1
|
Yamaguchi M, Fukuyama R, Fujita M. Effect of nattokinase on the pathological conditions in streptozotocin induced diabetic rats. Heliyon 2024; 10:e28835. [PMID: 38586318 PMCID: PMC10998082 DOI: 10.1016/j.heliyon.2024.e28835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Nattokinase (NK), also known as subtilisin NAT (EC 3.4.21.62), is a serine protease produced by Bacillus subtilis natto that has anti-inflammatory and fibrinolytic properties. To study whether NK prevents the progression of pathological changes in diabetes as an inflammatory disease, we examined the effect of NK on pathological conditions in streptozotocin (STZ)-induced diabetic rats using the following parameters: fasting blood glucose (glucose), total plasma protein (TP), creatinine, histopathology of renal corpuscles and tubules, advanced glycation end products (AGEs), and C-reactive protein (CRP). STZ-administered rats were maintained on a basic diet (CE-2) as control, low-NK diet (containing 0.2 mg NK/g diet), and high-NK diet (0.6 mg NK/g diet) for 14 days. High-dose NK significantly inhibited both glycogen deposition in the renal tubules and increase in the circulating AGE levels without downregulating glucose levels. Compared with the control group, the group treated with the high-NK diet presented a significant inhibition of the increase in the circulating CRP level on day 7 after the beginning of the treatment. However, the CRP level in the NK-H group reached the same level as that in the control group on Day 14. AGEs are known to induce CRP expression in hepatocytes, but the increase in CRP levels in our animal model was independent on the circulating AGE levels. In contrast, low-dose NK did not suppress changes in these parameters. Our present study suggests that NK suppresses glycogen deposition in renal tubules in a dose-dependent manner by the downregulation of AGE formation under hyperglycaemia in the rats with STZ-induced short-term diabetes. However, it is unclear whether this downregulation is caused by intact NK or peptides derived from NK during its digestion in the digestive tract.
Collapse
Affiliation(s)
- Moe Yamaguchi
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Science, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima, 737-0112, Japan
| | - Ryo Fukuyama
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Science, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima, 737-0112, Japan
| | - Mitsugu Fujita
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Science, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima, 737-0112, Japan
| |
Collapse
|
2
|
Parwani K, Mandal P. Advanced glycation end products and insulin resistance in diabetic nephropathy. VITAMINS AND HORMONES 2024; 125:117-148. [PMID: 38997162 DOI: 10.1016/bs.vh.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Insulin resistance is a central hallmark that connects the metabolic syndrome and diabetes to the resultant formation of advanced glycation end products (AGEs), which further results in the complications of diabetes, including diabetic nephropathy. Several factors play an important role as an inducer to diabetic nephropathy, and AGEs elicit their harmful effects via interacting with the receptor for AGEs Receptor for AGEs, by induction of pro-inflammatory cytokines, oxidative stress, endoplasmic reticulum stress and fibrosis in the kidney tissues leading to the loss of renal function. Insulin resistance results in the activation of other alternate pathways governed by insulin, which results in the hypertrophy of the renal cells and tissue remodeling. Apart from the glucose uptake and disposal, insulin dependent PI3K and Akt also upregulate the expression of endothelial nitric oxide synthase, that results in increasing the bioavailability of nitric oxide in the vascular endothelium, which further results in tissue fibrosis. Considering the global prevalence of diabetic nephropathy, and the impact of protein glycation, various inhibitors and treatment avenues are being developed, to prevent the progression of diabetic complications. In this chapter, we discuss the role of glycation in insulin resistance and further its impact on the kidney.
Collapse
Affiliation(s)
- Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science & Technology, Gujarat, India.
| |
Collapse
|
3
|
Reynaert NL, Vanfleteren LEGW, Perkins TN. The AGE-RAGE Axis and the Pathophysiology of Multimorbidity in COPD. J Clin Med 2023; 12:jcm12103366. [PMID: 37240472 DOI: 10.3390/jcm12103366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Timothy N Perkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Parwani K, Mandal P. Role of advanced glycation end products and insulin resistance in diabetic nephropathy. Arch Physiol Biochem 2023; 129:95-107. [PMID: 32730131 DOI: 10.1080/13813455.2020.1797106] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS), i.e. a cluster of physiological and biochemical abnormalities can lead to diabetic nephropathy (DN). Insulin resistance, impaired fasting glucose are the main signs and symptoms of MetS. Excess sugar can induce various substantial structural changes like formation of advanced glycation end products (AGEs). AGEs are formed due to reaction of reducing sugars with amino groups of proteins, lipids and nucleic acids. AGEs when bound to the receptor for advanced glycation end products (RAGE) activate increased production of pro-inflammatory markers like interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) along with induction of endoplasmic reticulum (ER) stress. Accumulation of AGEs, enhanced reactive oxygen species (ROS) generation and activation of protein kinase C (PKC), are considered to induce glomerular hypertrophy, podocyte apoptosis, therefore contributing to the development and progression of DN. In this review, we decipher different biochemical and physiological factors that link AGEs and DN.
Collapse
Affiliation(s)
- Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
5
|
Adeva-Andany MM, Carneiro-Freire N. Biochemical composition of the glomerular extracellular matrix in patients with diabetic kidney disease. World J Diabetes 2022; 13:498-520. [PMID: 36051430 PMCID: PMC9329837 DOI: 10.4239/wjd.v13.i7.498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/19/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
In the glomeruli, mesangial cells produce mesangial matrix while podocytes wrap glomerular capillaries with cellular extensions named foot processes and tether the glomerular basement membrane (GBM). The turnover of the mature GBM and the ability of adult podocytes to repair injured GBM are unclear. The actin cytoskeleton is a major cytoplasmic component of podocyte foot processes and links the cell to the GBM. Predominant components of the normal glomerular extracellular matrix (ECM) include glycosaminoglycans, proteoglycans, laminins, fibronectin-1, and several types of collagen. In patients with diabetes, multiorgan composition of extracellular tissues is anomalous, including the kidney, so that the constitution and arrangement of glomerular ECM is profoundly altered. In patients with diabetic kidney disease (DKD), the global quantity of glomerular ECM is increased. The level of sulfated proteoglycans is reduced while hyaluronic acid is augmented, compared to control subjects. The concentration of mesangial fibronectin-1 varies depending on the stage of DKD. Mesangial type III collagen is abundant in patients with DKD, unlike normal kidneys. The amount of type V and type VI collagens is higher in DKD and increases with the progression of the disease. The GBM contains lower amount of type IV collagen in DKD compared to normal tissue. Further, genetic variants in the α3 chain of type IV collagen may modulate susceptibility to DKD and end-stage kidney disease. Human cellular models of glomerular cells, analyses of human glomerular proteome, and improved microscopy procedures have been developed to investigate the molecular composition and organization of the human glomerular ECM.
