1
|
Koumaki E, Konomi A, Gkotsis G, Nika MC, Seintos T, Statiris E, Maragou N, Thomaidis NS, Kouris N, Mamais D, Stasinakis AS, Malamis S, Katsou E, Noutsopoulos C. Circular water management in agriculture: Screening of contaminants of emerging concern in a real-world water-soil-crop system and human health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138167. [PMID: 40215936 DOI: 10.1016/j.jhazmat.2025.138167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/14/2025] [Accepted: 04/02/2025] [Indexed: 05/15/2025]
Abstract
Water reuse in agriculture supports climate resilience and circular economy principles, yet concerns remain regarding contaminants of emerging concern (CECs) in reclaimed water. This study investigates the occurrence, uptake, and potential risks of CECs in maize cultivated under two irrigation scenarios: precision drip irrigation using groundwater and reclaimed wastewater. A wide-scope target analysis of over 2200 CECs was performed in groundwater, raw and treated wastewater, irrigated soil, and maize plant tissues. A total of 104 CECs across nine chemical classes were detected in water samples, with wastewater treatment reducing 67 % of detected compounds. However, several pharmaceuticals and transformation products persisted post-treatment. Soil irrigated with treated wastewater exhibited a greater variety and higher concentrations of CECs than groundwater-irrigated soil. Maize plants accumulated 14 CECs in roots, stems, leaves, and corn, with higher concentrations in reclaimed water-irrigated crops. A human health risk assessment, based on the threshold of toxicological concern and hazard quotient approaches, indicated negligible risks at detected concentrations and expected dietary exposure levels. However, substances flagged for potential genotoxicity via in silico tools, such as acetaminophen and harmane, warrant further evaluation. These findings highlight the need for improved monitoring and targeted removal strategies to ensure safe and sustainable agricultural applications.
Collapse
Affiliation(s)
- Elena Koumaki
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, Athens 15773, Greece; Department of Civil and Environmental Engineering, Imperial College London, United Kingdom.
| | - Antigoni Konomi
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens 15771, Greece
| | - Georgios Gkotsis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens 15771, Greece
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens 15771, Greece
| | - Taxiarchis Seintos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, Athens 15773, Greece
| | - Evangelos Statiris
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, Athens 15773, Greece
| | - Niki Maragou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens 15771, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, Athens 15771, Greece
| | - Nikolaos Kouris
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, Athens 15773, Greece
| | - Daniel Mamais
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, Athens 15773, Greece
| | - Athanasios S Stasinakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, Mytilene 81100, Greece
| | - Simos Malamis
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, Athens 15773, Greece
| | - Evina Katsou
- Department of Civil and Environmental Engineering, Imperial College London, United Kingdom
| | - Constantinos Noutsopoulos
- Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, Athens 15773, Greece
| |
Collapse
|
2
|
Sesay F, Sesay REV, Kamara M, Li X, Niu C. Biodegradation of pharmaceutical contaminants in wastewater using microbial consortia: Mechanisms, applications, and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125564. [PMID: 40306218 DOI: 10.1016/j.jenvman.2025.125564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/09/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Pharmaceuticals, including non-steroidal anti-inflammatory drugs and antibiotics, have been increasingly detected in wastewater and pose substantial ecological and public health concerns due to their persistence and bioactivity. Conventional treatment processes are often insufficient for their complete removal, highlighting the need for advanced bioremediation strategies. This review critically examines the mechanisms, applications, and challenges of microbial consortia for pharmaceutical biodegradation. It emphasizes their synergistic metabolic pathways, such as cross-feeding, co-metabolism, and enzymatic cascades, that enable efficient degradation of complex contaminants. Recent advancements, such as membrane bioreactors, bioaugmentation with genetically engineered consortia, and integrated systems coupling microbial processes with advanced oxidation processes, are reviewed for their potential to enhance treatment efficacy, scalability, and sustainability. Comparative analysis underscores microbial consortia's superiority over single-strain systems and adsorption techniques in treating complex contaminant mixtures, achieving up to 100 % removal efficiency for specific compounds. Persistent challenges include microbial community instability, the toxicity of transformation products, and regulatory constraints related to genetically modified organisms. Strategic solutions are proposed, such as pilot-scale implementation of tailored consortia, Internet of things (IoT)-enabled real-time monitoring, and circular economy approaches for resource recovery. By addressing these challenges, microbial consortia-based biodegradation emerges as a transformative solution for pharmaceutical wastewater treatment, aligning with global sustainability goals. This review provides actionable insights for optimizing bioremediation frameworks, informing policy, and advancing research in environmental microbiology and wastewater engineering.
Collapse
Affiliation(s)
- Fatmata Sesay
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Richard Edmond Victor Sesay
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; UNEP-Tongji Institute of Environment and Sustainable Development, Tongji University, Shanghai, 200092, PR China
| | - Musa Kamara
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; UNEP-Tongji Institute of Environment and Sustainable Development, Tongji University, Shanghai, 200092, PR China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Chengxin Niu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
3
|
Esquivel-Mackenzie SP, Oltehua-Lopez O, Cuervo-López FDM, Texier AC. Physiological adaptation and population dynamics of a nitrifying sludge exposed to ampicillin. Int Microbiol 2024; 27:1035-1047. [PMID: 38010565 DOI: 10.1007/s10123-023-00452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Antibiotics in wastewater treatment plants can alter the physiological activity and the structure of microbial communities through toxic and inhibitory effects. Physiological adaptation, kinetic, and population dynamics behavior of a nitrifying sludge was evaluated in a sequential batch reactor (SBR) fed with 14.4 mg/L of ampicillin (AMP). The addition of AMP did not affect ammonium consumption (100 mg NH4+-N/L) but provoked nitrite accumulation (0.90 mg NO2--N formed/mg NH4+-N consumed) and an inhibition of up to 67% on the nitrite oxidizing process. After 30 cycles under AMP feeding, the sludge recovered its nitrite oxidizing activity with a high nitrate yield (YNO3-) of 0.87 ± 0.10 mg NO3--N formed/mg NH4+-N consumed, carrying out again a stable and complete nitrifying process. Increases in specific rate of nitrate production (qNO3-) showed the physiological adaptation of the nitrite oxidizing bacteria to AMP inhibition. Ampicillin was totally removed since the first cycle of addition. Exposure to AMP had effects on the abundance of bacterial populations, promoting adaptation of the nitrifying sludge to the presence of the antibiotic and its consumption. Nitrosomonas and Nitrosospira always remained within the dominant genera, keeping the ammonium oxidizing process stable while an increase in Nitrospira abundance was observed, recovering the stability of the nitrite oxidizing process. Burkholderia, Pseudomonas, and Thauera might be some of the heterotrophic bacteria involved in AMP consumption.
Collapse
Affiliation(s)
- Sergio Pavel Esquivel-Mackenzie
- Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico
| | - Omar Oltehua-Lopez
- Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico
| | - Flor de María Cuervo-López
- Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico
| | - Anne-Claire Texier
- Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico.
| |
Collapse
|
4
|
Wu K, Leliveld T, Zweers H, Rijnaarts H, Langenhoff A, Fernandes TV. Impact of mixed microalgal and bacterial species on organic micropollutants removal in photobioreactors under natural light. BIORESOURCE TECHNOLOGY 2024; 393:130083. [PMID: 38000642 DOI: 10.1016/j.biortech.2023.130083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Single microalgae species are effective at the removal of various organic micropollutants (OMPs), however increased species diversity might enhance this removal. Sixteen OMPs were added to 2 continuous photobioreactors, one inoculated with Chlorella sorokiniana and the other with a microalgal-bacterial community, for 112 d under natural light. Three media were sequentially used in 3 Periods: I) synthetic sewage (d 0-28), II) 10x diluted anaerobically digested black water (AnBW) (d 28-94) and III) 5x diluted AnBW (d 94-112). Twelve OMPs were removed > 30 %, while 4 were < 10 % removed. Removal efficiencies were similar for 9 OMPs, yet the mixed community showed a 2-3 times higher removal capacity (µg OMP/g dry weight) than C. sorokiniana during Period II pseudo steady state. The removal decreased drastically in Period III due to overgrowth of filamentous green algae. This study shows for the first time how microbial community composition and abundance are key for OMPs removal.
