion gene encoding Dmab(scFv)-Fc antibody was cloned into the pPIC9K plasmid and expressed at high levels, 60-70 mg/l, by P. pastoris under optimized conditions. The Dmab(scFv)-Fc antibody was similar to the Dmab(scFv) antibody in its binding specificity but different in its molecular form and Fc-mediated effector functions. The Dmab(scFv)-Fc antibody and the Dmab(scFv) antibody both bound to CD25-positive MJ cells but not to CD25-negative K562 cells. The Dmab(scFv)-Fc antibody existed as a dimer whereas the Dmab(scFv) antibody was a monomer because it lacks the Fc fragment. The Dmab(scFv)-Fc antibody enhanced the antibody-dependent cellular cytotoxicity of CD25-positive cancer cells, whereas the Dmab(scFv) antibody was inactive in the antibody-dependent cellular cytotoxicity assays. In addition, compared to the Dmab(scFv) antibody, the Dmab(scFv)-Fc antibody showed stronger immunosuppressive activity in the Con A-stimulated lymphocyte proliferation system and in the mixed lymphocyte reaction system. These results demonstrate that the Dmab(scFv)-Fc antibody produced in P. pastoris is functional, and therefore it might be developed as a novel diagnostic and therapeutic tool for ATLL and other immune disorders.
Collapse
|
30
|
The future of antibodies as cancer drugs. Drug Discov Today 2012; 17:954-63. [DOI: 10.1016/j.drudis.2012.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/30/2012] [Accepted: 04/19/2012] [Indexed: 01/01/2023]
|
31
|
Rosati S, Thompson NJ, Barendregt A, Hendriks LJA, Bakker ABH, de Kruif J, Throsby M, van Duijn E, Heck AJR. Qualitative and Semiquantitative Analysis of Composite Mixtures of Antibodies by Native Mass Spectrometry. Anal Chem 2012; 84:7227-32. [DOI: 10.1021/ac301611d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sara Rosati
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The
Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH
Utrecht, The Netherlands
| | - Natalie J. Thompson
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The
Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH
Utrecht, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The
Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH
Utrecht, The Netherlands
| | - Linda J. A. Hendriks
- Merus Biopharmaceuticals, Postvak 133,
Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - John de Kruif
- Merus Biopharmaceuticals, Postvak 133,
Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mark Throsby
- Merus Biopharmaceuticals, Postvak 133,
Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Esther van Duijn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The
Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH
Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The
Netherlands
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH
Utrecht, The Netherlands
| |
Collapse
|
32
|
Vugmeyster Y, Harrold J, Xu X. Absorption, distribution, metabolism, and excretion (ADME) studies of biotherapeutics for autoimmune and inflammatory conditions. AAPS JOURNAL 2012; 14:714-27. [PMID: 22798020 DOI: 10.1208/s12248-012-9385-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/13/2012] [Indexed: 01/09/2023]
Abstract
Biotherapeutics are becoming an increasingly common drug class used to treat autoimmune and other inflammatory conditions. Optimization of absorption, distribution, metabolism, and excretion (ADME) profiles of biotherapeutics is crucial for clinical, as well as commercial, success of these drugs. This review focuses on the common questions and challenges in ADME optimization of biotherapeutics for inflammatory conditions. For these immunomodulatory and/or immunosuppressive biotherapeutics, special consideration should be given to the assessment of the interdependency of ADME profiles, pharmacokinetic/pharmacodynamic (PK/PD) relationships, and immunogenicity profiles across various preclinical species and humans, including the interdependencies both in biology and in assay readouts. The context of usage, such as dosing regimens, extent of disease, concomitant medications, and drug product characteristics may have a direct or indirect (via modulation of immunogenicity) impact on ADME profiles of biotherapeutics. Along these lines, emerging topics include assessments of preexisting reactivity to a biotherapeutic agent, impact of immunogenicity on tissue exposure, and analysis of penetration to normal versus inflamed tissues. Because of the above complexities and interdependences, it is essential to interpret PK, PD, and anti-drug antibody results in an integrated manner. In addition, because of the competitive landscape in autoimmune and inflammatory markets, many pioneering ADME-centric protein engineering and subsequent in vivo testing (such as optimization of novel modalities to extend serum and tissue exposures and to improve bioavailability) are being conducted with biotherapeutics in this therapeutic area. However, the ultimate challenge is demonstration of the clinical relevance (or lack thereof) of modified ADME and immunogenicity profiles.