Collapse
|
6
|
Han Q, Wang X, Ding X, Hao J, Li Q, Wang J, Yu H, Tang Z, Yang F, Cai G, Zhang D, Zhu H. Salivary Glycopatterns as Potential Non-Invasive Biomarkers for Diagnosing and Reflecting Severity and Prognosis of Diabetic Nephropathy. Front Endocrinol (Lausanne) 2022; 13:790586. [PMID: 35432212 PMCID: PMC9009518 DOI: 10.3389/fendo.2022.790586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/10/2022] [Indexed: 12/29/2022] Open
Abstract
Discriminating between diabetic nephropathy (DN) and non-diabetic renal disease (NDRD) can help provide more specific treatments. However, there are no ideal biomarkers for their differentiation. Thus, the aim of this study was to identify biomarkers for diagnosing and predicting the progression of DN by investigating different salivary glycopatterns. Lectin microarrays were used to screen different glycopatterns in patients with DN or NDRD. The results were validated by lectin blotting. Logistic regression and artificial neural network analyses were used to construct diagnostic models and were validated in in another cohort. Pearson's correlation analysis, Cox regression, and Kaplan-Meier survival curves were used to analyse the correlation between lectins, and disease severity and progression. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses were used to identify corresponding glycoproteins and predict their function. Both the logistic regression model and the artificial neural network model achieved high diagnostic accuracy. The levels of Aleuria aurantia lectin (AAL), Lycopersicon esculentum lectin (LEL), Lens culinaris lectin (LCA), Vicia villosa lectin (VVA), and Narcissus pseudonarcissus lectin (NPA) were significantly correlated with the clinical and pathological parameters related to DN severity. A high level of LCA and a low level of LEL were associated with a higher risk of progression to end-stage renal disease. Glycopatterns in the saliva could be a non-invasive tool for distinguishing between DN and NDRD. The AAL, LEL, LCA, VVA, and NPA levels could reflect the severity of DN, and the LEL and LCA levels could indicate the prognosis of DN.
Collapse
Affiliation(s)
- Qiuxia Han
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaochen Wang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Xiaonan Ding
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Jing Hao
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Qi Li
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Jifeng Wang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Zhen Tang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Fuquan Yang
- The Key Laboratory of Protein and Peptide Pharmaceuticals, Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dong Zhang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| | - Hanyu Zhu
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China
| |
Collapse
|
7
|
Ebert T, Neytchev O, Witasp A, Kublickiene K, Stenvinkel P, Shiels PG. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal 2021; 35:1426-1448. [PMID: 34006115 DOI: 10.1089/ars.2020.8184] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chronic kidney disease (CKD) can be regarded as a burden of lifestyle disease that shares common underpinning features and risk factors with the aging process; it is a complex constituted by several adverse components, including chronic inflammation, oxidative stress, early vascular aging, and cellular senescence. Recent Advances: A systemic approach to tackle CKD, based on mitigating the associated inflammatory, cell stress, and damage processes, has the potential to attenuate the effects of CKD, but it also preempts the development and progression of associated morbidities. In effect, this will enhance health span and compress the period of morbidity. Pharmacological, nutritional, and potentially lifestyle-based interventions are promising therapeutic avenues to achieve such a goal. Critical Issues: In the present review, currents concepts of inflammation and oxidative damage as key patho-mechanisms in CKD are addressed. In particular, potential beneficial but also adverse effects of different systemic interventions in patients with CKD are discussed. Future Directions: Senotherapeutics, the nuclear factor erythroid 2-related factor 2-kelch-like ECH-associated protein 1 (NRF2-KEAP1) signaling pathway, the endocrine klotho axis, inhibitors of the sodium-glucose cotransporter 2 (SGLT2), and live bio-therapeutics have the potential to reduce the burden of CKD and improve quality of life, as well as morbidity and mortality, in this fragile high-risk patient group. Antioxid. Redox Signal. 35, 1426-1448.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ognian Neytchev
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
8
|
Burganova G, Bridges C, Thorn P, Landsman L. The Role of Vascular Cells in Pancreatic Beta-Cell Function. Front Endocrinol (Lausanne) 2021; 12:667170. [PMID: 33981287 PMCID: PMC8109179 DOI: 10.3389/fendo.2021.667170] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Insulin-producing β-cells constitute the majority of the cells in the pancreatic islets. Dysfunction of these cells is a key factor in the loss of glucose regulation that characterizes type 2 diabetes. The regulation of many of the functions of β-cells relies on their close interaction with the intra-islet microvasculature, comprised of endothelial cells and pericytes. In addition to providing islet blood supply, cells of the islet vasculature directly regulate β-cell activity through the secretion of growth factors and other molecules. These factors come from capillary mural pericytes and endothelial cells, and have been shown to promote insulin gene expression, insulin secretion, and β-cell proliferation. This review focuses on the intimate crosstalk of the vascular cells and β-cells and its role in glucose homeostasis and diabetes.
Collapse
Affiliation(s)
- Guzel Burganova
- Department of Cell and Development Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Claire Bridges
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Peter Thorn
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Limor Landsman
- Department of Cell and Development Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Limor Landsman,
| |
Collapse
|
9
|
Role of S100 proteins in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118677. [PMID: 32057918 DOI: 10.1016/j.bbamcr.2020.118677] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
Abstract
The S100 family of proteins contains 25 known members that share a high degree of sequence and structural similarity. However, only a limited number of family members have been characterized in depth, and the roles of other members are likely undervalued. Their importance should not be underestimated however, as S100 family members function to regulate a diverse array of cellular processes including proliferation, differentiation, inflammation, migration and/or invasion, apoptosis, Ca2+ homeostasis, and energy metabolism. Here we detail S100 target protein interactions that underpin the mechanistic basis to their function, and discuss potential intervention strategies targeting S100 proteins in both preclinical and clinical situations.
