1
|
Agyekum T, García CL, Fay F, Parent O, Bussy A, Devenyi GA, Chakravarty MM. Cognitive-and lifestyle-related microstructural variation in the ageing human hippocampus. Brain Struct Funct 2025; 230:53. [PMID: 40266346 DOI: 10.1007/s00429-025-02908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Age-related hippocampal alterations often accompany cognitive decline, a significant risk factor for dementias. Modifiable lifestyle factors may help preserve hippocampal neural tissue and slow neurodegeneration and potentially promote cognition in old age. Here, we sought to identify the relationship between lifestyle and cognition in the context of the hippocampal microstructure across the lifespan. We used data from 494 subjects (36-100 years old) without cognitive impairment from the Human Connectome Project-Ageing study. We estimated hippocampal microstructure using myelin-sensitive (T1w/T2w ratio), inflammation-sensitive (MD) and fibre-sensitive (FA) MRI markers. We identified microstructural-lifestyle/-cognition using non-negative matrix factorization to integrate MRI measures into a multivariate spatial signature of hippocampal microstructure covariance followed by partial least squares analysis. Our results reveal that the preservation of axon density and myelin in regions corresponding to subicular regions and CA1 to CA3 regions are negatively associated with age, and is associated with improved performance in executive function tasks, however, this is also associated with a decreased performance in memory tasks. We also show that microstructure is preserved across the hippocampus when there is normal hearing levels, physical fitness and insulin levels and this is negatively associated with age in the presence of cardiovascular risk factors like high body mass index, blood pressure, triglycerides and blood glucose that are in turn associated with hippocampal neurodegeneration. Taken together, our results suggest that lifestyle factors like normal hearing, physical fitness and normal insulin levels may help preserve hippocampal microstructure which may be useful in maintaining optimum performance on executive function tasks and potentially other modes of cognition.
Collapse
Affiliation(s)
- Tyler Agyekum
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Department of Neuroscience, McGill University, Montreal, Canada.
| | - Cindy L García
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Felix Fay
- Department of Neurology, Ludwig Maximilians University of Munich, University Hospital, Großhadern, Munich, Germany
| | - Olivier Parent
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Aurélie Bussy
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- University Hospital of Lausanne, Lausanne, Switzerland
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Canada.
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Canada.
- Department of Psychiatry, McGill University, Montreal, Canada.
| |
Collapse
|
2
|
Nakamoto M, Nishita Y, Tange C, Zhang S, Shimokata H, Sakai T, Otsuka R. Isoflavone intake is associated with longitudinal changes in hippocampal volume, but not total grey matter volume, in Japanese middle-aged and older community dwellers. Eur J Nutr 2025; 64:151. [PMID: 40205227 DOI: 10.1007/s00394-025-03664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE This study aimed to clarify the associations between isoflavone intake and the volume changes of brain regions, specifically the hippocampus and total grey matter (TGM), over 10 years in Japanese middle-aged and older community dwellers. METHODS Data from the National Institute for Longevity Sciences-Longitudinal Study of Aging of 654 men and 671 women aged 40-85 years at baseline (6th wave survey, 2008-2010) who participated in the follow-up study (9th wave survey, 2018-2022) were analyzed. Total isoflavone intake was estimated based on a 3-day dietary record and categorized into quintile groups. The volumes of the hippocampus and TGM were measured by T1-weighted magnetic resonance imaging and longitudinal FreeSurfer software. Estimated mean brain volume changes by quintile of total isoflavone intake were assessed by a general linear model, with a stratified analysis by age group (< 65/≥65 years). RESULTS There were no significant associations between quintile of isoflavone intake and both brain volume changes over 10 years in all participants. On stratification by age group, the multivariable-adjusted difference over time and % change in hippocampal volume were more strongly associated with quintile of total isoflavone intake in those aged ≥ 65 years (difference over time: p for trend = 0.009; % change: p for trend = 0.012). There were no significant longitudinal associations between quintile of total isoflavone intake and TGM volume change in both age groups. CONCLUSION In older Japanese people aged ≥ 65 years, increased intake of total isoflavones might be a new nutritional strategy to prevent hippocampal atrophy.
Collapse
Affiliation(s)
- Mariko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima city, Tokushima, 770-8503, Japan.
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Aichi, Japan.
| | - Yukiko Nishita
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Chikako Tange
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Shu Zhang
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Hiroshi Shimokata
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Aichi, Japan
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Aichi, Japan
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima city, Tokushima, 770-8503, Japan
| | - Rei Otsuka
- Department of Epidemiology of Aging, National Center for Geriatrics and Gerontology, Aichi, Japan
| |
Collapse
|
3
|
Ismail YA, Haitham Y, Walid M, Mohamed H, El-Satar YMA. Efficacy of acetylcholinesterase inhibitors on reducing hippocampal atrophy rate: a systematic review and meta-analysis. BMC Neurol 2025; 25:60. [PMID: 39939901 PMCID: PMC11816531 DOI: 10.1186/s12883-024-03933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/22/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) are conditions characterized by irreversible progressive degeneration to the nervous tissue and are usually associated with cognitive decline and functional deficits, especially in elderly. Acetylcholinesterase inhibitors (AChEIs) like donepezil, rivastigmine, and galantamine are commonly prescribed to alleviate cognitive symptoms associated with NDs. However, their long-term impact on slowing structural brain degeneration, particularly hippocampal atrophy, remains unclear. OBJECTIVE This systematic review and meta-analysis assess the efficacy of AChEIs in reducing hippocampal atrophy in patients with NDs or clinical syndromes that lead to cognitive decline. METHODS A systematic search of PubMed, Scopus, Web of Science, and Cochrane databases, since inception till 20th August 2024, identified randomized controlled trials (RCTs) and comparative studies that measured hippocampal volume changes in elderly patients with NDs and other clinical syndromes. Random effect model was employed to estimate the pooled atrophy rates. Subgroup analysis was conducted by disease, dosage, and side of the measurement. RESULTS From 5,943 initially screened studies, nine were included in the review, and six were analyzed in the meta-analysis, encompassing a total of 2,179 participants. The meta-analysis showed that donepezil at a 10 mg dose significantly reduced hippocampal atrophy compared to placebo (SMD = 0.44, 95% CI [0.08 to 0.81], p = 0.01), whereas the 5 mg dose showed no significant effect on hippocampal volume. Overall, pooled results favored donepezil in reducing hippocampal atrophy (SMD = 0.33, p = 0.04), indicating that higher doses are more effective. Among patients with mild cognitive impairment (MCI), both donepezil and vitamin E were associated with a significant reduction in hippocampal atrophy compared to placebo (SMD = 0.27, p = 0.01). In contrast, galantamine did not significantly reduce hippocampal atrophy in the overall analysis, but it was associated with reduced whole brain atrophy in APOE ε4 carriers. Further analysis revealed no significant difference in the reduction of right or left hippocampal atrophy in donepezil-treated patients. These findings suggest that donepezil, particularly at higher doses, may have a protective effect against hippocampal atrophy in patients with AD and MCI, while galantamine's effect may be more limited, especially in certain genetic subgroups. CONCLUSION Higher doses of donepezil (10 mg) significantly reduce hippocampal atrophy in Alzheimer's disease and mild cognitive impairment, suggesting potential neuroprotective effects. In contrast, lower doses (5 mg) and galantamine showed no significant impact on hippocampal volume, though galantamine reduced whole brain atrophy in APOE ε4 carriers. Dosage and genetic factors are crucial in determining the efficacy of acetylcholinesterase inhibitors in slowing neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Hazim Mohamed
- Faculty of Medicine, Helwan University, Cairo, Egypt
| | | |
Collapse
|
4
|
Shkryl VM. Endoplasmic Reticulum Calcium Signaling in Hippocampal Neurons. Biomolecules 2024; 14:1617. [PMID: 39766324 PMCID: PMC11727531 DOI: 10.3390/biom14121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in cellular homeostasis, regulating calcium levels and coordinating protein synthesis and folding. In neurons, the ER forms interconnected sheets and tubules that facilitate the propagation of calcium-based signals. Calcium plays a central role in the modulation and regulation of numerous functions in excitable cells. It is a versatile signaling molecule that influences neurotransmitter release, muscle contraction, gene expression, and cell survival. This review focuses on the intricate dynamics of calcium signaling in hippocampal neurons, with particular emphasis on the activation of voltage-gated and ionotropic glutamate receptors in the plasma membrane and ryanodine and inositol 1,4,5-trisphosphate receptors in the ER. These channels and receptors are involved in the generation and transmission of electrical signals and the modulation of calcium concentrations within the neuronal network. By analyzing calcium fluctuations in neurons and the associated calcium handling mechanisms at the ER, mitochondria, endo-lysosome and cytosol, we can gain a deeper understanding of the mechanistic pathways underlying neuronal interactions and information transfer.
Collapse
Affiliation(s)
- Vyacheslav M Shkryl
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, NAS of Ukraine, 01024 Kyiv, Ukraine
| |
Collapse
|
5
|
Manco C, Cortese R, Leoncini M, Plantone D, Gentile G, Luchetti L, Zhang J, Di Donato I, Salvadori E, Poggesi A, Cosottini M, Mascalchi M, Federico A, Dotti MT, Battaglini M, Inzitari D, Pantoni L, De Stefano N. Hippocampal atrophy and white matter lesions characteristics can predict evolution to dementia in patients with vascular mild cognitive impairment. J Neurol Sci 2024; 464:123163. [PMID: 39128160 DOI: 10.1016/j.jns.2024.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Vascular mild cognitive impairment (VMCI) is a transitional condition that may evolve into Vascular Dementia(VaD). Hippocampal volume (HV) is suggested as an early marker for VaD, the role of white matter lesions (WMLs) in neurodegeneration remains debated. OBJECTIVES Evaluate HV and WMLs as predictive markers of VaD in VMCI patients by assessing: (i)baseline differences in HV and WMLs between converters to VaD and non-converters, (ii) predictive power of HV and WMLs for VaD, (iii) associations between HV, WMLs, and cognitive decline, (iv)the role of WMLs on HV. METHODS This longitudinal multicenter study included 110 VMCI subjects (mean age:74.33 ± 6.63 years, 60males/50females) from the VMCI-Tuscany Study database. Subjects underwent brain MRI and cognitive testing, with 2-year follow-up data on VaD progression. HV and WMLs were semi-automatically segmented and measured. ANCOVA assessed group differences, while linear and logistic regression models evaluated predictive power. RESULTS After 2 years, 32/110 VMCI patients progressed to VaD. Converting patients had lower HV(p = 0.015) and higher lesion volumes in the posterior thalamic radiation (p = 0.046), splenium of the corpus callosum (p = 0.016), cingulate gyrus (p = 0.041), and cingulum hippocampus(p = 0.038). HV alone did not fully explain progression (p = 0.059), but combined with WMLs volume, the model was significant (p = 0.035). The best prediction model (p = 0.001) included total HV (p = 0.004) and total WMLs volume of the posterior thalamic radiation (p = 0.005) and cingulate gyrus (p = 0.005), achieving 80% precision, 81% specificity, and 74% sensitivity. Lower HV were linked to poorer performance on the Rey Auditory-Verbal Learning Test delayed recall (RAVLT) and Mini Mental State Examination (MMSE). CONCLUSIONS HV and WMLs are significant predictors of progression from VMCI to VaD. Lower HV correlate with worse cognitive performance on RAVLT and MMSE tests.