Collapse
Affiliation(s)
- Yulia Vugmeyster
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., One Burtt Road, Andover, Massachusetts, USA.
| | | | | |
Collapse
|
33
|
Schaefer JV, Plückthun A. Transfer of engineered biophysical properties between different antibody formats and expression systems. Protein Eng Des Sel 2012; 25:485-506. [PMID: 22763265 DOI: 10.1093/protein/gzs039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant antibodies and their derivatives are receiving ever increasing attention for many applications. Nevertheless, they differ widely in biophysical properties, from stable monomers to metastable aggregation-prone mixtures of oligomers. Previous work from our laboratory presented the combination of structure-based analysis with family consensus alignments as being able to improve the properties of immunoglobulin variable domains. We had identified a series of mutations in the variable domains that greatly influenced both the stability and the expression level of single-chain Fv (scFv) fragments produced in the periplasm of Escherichia coli. We now investigated whether these effects are transferable to Fab fragments and immunoglobulin G (IgG) produced in bacteria, Pichia pastoris, and mammalian cells. Taken together, our data indicate that engineered mutations can increase functional expression levels only for periplasmic expression in prokaryotes. In contrast, stability against thermal and denaturant-induced unfolding is improved by the same mutations in all formats tested, including scFv, Fab and IgG, independent of the expression system. The mutations in V(H) also influenced the structural homogeneity of full-length IgG, and the reducibility of the distant C(H)1-C(L) inter-chain disulfide bond. These results confirm the potential of structure-based protein engineering in the context of full-length IgGs and the transferability of stability improvements discovered with smaller antibody fragments.
Collapse
Affiliation(s)
- Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
34
|
Abstract
INTRODUCTION Over a half a century ago, radiolabeled antibodies were shown to localize selectively in tissues based on the expression of unique antigens. Antibodies have since become the de facto targeting agent, even inspiring the development of non-antibody compounds for targeting purposes. AREAS COVERED In this article, we review various aspects of how antibodies are transforming the way cancer is being detected and treated, with the growing demand for unconjugated and many new antibody conjugates. While unconjugated antibodies continue to garner most of the attention, interest in new antibody drug conjugates and immunotoxins has expanded over the past few years. However, there continues to be active research with new radioimmunoconjugates for imaging and therapy, particularly with α-emitters, as well as antibody-targeted cytokines and other biological response modifiers. EXPERT OPINION The increasing number of new agents being developed and tested clinically suggests that antibody-targeted compounds will have an expanding role in the future.
Collapse
Affiliation(s)
- David M Goldenberg
- Center for Molecular Medicine and Immunology, 300 The American Road, Morris Plains, NJ 07950, USA
| | | |
Collapse
|
35
|
Vugmeyster Y, Xu X, Theil FP, Khawli LA, Leach MW. Pharmacokinetics and toxicology of therapeutic proteins: Advances and challenges. World J Biol Chem 2012; 3:73-92. [PMID: 22558487 PMCID: PMC3342576 DOI: 10.4331/wjbc.v3.i4.73] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 02/05/2023] Open
Abstract
Significant progress has been made in understanding pharmacokinetics (PK), pharmacodynamics (PD), as well as toxicity profiles of therapeutic proteins in animals and humans, which have been in commercial development for more than three decades. However, in the PK arena, many fundamental questions remain to be resolved. Investigative and bioanalytical tools need to be established to improve the translation of PK data from animals to humans, and from in vitro assays to in vivo readouts, which would ultimately lead to a higher success rate in drug development. In toxicology, it is known, in general, what studies are needed to safely develop therapeutic proteins, and what studies do not provide relevant information. One of the major complicating factors in nonclinical and clinical programs for therapeutic proteins is the impact of immunogenicity. In this review, we will highlight the emerging science and technology, as well as the challenges around the pharmacokinetic- and safety-related issues in drug development of mAbs and other therapeutic proteins.