Collapse
Affiliation(s)
- Kaiyi Wu
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, The Netherlands
| | - Tino Leliveld
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, The Netherlands
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Huub Rijnaarts
- Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, The Netherlands
| | - Alette Langenhoff
- Sub-department of Environmental Technology, Wageningen University, PO box 8129, 6700 EV Wageningen, The Netherlands
| | - Tânia V Fernandes
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
5
|
Bodle KB, Mueller RC, Pernat MR, Kirkland CM. Treatment performance and microbial community structure in an aerobic granular sludge sequencing batch reactor amended with diclofenac, erythromycin, and gemfibrozil. FRONTIERS IN MICROBIOMES 2023; 2:1242895. [PMID: 38076031 PMCID: PMC10705044 DOI: 10.3389/frmbi.2023.1242895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
This study characterizes the effects of three commonly detected pharmaceuticals-diclofenac, erythromycin, and gemfibrozil-on aerobic granular sludge. Approximately 150 μg/L of each pharmaceutical was fed in the influent to a sequencing batch reactor for 80 days, and the performance of the test reactor was compared with that of a control reactor. Wastewater treatment efficacy in the test reactor dropped by approximately 30-40%, and ammonia oxidation was particularly inhibited. The relative abundance of active Rhodocyclaceae, Nitrosomonadaceae, and Nitrospiraceae families declined throughout exposure, likely explaining reductions in wastewater treatment performance. Pharmaceuticals were temporarily removed in the first 12 days of the test via both sorption and degradation; both removal processes declined sharply thereafter. This study demonstrates that aerobic granular sludge may successfully remove pharmaceuticals in the short term, but long-term tests are necessary to confirm if pharmaceutical removal is sustainable.
Collapse
Affiliation(s)
- Kylie B. Bodle
- Department of Civil Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Rebecca C. Mueller
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- United States Department of Agriculture (USDA) Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Madeline R. Pernat
- Department of Civil Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Catherine M. Kirkland
- Department of Civil Engineering, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
6
|
Bernadet O, Larasati A, van Veelen HPJ, Euverink GJW, Gagliano MC. Biological Oxygen-dosed Activated Carbon (BODAC) filters - A bioprocess for ultrapure water production removing organics, nutrients and micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131882. [PMID: 37356180 DOI: 10.1016/j.jhazmat.2023.131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Biological oxygen-dosed activated carbon (BODAC) filters in an Ultrapure water plant were demonstrated to have the potential to further treat secondary wastewater treatment effluent. The BODAC filters were operated for 11 years without carbon regeneration or replacement, while still functioning as pre-treatment step to reverse osmosis (RO) membranes by actively removing organic micropollutants (OMPs) and foulants. In this study, the removal of nutrients and 13 OMPs from secondary wastewater treatment effluent was investigated for 2 years and simultaneously, the granules' characterization and microbial community analysis were conducted to gain insights behind the stable long-term operation of the BODAC filters. The results showed that the BODAC granules' surface area was reduced by ∼70 % of what is in virgin carbon granules and covered by biofilm and inorganic depositions. The BODAC filters reduced the concentration of soluble organics, mainly proteins, performed as an effective nitrification system, and almost completely removed manganese. During the 2 years of observation, the filters consistently removed some OMPs such as hydrochlorothiazide, metoprolol, sotalol, and trimethoprim by at least 70 %. Finally, through microbial community analysis, we found that nitrifying and manganese-oxidizing bacteria were detected in high relative abundance on BODAC granules, supporting BODAC performance in removing OMPs and manganese as well as converting nitrogenous species in the water.
Collapse
Affiliation(s)
- Olga Bernadet
- Wetsus, Center of European Excellence in Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen, the Netherlands
| | - Amanda Larasati
- Wetsus, Center of European Excellence in Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - H Pieter J van Veelen
- Wetsus, Center of European Excellence in Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Gert Jan Willem Euverink
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen, the Netherlands.
| | - Maria Cristina Gagliano
- Wetsus, Center of European Excellence in Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| |
Collapse
|
7
|
James SN, Sengar A, Vijayanandan A. Investigating the biodegradability of iodinated X-ray contrast media in simultaneous nitrification and denitrification system. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131196. [PMID: 36940530 DOI: 10.1016/j.jhazmat.2023.131196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The present study investigated the biodegradation of three iodinated X-ray contrast media (ICM), namely, iopamidol, iohexol, and iopromide, in simultaneous nitrification-denitrification (SND) system maintained in a sequencing batch reactor (SBR). The results showed that variable aeration patterns (anoxic-aerobic-anoxic) and micro-aerobic condition were most effective in the biotransformation of ICM while achieving organic carbon and nitrogen removal. The highest removal efficiencies of iopamidol, iohexol, and iopromide were 48.24%, 47.75%, and 57.46%, respectively, in micro-aerobic condition. Iopamidol was highly resistant to biodegradation and possessed the lowest Kbio value, followed by iohexol and iopromide, regardless of operating conditions. The removal of iopamidol and iopromide was affected by the inhibition of nitrifiers. The transformation products after hydroxylation, dehydrogenation, and deiodination of ICM were detected in the treated effluent. Due to the addition of ICM, the abundance of denitrifier genera Rhodobacter and Unclassified Comamonadaceae increased, and the abundance of class TM7-3 decreased. The presence of ICM affected the microbial dynamics, and the diversity of microbes in SND resulted in improving the biodegradability of the compounds.
Collapse
Affiliation(s)
- Susan N James
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
8
|
Jin Y, Xiong W, Liu D, Wu Z, Xiao G, Wang S, Su H. Responses of straw foam-based aerobic granular sludge to atrazine: Insights from metagenomics and microbial community variations. CHEMOSPHERE 2023; 331:138828. [PMID: 37137392 DOI: 10.1016/j.chemosphere.2023.138828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Atrazine (ATZ) has caused serious environmental pollution, but the biodegradation of ATZ is relatively slow and inefficient. Herein, a straw foam-based aerobic granular sludge (SF-AGS) was developed, the spatially ordered architectures of which could greatly improve the drug tolerance and biodegradation efficiency of ATZ. The results showed that, in the presence of ATZ, chemical oxygen demand (COD), ammonium nitrogen (NH4+-N), total phosphorus (TP), and total nitrogen (TN) were effectively removed within 6 h, and the removal efficiencies were as high as 93.37%, 85.33%, 84.7%, and 70%, respectively. Furthermore, ATZ stimulated microbial consortia to secrete three times more extracellular polymers compared to without ATZ. Illumina MiSeq sequencing results showed that bacterial diversity and richness decreased, leading to significant changes in microbial population structure and composition. ATZ-resistant bacteria including Proteobacteria, Actinobacteria, and Burkholderia laid the biological basis for the stability of aerobic particles, efficient removal of pollutants, and degradation of ATZ. The study demonstrated that SF-AGS is feasible for ATZ-laden low-strength wastewater treatment.
Collapse
Affiliation(s)
- Yu Jin
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wei Xiong
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Dan Liu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhiqing Wu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Gang Xiao
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
9
|
Sengar A, Vijayanandan A. Fate and removal of iodinated X-ray contrast media in membrane bioreactor: Microbial dynamics and effects of different operational parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161827. [PMID: 36708825 DOI: 10.1016/j.scitotenv.2023.161827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Iodinated X-ray contrast media (ICM) are mainly used in medical sector, and their presence in environmental waters is a cause of concern as they are capable of forming highly toxic iodinated disinfection byproducts. In the present study, the removal mechanisms of the three ICM- iohexol, iopromide, and iopamidol were elucidated in a lab-scale aerobic membrane bioreactor (MBR). At steady-state operation (solids retention time (SRT)- 70 days, organic loading rate (OLR)- 0.80 KgCOD/m3-day, nitrogen loading rate (NLR)- 0.08 KgNH4-N/m3-day, hydraulic retention time (HRT)- 12 h), the average removal of iohexol and iopromide was found to be 34.9 and 45.2 %, respectively, whereas iopamidol proved to be highly recalcitrant in aerobic conditions of the MBR (removal <10 % in all phases of the MBR operation). Further, through batch kinetic studies and mass balance analysis, it was observed that ICM were primarily biotransformed in the MBR system and biosorption (Kd < 10 L/Kg) was negligible. The biodegradation rate coefficient values (Kbiol) of the ICM were found to be <0.65 L/g-d which indicate that biotransformation rate of ICM was slow. Increased OLR (1.60 KgCOD/m3-day) and reduced SRT (20 days) were found to negatively affect the removal of the ICM. Further, the removal of ICM was found to depend on its initial concentration, and the increment in the ammonium loading (0.16 KgNH4-N/m3-day) did not favor its removal. The dosing of ICM altered the microbial dynamics of the mixed liquor and reduced the microbial diversity and richness. Bdellovibrio, Zoogloea, and bacteria belonging to TM7-3 class, Cryomorphaceae and Hyphomonadaceae families may contribute in ICM biotransformation.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi (IIT Delhi), New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi (IIT Delhi), New Delhi 110016, India.
| |
Collapse
|
10
|
Maturano-Carrera D, Oltehua-Lopez O, Cuervo-López FDM, Texier AC. Long-term post-storage reactivation of a nitrifying sludge in a sequential batch reactor: physiological and kinetic evaluation. 3 Biotech 2023; 13:17. [PMID: 36568497 PMCID: PMC9768056 DOI: 10.1007/s13205-022-03433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Production, preservation and recovery of sludge with stabilized nitrifying activity over long time can be difficult. Information on the ability of nitrifying sludge to regain its nitrifying activity after long-term storage is still scarce. In this work, the physiological and kinetic changes during the reactivation and stabilization of a nitrifying sludge previously exposed to ampicillin (AMP) were evaluated in a sequential batch reactor (SBR) after its long-term storage (1 year) at 4 °C. After storage, both ammonium and nitrite oxidizing processes were slow, being nitrite oxidation the most affected step. During the reactivation stage (cycles 1-6), physiological and kinetic activity of the nitrifying sludge improved through the operating cycles, in both its ammonium oxidizing and nitrite oxidizing processes. At the end of the reactivation stage, complete nitrifying activity was achieved in 10 h, reaching ammonium consumption efficiencies (ENH4 +) close to 100% and nitrate yields (YNO3 -) of 0.98 mg NO3 --N/mg NH4 +-N consumed without nitrite accumulation. During the stabilization stage (cycles 7-17), results indicated that the sludge could maintain a steady-state respiratory process with restoration percentages of 100% for nitrifying specific rates (qNH4 + and qNO3 -) with respect to their values obtained before storage. Furthermore, during the addition of 15 mg AMP/L (cycles 18-21), the sludge preserved its metabolic capacity to biodegrade 90% of AMP in 2 h. Therefore, long-term storage of nitrifying sludge could be used to preserve nitrifying inocula as bioseeds for bioremediation and bioaugmentation strategies.