Collapse
Affiliation(s)
- Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy.
| | | | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Giordano Gentile
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| | - Ludovico Luchetti
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| | | | | | - Emilia Salvadori
- Department of Biomedical and Clinical Sciences, University of Milano, Italy
| | - Anna Poggesi
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences -"Mario Serio", University of Florence, Florence, Italy
| | - Antonio Federico
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Maria Teresa Dotti
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; Siena Imaging SRL, 53100 Siena, Italy
| | - Domenico Inzitari
- NEUROFARBA Department, Neuroscience Section, University of Florence, Florence, Italy
| | - Leonardo Pantoni
- Department of Biomedical and Clinical Sciences, University of Milano, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| |
Collapse
|
6
|
Mann LG, Claassen DO. Mesial temporal dopamine: From biology to behaviour. Eur J Neurosci 2024; 59:1141-1152. [PMID: 38057945 DOI: 10.1111/ejn.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
While colloquially recognized for its role in pleasure, reward, and affect, dopamine is also necessary for proficient action control. Many motor studies focus on dopaminergic transmission along the nigrostriatal pathway, using Parkinson's disease as a model of a dorsal striatal lesion. Less attention to the mesolimbic pathway and its role in motor control has led to an important question related to the limbic-motor network. Indeed, secondary targets of the mesolimbic pathway include the hippocampus and amygdala, and these are linked to the motor cortex through the substantia nigra and thalamus. The modulatory impact of dopamine in the hippocampus and amygdala in humans is a focus of current investigations. This review explores dopaminergic activity in the mesial temporal lobe by summarizing dopaminergic networks and transmission in these regions and examining their role in behaviour and disease.
Collapse
Affiliation(s)
- Leah G Mann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Nemati SS, Sadeghi L, Dehghan G, Sheibani N. Lateralization of the hippocampus: A review of molecular, functional, and physiological properties in health and disease. Behav Brain Res 2023; 454:114657. [PMID: 37683813 DOI: 10.1016/j.bbr.2023.114657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The hippocampus is a part of the brain's medial temporal lobe that is located under the cortex. It belongs to the limbic system and helps to collect and transfer information from short-term to long-term memory, as well as spatial orientation in each mammalian brain hemisphere. After more than two centuries of research in brain asymmetry, the hippocampus has attracted much attention in the study of brain lateralization. The hippocampus is very important in cognitive disorders, related to seizures and dementia, such as epilepsy and Alzheimer's disease. In addition, the motivation to study the hippocampus has increased significantly due to the asymmetry in the activity of the left and right hippocampi in healthy people, and its disruption during some neurological diseases. After a general review of the hippocampal structure and its importance in related diseases, the asymmetry in the brain with a focus on the hippocampus during the growth and maturation of healthy people, as well as the differences created in patients at the molecular, functional, and physiological levels are discussed. Most previous work indicates that the hippocampus is lateralized in healthy people. Also, lateralization at different levels remarkably changes in patients, and it appears that the most complex cognitive disorder is caused by a new dominant asymmetric system.
Collapse
Affiliation(s)
- Seyed Saman Nemati
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Leila Sadeghi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
8
|
Palmer JA, Morris JK, Billinger SA, Lepping RJ, Martin L, Green Z, Vidoni ED. Hippocampal blood flow rapidly and preferentially increases after a bout of moderate-intensity exercise in older adults with poor cerebrovascular health. Cereb Cortex 2023; 33:5297-5306. [PMID: 36255379 PMCID: PMC10152056 DOI: 10.1093/cercor/bhac418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/25/2022] [Indexed: 11/14/2022] Open
Abstract
Over the course of aging, there is an early degradation of cerebrovascular health, which may be attenuated with aerobic exercise training. Yet, the acute cerebrovascular response to a single bout of exercise remains elusive, particularly within key brain regions most affected by age-related disease processes. We investigated the acute global and region-specific cerebral blood flow (CBF) response to 15 minutes of moderate-intensity aerobic exercise in older adults (≥65 years; n = 60) using arterial spin labeling magnetic resonance imaging. Within 0-6 min post-exercise, CBF decreased across all regions, an effect that was attenuated in the hippocampus. The exercise-induced CBF drop was followed by a rebound effect over the 24-minute postexercise assessment period, an effect that was most robust in the hippocampus. Individuals with low baseline perfusion demonstrated the greatest hippocampal-specific CBF effect post-exercise, showing no immediate drop and a rapid increase in CBF that exceeded baseline levels within 6-12 minutes postexercise. Gains in domain-specific cognitive performance postexercise were not associated with changes in regional CBF, suggesting dissociable effects of exercise on acute neural and vascular plasticity. Together, the present findings support a precision-medicine framework for the use of exercise to target brain health that carefully considers age-related changes in the cerebrovascular system.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Department of Neurology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, United States
| | - Jill K Morris
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, School of Health Professions, University of Kansas Medical Center, 3901 Rainbow Blvd. Kansas City, KS, 66160, United States
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
| | - Sandra A Billinger
- Department of Neurology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, United States
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, United States
| | - Rebecca J Lepping
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, School of Health Professions, University of Kansas Medical Center, 3901 Rainbow Blvd. Kansas City, KS, 66160, United States
| | - Laura Martin
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
| | - Zachary Green
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, School of Health Professions, University of Kansas Medical Center, 3901 Rainbow Blvd. Kansas City, KS, 66160, United States
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
| | - Eric D Vidoni
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
| |
Collapse
|
9
|
Zheng X, Cawood J, Hayre C, Wang S. Computer assisted diagnosis of Alzheimer's disease using statistical likelihood-ratio test. PLoS One 2023; 18:e0279574. [PMID: 36800393 PMCID: PMC9937475 DOI: 10.1371/journal.pone.0279574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 12/11/2022] [Indexed: 02/18/2023] Open
Abstract
The purpose of this work is to present a computer assisted diagnostic tool for radiologists in their diagnosis of Alzheimer's disease. A statistical likelihood-ratio procedure from signal detection theory was implemented in the detection of Alzheimer's disease. The probability density functions of the likelihood ratio were constructed by using medial temporal lobe (MTL) volumes of patients with Alzheimer's disease (AD) and normal controls (NC). The volumes of MTL as well as other anatomical regions of the brains were calculated by the FreeSurfer software using T1 weighted MRI images. The MRI images of AD and NC were downloaded from the database of Alzheimer's disease neuroimaging initiative (ADNI). A separate dataset of minimal interval resonance imaging in Alzheimer's disease (MIRIAD) was used for diagnostic testing. A sensitivity of 89.1% and specificity of 87.0% were achieved for the MIRIAD dataset which are better than the 85% sensitivity and specificity achieved by the best radiologists without input of other patient information.
Collapse
Affiliation(s)
- Xiaoming Zheng
- Medical Radiation Science, School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- * E-mail:
| | - Justin Cawood
- Medical Radiation Science, School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Chris Hayre
- Medical Radiation Science, School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Shaoyu Wang
- Biomedical Sciences, School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | | |
Collapse
|
10
|
Comparison of Cognitive Functions Between Patients with Alzheimer Disease, Patients with Mild Cognitive Impairment, and Healthy People. ARCHIVES OF NEUROSCIENCE 2023. [DOI: 10.5812/ans-131408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: There is a growing need for predicting Alzheimer disease (AD) based on emerging neurocognitive dysfunction before the onset of the disease. Objectives: According to neuropathological changes in the mesial temporal lobe (MTL) before the onset of clinical symptoms and the relationship between the function of these structures and cognitive functions (such as visual memory, working memory, and new learning), we aimed to investigate the possibility of these cognitive functions as markers of transition from mild cognitive impairment (MCI) to AD. Methods: In this case-control study, 15 patients with AD, 18 patients with MCI (from memory clinics of Tehran University of Medical Sciences), and 15 healthy people were compared using the 3 subtests of the Cambridge Neuropsychological Test Automated Battery (CANTAB), including spatial working memory (SWM), pattern recognition memory (PRM), and paired-associate learning (PAL). The tests were performed between 9 AM and 12 noon. The scores were compared by a 1-way analysis of variance (ANOVA). Results: The mean ages of AD, MCI, and healthy groups were 68.66, 68.22, and 64.26 years, respectively. In terms of the SWM test, in 2 of 3 variables, there were significant differences between the 3 groups (P = 0.000 and P = 0.001). Regarding the PRM test, there were significant differences between the 3 groups in accuracy and response time (P = 0.000 and P = 0.004, respectively). Regarding PAL, there were significant differences between the 3 groups in all 3 variables (P = 0.000). The Mini-mental State Examination (MMSE) scores were associated with almost all variable scores (P = 0.000). Conclusions: Dysfunction in new learning and recognition memory can be indicators of MCI and its progression to AD, whereas the assessment of SWM can only be used to assess the progression of MCI to AD.
Collapse
|
11
|
Liu YS, Zhao HF, Li Q, Cui HW, Huang GD. Research Progress on the Etiology and Pathogenesis of Alzheimer's Disease from the Perspective of Chronic Stress. Aging Dis 2022:AD.2022.1211. [PMID: 37163426 PMCID: PMC10389837 DOI: 10.14336/ad.2022.1211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 05/12/2023] Open
Abstract
Due to its extremely complex pathogenesis, no effective drugs to prevent, delay progression, or cure Alzheimer's disease (AD) exist at present. The main pathological features of AD are senile plaques composed of β-amyloid, neurofibrillary tangles formed by hyperphosphorylation of the tau protein, and degeneration or loss of neurons in the brain. Many risk factors associated with the onset of AD, including gene mutations, aging, traumatic brain injury, endocrine and cardiovascular diseases, education level, and obesity. Growing evidence points to chronic stress as one of the major risk factors for AD, as it can promote the onset and development of AD-related pathologies via a mechanism that is not well known. The use of murine stress models, including restraint, social isolation, noise, and unpredictable stress, has contributed to improving our understanding of the relationship between chronic stress and AD. This review summarizes the evidence derived from murine models on the pathological features associated with AD and the related molecular mechanisms induced by chronic stress. These results not only provide a retrospective interpretation for understanding the pathogenesis of AD, but also provide a window of opportunity for more effective preventive and identifying therapeutic strategies for stress-induced AD.