Collapse
|
10
|
Adelusi TI, Du L, Hao M, Zhou X, Xuan Q, Apu C, Sun Y, Lu Q, Yin X. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed Pharmacother 2020; 123:109732. [PMID: 31945695 DOI: 10.1016/j.biopha.2019.109732] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic complications while the components of Keap1/Nrf2/ARE signaling are being exploited as therapeutic targets for the treatment/management of these pathologies. Antioxidant agents like drugs, nutraceuticals and pure compounds that target the proteins of this pathway and their downstream genes hold the therapeutic strength to put the progression of this disease at bay. Here, we elucidate how the modulation of Keap1/Nrf2/ARE had been exploited for the treatment/management of end-stage diabetic kidney complication (diabetic nephropathy) by looking into (1) Nrf2 nuclear translocation and phosphorylation by some protein kinases at specific amino acid sequences and (2) Keap1 downregulation/Keap1-Nrf2 protein-protein inhibition (PPI) as potential therapeutic mechanisms exploited by Nrf2 activators for the modulation of diabetic nephropathy biomarkers (Collagen IV, Laminin, TGF-β1 and Fibronectin) that ultimately lead to the amelioration of this disease progression. Furthermore, we brought to limelight the relationship between diabetic nephropathy and Keap1/Nrf2/ARE and finally elucidate how the modulation of this signaling pathway could be further explored to create novel therapeutic milestones.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chowdhury Apu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
11
|
Strieder-Barboza C, Baker NA, Flesher CG, Karmakar M, Neeley CK, Polsinelli D, Dimick JB, Finks JF, Ghaferi AA, Varban OA, Lumeng CN, O'Rourke RW. Advanced glycation end-products regulate extracellular matrix-adipocyte metabolic crosstalk in diabetes. Sci Rep 2019; 9:19748. [PMID: 31875018 PMCID: PMC6930305 DOI: 10.1038/s41598-019-56242-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 12/28/2022] Open
Abstract
The adipose tissue extracellular matrix (ECM) regulates adipocyte cellular metabolism and is altered in obesity and type 2 diabetes, but mechanisms underlying ECM-adipocyte metabolic crosstalk are poorly defined. Advanced glycation end-product (AGE) formation is increased in diabetes. AGE alter tissue function via direct effects on ECM and by binding scavenger receptors on multiple cell types and signaling through Rho GTPases. Our goal was to determine the role and underlying mechanisms of AGE in regulating human ECM-adipocyte metabolic crosstalk. Visceral adipocytes from diabetic and non-diabetic humans with obesity were studied in 2D and 3D-ECM culture systems. AGE is increased in adipose tissue from diabetic compared to non-diabetic subjects. Glycated collagen 1 and AGE-modified ECM regulate adipocyte glucose uptake and expression of AGE scavenger receptors and Rho signaling mediators, including the DIAPH1 gene, which encodes the human Diaphanous 1 protein (hDia1). Notably, inhibition of hDia1, but not scavenger receptors RAGE or CD36, attenuated AGE-ECM inhibition of adipocyte glucose uptake. These data demonstrate that AGE-modification of ECM contributes to adipocyte insulin resistance in human diabetes, and implicate hDia1 as a potential mediator of AGE-ECM-adipocyte metabolic crosstalk.
Collapse
Affiliation(s)
- Clarissa Strieder-Barboza
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicki A Baker
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carmen G Flesher
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Monita Karmakar
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher K Neeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dominic Polsinelli
- Undergraduate Research Opportunity Program, University of Michigan, Ann Arbor, MI, USA
| | - Justin B Dimick
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan F Finks
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Amir A Ghaferi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Oliver A Varban
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Surgery, Ann Arbor Veterans Affairs Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Li T, Hua Q, Li N, Cui Y, Zhao M. Protective effect of a polysaccharide from Dipsacus asper Wall on streptozotocin (STZ)-induced diabetic nephropathy in rat. Int J Biol Macromol 2019; 133:1194-1200. [DOI: 10.1016/j.ijbiomac.2019.04.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022]
|
13
|
Additive effects of dietary glycotoxins and androgen excess on the kidney of a female rat model. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2015.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Spatholobus suberectus Ameliorates Diabetes-Induced Renal Damage by Suppressing Advanced Glycation End Products in db/db Mice. Int J Mol Sci 2018; 19:ijms19092774. [PMID: 30223524 PMCID: PMC6163801 DOI: 10.3390/ijms19092774] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
Spatholobus suberectus (SS) is a medicinal herb commonly used in Asia to treat anemia, menoxenia and rheumatism. However, its effect of diabetes-induced renal damage and mechanisms of action against advanced glycation end-products (AGEs) are unclear. In this study, we evaluated the effects of SS on diabetes-induced renal damage and explored the possible underlying mechanisms using db/db type 2 diabetes mice. db/db mice were administered SS extract (50 mg/kg) orally for 6 weeks. SS-treated group did not change body weight, blood glucose and glycated hemoglobin (HbA1c) levels. However, SS treatment reversed diabetes-induced dyslipidemia and urinary albumin/creatinine ratio in db/db mice. Moreover, SS administration showed significantly increased protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a transcription factor for antioxidant enzyme. SS significantly upregulated glyoxalase 1 (Glo1) and NADPH quinine oxidoreductase 1 (NQO1) expression but reduced CML accumulation and downregulated receptor for AGEs (RAGE). Furthermore, SS showed significant decrease of periodic acid⁻Schiff (PAS)-positive staining and AGEs accumulation in histological and immunohistochemical analyses of kidney tissues. Taken together, we concluded that SS ameliorated the renal damage by inhibiting diabetes-induced glucotoxicity, dyslipidemia and oxidative stress, through the Nrf2/antioxidant responsive element (ARE) stress-response system.
Collapse
|
15
|
Freund MA, Chen B, Decker EA. The Inhibition of Advanced Glycation End Products by Carnosine and Other Natural Dipeptides to Reduce Diabetic and Age-Related Complications. Compr Rev Food Sci Food Saf 2018; 17:1367-1378. [DOI: 10.1111/1541-4337.12376] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Michael A. Freund
- Dept. of Food Science; Univ. of Massachusetts - Amherst; 240 Chenoweth Laboratory, 102 Holdsworth Way Amherst MA 01003 U.S.A
| | - Bingcan Chen
- Dept. of Plant Sciences; North Dakota State Univ.; PO Box 6050 Fargo ND 58108-6050 U.S.A
| | - Eric A. Decker
- Dept. of Food Science; Univ. of Massachusetts - Amherst; 240 Chenoweth Laboratory, 102 Holdsworth Way Amherst MA 01003 U.S.A
| |
Collapse
|
16
|
Xu Q, Du F, Zhang Y, Teng Y, Tao M, Chen AF, Jiang R. Preeclampsia serum induces human glomerular vascular endothelial cell hyperpermeability via the HMGB1-Caveolin-1 pathway. J Reprod Immunol 2018; 129:1-8. [PMID: 30007203 DOI: 10.1016/j.jri.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/13/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023]
Abstract
To explore new ideas about the pathogeny of preeclampsia (PE) proteinuria, this study focused on whether severe PE serum (PES) could induce high-molecular-weight protein (HMWP) hyperpermeability in glomerular endothelial cells (GEC) via the HMGB1-Caveolin-1 (CAV-1) pathway. Normal pregnancy serum (NPS) and severe PES were used to treat primary human GEC monolayer for 24 h. The CAV-1 inhibitor methyl-beta-cyclodextrin (MBCD), the HMGB1 inhibitor glycyrrhizicacid (GA), recombinant HMGB1 (rHMGB1) were also used to treat GEC monolayer that were stimulated by NPS or severe PES. The dynamic permeability of GEC to HMWP was detected by Evans blue-labeled BSA and CAV-1 expression in GEC was analyzed by immunofluorescence staining and Western blotting. We detected HMGB1 expression in placenta and serum in normal pregnancy and severe PE. The results showed that severe PES significantly promoted GEC hyperpermeability and CAV-1 expression. By inhibiting CAV-1 expression, MBCD reversed severe PES-induced GEC monolayer permeability. HMGB1 expression in PE placenta and serum was significantly increased. Compared with that in normal placenta, HMGB1expression was increased in the cytoplasm of syncytiotrophoblast cells in PE placenta. GA decreased the severe PES-induced hyperpermeability and CAV-1 expression in GEC. rHMGB1 induced high expression levels of CAV-1 and HMWP hyperpermeability in GEC. In conclusion, HMGB1 is increased in severe PE patients and induces the expression of CAV-1 in GEC. High expression of CAV-1 in GEC can promote HMWP hyperpermeability, which may contribute to the development of PE proteinuria.