Collapse
Affiliation(s)
- Daniel Maturano-Carrera
- Department of Biotechnology-CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, CP 09310 Mexico City, Mexico
| | - Omar Oltehua-Lopez
- Department of Biotechnology-CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, CP 09310 Mexico City, Mexico
| | - Flor de María Cuervo-López
- Department of Biotechnology-CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, CP 09310 Mexico City, Mexico
| | - Anne-Claire Texier
- Department of Biotechnology-CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, CP 09310 Mexico City, Mexico
| |
Collapse
|
11
|
Bodle KB, Pernat MR, Kirkland CM. Pharmaceutical Sorption to Lab Materials May Overestimate Rates of Removal in Lab-Scale Bioreactors. WATER, AIR, AND SOIL POLLUTION 2022; 233:505. [PMID: 36504545 PMCID: PMC9731345 DOI: 10.1007/s11270-022-05974-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Environmental contamination from pharmaceuticals has received increased attention from researchers in the past 20 years. As such, numerous lab-scale studies have sought to characterize the effects of these contaminants on various targets, as well as determine improved removal methods. Many studies have used lab-scale bioreactors to investigate pharmaceutical effects on wastewater bacteria, as wastewater treatment plants often act as reservoirs for pharmaceuticals. However, few-if any-of these studies report the specific lab materials used during testing, such as tubing or pipette tip type. In this study, the pharmaceuticals erythromycin, diclofenac, and gemfibrozil were exposed to different micropipette tips, syringe filters, and tubing types, and losses over time were evaluated. Losses to tubing and syringe filters were particularly significant and neared 100%, depending on the pharmaceutical compound and length of exposure time. Results discussed herein indicate that pharmaceutical sorption to various lab supplies results in decreases to both dosed and quantified pharmaceutical concentrations. Studies that fail to consider this source of loss may therefore draw inaccurate conclusions about pharmaceutical effects or removal efficiencies.
Collapse
Affiliation(s)
- Kylie B Bodle
- Department of Civil Engineering, Montana State, University, 205 Cobleigh Hall, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, USA
| | - Madeline R Pernat
- Department of Civil Engineering, Montana State, University, 205 Cobleigh Hall, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, USA
| | - Catherine M Kirkland
- Department of Civil Engineering, Montana State, University, 205 Cobleigh Hall, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, USA
| |
Collapse
|
12
|
Zulkifli M, Abu Hasan H, Sheikh Abdullah SR, Muhamad MH. A review of ammonia removal using a biofilm-based reactor and its challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115162. [PMID: 35561462 DOI: 10.1016/j.jenvman.2022.115162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Extensive growth of industries leads to uncontrolled ammonia releases to environment. This can result in significant degradation of the aquatic ecology as well as significant health concerns for humans. Knowing the mechanism of ammonia elimination is the simplest approach to comprehending it. Ammonia has been commonly converted to less hazardous substances either in the form of nitrate or nitrogen gas. Ammonia has been converted into nitrite by ammonia-oxidizing bacteria and further reduced to nitrate by nitrite-oxidizing bacteria in aerobic conditions. Denitrification takes place in an anoxic phase and nitrate is converted into nitrogen gas. It is challenging to remove ammonia by employing technologies that do not incur particularly high costs. Thus, this review paper is focused on biofilm reactors that utilize the nitrification process. Many research publications and patents on biofilm wastewater treatment have been published. However, only a tiny percentage of these projects are for full-scale applications, and the majority of the work was completed within the last few decades. The physicochemical approaches such as ammonia adsorption, coagulation-flocculation, and membrane separation, as well as conventional biological treatments including activated sludge, microalgae, and bacteria biofilm, are briefly addressed in this review paper. The effectiveness of biofilm reactors in removing ammonia was compared, and the microbes that effectively remove ammonia were thoroughly discussed. Overall, biofilm reactors can remove up to 99.7% ammonia from streams with a concentration in range of 16-900 mg/L. As many challenges were identified for ammonia removal using biofilm at a commercial scale, this study offers future perspectives on how to address the most pressing biofilm issues. This review may also improve our understanding of biofilm technologies for the removal of ammonia as well as polishing unit in wastewater treatment plants for the water reuse and recycling, supporting the circular economy concept.
Collapse
Affiliation(s)
- Maryam Zulkifli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Mohd Hafizuddin Muhamad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
13
|
Sanchez-Huerta C, Fortunato L, Leiknes T, Hong PY. Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a Membrane Aerated Biofilm Reactor (MABR). JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128698. [PMID: 35349844 DOI: 10.1016/j.jhazmat.2022.128698] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The presence of organic micropollutants (OMPs) in natural water bodies has become an emerging concern due to their fast dissemination into natural water sources, high persistence, ubiquitous nature, and detrimental impact on the environment and human health. This study evaluated the Membrane Aerated Biofilm Reactor (MABR) efficiency in the removal of 13 OMPs commonly reported in water. Results demonstrated that OMPs removal is dependent on biofilm thickness and bacterial cell density, microbial community composition and physicochemical properties of OMPs. Effective removals of ammonium and organic carbon (COD, >50%), acetaminophen (70%) and triclosan (99%) were obtained even at early stages of biofilm development (thickness < 0.33 mm, 2.9 ×105 cell mL-1). An increase in biofilm thickness and cell density (1.02 mm, 2.2 ×106 cell mL-1) enhanced the system performance. MABR achieved over 90% removal of nonpolar, hydrophobic and hydrophilic OMPs and 22-69% removal of negatively charged and acidic OMPs. Relative abundances of Zoogloea, Aquabacterium, Leucobacter, Runella, and Paludilbaculum bacteria correlated with the removal of certain OMPs. In addition, MABR achieved up to 96% nitrification and 80% overall COD removal by the end of the experiment. The findings from this study demonstrated MABRs to be a feasible option to treat municipal wastewater polluted by OMPs.
Collapse
Affiliation(s)
- C Sanchez-Huerta
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - L Fortunato
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - T Leiknes
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - P-Y Hong
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Bioremediation of 27 Micropollutants by Symbiotic Microorganisms of Wetland Macrophytes. SUSTAINABILITY 2022. [DOI: 10.3390/su14073944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Micropollutants in bodies of water represent many challenges. We addressed these challenges by the application of constructed wetlands, which represent advanced treatment technology for the removal of micropollutants from water. However, which mechanisms specifically contribute to the removal efficiency often remains unclear. Methods: Here, we focus on the removal of 27 micropollutants by bioremediation. For this, macrophytes Phragmites australis, Iris pseudacorus and Lythrum salicaria were taken from established wetlands, and a special experimental set-up was designed. In order to better understand the impact of the rhizosphere microbiome, we determined the microbial composition using 16S rRNA gene sequencing and investigated the role of identified genera in the micropollutant removal of micropollutants. Moreover, we studied the colonization of macrophyte roots by arbuscular mycorrhizal fungi, which are known for their symbiotic relationship with plants. This symbiosis could result in increased removal of present micropollutants. Results: We found Iris pseudacorus to be the most successful bioremediative system, as it removed 22 compounds, including persistent ones, with more than 80% efficiency. The most abundant genera that contributed to the removal of micropollutants were Pseudomonas, Flavobacterium, Variovorax, Methylotenera, Reyranella, Amaricoccus and Hydrogenophaga. Iris pseudacorus exhibited the highest colonization rate (56%). Conclusions: Our experiments demonstrate the positive impact of rhizosphere microorganisms on the removal of micropollutants.