Collapse
Affiliation(s)
- Yun-Sheng Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hua-Fu Zhao
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Qian Li
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Han-Wei Cui
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, China
| | - Guo-Dong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
12
|
Drinkwater E, Davies C, Spires-Jones TL. Potential neurobiological links between social isolation and Alzheimer's disease risk. Eur J Neurosci 2022; 56:5397-5412. [PMID: 34184343 DOI: 10.1111/ejn.15373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
It is estimated that 40% of dementia cases could be prevented by modification of lifestyle factors that associate with disease risk. One of these potentially modifiable lifestyle factors is social isolation. In this review, we discuss what is known about associations between social isolation and Alzheimer's disease, the most common cause of dementia. This is particularly relevant in the time of the COVID-19 pandemic when social isolation has been enforced with potential emerging negative impacts on cognition. While there are neurobiological mechanisms emerging that may account for the observed epidemiological associations between social isolation and Alzheimer's disease, more fundamental research is needed to fully understand the brain changes induced by isolation that may make people vulnerable to disease.
Collapse
Affiliation(s)
| | - Caitlin Davies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Translational Neuroscience PhD Programme, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Dhikav V, Jadeja B, Gupta P. Community Screening of Probable Dementia at Primary Care Center in Western India: A Pilot Project. J Neurosci Rural Pract 2022; 13:490-494. [PMID: 35946022 PMCID: PMC9357469 DOI: 10.1055/s-0042-1750102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Introduction
Timely detecting dementia is an important goal of clinicians and public health professionals alike for better management and prevention of complications. Community screening of dementia could be a powerful strategy. Facilities for dementia screening at primary care level are virtually nonexistent and are a prominent implementation gap. Hence, a study was done to assess the feasibility of dementia screening at primary care using General Practitioner Assessment of Cognition (GPCoG) scale among older adults with subjective memory complaints. It was further aimed to assess the frequency of cardiovascular risk factors in those who met screening criteria for cognitive impairment.
Materials and Methods
Older adults coming to three urban primary care centers in western India for screening of noncommunicable diseases such as diabetes and hypertension (opportunistic screening) with subjective memory complaints were enrolled and screened for dementia using GPCoG. A Mini-Mental State Examination (MMSE) was done in patients who came alone for referral purpose in case the score levels in GPCoG examination met cutoff limits for informant interview. Written medical records were examined to assess status of comorbid vascular risk factors such as diabetes, hypertension, coronary artery disease, and cerebrovascular accidents.
Results
A total of 350 older adults (M:F = 276: 74; mean age ± 68 ± 6.7 years) were screened out of 3,000 older adults who reported during the study period. There were 161 older adults with GPCoG score less than or equal to 5 (56.14%) and 149 subjects with MMSE less than or equal to 24 indicating significant cognitive impairment (42.5%). There were very few (
n
= 11, 3.14%) out of 350 people who came with caregivers; hence, MMSE was done along with for referral to healthcare providers. A total of 142 had comorbid diabetes/and or hypertension (40.5%). A total of 86 had diabetes alone (24.5%) and a total of 128 had hypertension (36.5%).
Conclusion
Current study results indicate that using a simple screening tool such as GPCoG, community screening of probable dementia, is feasible in primary care settings, as is indicated by significant yield of probable dementia cases (42.5%). These cases can be referred to appropriate centers for further workup, confirmation of diagnosis, and treatment. Also, detection of comorbid cardiovascular conditions, for example, diabetes and hypertension, that can be managed along with cognitive impairment/dementia for potential prevention/further deterioration, which can strengthen noncommunicable disease screening.
Collapse
Affiliation(s)
- Vikas Dhikav
- Indian Council of Medical Research-National Institute for Implementation Research on Non Communicable Diseases, Jodhpur, Rajasthan.,Ministry of Health and Family Welfare, Government of India
| | - Bhargavi Jadeja
- Indian Council of Medical Research-National Institute for Implementation Research on Non Communicable Diseases, Jodhpur, Rajasthan.,Ministry of Health and Family Welfare, Government of India
| | - Pooja Gupta
- Indian Council of Medical Research-National Institute for Implementation Research on Non Communicable Diseases, Jodhpur, Rajasthan.,Ministry of Health and Family Welfare, Government of India
| |
Collapse
|
14
|
de Sousa NF, Scotti L, de Moura ÉP, dos Santos Maia M, Soares Rodrigues GC, de Medeiros HIR, Lopes SM, Scotti MT. Computer Aided Drug Design Methodologies with Natural Products in the Drug Research Against Alzheimer's Disease. Curr Neuropharmacol 2022; 20:857-885. [PMID: 34636299 PMCID: PMC9881095 DOI: 10.2174/1570159x19666211005145952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Natural products are compounds isolated from plants that provide a variety of lead structures for the development of new drugs by the pharmaceutical industry. The interest in these substances increases because of their beneficial effects on human health. Alzheimer's disease (AD) affects occur in about 80% of individuals aged 65 years. AD, the most common cause of dementia in elderly people, is characterized by progressive neurodegenerative alterations, as decrease of cholinergic impulse, increased toxic effects caused by reactive oxygen species and the inflammatory process that the amyloid plaque participates. In silico studies is relevant in the process of drug discovery; through technological advances in the areas of structural characterization of molecules, computational science and molecular biology have contributed to the planning of new drugs used against neurodegenerative diseases. Considering the social impairment caused by an increased incidence of disease and that there is no chemotherapy treatment effective against AD; several compounds are studied. In the researches for effective neuroprotectants as potential treatments for Alzheimer's disease, natural products have been extensively studied in various AD models. This study aims to carry out a literature review with articles that address the in silico studies of natural products aimed at potential drugs against Alzheimer's disease (AD) in the period from 2015 to 2021.
Collapse
Affiliation(s)
- Natália Ferreira de Sousa
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Luciana Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil;,Lauro Wanderley University Hospital (HULW), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil,Address correspondence to this author at the Health Sciences Center, Chemioinformatic Laboratory, Federal University of Paraíba, Paraíba, Brazil; E-mail:
| | - Érika Paiva de Moura
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Mayara dos Santos Maia
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Herbert Igor Rodrigues de Medeiros
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Simone Mendes Lopes
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Marcus Tullius Scotti
- Lauro Wanderley University Hospital (HULW), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| |
Collapse
|
15
|
Thapaliya K, Staines D, Marshall-Gradisnik S, Su J, Barnden L. Volumetric differences in hippocampal subfields and associations with clinical measures in myalgic encephalomyelitis/chronic fatigue syndrome. J Neurosci Res 2022; 100:1476-1486. [PMID: 35355311 PMCID: PMC9321967 DOI: 10.1002/jnr.25048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients suffer from a cognitive and memory dysfunction. Because the hippocampus plays a key role in both cognition and memory, we tested for volumetric differences in the subfields of the hippocampus in ME/CFS. We estimated hippocampal subfield volumes for 25 ME/CFS patients who met Fukuda criteria only (ME/CFSFukuda), 18 ME/CFS patients who met the stricter ICC criteria (ME/CFSICC), and 25 healthy controls (HC). Group comparisons with HC detected extensive differences in subfield volumes in ME/CFSICC but not in ME/CFSFukuda. ME/CFSICC patients had significantly larger volume in the left subiculum head (p < 0.001), left presubiculum head (p = 0.0020), and left fimbria (p = 0.004). Correlations of hippocampus subfield volumes with clinical measures were stronger in ME/CFSICC than in ME/CFSFukuda patients. In ME/CFSFukuda patients, we detected positive correlations between fatigue and hippocampus subfield volumes and a negative correlation between sleep disturbance score and the right CA1 body volume. In ME/CFSICC patients, we detected a strong negative relationship between fatigue and left hippocampus tail volume. Strong negative relationships were also detected between pain and SF36 physical scores and two hippocampal subfield volumes (left: GC‐ML‐DG head and CA4 head). Our study demonstrated that volumetric differences in hippocampal subfields have strong statistical inference for patients meeting the ME/CFSICC case definition and confirms hippocampal involvement in the cognitive and memory problems of ME/CFSICC patients.
Collapse
Affiliation(s)
- Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Jiasheng Su
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Leighton Barnden
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
16
|
Probable Reasons for Neuron Copper Deficiency in the Brain of Patients with Alzheimer’s Disease: The Complex Role of Amyloid. INORGANICS 2022. [DOI: 10.3390/inorganics10010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder that eventually leads the affected patients to die. The appearance of senile plaques in the brains of Alzheimer’s patients is known as a main symptom of this disease. The plaques consist of different components, and according to numerous reports, their main components include beta-amyloid peptide and transition metals such as copper. In this disease, metal dyshomeostasis leads the number of copper ions to simultaneously increase in the plaques and decrease in neurons. Copper ions are essential for proper brain functioning, and one of the possible mechanisms of neuronal death in Alzheimer’s disease is the copper depletion of neurons. However, the reason for the copper depletion is as yet unknown. Based on the available evidence, we suggest two possible reasons: the first is copper released from neurons (along with beta-amyloid peptides), which is deposited outside the neurons, and the second is the uptake of copper ions by activated microglia.