Collapse
Affiliation(s)
- Yulia Vugmeyster
- Yulia Vugmeyster, Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Andover, MA 01810, United States
| | | | | | | | | |
Collapse
|
36
|
Shim H. One target, different effects: a comparison of distinct therapeutic antibodies against the same targets. Exp Mol Med 2012; 43:539-49. [PMID: 21811090 DOI: 10.3858/emm.2011.43.10.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To date, more than 30 antibodies have been approved worldwide for therapeutic use. While the monoclonal antibody market is rapidly growing, the clinical use of therapeutic antibodies is mostly limited to treatment of cancers and immunological disorders. Moreover, antibodies against only five targets (TNF-α, HER2, CD20, EGFR, and VEGF) account for more than 80 percent of the worldwide market of therapeutic antibodies. The shortage of novel, clinically proven targets has resulted in the development of many distinct therapeutic antibodies against a small number of proven targets, based on the premise that different antibody molecules against the same target antigen have distinct biological and clinical effects from one another. For example, four antibodies against TNF-α have been approved by the FDA -- infliximab, adalimumab, golimumab, and certolizumab pegol -- with many more in clinical and preclinical development. The situation is similar for HER2, CD20, EGFR, and VEGF, each having one or more approved antibodies and many more under development. This review discusses the different binding characteristics, mechanisms of action, and biological and clinical activities of multiple monoclonal antibodies against TNF-α, HER-2, CD20, and EGFR and provides insights into the development of therapeutic antibodies.
Collapse
Affiliation(s)
- Hyunbo Shim
- Department of Life Science, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
37
|
Tradtrantip L, Zhang H, Saadoun S, Phuan PW, Lam C, Papadopoulos MC, Bennett JL, Verkman AS. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann Neurol 2012; 71:314-22. [PMID: 22271321 PMCID: PMC3314396 DOI: 10.1002/ana.22657] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/02/2011] [Accepted: 10/07/2011] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system. Circulating autoantibodies (NMO-immunoglobulin [Ig]G) against astrocyte water channel aquaporin-4 (AQP4) cause complement- and cell-mediated astrocyte damage with consequent neuroinflammation and demyelination. Current NMO therapies, which have limited efficacy, include immunosuppression and plasma exchange. The objective of this study was to develop a potential new NMO therapy based on blocking of pathogenic NMO-IgG binding to its target, AQP4. METHODS We generated nonpathogenic recombinant monoclonal anti-AQP4 antibodies that selectively block NMO-IgG binding to AQP4. These antibodies comprise a tight-binding anti-AQP4 Fab and a mutated Fc that lacks functionality for complement- and cell-mediated cytotoxicity. The efficacy of the blocking antibodies was studied using cell culture, spinal cord slice, and in vivo mouse models of NMO. RESULTS In AQP4-expressing cell cultures, the nonpathogenic competing antibodies blocked binding of NMO-IgG in human sera, reducing to near zero complement- and cell-mediated cytotoxicity. The antibodies prevented the development of NMO lesions in an ex vivo spinal cord slice model of NMO and in an in vivo mouse model, without causing cytotoxicity. INTERPRETATION Our results provide proof of concept for a therapy of NMO with blocking antibodies. The broad efficacy of antibody inhibition is likely due to steric competition because of its large physical size compared to AQP4. Blocker therapy to prevent binding of pathogenic autoantibodies to their targets may be useful for treatment of other autoimmune diseases as well.
Collapse
Affiliation(s)
- Lukmanee Tradtrantip
- Department of Medicine, University of California, San Francisco, CA 94143-0521, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lyon RP, Meyer DL, Setter JR, Senter PD. Conjugation of anticancer drugs through endogenous monoclonal antibody cysteine residues. Methods Enzymol 2012; 502:123-38. [PMID: 22208984 DOI: 10.1016/b978-0-12-416039-2.00006-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many methods have been described for the conjugation of drugs to monoclonal antibodies. The presence of a discrete number of readily reducible disulfides in the common IgG subtypes presents a convenient opportunity for conjugation to cysteine residues with thiol-reactive drug-linkers. Such conjugates can be prepared by a straightforward two-step reaction scheme involving the reduction of the antibody disulfides to the desired number of average thiols per antibody, followed by addition of the drug-linker, ideally with a maleimido functionality for rapid, selective reaction. In a discovery setting, this basic method can be scaled down to produce microgram quantities of conjugate for early screening, and in a manufacturing setting can be scaled up to produce grams or kilograms of conjugate for clinical trials and commercialization. The resulting conjugates are readily characterized using common HPLC methods.
Collapse
|
39
|
Journal Watch. Pharmaceut Med 2011. [DOI: 10.1007/bf03256853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|