Collapse
|
15
|
Kennes-Veiga DM, Gónzalez-Gil L, Carballa M, Lema JM. Enzymatic cometabolic biotransformation of organic micropollutants in wastewater treatment plants: A review. BIORESOURCE TECHNOLOGY 2022; 344:126291. [PMID: 34752884 DOI: 10.1016/j.biortech.2021.126291] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Biotransformation of trace-level organic micropollutants (OMPs) by complex microbial communities in wastewater treatment facilities is a key process for their detoxification and environmental impact reduction. Therefore, understanding the metabolic activities and mechanisms that contribute to their biotransformation is essential when developing approaches aiming to minimize their discharge. This review addresses the relevance of cometabolic processes and discusses the main enzymatic activities currently known to take part in OMPs removal under different redox environments in the compartments of wastewater treatment plants. Furthermore, the most common methodologies to decipher such enzymes are discussed, including the use of in vitro enzyme assays, enzymatic inhibitors, the analysis of transformation products and the application of several -omic techniques. Finally, perspectives on major challenges and future research requirements to improve OMPs biotransformation are proposed.
Collapse
Affiliation(s)
- David M Kennes-Veiga
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Lorena Gónzalez-Gil
- Defence University Centre, Spanish Naval Academy, Plaza de España, 36920 Marín, Spain
| | - Marta Carballa
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan M Lema
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
16
|
Castellanos RM, Dezotti M, Bassin JP. COD, nitrogen and phosphorus removal from simulated sewage in an aerobic granular sludge in the absence and presence of natural and synthetic estrogens: Performance and biomass physical properties assessment. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
He Y, Jia D, Du S, Zhu R, Zhou W, Pan S, Zhang Y. Toxicity of gabapentin-lactam on the early developmental stage of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117649. [PMID: 34182397 DOI: 10.1016/j.envpol.2021.117649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Gabapentin-lactam (GBP-L) is a transformation product (TP) of gabapentin (GBP), a widely used anti-epileptic pharmaceutical. Due to its high persistence, GBP-L has been frequently detected in the surface water. However, the effects of GBP-L on aquatic organisms have not been thoroughly investigated. In the present study, zebrafish (Danio rerio) embryos as a model organism were used to study the impacts of GBP-L in terms of embryos LC50, spontaneous movement at 24 hpf (hours post fertilization), heartbeat rates at 48 hpf, and body length at 72 hpf, with the concentrations of GBP-L down to 0.01 μg/L, covering its environmental concentrations. Various biomarkers from nervous, antioxidant and immune systems of zebrafish larvae were analyzed, including acetylcholinesterase, acetylcholine, dopamine, gamma-aminobutyric acid, superoxide dismutase, catalase, glutathione S-transferase, C reactive protein, and lysozyme, to assess its toxicity on these systems. RT-qPCR was then used to further verify the results and explain the toxicological mechanism at the gene level. The results demonstrated that GBP-L is much more toxic than its parent compound, and could lead to adverse impacts on the aquatic organisms even at every low concentrations.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Dantong Jia
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Sen Du
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Rongwen Zhu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Wei Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Shunlong Pan
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China.
| |
Collapse
|
18
|
Ronan E, Aqeel H, Wolfaardt GM, Liss SN. Recent advancements in the biological treatment of high strength ammonia wastewater. World J Microbiol Biotechnol 2021; 37:158. [PMID: 34420110 DOI: 10.1007/s11274-021-03124-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The estimated global population growth of 81 million people per year, combined with increased rates of urbanization and associated industrial processes, result in volumes of high strength ammonia wastewater that cannot be treated in a cost-effective or sustainable manner using the floc-based conventional activated sludge approach of nitrification and denitrification. Biofilm and aerobic granular sludge technologies have shown promise to significantly improve the performance of biological nitrogen removal systems treating high strength wastewater. This is partly due to enhanced biomass retention and their ability to sustain diverse microbial populations with juxtaposing growth requirements. Recent research has also demonstrated the value of hybrid systems with heterogeneous bioaggregates to mitigate biofilm and granule instability during long-term operation. In the context of high strength ammonia wastewater treatment, conventional nitrification-denitrification is hampered by high energy costs and greenhouse gas emissions. Anammox-based processes such as partial nitritation-anammox and partial denitrification-anammox represent more cost-effective and sustainable methods of removing reactive nitrogen from wastewater. There is also growing interest in the use of photosynthetic bacteria for ammonia recovery from high strength waste streams, such that nitrogen can be captured and concentrated in its reactive form and recycled into high value products. The purpose of this review is to explore recent advancements and emerging approaches related to high strength ammonia wastewater treatment.
Collapse
Affiliation(s)
- Evan Ronan
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Hussain Aqeel
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.,School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Gideon M Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.,Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Steven N Liss
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada. .,School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada. .,Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
19
|
Kennes-Veiga DM, Vogler B, Fenner K, Carballa M, Lema JM. Heterotrophic enzymatic biotransformations of organic micropollutants in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146564. [PMID: 33774287 DOI: 10.1016/j.scitotenv.2021.146564] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/16/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
While heterotrophic microorganisms constitute the major fraction of activated sludge biomass, the role of heterotrophs in the biotransformation of organic micropollutants (OMPs) has not been fully elucidated. Yet, such knowledge is essential, particularly when conceiving novel wastewater treatment plants based on a two-stage process including an A-stage under heterotrophic conditions and a B-stage based on anammox activity. Biotransformation of OMPs in activated sludge is thought to mostly occur cometabolically thanks to the action of low specificity enzymes involved in the metabolism of the primary substrates. For a better understanding of the process, it is important to determine such enzymatic activities and the underlying mechanisms involved in OMPs biotransformation. This task has proven to be difficult due to the lack of information about the enzymatic processes and the complexity of the biological systems present in activated sludge. In this paper, a continuous aerobic heterotrophic reactor following 20 OMPs at environmental concentrations was operated to (i) assess the potential of heterotrophs during the cometabolic biotransformation of OMPs, (ii) identify biotransformation reactions catalyzed by aerobic heterotrophs and (iii) predict possible heterotrophic enzymatic activities responsible for such biotransformations. Contradicting previous reports on the dominant role of nitrifiers in OMPs removal during activated sludge treatment, the heterotrophic population proved its capacity to biotransform the OMPs to extents equivalent to reported values in nitrifying activated sludge plants. Besides, 12 transformation products potentially formed through the activity of several enzymes present in heterotrophs, including monooxygenases, dioxygenases, hydrolases and transferases, were identified.
Collapse
Affiliation(s)
- David M Kennes-Veiga
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - Bernadette Vogler
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland; Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Marta Carballa
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Juan M Lema
- Cretus Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
20
|
Bisognin RP, Wolff DB, Carissimi E, Prestes OD, Zanella R. Occurrence and fate of pharmaceuticals in effluent and sludge from a wastewater treatment plant in Brazil. ENVIRONMENTAL TECHNOLOGY 2021; 42:2292-2303. [PMID: 31810406 DOI: 10.1080/09593330.2019.1701561] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
A wide variety of pharmaceuticals are discharged in water courses on a daily basis due to their incomplete removal from effluent in treatment plants. The aim of the current study was to assess the occurrence, fate and removal of pharmaceuticals from effluent and sludge samples collected in the biggest sanitary sewer plant in Southern Brazil. In total, 13 pharmaceuticals were detected in the influent through UHPLC-MS/M - paracetamol and caffeine recorded the highest concentrations, 137.98 and 35.29 µg L-1, respectively. The treated effluent presented 11 compounds. Antibiotics were the class recording the widest diversity; metronidazole showed the lowest concentration (0.023 µg L-1) and sulfamethoxazole presented the highest concentration (1.374 µg L-1) in influent samples. Seven pharmaceuticals were absorbed by the sludge; among them, one finds caffeine, ciprofloxacin and ofloxacin, which were quantified both in the effluent and in the sludge. On the other hand, doxycycline, fenbendazole, norfloxacin and tetracycline were only detected in sludge samples - their concentrations ranged from 0.026 to 5.034 mg kg-1. Clindamycin, oxytetracycline, sulfathiazole and trimethoprim concentrations increased throughout the treatment. There were high paracetamol and caffeine removal rates (>97%), and it may have happened due to degradation, photodegradation or chemical reaction. Ciprofloxacin and ofloxacin removal rate exceeded 83% mainly due to their sorption by sludge. Finally, the mass balance analysis highlighted high pharmaceutical loads (511.466 g d-1) discharged into recipient waterbodies. This outcome demands broadening the removal of these pharmaceuticals from sewage.