Collapse
|
17
|
Lindlöf A. The Vulnerability of the Developing Brain: Analysis of Highly Expressed Genes in Infant C57BL/6 Mouse Hippocampus in Relation to Phenotypic Annotation Derived From Mutational Studies. Bioinform Biol Insights 2022; 16:11779322211062722. [PMID: 35023907 PMCID: PMC8743926 DOI: 10.1177/11779322211062722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/06/2022] Open
Abstract
The hippocampus has been shown to have a major role in learning and memory, but also to participate in the regulation of emotions. However, its specific role(s) in memory is still unclear. Hippocampal damage or dysfunction mainly results in memory issues, especially in the declarative memory but, in animal studies, has also shown to lead to hyperactivity and difficulty in inhibiting responses previously taught. The brain structure is affected in neuropathological disorders, such as Alzheimer's, epilepsy, and schizophrenia, and also by depression and stress. The hippocampus structure is far from mature at birth and undergoes substantial development throughout infant and juvenile life. The aim of this study was to survey genes highly expressed throughout the postnatal period in mouse hippocampus and which have also been linked to an abnormal phenotype through mutational studies to achieve a greater understanding about hippocampal functions during postnatal development. Publicly available gene expression data from C57BL/6 mouse hippocampus was analyzed; from a total of 5 time points (at postnatal day 1, 10, 15, 21, and 30), 547 genes highly expressed in all of these time points were selected for analysis. Highly expressed genes are considered to be of potential biological importance and appear to be multifunctional, and hence any dysfunction in such a gene will most likely have a large impact on the development of abilities during the postnatal and juvenile period. Phenotypic annotation data downloaded from Mouse Genomic Informatics database were analyzed for these genes, and the results showed that many of them are important for proper embryo development and infant survival, proper growth, and increase in body size, as well as for voluntary movement functions, motor coordination, and balance. The results also indicated an association with seizures that have primarily been characterized by uncontrolled motor activity and the development of proper grooming abilities. The complete list of genes and their phenotypic annotation data have been compiled in a file for easy access.
Collapse
|
18
|
Gandolfi D, Boiani GM, Bigiani A, Mapelli J. Modeling Neurotransmission: Computational Tools to Investigate Neurological Disorders. Int J Mol Sci 2021; 22:4565. [PMID: 33925434 PMCID: PMC8123833 DOI: 10.3390/ijms22094565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
The investigation of synaptic functions remains one of the most fascinating challenges in the field of neuroscience and a large number of experimental methods have been tuned to dissect the mechanisms taking part in the neurotransmission process. Furthermore, the understanding of the insights of neurological disorders originating from alterations in neurotransmission often requires the development of (i) animal models of pathologies, (ii) invasive tools and (iii) targeted pharmacological approaches. In the last decades, additional tools to explore neurological diseases have been provided to the scientific community. A wide range of computational models in fact have been developed to explore the alterations of the mechanisms involved in neurotransmission following the emergence of neurological pathologies. Here, we review some of the advancements in the development of computational methods employed to investigate neuronal circuits with a particular focus on the application to the most diffuse neurological disorders.
Collapse
Affiliation(s)
- Daniela Gandolfi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
| | - Giulia Maria Boiani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
| | - Albertino Bigiani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Jonathan Mapelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; (D.G.); (G.M.B.); (A.B.)
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
19
|
Kang X, Li C, Xie Y, He LL, Xiao F, Zhan KB, Tang YY, Li X, Tang XQ. Hippocampal ornithine decarboxylase/spermidine pathway mediates H 2S-alleviated cognitive impairment in diabetic rats: Involving enhancment of hippocampal autophagic flux. J Adv Res 2020; 27:31-40. [PMID: 33318864 PMCID: PMC7728590 DOI: 10.1016/j.jare.2020.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/14/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction We have previously demonstrated the antagonistic role of hydrogen sulfide (H2S) in the cognitive dysfunction of streptozotocin (STZ)-induced diabetic rats. It has been confirmed that the impaired hippocampal autophagic flux has a key role in the pathogenesis of cognitive impairment and that ornithine decarboxylase (ODC)/spermidine (Spd) pathway plays an important role in the formation of memory by promoting autophagic flux. Objectives To investigate the roles of hippocampal ODC/Spd pathway and autophagic flux in H2S-attenuated cognitive impairment in STZ-induced diabetic rats. Methods Cognitive function is judged by the novel objective recognition task (NOR), the Y-maze, and the Morris water maze (MWM) tests. The ODC/Spd pathway in hippocampus was evaluated using the expression of ODC detected by western blot and the level of Spd assayed by GC-MS. Autophagic flux was assessed using the expressions of Beclin-1, LC3II/I, and P62 detected by western blot, and the number of autophagosomes observed by transmission electron microscope. Results Sodium hydrosulfide (NaHS, a donor of H2S) markedly improved the autophagic flux in the hippocampus of STZ-exposed rats, as evidenced by a decrease in the number of autophagosomes as wells as downregulations in the expressions of LC3-II, Beclin-1, and P62 in the hippocampus of cotreatment with NaHS and STZ rats. NaHS also up-regulated the expression of ODC and the level of Spd in the hippocampus of STZ-induced diabetic rats. Furthermore, inhibited hippocampal ODC/Spd pathway by difluoromethylornithine (DFMO) markedly reversed the protections of NaHS against the hippocampal autophagic flux impairment as well as the cognitive dysfunction in STZ-exposed rats. Conclusion These findings indicated that improving hippocampal autophagic flux plays a key role in H2S-attenuated cognitive impairment in STZ-induced diabetic rats, as results of up-regulating hippocampal ODC/Spd pathway.
Collapse
Affiliation(s)
- Xuan Kang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China.,Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China
| | - Cheng Li
- Department of Emergency Affiliated Nanhua Hospital, University of South China, Hengyang 421001, Hunan, PR China.,Department of Neurology, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Yan Xie
- Department of Neurology, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Ling-Li He
- Department of Neurology, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Fan Xiao
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China
| | - Ke-Bin Zhan
- Department of Neurology, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Yi-Yun Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China
| | - Xiang Li
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Xiao-Qing Tang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China.,Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China
| |
Collapse
|
20
|
Balestrieri JVL, Nonato MB, Gheler L, Prandini MN. Structural Volume of Hippocampus and Alzheimer's Disease. ACTA ACUST UNITED AC 2020; 66:512-515. [PMID: 32578788 DOI: 10.1590/1806-9282.66.4.512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]
Affiliation(s)
| | - Mahara Barbosa Nonato
- . Estudante de Medicina, Faculdade de Medicina do ABC - FMABC, Santo André, SP, Brasil
| | - Larissa Gheler
- . Estudante de Medicina, Centro Universitário de Adamantina (UniFAI), Adamantina, SP, Brasil
| | - Mirto Nelso Prandini
- . Médico e Doutor - Departamento de Neurocirurgia da Universidade Federal de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
21
|
Effect of Combined Antihypertensive and Lipid-Lowering Therapies on Cognitive Function: A New Treatment Strategy? Cardiol Res Pract 2020; 2020:1484357. [PMID: 32351732 PMCID: PMC7178519 DOI: 10.1155/2020/1484357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 01/06/2023] Open
Abstract
Risk factors for cardiovascular disease such as hypertension and hyperlipidemia are associated with cognitive decline. However, there is still no clear evidence that the use of antihypertensive or lipid-lowering therapy can prevent or delay cognitive decline or development of dementia. To provide a reference for clinical treatment, we analyzed the potential mechanisms of cognitive dysfunction induced by hypertension and hyperlipidemia, the clinical research and controversy of antihypertensive and lipid-lowering therapies on cognitive function, and the clinical value of combined antihypertensive and lipid-lowering therapy. It is currently believed that hypertension and elevated blood cholesterol levels in middle-aged people may be related to cognitive impairment or dementia in the elderly. Some studies suggest that intensive antihypertensive or lipid-lowering therapies are better than standard antihypertensive or lipid-lowering therapy, yet further tests are needed to confirm their effects on cognitive function. Actively controlling potential risk factors from middle age may be important for Alzheimer's disease (AD) prevention.
Collapse
|
22
|
Salarinasab S, Salimi L, Alidadiani N, Shokrollahi E, Arzhanga P, Karbasforush S, Marofi F, Nasirzadeh M, Rahbarghazi R, Nourazarian A, Nikanfar M. Interaction of opioid with insulin/IGFs signaling in Alzheimer's disease. J Mol Neurosci 2020; 70:819-834. [PMID: 32026387 DOI: 10.1007/s12031-020-01478-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease is associated with biochemical and histopathological changes characterized by molecular abnormalities. Due to the lack of effective treatments for Alzheimer's disease, many attempts have been made to find potential therapies to reduce or even return neuronal loss after disease initiation. Alzheimer's disease is also touted as type III diabetes, showing an association with insulin signaling. The large distribution of the insulin receptor on the cell surface and its regulatory role in the central nervous system suggests that the pathogenesis of Alzheimer's disease could be ascribed to insulin signaling. The interference of opioids, such as morphine with insulin signaling pathways, is thought to occur via direct crosstalk between the signaling pathways of the insulin receptor and the mu-opioid receptor. In this review article, we discuss the possible crosstalk between the mu-opioid receptor and insulin signaling pathways. The association of these two signaling pathways with Alzheimer's disease is also debated.
Collapse
Affiliation(s)
- Sadegh Salarinasab
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Leila Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Alidadiani
- Department of Cardiac Surgery, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Elhameh Shokrollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Pishva Arzhanga
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saedeh Karbasforush
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Nasirzadeh
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Imam Reza St, Golgasht St, Tabriz, 51666-14756, Iran.
| | - Alireza Nourazarian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht St, Tabriz, 51666-16471, Iran.
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Hepatic fat is superior to BMI, visceral and pancreatic fat as a potential risk biomarker for neurodegenerative disease. Eur Radiol 2019; 29:6662-6670. [PMID: 31187217 DOI: 10.1007/s00330-019-06276-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Prior studies relating body mass index (BMI) to brain volumes suggest an overall inverse association. However, BMI might not be an ideal marker, as it disregards different fat compartments, which carry different metabolic risks. Therefore, we analyzed MR-based fat depots and their association with gray matter (GM) volumes of brain structures, which show volumetric changes in neurodegenerative diseases. METHODS Warp-based automated brain segmentation of 3D FLAIR sequences was obtained in a population-based study cohort. Associations of temporal lobe, cingulate gyrus, and hippocampus GM volume with BMI and MR-based quantification of visceral adipose tissue (VAT), as well as hepatic and pancreatic proton density fat fraction (PDFFhepatic and PDFFpanc, respectively), were assessed by linear regression. RESULTS In a sample of 152 women (age 56.2 ± 9.0 years) and 199 men (age 56.1 ± 9.1 years), we observed a significant inverse association of PDFFhepatic and cingulate gyrus volume (p < 0.05) as well as of PDFFhepatic and hippocampus volume (p < 0.05), when adjusting for age and sex. This inverse association was further enhanced for cingulate gyrus volume after additionally adjusting for hypertension, smoking, BMI, LDL, and total cholesterol (p < 0.01) and also alcohol (p < 0.01). No significant association was observed between PDFFhepatic and temporal lobe and between temporal lobe, cingulate gyrus, or hippocampus volume and BMI, VAT, and PDFFpanc. CONCLUSIONS We observed a significant inverse, independent association of cingulate gyrus and hippocampus GM volume with hepatic fat, but not with other obesity measures. Increased hepatic fat could therefore serve as a marker of high-risk fat distribution. KEY POINTS • Obesity is associated with neurodegenerative processes. • In a population-based study cohort, hepatic fat was superior to BMI and visceral and pancreatic fat as a risk biomarker for decreased brain volume of cingulate gyrus and hippocampus. • Increased hepatic fat could serve as a marker of high-risk fat distribution.