Collapse
Affiliation(s)
- Qinyang Xu
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Du
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Zhang
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yincheng Teng
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minfang Tao
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Alex F Chen
- Department of Surgery, McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rongzhen Jiang
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
17
|
Mohamed RA, Galal O, Mohammed AR, El-Abhar HS. Tropisetron modulates peripheral and central serotonin/insulin levels via insulin and nuclear factor kappa B/receptor for advanced glycation end products signalling to regulate type-2 diabetes in rats. RSC Adv 2018; 8:11908-11920. [PMID: 35539384 PMCID: PMC9079279 DOI: 10.1039/c7ra13105d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/05/2018] [Indexed: 01/27/2023] Open
Abstract
Despite its known central effect, 5% of serotonin is found centrally, while around 95% is found peripherally. Serotonin is stored and co-released with insulin upon pancreatic islets stimulation by glucose. This fact raises the curiosity regarding its possible role in diabetes. Hence, in this study, we assessed the possible modulatory effects of tropisetron, a 5-HT3 receptor antagonist, on type 2 diabetes mellitus models in rats. The rats were allocated into two groups: normal and diabetic. The latter group was treated with metformin (500 mg kg-1, p.o.), tropisetron (1 and 2 mg kg-1, i.p.), and a combination of metformin and tropisetron (1 mg kg-1). The different treatment regimens corrected glucose and lipid homeostasis manifested by the decrease in serum levels of glucose, fructosamine, homeostasis model of insulin resistance, triglycerides, total cholesterol, free fatty acid, as well as receptor for advanced glycation end products. Additionally, the treatments elevated levels of insulin, serotonin, and homeostasis model of β-cell function. On the molecular level, treatments corrected the altered insulin signaling cascade (phosphorylated insulin receptor substrate 1, phosphorylated protein kinase B, and glucose transporter 4), and inhibited β-catenin and phosphorylated nuclear factor kappa B p65 in the assessed soleus skeletal muscle. A similar pattern was duplicated in the hippocampus. This study provided evidence for the role of tropisetron on type 2 diabetes mellitus via modulating the insulin signaling cascade (insulin, phosphorylated insulin receptor substrate 1, phosphorylated protein kinase B, and glucose transporter 4), improving lipid/glucose profile, decreasing inflammatory markers (receptor for advanced glycation end products, and phosphorylated nuclear factor kappa B p65), as well as increasing 5-HT and reducing β-catenin.
Collapse
Affiliation(s)
- Reem Ali Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) 26 July Mehwar Road Intersection with Wahat Road 6th October City Cairo 12566 Egypt +20-002-01224611087
| | - Omneya Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) 26 July Mehwar Road Intersection with Wahat Road 6th October City Cairo 12566 Egypt +20-002-01224611087
| | - Ahmed Refaat Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) 26 July Mehwar Road Intersection with Wahat Road 6th October City Cairo 12566 Egypt +20-002-01224611087
| | - Hanan Salah El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University Cairo Egypt
| |
Collapse
|
18
|
Li X, Gao Z, Gao H, Li B, Peng T, Jiang B, Yang X, Hu Z. Nephrin loss is reduced by grape seed proanthocyanidins in the experimental diabetic nephropathy rat model. Mol Med Rep 2017; 16:9393-9400. [PMID: 29152654 PMCID: PMC5779996 DOI: 10.3892/mmr.2017.7837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/31/2017] [Indexed: 01/10/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the major causes of end-stage renal failure. Grape seed proanthocyanidin extracts (GSPE) are known to act as antioxidants. The current study aimed to determine the effects of GSPE on the streptozotocin (STZ)-induced diabetic rat model and to explore the underlying mechanism of its action. Wistar rats were induced into a diabetic state by injection of STZ and were treated with 250 mg·kg−1·day−1 GSPE for 24 weeks. Kidney samples were collected for observation of renal pathological changes by light microscope (periodic acid-Schiff staining) and electron microscopy. Reverse transcription-polymerase chain reaction, western blotting, and immunohistochemical staining were used to detect the mRNA and protein expression of the receptor for advanced glycation end-products (RAGE), nephrin and podocin. The results indicated that diabetic rats treated with GSPE had markedly reduced Ccr, urinary albumin excretion, ratio of kidney weight to body weight, AGEs and ECM accumulation (P<0.01) compared with that in the diabetic rats. GSPE treatment can also reverse the renal pathological damage in diabetic rats. Further results indicated that GSPE treatment significantly decreased the RAGE expression level (P<0.01), and significantly increased the expression level of nephrin in the kidney and glomeruli of diabetic rats (P<0.01). However, no significant differences were identified in the expression of podocin following GSPE treatment (P>0.05). In conclusion, the results demonstrated that GSPE exerts a reno-protective effect by decreasing urinary albumin excretion and reversing renal pathological damage in diabetic rats. The underlying mechanism of GSPE activity is associated with the decreased expression of the AGEs/RAGE axis and the increased expression of nephrin in diabetic rats.