Collapse
Affiliation(s)
| | - Delmira Beatriz Wolff
- Post-Graduate Program in Civil Engineering, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Elvis Carissimi
- Post-Graduate Program in Civil Engineering, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Renato Zanella
- LARP - Laboratory of Pesticide Residue Analysis, UFSM, Santa Maria, Brazil
| |
Collapse
|
21
|
Sengar A, Vijayanandan A. Comprehensive review on iodinated X-ray contrast media: Complete fate, occurrence, and formation of disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144846. [PMID: 33736235 DOI: 10.1016/j.scitotenv.2020.144846] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 05/22/2023]
Abstract
Iodinated contrast media (ICM) are drugs which are used in medical examinations for organ imaging purposes. Wastewater treatment plants (WWTPs) have shown incapability to remove ICM, and as a consequence, ICM and their transformation products (TPs) have been detected in environmental waters. ICM show limited biotransformation and low sorption potential. ICM can act as iodine source and can react with commonly used disinfectants such as chlorine in presence of organic matter to yield iodinated disinfection byproducts (IDBPs) which are more cytotoxic and genotoxic than conventionally known disinfection byproducts (DBPs). Even highly efficient advanced treatment systems have failed to completely mineralize ICM, and TPs that are more toxic than parent ICM are produced. This raises issues regarding the efficacy of existing treatment technologies and serious concern over disinfection of ICM containing waters. Realizing this, the current review aims to capture the attention of scientific community on areas of less focus. The review features in depth knowledge regarding complete environmental fate of ICM along with their existing treatment options.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
22
|
Trejo-Castillo R, El Kassis EG, Cuervo-López F, Texier AC. Cometabolic biotransformation of benzotriazole in nitrifying batch cultures. CHEMOSPHERE 2021; 270:129461. [PMID: 33412355 DOI: 10.1016/j.chemosphere.2020.129461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/05/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Benzotriazole (BT) is a corrosion inhibitor widely distributed in aquatic environments. Little is known about the cometabolic capacity of stabilized nitrifying sludge to biotransform BT. The contribution of the nitrification process in the simultaneous oxidation of ammonium and biotransformation of BT (5 mg/L) was evaluated in 49 d batch cultures inoculated with a sludge produced in steady-state nitrification. The nitrifying sludge could consume BT in the obligate presence of ammonium. A higher cometabolic biotransformation capacity was obtained by increasing the initial ammonium concentration (100-300 mg N/L), reaching 2.3- and 5.8-fold increases for efficiency and specific rate of BT removal. At 300 mg NH4+-N/L, the sludge biotransform 40.8% of BT and 77.6% of ammonium which was completely oxidized into nitrate. In assays with allylthiourea added as specific inhibitor of ammonium monooxygenase (AMO), it was shown that the totality of BT cometabolic biotransformation was associated with the AMO activity. The addition of acetate did not favor heterotrophic biotransformation of BT. BT provoked inhibitory effects on nitrification. This is the first study showing the role of ammonium oxidizing bacteria in the cometabolic biotransformation of BT and their potential use for cometabolism application in treatment of wastewater contaminated with ammonium and BT.
Collapse
Affiliation(s)
- Rubén Trejo-Castillo
- UAM-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco 186, Col. Vicentina, C.P., 09340, Ciudad de México, Mexico
| | - Elie Girgis El Kassis
- UPAEP, Departamento de Ciencias Biológicas, 11 Poniente 2316, Col. Barrio de Santiago, C.P., 72410, Puebla, Mexico
| | - Flor Cuervo-López
- UAM-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco 186, Col. Vicentina, C.P., 09340, Ciudad de México, Mexico
| | - Anne-Claire Texier
- UAM-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco 186, Col. Vicentina, C.P., 09340, Ciudad de México, Mexico.
| |
Collapse
|
23
|
Tong T, Li R, Chen J, Ke Y, Xie S. Bisphenol A biodegradation differs between mudflat and mangrove forest sediments. CHEMOSPHERE 2021; 270:128664. [PMID: 33757276 DOI: 10.1016/j.chemosphere.2020.128664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is one of the widely detected endocrine disrupting chemicals in coastal sediment. Biodegradation is a vital pathway of BPA elimination in sediment. However, the impact of vegetation on BPA degradation in coastal sediment is still unclear. In this study, the differences of BPA biodegradation and the functional microbial community and metabolic pathway were explored between mangrove forest and mudflat sediments. A nearly complete BPA attenuation was detected in 4 days in mudflat sediment but 8 days in forest sediment. Bacterial abundance varied greatly in different sediment types. Bacterial community structure changed with BPA biodegradation, dependent on sediment type. During the degradation, the proportions of Alphaproteobacteria and Gammaproteobacteria were higher in BPA amended microcosms than in un-amended microcosms. With BPA biodegradation, a substantial increase in Novosphingobium and Croceicoccus occurred in forest sediment and mudflat sediment, respectively. Additionally, two divergent BPA biodegradation pathways were proposed based on functional annotation and KEGG pathway database. The abundance of functional genes also varied with BPA biodegradation, dependent on sediment type. Gene pcaGH decreased, while genes ligK and pcaD increased in both sediment types. Gene pcaB showed a remarkable increase in forest sediment but a decrease in mudflat sediment. Therefore, BPA degradation and the associated microbial community and metabolic pathway differed between mudflat and mangrove forest sediments.
Collapse
Affiliation(s)
- Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ruili Li
- School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, Guangdong, China.
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; School of Environmental and Energy, Shenzhen Graduate School of Peking University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
24
|
Langbehn RK, Michels C, Soares HM. Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116603. [PMID: 33578315 DOI: 10.1016/j.envpol.2021.116603] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
In this critical review, we explored the most recent advances about the fate of antibiotics on biological wastewater treatment plants (WWTP). Although the occurrence of these pollutants in wastewater and natural streams has been investigated previously, some recent publications still expose the need to improve the detection strategies and the lack of information about their transformation products. The role of the antibiotic properties and the process operating conditions were also analyzed. The pieces of evidence in the literature associate several molecular properties to the antibiotic removal pathway, like hydrophobicity, chemical structure, and electrostatic interactions. Nonetheless, the influence of operating conditions is still unclear, and solid retention time stands out as a key factor. Additionally, the efficiencies and pathways of antibiotic removals on conventional (activated sludge, membrane bioreactor, anaerobic digestion, and nitrogen removal) and emerging bioprocesses (bioelectrochemical systems, fungi, and enzymes) were assessed, and our concern about potential research gaps was raised. The combination of different bioprocess can efficiently mitigate the impacts generated by these pollutants. Thus, to plan and design a process to remove and mineralize antibiotics from wastewater, all aspects must be addressed, the pollutant and process characteristics and how it is the best way to operate it to reduce the impact of antibiotics in the environment.
Collapse
Affiliation(s)
- Rayane Kunert Langbehn
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Camila Michels
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Hugo Moreira Soares
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
25
|
Castellanos RM, Bassin JP, Bila DM, Dezotti M. Biodegradation of natural and synthetic endocrine-disrupting chemicals by aerobic granular sludge reactor: Evaluating estrogenic activity and estrogens fate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116551. [PMID: 33529898 DOI: 10.1016/j.envpol.2021.116551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
In this study, the biodegradation of endocrine-disrupting chemicals (EDCs) (namely the natural and synthetic estrogens 17β-estradiol (E2) and 17α-ethinylestradiol (EE2), respectively) was assessed in an aerobic granular sludge (AGS) sequencing batch reactor (SBR) treating simulated domestic sewage. To better understand the fate of these compounds, their concentrations were determined in both liquid and solid (biomass) samples. Throughout the operation of the reactor, subjected to alternating anaerobic and aerated conditions, the removal of the hormones, both present in the influent at a concentration of 20 μg L-1, amounted to 99% (for E2) and 93% (for EE2), with the latter showing higher resistance to biodegradation. Through yeast estrogen screen assays, an average moderate residual estrogenic activity (0.09 μg L-1 EQ-E2) was found in the samples analysed. E2 and EE2 profiles over the SBR cycle suggest a rapid initial adsorption of these compounds on the granular biomass occurring anaerobically, followed by biodegradation under aeration. A possible sequence of steps for the removal of the micropollutants, including the key microbial players, was proposed. Besides the good capability of the AGS on EDCs removal, the results revealed high removal efficiencies (>90%) of COD, ammonium and phosphate. Most of the incoming organics (>80%) were consumed under anaerobic conditions, when phosphate was released (75.2 mgP L-1). Nitrification and phosphate uptake took place along the aeration phase, with effluent ammonium and phosphate levels around 2 mg L-1. Although nitrite accumulation took place over the cycle, nitrate consisted of the main oxidized nitrogen form in the effluent. The specific ammonium and phosphate uptake rates attained in the SBR were found to be 3.3 mgNH4+-N gVSS-1.h-1 and 6.7 mgPO43--P gVSS-1 h-1, respectively, while the specific denitrification rate corresponded to 1.0 mgNOx--N gVSS-1 h-1.