Collapse
|
24
|
Shahidi S, Hashemi-Firouzi N, Afshar S, Asl SS, Komaki A. Protective Effects of 5-HT1A Receptor Inhibition and 5-HT2A Receptor Stimulation Against Streptozotocin-Induced Apoptosis in the Hippocampus. Malays J Med Sci 2019; 26:40-51. [PMID: 31447607 PMCID: PMC6687217 DOI: 10.21315/mjms2019.26.2.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Intracerebroventricular administration of streptozotocin (icv-STZ) induced apoptosis changes in neurons similar to Alzheimer's disease. The serotonergic system via its receptor involved in survival of neurons. The present study examined the ability of selective 5-HT1A receptor antagonist (NAD-299) and 5-HT2A receptor agonist (TCB-2) to attenuate the apoptosis caused by the icv-STZ in the rat. METHODS The icv-STZ (3 mg/kg, 10 μL, twice) induced neuronal loss in the hippocampus of adult male rats. Animals were divided into naive control, sham-operated, STZ+saline (1 μL, icv), STZ+NAD-299 (5 μg/μL, icv), STZ+TCB-2 (5 μg/μL, icv), and STZ+NAD-299+TCB-2 (5 μg/μL of any agent, icv) groups. Following the 35 days' treatment period, neuronal apoptosis was detected using the Tunnel. Cells with morphological features of apoptotic cell were contended by microscopy. RESULTS TCB-2 and NAD-299 administration decreased number of apoptotic neurons in the treatment group compared with the STZ group. Combined treatment of STZ rat with NAD+TCB more decreased number of apoptotic cells in compare to TCB-2 or NAD-299 treated STZ groups. CONCLUSION Treatment with 5-HT1A receptor antagonist or 5-HT2A receptor agonist diminished apoptosis. The beneficial effect of 5HT1A receptor inhibition was potentiated with activation of 5-HT2A receptor in prevention of apoptosis in hippocampus.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Simin Afshar
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Soleimani Asl
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
25
|
Zappa Villar MF, López Hanotte J, Falomir Lockhart E, Trípodi LS, Morel GR, Reggiani PC. Intracerebroventricular streptozotocin induces impaired Barnes maze spatial memory and reduces astrocyte branching in the CA1 and CA3 hippocampal regions. J Neural Transm (Vienna) 2018; 125:1787-1803. [DOI: 10.1007/s00702-018-1928-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
|
26
|
Corrêa-Velloso JC, Gonçalves MC, Naaldijk Y, Oliveira-Giacomelli Á, Pillat MM, Ulrich H. Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer's Disease: pharmacological and stem cell approaches. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:34-53. [PMID: 28476640 DOI: 10.1016/j.pnpbp.2017.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022]
Abstract
Neuropsychiatric disorders involve various pathological mechanisms, resulting in neurodegeneration and brain atrophy. Neurodevelopmental processes have shown to be critical for the progression of those disorders, which are based on genetic and epigenetic mechanisms as well as on extrinsic factors. We review here common mechanisms underlying the comorbidity of Bipolar Disorders and Alzheimer's Disease, such as aberrant neurogenesis and neurotoxicity, reporting current therapeutic approaches. The understanding of these mechanisms precedes stem cell-based strategies as a new therapeutic possibility for treatment and prevention of Bipolar and Alzheimer's Disease progression. Taking into account the difficulty of studying the molecular basis of disease progression directly in patients, we also discuss the importance of stem cells for effective drug screening, modeling and treating psychiatric diseases, once in vitro differentiation of patient-induced pluripotent stem cells provides relevant information about embryonic origins, intracellular pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Juliana C Corrêa-Velloso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Maria Cb Gonçalves
- Departamento de Neurologia e Neurociências, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, São Paulo, SP 04039-032, Brazil
| | - Yahaira Naaldijk
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Micheli M Pillat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
27
|
In Silico Studies Applied to Natural Products with Potential Activity Against Alzheimer’s Disease. NEUROMETHODS 2018. [DOI: 10.1007/978-1-4939-7404-7_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
Sarbu M, Vukelić Ž, Clemmer DE, Zamfir AD. Ion mobility mass spectrometry provides novel insights into the expression and structure of gangliosides in the normal adult human hippocampus. Analyst 2018; 143:5234-5246. [DOI: 10.1039/c8an01118d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
General work-flow for ganglioside analysis by IM-MS.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter
- Timisoara
- Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry
- University of Zagreb Medical School
- Zagreb
- Croatia
| | | | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter
- Timisoara
- Romania
- “Aurel Vlaicu” University of Arad
- Arad
| |
Collapse
|
29
|
Choi H, Yang Y, Han HJ, Jeong JH, Park MY, Kim YB, Jo KD, Choi JY, Kang KH, Kang H, Kwon DY, Yoo BG, Lee HJ, Shin BS, Jeon SM, Kwon OD, Kim JS, Lee SJ, Kim Y, Park TH, Kim YJ, Yang HJ, Park HY, Shin HE, Lee JS, Jung YH, Lee AY, Shin DI, Shin KJ, Park KH. Observational Study of Clinical and Functional Progression Based on Initial Brain MRI Characteristics in Patients with Alzheimer's Disease. J Alzheimers Dis 2018; 66:1721-1730. [PMID: 30452413 PMCID: PMC6294580 DOI: 10.3233/jad-180565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is a useful tool to predict the diagnosis and progression of Alzheimer's disease (AD), especially for primary physicians. However, the correlation between baseline MRI findings and AD progression has not been fully established. OBJECTIVE To investigate the correlation between hippocampal atrophy (HA) and white matter hyperintensities (WMH) on initial brain MRI images and the degree of cognitive decline and functional changes over 1 year. METHODS In this prospective, 12-month observational study, dementia outpatients were recruited from 29 centers across South Korea. Baseline assessments of HA and WMH on baseline brain MRI were derived as well as cognitive function, dementia severity, activities of daily living, and acetylcholinesterase inhibitor (AChEI) use. Follow-up assessments were conducted at 6 and 12 months. RESULTS Among 899 enrolled dementia patients, 748 were diagnosed with AD of whom 654 (87%) were taking AChEIs. Baseline WMH showed significant correlations with age, current alcohol consumption, and Clinical Dementia Rating score; baseline HA was correlated with age, family history, physical exercise, and the results of cognitive assessments. Among the AChEI group, changes in the Korean version of the Instrumental Activities of Daily Living (K-IADL) were correlated with the severity of HA on baseline brain MRI, but not with the baseline severity of WMH. In the no AChEI group, changes in K-IADL were correlated with the severity of WMH and HA at baseline. CONCLUSION Baseline MRI findings could be a useful tool for predicting future clinical outcomes by primary physicians, especially in relation to patients' functional status.
Collapse
Affiliation(s)
- Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | - YoungSoon Yang
- Department of Neurology, Ewha Womans University, Mokdong Hospital, Seoul, Korea
| | - Hyun Jeong Han
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jee Hyang Jeong
- Department of Neurology, Gangneung Asan Hospital, Gangneung, Korea
| | - Mee Young Park
- Department of Neurology, Konkuk University Chungju Hospital, Chunju, Korea
| | - Yong Bum Kim
- Department of Neurology, Kyungpook National University Medical Center, Daegu, Korea
| | - Kwang Deog Jo
- Department of Neurology, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Jin-Yong Choi
- Department of Neurology, Korea University Ansan Hospital, Ansan, Korea
| | - Kyung-Hun Kang
- Department of Neurology, Kosin University College of Medicine, Busan, Korea
| | - Heeyoung Kang
- Department of Neurology, Gwangju Veterans Hospital, Gwangju, Korea
| | - Do-Young Kwon
- Department of Neurology, Chonbuk National University Medical School, Jeonju, Chonbuk, Korea
| | | | - Hyun Jin Lee
- Department of Neurology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | | | - Sung-Man Jeon
- Department of Neurology, Eulji University College of Medicine, Daejeon, Korea
| | - Oh Dae Kwon
- Department of Neurology, Myongji Hospital, Goyang, Korea
| | - Jin-Suk Kim
- Samsung Changwon Hospital, Changwon, Seoul, Korea
| | - Soo-Joo Lee
- Department of Neurology, Seoul Medical Center, Seoul, Korea
| | | | - Tai-Hwan Park
- Department of Neurology, Yeungnam University College of Medicine, Daegu, Korea
| | - Young Jin Kim
- Department of Neurology, Ulsan University Hospital, Ulsan, Korea
| | - Hui-Jun Yang
- Department of Neurology, Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Korea
| | - Hyun-Young Park
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hae-Eun Shin
- Department of Neurology, Cheju National University Hospital, Jeju, Korea
| | - Jung Seok Lee
- Department of Neurology, SVH Medical Center, Seoul, Korea
| | - Yo Han Jung
- Department of Neurology, Changwon Fatima Hospital, Changwon, Seoul, Korea
| | - Ae Young Lee
- Department of Neurology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Dong-Ick Shin
- Department of Neurology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Kyong Jin Shin
- Department of Neurology, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Kee Hyung Park
- Department of Neurology, College of Medicine, Gachon University Gil Hospital, Incheon, Korea
| |
Collapse
|
30
|
Guo CP, Wei Z, Huang F, Qin M, Li X, Wang YM, Wang Q, Wang JZ, Liu R, Zhang B, Li HL, Wang XC. High salt induced hypertension leads to cognitive defect. Oncotarget 2017; 8:95780-95790. [PMID: 29221166 PMCID: PMC5707060 DOI: 10.18632/oncotarget.21326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/17/2017] [Indexed: 01/01/2023] Open
Abstract
Although increasing evidences suggest a relationship between hypertension and brain function for years, it is still unclear whether hypertension constitutes a risk factor for cognitive decline and its underlying mechanism. In the present study, an experimental animal model of hypertension simply by feeding rats with high salt diet was employed. We found that long-term high salt intake caused a marked increase of systolic blood pressure linked to a declined regional cerebral blood flow. Fear conditioning and morris water maze behavioral test revealed that high salt diet induced hippocampal dependent spatial reference memory deficits, while a decreased synaptogenesis without neuronal loss in hippocampus was observed in high salt treated rats. Furthermore, we found that high salt induced a decrease of intracellular calcium, which inactivated CaMK II and resulted in dephosphorylation of CREB at Ser133. These findings suggest a novel etiopathogenic mechanism of cognitive deficit induced by hypertension, which is initiated by high salt diet.