Collapse
Affiliation(s)
- Xianhua Li
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhaoli Gao
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haiqing Gao
- Department of Geriatrics, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Baoying Li
- Department of Geriatrics, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tao Peng
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bei Jiang
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiangdong Yang
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhao Hu
- Department of Nephrology, Qi Lu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
19
|
Diabetic nephropathy - is this an immune disorder? Clin Sci (Lond) 2017; 131:2183-2199. [PMID: 28760771 DOI: 10.1042/cs20160636] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Chronic diabetes is associated with metabolic and haemodynamic stresses which can facilitate modifications to DNA, proteins and lipids, induce cellular dysfunction and damage, and stimulate inflammatory and fibrotic responses which lead to various types of renal injury. Approximately 30-40% of patients with diabetes develop nephropathy and this renal injury normally progresses in about a third of patients. Due to the growing incidence of diabetes, diabetic nephropathy is now the main cause of end-stage renal disease (ESRD) worldwide. Accumulating evidence from experimental and clinical studies has demonstrated that renal inflammation plays a critical role in determining whether renal injury progresses during diabetes. However, the immune response associated with diabetic nephropathy is considerably different to that seen in autoimmune kidney diseases or in acute kidney injury arising from episodes of ischaemia or infection. This review evaluates the role of the immune system in the development of diabetic nephropathy, including the specific contributions of leucocyte subsets (macrophages, neutrophils, mast cells, T and B lymphocytes), danger-associated molecular patterns (DAMPs), inflammasomes, immunoglobulin and complement. It also examines factors which may influence the development of the immune response, including genetic factors and exposure to other kidney insults. In addition, this review discusses therapies which are currently under development for targeting the immune system in diabetic nephropathy and indicates those which have proceeded into clinical trials.
Collapse
|
20
|
Food-advanced glycation end products aggravate the diabetic vascular complications via modulating the AGEs/RAGE pathway. Chin J Nat Med 2017; 14:844-855. [PMID: 27914528 DOI: 10.1016/s1875-5364(16)30101-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 01/05/2023]
Abstract
The aim of this study was to investigate the effects of high-advanced glycation end products (AGEs) diet on diabetic vascular complications. The Streptozocin (STZ)-induced diabetic mice were fed with high-AGEs diet. Diabetic characteristics, indicators of renal and cardiovascular functions, and pathohistology of pancreas, heart and renal were evaluated. AGEs/RAGE/ROS pathway parameters were determined. During the experiments, the diabetic mice exhibited typical characteristics including weight loss, polydipsia, polyphagia, polyuria, high-blood glucose, and low-serum insulin levels. However, high-AGEs diet effectively aggravated these diabetic characteristics. It also increased the 24-h urine protein levels, serum levels of urea nitrogen, creatinine, c-reactive protein (CRP), low density lipoprotein (LDL), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in the diabetic mice. High-AGEs diet deteriorated the histology of pancreas, heart, and kidneys, and caused structural alterations of endothelial cells, mesangial cells and podocytes in renal cortex. Eventually, high-AGEs diet contributed to the high-AGE levels in serum and kidneys, high-levels of reactive oxygen species (ROS) and low-levels of superoxide dismutase (SOD) in serum, heart, and kidneys. It also upregulated RAGE mRNA and protein expression in heart and kidneys. Our results showed that high-AGEs diet deteriorated vascular complications in the diabetic mice. The activation of AGEs/RAGE/ROS pathway may be involved in the pathogenesis of vascular complications in diabetes.
Collapse
|
21
|
Reynaert NL, Gopal P, Rutten EP, Wouters EF, Schalkwijk CG. Advanced glycation end products and their receptor in age-related, non-communicable chronic inflammatory diseases; Overview of clinical evidence and potential contributions to disease. Int J Biochem Cell Biol 2016; 81:403-418. [PMID: 27373680 DOI: 10.1016/j.biocel.2016.06.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 12/31/2022]
|
22
|
Kishore L, Kaur N, Singh R. Nephroprotective effect of Paeonia emodi via inhibition of advanced glycation end products and oxidative stress in streptozotocin-nicotinamide induced diabetic nephropathy. J Food Drug Anal 2016; 25:576-588. [PMID: 28911644 PMCID: PMC9328827 DOI: 10.1016/j.jfda.2016.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/22/2016] [Accepted: 08/31/2016] [Indexed: 02/08/2023] Open
Abstract
The present study aimed to evaluate the effect of alcohol (PA) and hydroalcohol (PHA) extract of Paeonia emodi Royale roots in treatment of streptozotocin–nicotinamide induced diabetic nephropathy. Diabetes mellitus was induced in male Wistar rats by streptozotocin (65 mg/kg intraperitoneally) 15 minutes after nicotinamide (230 mg/kg, intraperitoneally) administration and diabetic nephropathy was assessed by measuring serum glucose, renal parameters (urea, uric acid, creatinine, and blood urea nitrogen level) and lipid profile. The rats were treated with different doses of extracts (100 mg/kg, 200 mg/kg, and 400 mg/kg) for 45 days. Oxidative stress was assessed by measuring tissue antioxidant enzymes level along with the formation of advanced glycation end-products (AGEs) in kidney. PA and PHA (400 mg/kg) produced significant attenuation in the serum glucose level (165.08 ± 3.353 mg/dL and 154.27 ± 2.209 mg/dL, respectively) as compared to control. Elevated renal parameters, lipid levels, tissue antioxidant enzymes and AGE formation were also restored in a dose-dependent manner. These findings suggest that by amelioration of oxidative stress and formation of AGEs, PA and PHA significantly inhibited the progression diabetic nephropathy in rats.
Collapse
Affiliation(s)
- Lalit Kishore
- M.M. College of Pharmacy, M.M. University, Mullana-Ambala, Haryana 133207, India
| | - Navpreet Kaur
- M.M. College of Pharmacy, M.M. University, Mullana-Ambala, Haryana 133207, India
| | - Randhir Singh
- M.M. College of Pharmacy, M.M. University, Mullana-Ambala, Haryana 133207, India.