Collapse
Affiliation(s)
- Reynel Martínez Castellanos
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972, Rio de Janeiro, Brazil
| | - João P Bassin
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972, Rio de Janeiro, Brazil.
| | - Daniele M Bila
- Department of Environmental and Sanitary Engineering, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Márcia Dezotti
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Tang K, Rosborg P, Rasmussen ES, Hambly A, Madsen M, Jensen NM, Hansen AA, Sund C, Andersen HG, Torresi E, Kragelund C, Andersen HR. Impact of intermittent feeding on polishing of micropollutants by moving bed biofilm reactors (MBBR). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123536. [PMID: 32823027 DOI: 10.1016/j.jhazmat.2020.123536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 05/25/2023]
Abstract
Moving bed biofilm reactors (MBBRs) were placed at two wastewater treatment plants, where they were constantly fed with effluent and intermittently fed with primary wastewater. Each reactor was subjected to different feast/famine periods and flow rates of primary wastewater, thus the different organic and nutrient loads (chemical oxygen demand(COD), ammonium(NH4-N)) resulted in different feast-famine conditions applied to the biomass. In batch experiments, this study investigated the effects of various feast-famine conditions on the biodegradation of micropollutants by MBBRs applied as an effluent polishing step. Rate constants of micropollutant removals were found to be positively correlated to the load of the total COD and NH4-N, indicating that higher organic loads were favourable for the growth of micropollutant degraders in these MBBRs. Rate constant of atenolol was five times higher when the biomass was fed with the highest COD and NH4-N load than it was fed with the lowest COD and NH4-N load. For diclofenac, mycophenolic acid and iohexol, their maximum rate constants were obtained with feeding of COD and NH4-N of approximately 570 mgCOD/d and 40∼60 mgNH4-N/d respectively. This also supports the concept that co-metabolism (rather competition inhibition or catabolic repression) plays an important role in micropollutants biodegradation in wastewater.
Collapse
Affiliation(s)
- Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark.
| | - Peter Rosborg
- Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, DK-8000 Århus C, Denmark
| | - Emma S Rasmussen
- Department of Bioscoence-Microbiology, Århus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Adam Hambly
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark
| | | | | | - Aviaja A Hansen
- Veolia Water Technologies, Haslegårdsvænger 18, 8210 Århus V, Denmark
| | - Christina Sund
- Veolia Water Technologies, Haslegårdsvænger 18, 8210 Århus V, Denmark
| | - Heidi G Andersen
- Veolia Water Technologies, Haslegårdsvænger 18, 8210 Århus V, Denmark
| | - Elena Torresi
- AnoxKaldnes Technology, Klosterängsvägen 11A, 226 47 Lund, Sweden
| | - Caroline Kragelund
- Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, DK-8000 Århus C, Denmark
| | - Henrik R Andersen
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Martínez-Alcalá I, Guillén-Navarro JM, Lahora A. Occurrence and fate of pharmaceuticals in a wastewater treatment plant from southeast of Spain and risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111565. [PMID: 33160743 DOI: 10.1016/j.jenvman.2020.111565] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 05/08/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) can be incorporated into ecosystems and pose potential environmental and health hazards. These pollutants are becoming omnipresent in the environment because they are introduced by several sources, being particularly important the contribution of human-derived pharmaceuticals. The presence of PPCPs in waters has received increasing attention in recent years, resulting in great concern regarding their occurrence, transformation, fate and environmental risk. For that reason, the pharmaceuticals carbamazepine (CBZ), diclofenac (DIC), ibuprofen (IBU), ketoprofen (KET) and naproxen (NPX) were measured in the waters and sludge of several parts of a double step activated sludge wastewater treatment plant (WWTP) from Murcia (Spain). With these results, the biological degradation constant, the sorption coefficient and the pharmaceutical removal were calculated. Possible risks to humans and ecosystems were also evaluated. These showed good degradation of IBU and NPX (74.4 and 84.9%, respectively), while CBZ didn't display any degradation. DIC was the compound most likely to be sorbed into the sludge (3.09 L kg-1). The PPCPs removal in this double stage WWTP was compared to a previous data obtained in a WWTP of the same region with an activated sludge (single biological batch reactor). The results showed a decrease in the removal of the double stage plant, probably due to the lower hydraulic retention time employed. The study of the human and ecological risk quotients indicates a low risk of the selected pharmaceuticals (RQ < 0.1).
Collapse
Affiliation(s)
- Isabel Martínez-Alcalá
- Department of Civil Engineering, Catholic University of Murcia (UCAM), Av. de los Jerónimos, 135, 30107, Guadalupe, Murcia, Spain.
| | - José Manuel Guillén-Navarro
- Department of Civil Engineering, Catholic University of Murcia (UCAM), Av. de los Jerónimos, 135, 30107, Guadalupe, Murcia, Spain
| | - Agustin Lahora
- Regional Entity for Sanitation and Wastewater Treatment in the Region of Murcia (ESAMUR), C. Santiago Navarro, 4, 30100, Espinardo, Murcia, Spain
| |
Collapse
|
28
|
Thamaraiselvan C, Thakur AK, Gupta A, Arnusch CJ. Electrochemical Removal of Organic and Inorganic Pollutants Using Robust Laser-Induced Graphene Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1452-1462. [PMID: 33390015 DOI: 10.1021/acsami.0c18358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The removal of emerging environmental pollutants in water and wastewater is essential for high drinking water quality or for discharge to the environment. Electrochemical treatment is a promising technology shown to degrade undesirable organic compounds or metals via oxidation and reduction, and carbon-based electrodes have been reported. Here, we fabricated a robust, porous laser-induced graphene (LIG) electrode on a commercial water treatment membrane using the multilasing technique and demonstrated the electrochemical removal of iohexol, an iodine contrast compound, and chromium(VI), a highly toxic heavy metal ion. Multiple lasing resulted in a more ordered graphitic lattice, a more physically robust carbon layer, and a 3-4-fold higher electrical conductivity. These properties ultimately led to a more efficient electrochemical process, and the optimized LIG electrodes showed a higher hydrogen peroxide (H2O2) generation. At 3 V, 90% of Cr(VI) was removed after 6 h and reached >95% removal after 8 h at pH 2. Cr(VI) was mainly reduced to Cr(III), with small amounts of Cr(I) and Cr(0), which were partially deposited on the electrode membrane surface, confirmed with X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy analysis. Under the same conditions, 50% of iohexol was degraded after 6 h and the transformation products (TPs) were identified using ultra-performance liquid chromatography coupled with mass spectroscopy. A total of seven main intermediates were identified including deiodinated TPs (m/z = 695, 570, and 443), probably occurring via three transformation pathways including oxidative deiodination, amide hydrolysis, and deacetylation. The electrical energy costs calculated for the removal of 2 mg L-1 Cr(VI) was ∼$0.08/m3 in this system. Taken together, the porous LIG electrodes might be utilized for electrochemical removal of emerging contaminants in multiple applications because they can be rapidly formed on flexible polymer substrates at low cost.
Collapse
Affiliation(s)
- Chidambaram Thamaraiselvan
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Amit K Thakur
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Abhishek Gupta
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| |
Collapse
|
29
|
Di Marcantonio C, Bertelkamp C, van Bel N, Pronk TE, Timmers PHA, van der Wielen P, Brunner AM. Organic micropollutant removal in full-scale rapid sand filters used for drinking water treatment in The Netherlands and Belgium. CHEMOSPHERE 2020; 260:127630. [PMID: 32758778 DOI: 10.1016/j.chemosphere.2020.127630] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/19/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Biological treatment processes have the potential to remove organic micropollutants (OMPs) during water treatment. The OMP removal capacity of conventional drinking water treatment processes such as rapid sand filters (RSFs), however, has not been studied in detail. We investigated OMP removal and transformation product (TP) formation in seven full-scale RSFs all treating surface water, using high-resolution mass spectrometry based quantitative suspect and non-target screening (NTS). Additionally, we studied the microbial communities with 16S rRNA gene amplicon sequencing (NGS) in both influent and effluent waters as well as the filter medium, and integrated these data to comprehensively assess the processes that affect OMP removal. In the RSF influent, 9 to 30 of the 127 target OMPs were detected. The removal efficiencies ranged from 0 to 93%. A data-driven workflow was established to monitor TPs, based on the combination of NTS feature intensity profiles between influent and effluent samples and the prediction of biotic TPs. The workflow identified 10 TPs, including molecular structure. Microbial community composition analysis showed similar community composition in the influent and effluent of most RSFs, but different from the filter medium, implying that specific microorganisms proliferate in the RSFs. Some of these are able to perform typical processes in water treatment such as nitrification and iron oxidation. However, there was no clear relationship between OMP removal efficiency and microbial community composition. The innovative combination of quantitative analyses, NTS and NGS allowed to characterize real scale biological water treatments, emphasizing the potential of bio-stimulation applications in drinking water treatment.