Collapse
Affiliation(s)
- Cui-Ping Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Qin
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu-Man Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Division of Neurodegenerative Disorders, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hong-Lian Li
- Department of Histology and Embryology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Division of Neurodegenerative Disorders, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| |
Collapse
|
31
|
Shavit Stein E, Itsekson Hayosh Z, Vlachos A, Maggio N. Stress and Corticosteroids Modulate Muscarinic Long Term Potentiation (mLTP) in the Hippocampus. Front Cell Neurosci 2017; 11:299. [PMID: 29033789 PMCID: PMC5627013 DOI: 10.3389/fncel.2017.00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/08/2017] [Indexed: 12/16/2022] Open
Abstract
Stress influences synaptic plasticity, learning and memory in a steroid hormone receptor dependent manner. Based on these findings it has been proposed that stress could be a major risk factor for the development of cognitive decline and dementia. Interestingly, evidence has been provided that stress also affects muscarinic, i.e., acetylcholine (ACh)-mediated neurotransmission. To learn more about the impact of stress and steroids on synaptic plasticity, in this study, we investigated the effects of stress on muscarinic long term potentiation (mLTP). We report that multiple, unpredictable exposure to stress depresses carbachol (0.5 μM)-induced mLTP, while this effect of stress is not observed in hippocampal slices prepared from mice exposed only to a single stressful procedure. Furthermore, we demonstrate that activation of distinct steroid hormone receptors is involved in stress-mediated alterations of mLTP. Activation of mineralocorticoid receptors (MR) promotes mLTP, while glucocorticoid receptor (GR) activity impairs mLTP. These effects of multiple unpredictable stress on mLTP are long-lasting since they are detected even two weeks after the last stressful experience. Thus, multiple unpredictable events rather than a single stressful experience affect mLTP in a steroid hormone receptor dependent manner, suggesting that chronic unpredictable stress can lead to lasting alterations in hippocampal cholinergic plasticity.
Collapse
Affiliation(s)
- Efrat Shavit Stein
- Department of Neurology, The Chaim Sheba Medical Center at Tel HashomerRamat Gan, Israel
| | - Ze'Ev Itsekson Hayosh
- Department of Neurology, The Chaim Sheba Medical Center at Tel HashomerRamat Gan, Israel
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg, Germany
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center at Tel HashomerRamat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center at Tel HashomerRamat Gan, Israel
| |
Collapse
|
32
|
Wang X, Zhang Y, Niu H, Geng Y, Wang B, Yang X, Yan P, Li Q, Bi K. Ultra-fast liquid chromatography with tandem mass spectrometry determination of eight bioactive components of Kai-Xin-San in rat plasma and its application to a comparative pharmacokinetic study in normal and Alzheimer's disease rats. J Sep Sci 2017; 40:2131-2140. [PMID: 28342292 DOI: 10.1002/jssc.201601343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 07/20/2023]
Abstract
A method of ultra-fast liquid chromatography with tandem mass spectrometry was developed and validated for the simultaneous quantitation of eight bioactive components, including polygalaxanthone III, sibiricaxanthone B, tenuifolin, sibiricose A5, sibiricose A6, tenuifoliside A, ginsenoside Re and ginsenoside Rb1 in rat plasma after oral administration of Kai-Xin-San. The plasma samples were extracted by liquid-liquid extraction using digoxin as an internal standard. Chromatographic separation was performed on a Venusil MP C18 column (100 mm × 2.1 mm, 3 μm) with methanol and 0.05% acetic acid in water as mobile phase. The tandem mass spectrometric detection was performed in the multiple reaction monitoring with turbo ion spray source in the negative ionization. Validation parameters were within acceptable ranges. The established method has been successfully applied to compare the pharmacokinetic profiles of the analytes between normal and Alzheimer's disease rats. The results indicated that there were significant differences in pharmacokinetic parameters of some components between two groups, which may be due to the mechanisms of Alzheimer's disease and pharmacological effects of the analytes. The pharmacokinetic research in the pathological state might provide more useful information to guide the clinical usage of herbal medicine.
Collapse
Affiliation(s)
- Xiaotong Wang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Materia Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Materia Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Huibin Niu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Materia Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Yajing Geng
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Materia Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Bing Wang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Materia Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaomei Yang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Materia Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Pengyu Yan
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Materia Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Materia Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| | - Kaishun Bi
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Materia Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
33
|
Kealy J, Bennett R, Woods B, Lowry JP. Real-time changes in hippocampal energy demands during a spatial working memory task. Behav Brain Res 2017; 326:59-68. [PMID: 28249730 DOI: 10.1016/j.bbr.2017.02.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Abstract
Activity-dependent changes in hippocampal energy consumption have largely been determined using microdialysis. However, real-time recordings of brain energy consumption can be more accurately achieved using amperometric sensors, allowing for sensitive real-time monitoring of concentration changes. Here, we test the theory that systemic pre-treatment with glucose in rats prevents activity-dependent decreases in hippocampal glucose levels and thus enhances their performance in a spontaneous alternation task. Male Sprague Dawley rats were implanted into the hippocampus with either: 1) microdialysis probe; or 2) an oxygen sensor and glucose biosensor co-implanted together. Animals were pre-treated with either saline or glucose (250mg/kg) 30min prior to performing a single 20-min spontaneous alternation task in a +-maze. There were no significant differences found between either treatment group in terms of spontaneous alternation performance. Additionally, there was a significant difference found between treatment groups on hippocampal glucose levels measured using microdialysis (a decrease associated with glucose pre-treatment in control animals) but not amperometry. There were significant increases in hippocampal oxygen during +-maze exploration. Combining the findings from both methods, it appears that hippocampal activity in the spontaneous alternation task does not cause an increase in glucose consumption, despite an increase in regional cerebral blood flow (using oxygen supply as an index of blood flow) and, as such, pre-treatment with glucose does not enhance spontaneous alternation performance.
Collapse
Affiliation(s)
- John Kealy
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | - Rachel Bennett
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Barbara Woods
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John P Lowry
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
34
|
Dhikav V, Duraiswamy S, Anand KS. Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer's disease. Ann Indian Acad Neurol 2017; 20:29-35. [PMID: 28298839 PMCID: PMC5341264 DOI: 10.4103/0972-2327.199903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Introduction: Hippocampus undergoes atrophy in patients with Alzheimer's disease (AD). Calculation of hippocampal volumes can be done by a variety of methods using T1-weighted images of magnetic resonance imaging (MRI) of the brain. Medial temporal lobes atrophy (MTL) can be rated visually using T1-weighted MRI brain images. The present study was done to see if any correlation existed between hippocampal volumes and visual rating scores of the MTL using Scheltens Visual Rating Method. Materials and Methods: We screened 84 subjects presented to the Department of Neurology of a Tertiary Care Hospital and enrolled forty subjects meeting the National Institute of Neurological and Communicative Disorders and Stroke, AD related Disease Association criteria. Selected patients underwent MRI brain and T1-weighted images in a plane perpendicular to long axis of hippocampus were obtained. Hippocampal volumes were calculated manually using a standard protocol. The calculated hippocampal volumes were correlated with Scheltens Visual Rating Method for Rating MTL. A total of 32 cognitively normal age-matched subjects were selected to see the same correlation in the healthy subjects as well. Sensitivity and specificity of both methods was calculated and compared. Results: There was an insignificant correlation between the hippocampal volumes and MTL rating scores in cognitively normal elderly (n = 32; Pearson Correlation coefficient = 0.16, P > 0.05). In the AD Group, there was a moderately strong correlation between measured hippocampal volumes and MTL Rating (Pearson's correlation coefficient = −0.54; P < 0.05. There was a moderately strong correlation between hippocampal volume and Mini-Mental Status Examination in the AD group. Manual delineation was superior compared to the visual method (P < 0.05). Conclusions: Good correlation was present between manual hippocampal volume measurements and MTL scores. Sensitivity and specificity of manual measurement of hippocampus was higher compared to visual rating scores for MTL in patients with AD.
Collapse
Affiliation(s)
- Vikas Dhikav
- Department of Neurology, Postgraduate Institute of Medical Education and Research and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Sharmila Duraiswamy
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Kuljeet Singh Anand
- Department of Neurology, Postgraduate Institute of Medical Education and Research and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
35
|
Williams C, Tappen R, Wiese L, Newman D, Corbett M, Pinos S, Curtis B, Murray B. Stress in Persons with Dementia: Benefits of a Memory Center Day Program. Arch Psychiatr Nurs 2016; 30:531-8. [PMID: 27654233 DOI: 10.1016/j.apnu.2016.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/08/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Most persons with dementia are cared for by family members who are so overwhelmed that their mental and physical health declines. Adult day care programs (ADC) are growing in number to meet caregivers' needs for respite but little is known about their effect on enrollee mental health. We examined mental health of enrollees (stress, anxiety, mood, emotions) and arousal (blood pressure and salivary cortisol) from day program enrollment to 3 months following enrollment. Results showed significant decreases in morning cortisol level at 1 and 3 months (p=.047). Perceived stress decreased at 1 and 3 months measured by Perceived Stress Scale (p=.03) and Index of Clinical Stress (p=.01). Results provide support for ADC as a stress-reducing environment for individuals with mild to moderate cognitive impairment. Future studies should be conducted to examine which elements of ADC are beneficial.