| |
Collapse
|
23
|
El-Mahdy NA, El-Sayad MES, El-Kadem AH. Combination of telmisartan with sildenafil ameliorate progression of diabetic nephropathy in streptozotocin-induced diabetic model. Biomed Pharmacother 2016; 81:136-144. [DOI: 10.1016/j.biopha.2016.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
|
24
|
Huang JS, Lee YH, Chuang LY, Guh JY, Hwang JY. Cinnamaldehyde and nitric oxide attenuate advanced glycation end products-induced the Jak/STAT signaling in human renal tubular cells. J Cell Biochem 2016; 116:1028-38. [PMID: 25561392 DOI: 10.1002/jcb.25058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 12/18/2014] [Indexed: 01/28/2023]
Abstract
Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. It possesses anti-diabetic properties in vitro and in vivo and has anti-inflammatory and anti-cancer effects. To explore whether cinnamaldehyde was linked to altered advanced glycation end products (AGE)-mediated diabetic nephropathy, the molecular mechanisms of cinnamaldehyde responsible for inhibition of AGE-reduced nitric oxide (NO) bioactivity in human renal proximal tubular cells were examined. We found that raising the ambient AGE concentration causes a dose-dependent decrease in NO generation. Cinnamaldehyde significantly reverses AGE-inhibited NO generation and induces high levels of cGMP synthesis and PKG activation. Treatments with cinnamaldehyde, the NO donor S-nitroso-N-acetylpenicillamine, and the JAK2 inhibitor AG490 markedly attenuated AGE-inhibited NOS protein levels and NO generation. Moreover, AGE-induced the JAK2-STAT1/STAT3 activation, RAGE/p27(Kip1) /collagen IV protein levels, and cellular hypertrophy were reversed by cinnamaldehyde. The ability of cinnamaldehyde to suppress STAT activation was also verified by the observation that it significantly increased SCOS-3 protein level. These findings indicate for the first time that in the presence of cinnamaldehyde, the suppression of AGE-induced biological responses is probably mediated by inactivating the JAK2-STAT1/STAT3 cascade or activating the NO pathway.
Collapse
Affiliation(s)
- Jau-Shyang Huang
- Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Receptor for advanced glycation endproducts and progressive kidney disease. Curr Opin Nephrol Hypertens 2015; 24:54-60. [DOI: 10.1097/mnh.0000000000000091] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Soluble receptor for advanced glycation end products (sRAGE) and carotid intima-media thickness (CIMT) in type 1 diabetes Mellitus: Possible association with diabetic vascular complications. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2014. [DOI: 10.1016/j.ejmhg.2014.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
27
|
Abdel Aziz MT, Wassef MAA, Ahmed HH, Rashed L, Mahfouz S, Aly MI, Hussein RE, Abdelaziz M. The role of bone marrow derived-mesenchymal stem cells in attenuation of kidney function in rats with diabetic nephropathy. Diabetol Metab Syndr 2014; 6:34. [PMID: 24606996 PMCID: PMC4007638 DOI: 10.1186/1758-5996-6-34] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/22/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Stem cell therapy holds a great promise for the repair of injured tissues and organs, including the kidney. We studied the effect of mesenchymal stem cells (MSC) on experimental diabetic nephropathy (DN) in rats and the possible paracrine signals that mediate their action. MATERIALS AND METHODS Rats were divided into controls, DN rats, DN rats receiving MSCs. MSCs were given in a dose of (106cells) by intravenous injection. After 4 weeks, 24 h urinary albumin, serum urea and creatinine concentrations, transforming growth factor β (TGF β), tumor necrosis factor α (TNFα), B-cell lymphoma 2 (bcl2) and Bax gene expression and vascular endothelial growth factor (VEGF) were assessed. Histopathology staining was performed. RESULTS MSC therapy significantly improved 24 h urinary albumin, serum urea and creatinine concentrations, increased angiogenic growth factor VEGF, and anti-apoptotic protein bcl2 while decreased the pro-inflammatory TNF-α, fibrogenic growth factor TGF β, and pro-apoptotic protein Bax. The histopathology examination showed patchy areas of minimal necrosis and degeneration in renal tubules.
Collapse
Affiliation(s)
- Mohamed Talaat Abdel Aziz
- Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Mohamed Abdel Aziz Wassef
- Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Hanan Hosni Ahmed
- Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Laila Rashed
- Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Soheir Mahfouz
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mayssa Ibrahim Aly
- Internal Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania Elsayed Hussein
- Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| | - Mai Abdelaziz
- Unit of Biochemistry and Molecular Biology, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| |
Collapse
|
28
|
Up-regulation of glyoxalase 1 by mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats. Eur J Pharmacol 2013; 721:355-64. [DOI: 10.1016/j.ejphar.2013.08.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 07/24/2013] [Accepted: 08/26/2013] [Indexed: 12/24/2022]
|
29
|
Retraction statement. Protective effects of quercetin on streptozotocin-induced diabetic nephropathy in rats. Phytother Res 2013; 27:1580. [PMID: 23280688 DOI: 10.1002/ptr.4910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 10/31/2012] [Accepted: 11/25/2012] [Indexed: 01/28/2023]
|
30
|
Hao HH, Shao ZM, Tang DQ, Lu Q, Chen X, Yin XX, Wu J, Chen H. Preventive effects of rutin on the development of experimental diabetic nephropathy in rats. Life Sci 2012; 91:959-67. [PMID: 23000098 DOI: 10.1016/j.lfs.2012.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 01/28/2023]
Abstract
AIMS Diabetic nephropathy (DN) is an important microvascular complication and one of the main causes of end-stage renal disease. In this study, the preventive effect and mechanism of rutin on the development of DN in streptozotocin (STZ)-induced diabetic rats were investigated. MAIN METHODS After an early DN model was induced by STZ, rats were orally administered rutin at 3 doses for 10 weeks. Fasting blood glucose, creatinine (Cr), blood urea nitrogen (BUN), urine protein, kidney index, antioxidase, advanced glycosylation end products (AGEs), extracellular matrix (ECM) including collagen IV and laminin, connective tissue growth factor (CTGF), phosphorylated Smad 2/3 (p-Smad 2/3) and Smad 7 (p-Smad 7), and transforming growth factor-β(1) (TGF-β(1)) were determined by different methods, respectively. The ultrastructural morphology was observed by a transmission electron microscope. KEY FINDINGS Compared with the DN group, rutin decreased the levels of fasting blood glucose, Cr, BUN, urine protein, the intensity of oxidative stress and p-Smad 7 significantly. The expression of AGEs, collagen IV and laminin, TGF-β(1), p-Smad 2/3 and CTGF was inhibited by rutin significantly. Moreover, rutin was observed to inhibit proliferation of mesangial cells and decrease thickness of glomerular basement membrane (GBM) by electron microscopy. SIGNIFICANCE The preventive effect of rutin on the development of DN is closely related to oxidative stress and the TGF-β(1)/Smad/ECM and TGF-β(1)/CTGF/ECM signaling pathways. Those results suggest that rutin can prevent the development of experimental DN in rats.