Collapse
Affiliation(s)
- Camilla Di Marcantonio
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Rome, Italy
| | - Cheryl Bertelkamp
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands
| | - Nikki van Bel
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands
| | - Tessa E Pronk
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands
| | - Peer H A Timmers
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands
| | - Paul van der Wielen
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, the Netherlands
| | - Andrea M Brunner
- KWR Water Research Institute, P.O. Box 1072, 3430, BB, Nieuwegein, the Netherlands.
| |
Collapse
|
30
|
Ra J, Yoom H, Son H, Lee Y. Occurrence and transformation of gabapentin in urban water quality engineering: Rapid formation of nitrile from amine during drinking water chlorination. WATER RESEARCH 2020; 184:116123. [PMID: 32698090 DOI: 10.1016/j.watres.2020.116123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The occurrence and fate of the popular pharmaceutical gabapentin (GBP) in the urban water cycle were investigated with a focus on its transformation during water chlorination. GBP was detected in all samples with average concentrations of 1285 ng/L (n = 24) for wastewater effluent, 304 ng/L for river water (n = 22), and 180 ng/L for drinking water treatment plant (DWTP) influent (n = 4). The monitoring sites were located in the Nakdong River watershed, Korea. GBP was rapidly (within 20 min) transformed into 1-cyanocyclohexylacetic acid (GBP-nitrile) under typical chlorination conditions (1.4 mgCl2/L). When there was a molar excess of chlorine to GBP, the primary amine of GBP was double-chlorinated to form N-Cl2 GBP with a second-order rate constant of >103 M-1 s-1. Decomposition of N-Cl2 GBP had a first-order rate constant of (0.5-1.0) × 10-2 s-1 and produced GBP-nitrile with a yield of 87%-100%. We propose that N-Cl2 GBP is transformed into N-Cl GBP imine and then to GBP-nitrile via two consecutive dehydrochlorinations with the former as the rate-limiting step. N-Cl2 GBP had a much higher decomposition rate than N-Cl2 produced from other simple aliphatic amines, which could be related to the structural features of GBP such as its carboxyl group and quaternary β-carbon. The wastewater effluent samples did not contain GBP-nitrile even in the chlorinated effluent because of the relatively low chlorine dose or high ammonia level. In a full-scale DWTP employing a pre-chlorination unit, GBP present in the influent river water was fully transformed into GBP-nitrile. The formed GBP-nitrile was degraded in subsequent ozonation (•OH oxidation) and biological activated carbon filtration (biodegradation) processes. The toxicity of GBP-nitrile is thought to be low but further studies are warranted to assess the toxicological relevance of nitrile formation during water chlorination.
Collapse
Affiliation(s)
- Jiwoon Ra
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hoonsik Yoom
- Busan Water Quality Institute, Gimhaesi, Kyungnam, 621-813, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Gimhaesi, Kyungnam, 621-813, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
31
|
Ampicillin biotransformation by a nitrifying consortium. World J Microbiol Biotechnol 2020; 36:21. [DOI: 10.1007/s11274-020-2798-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
32
|
Mery-Araya C, Lear G, Perez-Garcia O, Astudillo-Garcia C, Singhal N. Using carbon substrate as a selection pressure to enhance the potential of aerobic granular sludge microbial communities for removing contaminants of emerging concern. BIORESOURCE TECHNOLOGY 2019; 290:121705. [PMID: 31295574 DOI: 10.1016/j.biortech.2019.121705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
The ability of aerobic granular sludge (AGS) technology to biotransform contaminants of emerging concern (CECs) is largely unknown. AGS supplemented with either acetate, 2-propanol, glycerol, or a 1:1:1 mixture of all three, were cultivated to investigate the link between carbon supplements and biotransformation of six CECs. Carbon substrate had a significant effect on the microbial community composition, as assessed by 16S rRNA gene sequence analyses. Substrate degradation requiring a larger number of catabolic reactions (i.e., glycerol and the mix) was associated with greater microbial richness. The biotransformation of CECs was 45.9% greater in communities supplemented with glycerol (60.3 ± 30.2 µg L-1 VSS-1) compared to acetate (20.9 ± 29.7 µg L-1 VSS-1). Database surveys of metabolic reactions indicate that microbial communities supplemented with glycerol have the greatest capacity for the degradation of aromatic compounds, while those supplemented with acetate community have the lowest.
Collapse
Affiliation(s)
- Camila Mery-Araya
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaíso, Chile.
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Octavio Perez-Garcia
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Carmen Astudillo-Garcia
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaíso, Chile
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
33
|
He Y, Li X, Jia D, Zhang W, Zhang T, Yu Y, Xu Y, Zhang Y. A transcriptomics-based analysis of the toxicity mechanisms of gabapentin to zebrafish embryos at realistic environmental concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:746-755. [PMID: 31121539 DOI: 10.1016/j.envpol.2019.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Gabapentin (GPT) has become an emerging contaminant in aquatic environments due to its wide application in medical treatment all over the world. In this study, embryos of zebrafish were exposed to gabapentin at realistically environmental concentrations, 0.1 μg/L and 10 μg/L, so as to evaluate the ecotoxicity of this emergent contaminant. The transcriptomics profiling of deep sequencing was employed to illustrate the mechanisms. The zebrafish (Danio rerio) embryo were exposed to GPT from 12 hpf to 96 hpf resulting in 136 and 750 genes differentially expressed, respectively. The results of gene ontology (GO) analysis and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis illustrated that a large amount of differentially expressed genes (DEGs) were involved in the antioxidant system, the immune system and the nervous system. RT-qPCR was applied to validate the results of RNA-seq, which provided direct evidence that the selected genes involved in those systems mentioned above were all down-regulated. Acetylcholinesterase (AChE), lysozyme (LZM) and the content of C-reactive protein (CRP) were decreased at the end of exposure, which is consistent with the transcriptomics results. The overall results of this study demonstrate that GPT simultaneously affects various vital functionalities of zebrafish at early developmental stage, even at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Xiuwen Li
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Dantong Jia
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Wenming Zhang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Tao Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Yanhua Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China.
| |
Collapse
|
34
|
Nsenga Kumwimba M, Meng F. Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:419-441. [PMID: 31096373 DOI: 10.1016/j.scitotenv.2018.12.236] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/15/2018] [Indexed: 05/27/2023]
Abstract
While there has been a significant recent improvement in the removal of pollutants in natural and engineered systems, trace organic chemicals (TrOCs) are posing a major threat to aquatic environments and human health. There is a critical need for developing potential strategies that aim at enhancing metabolism and/or cometabolism of these compounds. Recently, knowledge regarding biodegradation of TrOCs by ammonia-oxidizing bacteria (AOB) has been widely developed. This review aims to delineate an up-to-date version of the ecophysiology of AOB and outline current knowledge related to biodegradation efficiencies of the frequently reported TrOCs by AOB. The paper also provides an insight into biodegradation pathways by AOB and transformation products of these compounds and makes recommendations for future research of AOB. In brief, nitrifying WWTFs (wastewater treatment facilities) were superior in degrading most TrOCs than non-nitrifying WWTFs due to cometabolic biodegradation by the AOB. To fully understand and/or enhance the cometabolic biodegradation of TrOCs by AOB, recent molecular research has focused on numerous crucial factors including availability of the compounds to AOB, presence of growth substrate (NH4-N), redox potentials, microorganism diversity (AOB and heterotrophs), physicochemical properties and operational parameters of the WWTFs, molecular structure of target TrOCs and membrane-based technologies, may all significantly impact the cometabolic biodegradation of TrOCs. Still, further exploration is required to elucidate the mechanisms involved in biodegradation of TrOCs by AOB and the toxicity levels of formed products.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Democratic Republic of the Congo
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
35
|
Yu Y, Han P, Zhou LJ, Li Z, Wagner M, Men Y. Ammonia Monooxygenase-Mediated Cometabolic Biotransformation and Hydroxylamine-Mediated Abiotic Transformation of Micropollutants in an AOB/NOB Coculture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9196-9205. [PMID: 30004677 DOI: 10.1021/acs.est.8b02801] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biotransformation of various micropollutants (MPs) has been found to be positively correlated with nitrification in activated sludge communities. To further elucidate the roles played by ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), we investigated the biotransformation capabilities of an NOB pure culture ( Nitrobacter sp.) and an AOB ( Nitrosomonas europaea)/NOB ( Nitrobacter sp.) coculture for 15 MPs, whose biotransformation was reported previously to be associated with nitrification. The NOB pure culture did not biotransform any investigated MP, whereas the AOB/NOB coculture was capable of biotransforming six MPs (i.e., asulam, bezafibrate, fenhexamid, furosemide, indomethacin, and rufinamide). Transformation products (TPs) were identified, and tentative structures were proposed. Inhibition studies with octyne, an ammonia monooxygenase (AMO) inhibitor, suggested that AMO was the responsible enzyme for MP transformation that occurred cometabolically. For the first time, hydroxylamine, a key intermediate of all aerobic ammonia oxidizers, was found to react with several MPs at concentrations typically occurring in AOB batch cultures. All of these MPs were also biotransformed by the AOB/NOB coculture. Moreover, the same asulam TPs were detected in both biotransformation and hydroxylamine-treated abiotic transformation experiments, whereas rufinamide TPs formed from biological transformation were not detected during hydroxylamine-mediated abiotic transformation, which was consistent with the inability of rufinamide abiotic transformation by hydroxylamine. Thus, in addition to cometabolism likely carried out by AMO, an abiotic transformation route indirectly mediated by AMO might also contribute to MP biotransformation by AOB.