Collapse
Affiliation(s)
| | - Ruth Tappen
- Florida Atlantic University, Christine E Lynn College of Nursing
| | - Lisa Wiese
- Florida Atlantic University, Christine E Lynn College of Nursing
| | - David Newman
- Florida Atlantic University, Christine E Lynn College of Nursing
| | - Maria Corbett
- Florida Atlantic University, Department of Psychology
| | - Suzanne Pinos
- Florida Atlantic University, Christine E Lynn College of Nursing
| | - Barbara Curtis
- Florida Atlantic University, Christine E Lynn College of Nursing, Louis and Ann Greene Memory and Wellness Center
| | - Belinda Murray
- Florida Atlantic University, Christine E Lynn College of Nursing, Louis and Ann Greene Memory and Wellness Center
| |
Collapse
|
36
|
Huang H, Nie S, Cao M, Marshall C, Gao J, Xiao N, Hu G, Xiao M. Characterization of AD-like phenotype in aged APPSwe/PS1dE9 mice. AGE (DORDRECHT, NETHERLANDS) 2016; 38:303-322. [PMID: 27439903 PMCID: PMC5061676 DOI: 10.1007/s11357-016-9929-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/12/2016] [Indexed: 05/28/2023]
Abstract
Transgenic APPSwe/PS1dE9 (APP/PS1) mice that overproduce amyloid beta (Aβ) are extensively used in the studies of pathogenesis and experimental therapeutics and new drug screening for Alzheimer's disease (AD). However, most of the current literature uses young or adult APP/PS1 mice. In order to provide a broader view of AD-like phenotype of this animal model, in this study, we systematically analyzed behavioral and pathological profiles of 24-month-old male APP/PS1 mice. Aged APP/PS1 mice had reference memory deficits as well as anxiety, hyperactivity, and social interaction impairment. Consistently, there was obvious deposition of amyloid plaques in the dorsal hippocampus with decreased expression of insulin-degrading enzyme, a proteolytic enzyme responsible for degradation of intracellular Aβ. Furthermore, decreases in hippocampal volume, neuronal number and synaptophysin expression, and astrocyte atrophy were also observed in aged APP/PS1 mice. This finding suggests that aged APP/PS1 mice can well replicate cognitive and noncognitive behavioral abnormalities, hippocampal atrophy, and neuronal and astrocyte degeneration in AD patients, to enable more objective and refined preclinical evaluation of therapeutic drugs and strategies for AD treatment.
Collapse
Affiliation(s)
- Huang Huang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
- Department of Neurology, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Sipei Nie
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Min Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Charles Marshall
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
- Department of Rehabilitation Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, 41701, USA
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Na Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
37
|
Wang L, Du Y, Wang K, Xu G, Luo S, He G. Chronic cerebral hypoperfusion induces memory deficits and facilitates Aβ generation in C57BL/6J mice. Exp Neurol 2016; 283:353-64. [PMID: 27421879 DOI: 10.1016/j.expneurol.2016.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia frequently responsible for cognitive decline in the elderly. The etiology and molecular mechanism of AD pathogenesis remain inconclusive. Aging and vascular factors are important independent causes and contributors to sporadic AD. Clinical imaging studies showed that cerebral blood flow decreases before cognitive impairment in patients with AD. To investigate the effect of chronic cerebral hypoperfusion (CCH) on cognitive impairment and morphological features, we developed a new manner of CCH mouse model by narrowing bilateral common carotid arteries. Mice started to manifest spatial memory deficits 1month after the surgery and exhibited behavioral changes in a time-dependent manner. Mice also presented memory deficits accompanied with morphological changes at the neuronal and synaptic levels. CCH damaged the normal neuronal morphology and significantly reduced the expression level of PSD95. CCH activated astrocytes, increased the co-expression of GFAP and AQP4, and destroyed the blood-brain barrier (BBB). Furthermore, CCH facilitated intracellular and extracellular Aβ deposition by up-regulating γ-secretase and β-secretase levels. Our results showed good reproducibility of post-CCH pathological processes, which are characterized by neuronal apoptosis, axonal abnormalities, glial activation, BBB damage, amyloid deposition, and cognitive dysfunction; these processes may be used to decipher the complex interplay and pathological process between CCH and AD. This study provides laboratory evidence for the prevention and treatment of cognitive malfunction and AD.
Collapse
Affiliation(s)
- Lingxi Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yehong Du
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Kejian Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shifang Luo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Guiqiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Department of Anatomy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
38
|
Dhikav V, Duraisamy S, Anand KS, Garga UC. Hippocampal volumes among older Indian adults: Comparison with Alzheimer's disease and mild cognitive impairment. Ann Indian Acad Neurol 2016; 19:195-200. [PMID: 27293329 PMCID: PMC4888681 DOI: 10.4103/0972-2327.176863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Hippocampal volume data from India have recently been reported in younger adults. Data in older adults are unknown. The present paper describes hippocampal volume from India among older adults and compares the same with patients having Alzheimer's disease (AD) and mild cognitive impairment (MCI). Materials and Methods: A total of 32 cognitively normal subjects, 20 patients with AD, and 13 patients with MCI were enrolled. Patients were evaluated for the diagnosis of AD/MCI using the National Institute of Neurological and Communicative Disorders and Stroke and the Related Disorders Association criteria and the Clinical Dementia Rating (CDR) Scale (score = 0.5), respectively. Hippocampal volume was measured using magnetic resonance imaging (MRI) machine by manual segmentation (Megnatom Symphony 1.5T scanner) three-dimensional (3D) sequences. Results: Age and duration of illness in the MCI group were 70.6 ± 8.6 years and 1.9 ± 0.9 years, respectively. In the AD group, age and duration of illness were 72 ± 8.1 years and 3.1 ± 2.2 years, respectively. In cognitively normal subjects, the age range was 45-88 years (66.9 ± 10.32) years. Mean mini–mental status examination (MMSE) score of healthy subjects was 28.28 ± 1.33. In the MCI group, MMSE was 27.05 ± 1.79. In the AD group, MMSE was 13.32 ± 5.6. In the healthy group, the hippocampal volume was 2.73 ± 0.53 cm3 on the left side and 2.77 ± 0.6 cm3 on the right side. Likewise, in MCI, the volume on the left side was 2.35 ± 0.42 cm3 and the volume on the right side was 2.36 ± 0.38 cm3. Similarly, in the AD group, the volume on the right side was 1.64 ± 0.55 cm3 and on the left side it was 1.59 ± 0.55 cm3. Post hoc analysis using Tukey's honestly significant difference (HSD) showed, using analysis of variance (ANOVA) that there was a statistically significant difference between healthy and AD (P ≤ 0.01), and between healthy and MCI (P ≤ 0.01) subjects. There was a correlation between MMSE score and hippocampal volume in the AD group. Conclusion: The volume of the hippocampus in older Indian adults was 2.77 ± 0. 6 cm3 on the right side and 2.73 ± 0.52 cm3 on the left side. There was a significant hippocampal volume loss in MCI/AD compared to cognitively normal subjects.
Collapse
Affiliation(s)
- Vikas Dhikav
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Sharmila Duraisamy
- Department of Radiology, Postgraduate Institute of Medical Education and Research, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Kuljeet Singh Anand
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Umesh Chandra Garga
- Department of Radiology, Postgraduate Institute of Medical Education and Research, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
39
|
Xu ZQ, Huang H, Chen YL, Gao YY, Xu J, Marshall C, Cai ZY, Xiao M. Different Expression Patterns of Amyloid-β Protein Precursor Secretases in Human and Mouse Hippocampal Neurons: A Potential Contribution to Species Differences in Neuronal Susceptibility to Amyloid-β Pathogenesis. J Alzheimers Dis 2016; 51:179-95. [DOI: 10.3233/jad-150634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhi-Qiang Xu
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huang Huang
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya-Li Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun-Ying Gao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Xu
- Department of Neurology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Charles Marshall
- Department of Rehabilitation Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, USA
| | - Zhi-You Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
40
|
Bahey NG, Elaziz HOA, Gadalla KKES. Toxic effect of aflatoxin B1 and the role of recovery on the rat cerebral cortex and hippocampus. Tissue Cell 2015; 47:559-66. [DOI: 10.1016/j.tice.2015.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/20/2015] [Accepted: 09/05/2015] [Indexed: 12/30/2022]
|
41
|
Sun L, Li Q, Wang WT, Chen YH, Guo LJ. Enhancing hippocampal blood flow after cerebral ischemia and vasodilating basilar arteries: in vivo and in vitro neuroprotective effect of antihypertensive DDPH. Neural Regen Res 2015; 10:589-93. [PMID: 26170819 PMCID: PMC4424751 DOI: 10.4103/1673-5374.155432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 01/11/2023] Open
Abstract
1-(2,6-Dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino)-propane hydrochloride (DDPH) is a novel antihypertensive agent based on structural characteristics of mexiletine and verapamine. We investigated the effect of DDPH on vasodilatation and neuroprotection in a rat model of cerebral ischemia in vivo, and a rabbit model of isolated basilar arteries in vitro. Our results show that DDPH (10 mg/kg) significantly increased hippocampal blood flow in vivo in cerebral ischemic rats, and exerted dose-dependent relaxation of isolated basilar arteries contracted by histamine or KCl in the in vitro rabbit model. DDPH (3 × 10–5 M) also inhibited histamine-stimulated extracellular calcium influx and intracellular calcium release. Our findings suggest that DDPH has a vasodilative effect both in vivo and in vitro, which mediates a neuroprotective effect on ischemic nerve tissue.
Collapse
Affiliation(s)
- Li Sun
- Department of Neurology, Wuhan Brain Hospital (General Hospital of the Yangtze River Shipping), Wuhan, Hubei Province, China ; Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qin Li
- Department of Pharmacology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Ting Wang
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yu-Hua Chen
- Department of Neurology, Wuhan Brain Hospital (General Hospital of the Yangtze River Shipping), Wuhan, Hubei Province, China
| | - Lian-Jun Guo
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
42
|
Sendrowski K, Sobaniec W, Stasiak-Barmuta A, Sobaniec P, Popko J. Study of the protective effects of nootropic agents against neuronal damage induced by amyloid-beta (fragment 25–35) in cultured hippocampal neurons. Pharmacol Rep 2015; 67:326-31. [PMID: 25712658 DOI: 10.1016/j.pharep.2014.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/21/2014] [Accepted: 09/30/2014] [Indexed: 12/16/2022]
|
43
|
Huang H, Wang L, Cao M, Marshall C, Gao J, Xiao N, Hu G, Xiao M. Isolation Housing Exacerbates Alzheimer's Disease-Like Pathophysiology in Aged APP/PS1 Mice. Int J Neuropsychopharmacol 2015; 18:pyu116. [PMID: 25568286 PMCID: PMC4540096 DOI: 10.1093/ijnp/pyu116] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/03/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative disease characterized by gradual declines in social, cognitive, and emotional functions, leading to a loss of expected social behavior. Social isolation has been shown to have adverse effects on individual development and growth as well as health and aging. Previous experiments have shown that social isolation causes an early onset of Alzheimer's disease-like phenotypes in young APP695/PS1-dE9 transgenic mice. However, the interactions between social isolation and Alzheimer's disease still remain unknown. METHODS Seventeen-month-old male APP695/PS1-dE9 transgenic mice were either singly housed or continued group housing for 3 months. Then, Alzheimer's disease-like pathophysiological changes were evaluated by using behavioral, biochemical, and pathological analyses. RESULTS Isolation housing further promoted cognitive dysfunction and Aβ plaque accumulation in the hippocampus of aged APP695/PS1-dE9 transgenic mice, associated with increased γ-secretase and decreased neprilysin expression. Furthermore, exacerbated hippocampal atrophy, synapse and myelin associated protein loss, and glial neuroinflammatory reactions were observed in the hippocampus of isolated aged APP695/PS1-dE9 transgenic mice. CONCLUSIONS The results demonstrate that social isolation exacerbates Alzheimer's disease-like pathophysiology in aged APP695/PS1-dE9 transgenic mice, highlighting the potential role of group life for delaying or counteracting the Alzheimer's disease process.