Collapse
Affiliation(s)
- Hui-hui Hao
- Key Laboratory of New Drug and Clinical Application, Xuzhou Medical College, Xuzhou 221004, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen P, Zhao J, Gregersen H. Up-regulated expression of advanced glycation end-products and their receptor in the small intestine and colon of diabetic rats. Dig Dis Sci 2012; 57:48-57. [PMID: 22057282 DOI: 10.1007/s10620-011-1951-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 10/12/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Gastrointestinal disorders and symptoms are common in diabetic patients. Advanced glycation end-products (AGEs) and their receptor (RAGE) have been proposed as an important pathological mechanism underlying diabetic complications, such as diabetic cardiopathy, retinopathy, nephropathy, etc. The aims were to study the distribution of AGE and RAGE in the normal and diabetic small intestine and colon in rats and the possible relationship between AGEs/RAGE and diabetes-induced intestinal structural remodeling. METHODS Diabetic and age-matched normal rats survived for 56 days. The body weight and blood glucose were measured regularly until day 56. Jejunal, ileal, and colonic segments were excised. The wet weight per unit length and the layer thickness were measured. AGE and RAGE were detected by immunohistochemical staining. RESULTS The wet weight per unit length in the three segments and the layer thickness in jejunum and ileum increased in the diabetic rats. The staining density of AGE in diabetic rats was higher in the villi of jejunum and ileum, and in the crypt and circumferential muscle layer of ileum compared to normal rats. The staining intensity of RAGE increased in ganglia, crypt, and brush border of diabetic jejunum and ileum as well as in ganglia of diabetic colon. Positive association was found between the accumulation of AGE and RAGE and the thickness of the different layers. CONCLUSIONS The expression of AGE and RAGE is up-regulated in the small intestine and colon of diabetic rats. The increased AGE and RAGE levels may contribute to diabetic GI dysfunction.
Collapse
Affiliation(s)
- Pengmin Chen
- Mech-Sense, Aalborg Hospital, Sdr Skovvej 15, 9000 Aalborg, Denmark
| | | | | |
Collapse
|
32
|
Zhou X, Wang B, Zhu L, Hao S. A novel improved therapy strategy for diabetic nephropathy: targeting AGEs. Organogenesis 2012; 8:18-21. [PMID: 22349714 PMCID: PMC3399706 DOI: 10.4161/org.19332] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic nephropathy (DN), is a disorder that causes significant morbidity and mortality. Studies on the pathological mechanisms of DN reveal that advanced glycation end products (AGEs) play an important role in the pathogenesis of DN through interacting with receptors for advanced glycation end products (RAGE), which activate a series of intracellular signaling pathways. AGEs and RAGE have therefore been considered to be two potential key targets. Although multiple studies have been made for anti-DN therapy against AGEs or RAGE, the results have been disappointing due to poor effectiveness or to side effects in clinical practice. In this hypothesis article, we propose a novel treatment based on a dual-target approach. A kind of multi-functional intelligent nanoparticle is constructed, which has a core-shell nanoparticle structure to load the dual-target drugs (AGEs inhibitors and RAGE inhibitors), and has a functional "RAGE analog" to be used as "bait" to catch AGEs and target them to the kidney. Owing to its advantages of having a dual-target, synergistic effect and high efficiency, the proposition may have potential applications in DN therapy.
Collapse
Affiliation(s)
- Xuemei Zhou
- Key Laboratory of Biorheological Science and Technology; Ministry of Education; College of Bioengineering; Chongqing University; Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology; Ministry of Education; College of Bioengineering; Chongqing University; Chongqing, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology; Ministry of Education; College of Bioengineering; Chongqing University; Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology; Ministry of Education; College of Bioengineering; Chongqing University; Chongqing, China
| |
Collapse
|
33
|
Lee SH, Kim YS, Lee SJ, Lee BC. The protective effect of Salvia miltiorrhiza in an animal model of early experimentally induced diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1409-1414. [PMID: 21856399 DOI: 10.1016/j.jep.2011.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/01/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is the most common cause of end stage renal disease. In this study, the effects of Salvia miltiorrhiza (SM) were studied in an experimental rat model of DN that was induced by streptozotocin (STZ) treatment. MATERIALS AND METHODS Diabetes was induced in male Sprague-Dawley rats (290 ± 10 g) by injecting STZ (45 mg/kg) into the tail vein. After development of diabetes, the rats were treated with SM (500 mg/kg) for 8 weeks in order to analyze its renoprotective effect, which was evaluated by means of blood glucose level, urine protein, and the expression of advanced glycation end-products (AGEs), receptor of advanced glycation end-products (RAGE), transforming growth factor β1 (TGF-β1), collagen IV, and monocyte/macrophage (ED-1) infiltration. RESULTS High levels of 24-h urinary protein excretion were ameliorated by SM. Moreover, the serum and kidney levels of transforming growth factor β1 (TGF-β1) and the kidney levels of collagen IV, monocytes/macrophages (ED-1) and the receptor for advanced glycation end-products (RAGE), were significantly reduced. CONCLUSIONS These findings suggest that SM might inhibit the progression of DN and could be a therapeutic agent for regulating several pharmacological targets for treatment or prevention of DN.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Deptatment of Clinical Oncology, College of Oriental Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-Ku, Seoul 130-702, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Yamagishi SI, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010. [PMID: 20716934 PMCID: PMC2952094 DOI: 10.4161/oxim.3.2.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
About 246 million people worldwide had diabetes in 2007. The global figure of people with diabetes is projected to increase to 370 million in 2030. As the prevalence of diabetes has risen to epidemic proportions worldwide, diabetic nephropathy has become one of the most challenging health problems. Therapeutic options such as strict blood glucose and blood pressure controls are effective for preventing diabetic nephropathy, but are far from satisfactory, and the number of diabetic patients on end-stage renal disease is still increasing. Therefore, a novel therapeutic strategy that could halt the progression of diabetic nephropathy should be developed. There is accumulating evidence that advanced glycation end products (AGEs), senescent macroprotein derivatives formed at an accelerated rate under diabetes, play a role in diabetic nephropathy via oxidative stress generation. In this paper, we review the pathophysiological role of AGEs and their receptor (RAGE)-oxidative stress system in diabetic nephropathy.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan.
| | | |
Collapse
|
35
|
Yamagishi SI, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:101-8. [PMID: 20716934 PMCID: PMC2952094 DOI: 10.4161/oxim.3.2.11148] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 12/28/2022]
Abstract
About 246 million people worldwide have diabetes in 2007. The global figure of people with diabetes is projected to increase to 370 million in 2030. As the prevalence of diabetes has risen to epidemic proportions worldwide, diabetic nephropathy has become one of the most challenging health problems. Therapeutic options such as strict blood glucose and blood pressure controls are effective for preventing diabetic nephropathy, but are far from satisfactory, and the number of diabetic patients on end-stage renal disease is still increasing. Therefore, a novel therapeutic strategy that could halt the progression of diabetic nephropathy should be developed. There is accumulating evidence that advanced glycation end products (AGEs), senescent macroprotein derivatives formed at an accelerated rate under diabetes, play a role in diabetic nephropathy via oxidative stress generation. In this paper, we review the pathophysiological role of AGEs and their receptor (RAGE)-oxidative stress system in diabetic nephropathy.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan.