Collapse
Affiliation(s)
- Yaochun Yu
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801-2352 , United States
| | - Ping Han
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network "Chemistry meets Microbiology" , University of Vienna , 1090 Vienna , Austria
| | - Li-Jun Zhou
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network "Chemistry meets Microbiology" , University of Vienna , 1090 Vienna , Austria
- State Key Laboratory of Lake Science and Environment , Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , Nanjing 210008 , China
| | - Zhong Li
- Metabolomics Center , University of Illinois , Urbana , Illinois 61801 , United States
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network "Chemistry meets Microbiology" , University of Vienna , 1090 Vienna , Austria
| | - Yujie Men
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801-2352 , United States
- Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
36
|
Henning N, Kunkel U, Wick A, Ternes TA. Biotransformation of gabapentin in surface water matrices under different redox conditions and the occurrence of one major TP in the aquatic environment. WATER RESEARCH 2018; 137:290-300. [PMID: 29554533 DOI: 10.1016/j.watres.2018.01.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 06/08/2023]
Abstract
Laboratory-scale incubation experiments in water/sediment systems were conducted to test the transformation behavior of the anticonvulsant gabapentin (GBP) under different environmental conditions (aerobic, anaerobic, with abiotic controls). GBP was transformed by biological processes as it was eliminated quickly under aerobic conditions (dissipation time 50% of initial concentration (DT50): 2-7 days) whereas no decrease was observed under anaerobic conditions. Measurements via high resolution mass spectrometry (LC-Orbitrap-MS) revealed eight biological transformation products (TPs). Three of them were identified with reference standards (GBP-Lactam, TP186, TP213), while for the other five TPs tentative structures were proposed from information by MS2/MS3 experiments. Furthermore, the quantitatively most relevant TP GBP-Lactam was formed via intramolecular amidation (up to 18% of initial GBP concentration). Incubation experiments with GBP-Lactam revealed a higher stability against biotic degradation (DT50: 12 days) in contrast to GBP, while it was stable under anaerobic and abiotic conditions. Besides GBP, GBP-Lactam was detected in surface water in the μg L-1 range. Finally, GBP and GBP-Lactam were found in potable water with concentrations up to 0.64 and 0.07 μg L-1, respectively. According to the elevated environmental persistence of GBP-Lactam compared to GBP and its presumed enhanced toxicity, we recommend to involve GBP-Lactam into monitoring programs.
Collapse
Affiliation(s)
- Nina Henning
- Department of Aquatic Chemistry, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Uwe Kunkel
- Department of Aquatic Chemistry, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Arne Wick
- Department of Aquatic Chemistry, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Thomas A Ternes
- Department of Aquatic Chemistry, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, D-56068 Koblenz, Germany.
| |
Collapse
|
37
|
Park J, Yamashita N, Wu G, Tanaka H. Removal of pharmaceuticals and personal care products by ammonia oxidizing bacteria acclimated in a membrane bioreactor: Contributions of cometabolism and endogenous respiration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:18-25. [PMID: 28651209 DOI: 10.1016/j.scitotenv.2017.06.155] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 05/22/2023]
Abstract
We carried out batch experiments using biomass from a membrane bioreactor (MBR) to study the influence of ammonia oxidizing bacteria (AOB) on the removal of 45 pharmaceuticals and personal care products (PPCPs). Kinetic parameters such as biodegradation constants and adsorption coefficients with and without AOB inhibition were estimated. No significant differences in adsorption tendency were found, but the biodegradability of most compounds was enhanced when ammonia was completely oxidized, indicating that AOB present in MBR played a critical role in eliminating the PPCPs. Moreover, target PPCPs were degraded in 2 stages, first by cometabolic degradation related to AOB growth, and then by endogenous respiration by microorganisms in the absence of other growth substrate. The compounds were classified into 3 groups according to removal performance and cometabolic degradation. Our approach provides new insight into the removal of PPCPs via cometabolism and endogenous respiration under AOB enrichment cultures developed in MBR.
Collapse
Affiliation(s)
- Junwon Park
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan.
| | - Naoyuki Yamashita
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Guangxue Wu
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
38
|
Grandclément C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. WATER RESEARCH 2017; 111:297-317. [PMID: 28104517 DOI: 10.1016/j.watres.2017.01.005] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/15/2016] [Accepted: 01/02/2017] [Indexed: 05/02/2023]
Abstract
Because of the recalcitrance of some micropollutants to conventional wastewater treatment systems, the occurrence of organic micropollutants in water has become a worldwide issue, and an increasing environmental concern. Their biodegradation during wastewater treatments could be an interesting and low cost alternative to conventional physical and chemical processes. This paper provides a review of the organic micropollutants removal efficiency from wastewaters. It analyses different biological processes, from conventional ones, to new hybrid ones. Micropollutant removals appear to be compound- and process- dependent, for all investigated processes. The influence of the main physico-chemical parameters is discussed, as well as the removal efficiency of different microorganisms such as bacteria or white rot fungi, and the role of their specific enzymes. Even though some hybrid processes show promising micropollutant removals, further studies are needed to optimize these water treatment processes, in particular in terms of technical and economical competitiveness.
Collapse
Affiliation(s)
- Camille Grandclément
- Aix-Marseille Univ, CNRS, LCE, Marseille, France; Aix-Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France; Société Seakalia SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, 13013, Marseille, France
| | | | - Anne Piram
- Aix-Marseille Univ, CNRS, LCE, Marseille, France
| | | | - Guillaume Vanot
- Société Seakalia SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, 13013, Marseille, France
| | - Nicolas Tiliacos
- Société Seakalia SAS, Groupe Ovalee, Technopôle de Château-Gombert, Héliopolis, 13013, Marseille, France
| | - Nicolas Roche
- Aix-Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France.
| | | |
Collapse
|
39
|
Men Y, Achermann S, Helbling DE, Johnson DR, Fenner K. Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation. WATER RESEARCH 2017; 109:217-226. [PMID: 27898334 DOI: 10.1016/j.watres.2016.11.048] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 05/27/2023]
Abstract
Improved micropollutant (MP) biotransformation during biological wastewater treatment has been associated with high ammonia oxidation activities, suggesting co-metabolic biotransformation by ammonia oxidizing bacteria as an underlying mechanism. The goal of this study was to clarify the contribution of ammonia oxidizing bacteria to increased MP degradation in nitrifying activated sludge (NAS) communities using a series of inhibition experiments. To this end, we treated a NAS community with two different ammonia oxidation inhibitors, namely octyne (OCT), a mechanistic inhibitor that covalently binds to ammonia monooxygenases, and allylthiourea (ATU), a copper chelator that depletes copper ions from the active center of ammonia monooxygenases. We investigated the biotransformation of 79 structurally different MPs by the inhibitor-treated and untreated sludge communities. Fifty-five compounds exhibited over 20% removal in the untreated control after a 46 h-incubation. Of these, 31 compounds were significantly inhibited by either ATU and/or OCT. For 17 of the 31 MPs, the inhibition by ATU at 46 h was substantially higher than by OCT despite the full inhibition of ammonia oxidation by both inhibitors. This was particularly the case for almost all thioether and phenylurea compounds tested, suggesting that in nitrifying activated sludge communities, ATU does not exclusively act as an inhibitor of bacterial ammonia oxidation. Rather, ATU also inhibited enzymes contributing to MP biotransformation but not to bulk ammonia oxidation. Thus, inhibition studies with ATU tend to overestimate the contribution of ammonia-oxidizing bacteria to MP biotransformation in nitrifying activated sludge communities. Biolog tests revealed only minor effects of ATU on the heterotrophic respiration of common organic substrates by the sludge community, suggesting that ATU did not affect enzymes that were essential in energy conservation and central metabolism of heterotrophs. By comparing ATU- and OCT-treated samples, as well as before and after ammonia oxidation was recovered in OCT-treated samples, we were able to demonstrate that ammonia-oxidizing bacteria were highly involved in the biotransformation of four compounds: asulam, clomazone, monuron and trimethoprim.
Collapse
Affiliation(s)
- Yujie Men
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Stefan Achermann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David R Johnson
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
40
|
Xu Y, Yuan Z, Ni BJ. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:796-805. [PMID: 27243932 DOI: 10.1016/j.scitotenv.2016.05.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Pharmaceutical residues could potentially pose detrimental effects on aquatic ecosystems and human health, with wastewater treatment being one of the major pathways for pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals by ammonia oxidizing bacteria (AOB) has been widely observed in wastewater treatment processes. This article reviews the current knowledge on the biotransformation of pharmaceuticals by AOB. The relationship between the pharmaceuticals removal and nitrification process was revealed. The important role of AOB-induced cometabolism on the biotransformation of pharmaceuticals as well as their transformation products and pathways was elucidated. Kinetics and mathematical models describing the biotransformation of pharmaceuticals by AOB were also reviewed. The results highlighted the high degradation capabilities of AOB toward some refractory pharmaceuticals, with their degradations being clearly related to the nitrification rate and their transformation products being identified, which may exhibit similar or higher ecotoxicological impacts compared to the parent compound.
Collapse
Affiliation(s)
- Yifeng Xu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|