Collapse
Affiliation(s)
- Huang Huang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Linmei Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Min Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Charles Marshall
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Na Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD).
| |
Collapse
|
44
|
Salak Djokić B, Spitznagel MB, Pavlović D, Janković N, Parojčić A, Ilić V, Nikolić Djurović M. Diabetes mellitus and cognitive functioning in a Serbian sample. J Clin Exp Neuropsychol 2014; 37:37-48. [DOI: 10.1080/13803395.2014.985190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
Kealy J, Bennett R, Lowry JP. Real-time effects of insulin-induced hypoglycaemia on hippocampal glucose and oxygen. Brain Res 2014; 1598:76-87. [PMID: 25511995 DOI: 10.1016/j.brainres.2014.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 01/07/2023]
Abstract
The hippocampus plays a vital role in learning and memory and is susceptible to damage following hypoglycaemic shock. The effect of an acute administration of insulin on hippocampal function has been described in terms of behavioural deficits but its effect on hippocampal oxygen and glucose is unclear. Glucose oxidase biosensors (detecting glucose) and carbon paste electrodes (detecting oxygen) were implanted into the hippocampus of Sprague Dawley rats. Animals were allowed to recover and real-time recordings were made in order to determine the effects of fasting, insulin administration (15 U/kg; i.p.) and reintroduction of food on hippocampal oxygen and glucose. Fasting caused a significant decrease in hippocampal glucose over the course of 24h. Insulin administration produced a significant decrease in hippocampal glucose along with a significant increase in hippocampal oxygen. Finally, the reintroduction of food resulted in glucose levels significantly increasing along with a transient but significant increase in oxygen levels. The findings presented here suggest that even a single acute period of hypoglycaemia may substantially disrupt hippocampal oxygen and glucose and therefore affect hippocampal function.
Collapse
Affiliation(s)
- John Kealy
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Rachel Bennett
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John P Lowry
- Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
46
|
Downer B, Jiang Y, Zanjani F, Fardo D. Effects of alcohol consumption on cognition and regional brain volumes among older adults. Am J Alzheimers Dis Other Demen 2014; 30:364-74. [PMID: 25202027 DOI: 10.1177/1533317514549411] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study utilized data from the Framingham Heart Study Offspring Cohort to examine the relationship between midlife and late-life alcohol consumption, cognitive functioning, and regional brain volumes among older adults without dementia or a history of abusing alcohol. The results from multiple linear regression models indicate that late life, but not midlife, alcohol consumption status is associated with episodic memory and hippocampal volume. Compared to late life abstainers, moderate consumers had larger hippocampal volume, and light consumers had higher episodic memory. The differences in episodic memory according to late life alcohol consumption status were no longer significant when hippocampal volume was included in the regression model. The findings from this study provide new evidence that hippocampal volume may contribute to the observed differences in episodic memory among older adults and late life alcohol consumption status.
Collapse
Affiliation(s)
- Brian Downer
- University of Texas Medical Branch, Sealy Center on Aging, Galveston, KY
| | - Yang Jiang
- University of Kentucky, Department of Behavioral Science, Lexington, KY
| | - Faika Zanjani
- University of Maryland, SPHL-Behavioral & Community Health, College Park, MD
| | - David Fardo
- University of Kentucky, Department of Biostatistics, Lexington, KY
| |
Collapse
|
47
|
Dhikav V, Sethi M, Anand KS. Medial temporal lobe atrophy in Alzheimer's disease/mild cognitive impairment with depression. Br J Radiol 2014; 87:20140150. [PMID: 25061711 DOI: 10.1259/bjr.20140150] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Depression is common in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). Patients with depression have an earlier onset and rapid progression of cognitive decline. Medial temporal lobe atrophy (MTA) is common in AD and MCI, and some degree of atrophy is found in almost all patients. In the present study, an attempt was made to know if MTA is more common in patients with AD/MCI with depression than those without it. METHODS Patients reporting to the outpatient department of a neurology centre of a tertiary care hospital were recruited for the present study. After initial general physical and neurological examination, they were evaluated using National Institute of Neurological and Communicative Disorders and Stroke and Related Disorders Association criteria for diagnosis of AD. Clinical Dementia rating scale was used for the diagnosis of MCI. Cornell scale for depression in dementia (CSDD) was used. RESULTS We found 20 cases with depression as per CSDD out of a sample of 37 patients (male:female = 30:7). There were 26 patients with AD and 11 with MCI. The mean age of all patients was 72.33 ± 6.45 years. The mean mini mental status examination score was 19.00 ± 6.73. The mean time since diagnosis was 4.19 ± 3.26 years. The mean Scheltens visual rating scale score for right MTA was 2.08 ± 0.95 and was 2.05 ± 0.94 for the left. Both scores did not differ statistically when analyzed using paired t-test (p > 0.05). However, difference in those with depression (2.36 ± 0.95) from those without depression (1.60 ± 0.74) was significant (p < 0.05). CONCLUSION MTA scores were higher in those with AD/MCI with depression than those without it.
Collapse
Affiliation(s)
- V Dhikav
- Memory Clinic, Department of Neurology, Dr Ram Manohar Lohia Hospital, Postgraduate Institute of Medical Education and Research, University School of Medicine & Paramedical Health Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | | |
Collapse
|
48
|
Small vessel disease and memory loss: what the clinician needs to know to preserve patients' brain health. Curr Cardiol Rep 2014; 15:427. [PMID: 24105643 DOI: 10.1007/s11886-013-0427-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Small vessel disease (SVD) in the brain manifests in the periventricular and deep white matter and radiographically is described as "leukoaraiosis". It is increasingly recognized as a cause of morbidity from middle age onward and this clinical relevance has paralleled advances in the field of neuroradiology. Overall, SVD is a heterogenous group of vascular disorders that may be asymptomatic, or a harbinger of many conditions that jeopardize brain health. Management and prevention focuses on blood pressure control, lifestyle modification, and symptomatic treatment.
Collapse
|
49
|
Larouche E, Hudon C, Goulet S. Potential benefits of mindfulness-based interventions in mild cognitive impairment and Alzheimer's disease: an interdisciplinary perspective. Behav Brain Res 2014; 276:199-212. [PMID: 24893317 DOI: 10.1016/j.bbr.2014.05.058] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/20/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
The present article is based on the premise that the risk of developing Alzheimer's disease (AD) from its prodromal phase (mild cognitive impairment; MCI) is higher when adverse factors (e.g., stress, depression, and metabolic syndrome) are present and accumulate. Such factors augment the likelihood of hippocampal damage central in MCI/AD aetiology, as well as compensatory mechanisms failure triggering a switch toward neurodegeneration. Because of the devastating consequences of AD, there is a need for early interventions that can delay, perhaps prevent, the transition from MCI to AD. We hypothesize that mindfulness-based interventions (MBI) show promise with regard to this goal. The present review discusses the associations between modifiable adverse factors and MCI/AD decline, MBI's impacts on adverse factors, and the mechanisms that could underlie the benefits of MBI. A schematic model is proposed to illustrate the course of neurodegeneration specific to MCI/AD, as well as the possible preventive mechanisms of MBI. Whereas regulation of glucocorticosteroids, inflammation, and serotonin could mediate MBI's effects on stress and depression, resolution of the metabolic syndrome might happen through a reduction of inflammation and white matter hyperintensities, and normalization of insulin and oxidation. The literature reviewed in this paper suggests that the main reach of MBI over MCI/AD development involves the management of stress, depressive symptoms, and inflammation. Future research must focus on achieving deeper understanding of MBI's mechanisms of action in the context of MCI and AD. This necessitates bridging the gap between neuroscientific subfields and a cross-domain integration between basic and clinical knowledge.
Collapse
Affiliation(s)
- Eddy Larouche
- École de psychologie, Université Laval, 2325, rue des Bibliothèques, Québec, QC, Canada G1V 0A6; Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601, de la Canardière (F-2400), Québec, QC, Canada G1J 2G3
| | - Carol Hudon
- École de psychologie, Université Laval, 2325, rue des Bibliothèques, Québec, QC, Canada G1V 0A6; Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601, de la Canardière (F-2400), Québec, QC, Canada G1J 2G3
| | - Sonia Goulet
- École de psychologie, Université Laval, 2325, rue des Bibliothèques, Québec, QC, Canada G1V 0A6; Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601, de la Canardière (F-2400), Québec, QC, Canada G1J 2G3.
| |
Collapse
|
50
|
Abstract
In recent years, emerging evidence has linked vitamin D not only to its known effects on calcium and bone metabolism, but also to many chronic illnesses involving neurocognitive decline. The importance of vitamin D3 in reducing the risk of these diseases continues to increase due to the fact that an increasing portion of the population in developed countries has a significant vitamin D deficiency. The older population is at an especially high risk for vitamin D deficiency due to the decreased cutaneous synthesis and dietary intake of vitamin D. Recent studies have confirmed an association between cognitive impairment, dementia, and vitamin D deficiency. There is a need for well-designed randomized trials to assess the benefits of vitamin D and lifestyle interventions in persons with mild cognitive impairment and dementia.
Collapse
Affiliation(s)
- Mathias Schlögl
- University Center for Medicine of Aging Basel, University of Basel, Basel, Switzerland
| | - Michael F Holick
- Department of Medicine, Section of Endocrinology, Nutrition, and Diabetes, Vitamin D, Skin, and Bone Research Laboratory, Boston University Medical Center, Boston, MA, USA
| |
Collapse
|