| | | |
Collapse
|
36
|
Daroux M, Prévost G, Maillard-Lefebvre H, Gaxatte C, D’Agati V, Schmidt A, Boulanger É. Advanced glycation end-products: Implications for diabetic and non-diabetic nephropathies. DIABETES & METABOLISM 2010; 36:1-10. [DOI: 10.1016/j.diabet.2009.06.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 06/21/2009] [Accepted: 06/23/2009] [Indexed: 01/28/2023]
|
37
|
Yan SF, Ramasamy R, Schmidt AM. Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response. J Mol Med (Berl) 2009; 87:235-47. [PMID: 19189073 DOI: 10.1007/s00109-009-0439-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/12/2022]
Abstract
The actors in the pathogenesis of diabetes and its complications are many and multifaceted. The effects of elevated levels of glucose are myriad; among these is the generation of advanced glycation end products (AGEs), the products of nonenzymatic glycoxidation of proteins and lipids. The finding that AGEs stimulate signal transduction cascades through the multiligand receptor RAGE unveiled novel insights into diabetes and its complications. Inextricably woven into AGE-RAGE interactions in diabetes is the engagement of the innate and adaptive immune responses. Although glucose may be the triggering stimulus to draw RAGE into diabetes pathology, consequent cellular stress results in release of proinflammatory RAGE ligands S100/calgranulins and HMGB1. We predict that once RAGE is engaged in the diabetic tissue, a vicious cycle of ligand-RAGE perturbation ensues, leading to chronic tissue injury and suppression of repair mechanisms. Targeting RAGE may be a beneficial strategy in diabetes, its complications, and untoward inflammatory responses.
Collapse
Affiliation(s)
- Shi Fang Yan
- Department of Surgery, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
38
|
Shen JG, Yao MF, Chen XC, Feng YF, Ye YH, Tong ZH. Effects of puerarin on receptor for advanced glycation end products in nephridial tissue of streptozotocin-induced diabetic rats. Mol Biol Rep 2009; 36:2229-33. [DOI: 10.1007/s11033-008-9438-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 12/12/2008] [Indexed: 01/11/2023]
|
39
|
Jun H, Song Z, Chen W, Zanhua R, Yonghong S, Shuxia L, Huijun D. In vivo and in vitro effects of SREBP-1 on diabetic renal tubular lipid accumulation and RNAi-mediated gene silencing study. Histochem Cell Biol 2008; 131:327-45. [PMID: 19048273 DOI: 10.1007/s00418-008-0528-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2008] [Indexed: 12/24/2022]
Abstract
Lipid deposits can injury the kidney of diabetic patients and models. Sterol regulatory element binding protein-1 (SREBP-1) is transcription factor regulating the synthesis of fatty acid and triglyceride. At present whether the expression of SREBP-1 makes some effects on the lipid accumulation in diabetic kidney is not still clear completely. The purpose of our in vivo and in vitro study is to investigate the relationship between the expression of SREBP-1 and lipid abnormal metabolism in the type 1 diabetic rats and explore to inhibit SREBP-1 gene expression by RNA interfere in human renal proximal tubular epithelial cells line (HKC cells). The animal experiment showed that triglyceride and SREBP-1 were up-regulated in proximal tubule of diabetic rats' kidney, which may result in increase of transforming growth factor-beta1 (TGF-beta1) and accumulation of extracellular matrix (ECM). The further HKC cells experiment confirmed SREBP-1 increasing resulted into lipid droplet formation. The expression of fatty acid synthase (FAS) in HKC cells transfected with specific plasmid for SREBP-1 gene was significantly more than that of the cells transfected with the control plasmid pcDNA3.1 and that of the untransfected cells. Simultaneously, up-regulation of TGF-beta1 and fibronectin, an ECM glycoprotein, was evident in HKC cells transfected by specific SREBP-1 plasmid. Furthermore, we found that high glucose was a positive factor on the expression of SREBP-1 at protein and mRNA levels in HKC cells. High glucose makes effects on SREBP-1 in time-dependent manner, and the greatest effect was at 48 h. In addition, two effective eukaryotic expression plasmid vectors of shRNA aimed at SREBP-1 were designed and constructed successfully. Compared with the negative control plasmid group, the levels of the expression of SREBP-1 were inhibited by 24.11 and 36.15%, respectively, at mRNA level, 20.80 and 37.59%, respectively, at precursor segment of protein level, and 38.12 and 52.24%, respectively, at mature segment of protein level at 48 h after transfection. In vivo and in vitro study suggested that high glucose caused increasing SREBP-1 mRNA and protein in renal proximal tubule epithelial cells of type 1 diabetic rats. Increasing SREBP-1 plays an important role in the pathogenesis of renal lipid accumulation by up-regulation of FAS and ECM accumulation by inducing TGF-beta1 expression. The application of vector-mediated RNAi could markedly inhibit the expression of SREBP-1 in HKC cells, which is a promising tool for future research into the mechanisms of renal lipid accumulation in vivo.
Collapse
Affiliation(s)
- Hao Jun
- Department of Pathology, Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Sebeková K, Wagner Z, Schupp N, Boor P. Genomic Damage and Malignancy in End-Stage Renal Failure: Do Advanced Glycation End Products Contribute? Kidney Blood Press Res 2006; 30:56-66. [PMID: 17261927 DOI: 10.1159/000099029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Indexed: 01/28/2023] Open
Abstract
In end-stage renal disease (ESRD) there is not only excessive morbidity and mortality due to cardiovascular disease but also an enhanced occurrence of various types of cancer. Both are characterized by oxidative stress and inflammation as two of the central underlying causes of the disease states. In cancer, genomic damage has been demonstrated to be of high pathogenetic relevance. DNA lesions may induce mutations of oncogenes and tumor-suppressor genes which, in the long-run, may lead to malignancies if mutagenicity is not mitigated by repair mechanisms. A high incidence of genomic damage in ESRD patients has been validated by various biomarkers of DNA lesions. We reviewed the mechanisms of DNA damage, focusing in particular on the role of advanced glycation end products (AGEs) which accumulate markedly in renal insufficiency. Considering the in vitro and in vivo findings to date, one has to assume a significant role of AGEs in DNA damage and the potential development of cancer.
Collapse
Affiliation(s)
- Katarína Sebeková
- Department of Experimental and Clinical Pharmacotherapy, Research Base of Slovak Medical University, Bratislava, Slovakia.
| | | | | | | |
Collapse
|