1
|
Liu T, Jia H, Li X, Shi L, Wang J, Liu M, Liu H, Zhang T, Zhao Z, Zhao X, Zhao Z. CCTα and GVI iPLA2-induced aberrant phosphatidylcholine metabolism contributes to pulmonary inflammation and fibrosis. Int Immunopharmacol 2025; 156:114718. [PMID: 40286783 DOI: 10.1016/j.intimp.2025.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
To date, no comprehensive profiling of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) with pulmonary inflammation and fibrosis has been published. Our study aimed to analyze PC and LPC metabolism with the development and persistence of pulmonary inflammation and the progression to fibrosis; and their relationship. Mice and cell models exposed to bleomycin and/or transforming growth factor-β1 (TGF-β1) were developed; and porcine surrogates for pulmonary fibrosis were included. Histopathological, immunofluorescence and immunohistochemical staining, transmission electron microscopy, colorimetric, activity and immune complex (IC) assay, lipidomics analysis; and pharmacological intervention assay were used to analyze PC and LPC profile, pulmonary fibrosis and their relationship. Current evidence suggests that 16:0 20:5 PC is a conserved biomarker; and 16:0 18:1 PC, 16:0 18:2 PC; and 16:0 LPC are the potential targets for this disease. Specifically, 16:0 18:1 PC accumulation and exogenous treatment affected lung cell recruitment, migration, transformation, cross-talk, survival/death; and enhanced profibrotic factor release, IC and extracellular matrix (ECM) deposition, where CTP:phosphocholine cytidylyltransferase α (CCTα) and group VI Ca2+-independent phospholipase A2 (GVI iPLA2) play an important role, particularly in lung and spleen neutrophils, macrophages, and T lymphocytes. Overall, these results provide new insights into how the dysregulated PC metabolism, particularly for 16:0 18:1 PC, affects the development and persistence of lung inflammation and the progression to fibrosis, and thus may facilitate the discovery of biomarkers and targets for this disease.
Collapse
Affiliation(s)
- Tao Liu
- Laboratory of Pharmacobiology, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Husbandry and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464001, China
| | - Hong Jia
- Laboratory of Pharmacobiology, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinsheng Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Lijun Shi
- Laboratory of Pharmacobiology, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Wang
- Laboratory of Pharmacobiology, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meizhen Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hailong Liu
- Laboratory of Pharmacobiology, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhenwen Zhao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrometry Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinghui Zhao
- Laboratory of Pharmacobiology, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhanzhong Zhao
- Laboratory of Pharmacobiology, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Gagnon J, Pi L, Ryals M, Wan Q, Hu W, Ouyang Z, Zhang B, Li K. Recommendations of scRNA-seq Differential Gene Expression Analysis Based on Comprehensive Benchmarking. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060850. [PMID: 35743881 PMCID: PMC9225332 DOI: 10.3390/life12060850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 12/13/2022]
Abstract
To guide analysts to select the right tool and parameters in differential gene expression analyses of single-cell RNA sequencing (scRNA-seq) data, we developed a novel simulator that recapitulates the data characteristics of real scRNA-seq datasets while accounting for all the relevant sources of variation in a multi-subject, multi-condition scRNA-seq experiment: the cell-to-cell variation within a subject, the variation across subjects, the variability across cell types, the mean/variance relationship of gene expression across genes, library size effects, group effects, and covariate effects. By applying it to benchmark 12 differential gene expression analysis methods (including cell-level and pseudo-bulk methods) on simulated multi-condition, multi-subject data of the 10x Genomics platform, we demonstrated that methods originating from the negative binomial mixed model such as glmmTMB and NEBULA-HL outperformed other methods. Utilizing NEBULA-HL in a statistical analysis pipeline for single-cell analysis will enable scientists to better understand the cell-type-specific transcriptomic response to disease or treatment effects and to discover new drug targets. Further, application to two real datasets showed the outperformance of our differential expression (DE) pipeline, with unified findings of differentially expressed genes (DEG) and a pseudo-time trajectory transcriptomic result. In the end, we made recommendations for filtering strategies of cells and genes based on simulation results to achieve optimal experimental goals.
Collapse
Affiliation(s)
- Jake Gagnon
- Analytics and Data Sciences, Biogen, Inc., 225 Binney St., Cambridge, MA 02142, USA;
| | - Lira Pi
- PharmaLex, 1700 District Ave., Burlington, MA 01803, USA; (L.P.); (M.R.); (Q.W.)
| | - Matthew Ryals
- PharmaLex, 1700 District Ave., Burlington, MA 01803, USA; (L.P.); (M.R.); (Q.W.)
| | - Qingwen Wan
- PharmaLex, 1700 District Ave., Burlington, MA 01803, USA; (L.P.); (M.R.); (Q.W.)
| | - Wenxing Hu
- Research Department, Biogen, Inc., 225 Binney St., Cambridge, MA 02142, USA;
| | - Zhengyu Ouyang
- BioInfoRx, Inc., 510 Charmany Dr., Suite 275A, Madison, WI 53719, USA;
| | - Baohong Zhang
- Research Department, Biogen, Inc., 225 Binney St., Cambridge, MA 02142, USA;
- Correspondence: (B.Z.); (K.L.)
| | - Kejie Li
- Research Department, Biogen, Inc., 225 Binney St., Cambridge, MA 02142, USA;
- Correspondence: (B.Z.); (K.L.)
| |
Collapse
|
3
|
GSPE Protects against Bleomycin-Induced Pulmonary Fibrosis in Mice via Ameliorating Epithelial Apoptosis through Inhibition of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8200189. [PMID: 35355866 PMCID: PMC8958066 DOI: 10.1155/2022/8200189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease of unknown cause which leads to alveolar epithelial cell apoptosis followed by basement membrane disruption and accumulation of extracellular matrix, destroying the lung architecture. Oxidative stress is involved in the development of alveolar injury, inflammation, and fibrosis. Oxidative stress-mediated alveolar epithelial cell (AEC) apoptosis is suggested to be a key process in the pathogenesis of IPF. Therefore, the present study investigated whether grape seed proanthocyanidin extract (GSPE) could inhibit the development of pulmonary fibrosis via ameliorating epithelial apoptosis through the inhibition of oxidative stress. We found that GSPE significantly ameliorated the histological changes and the level of collagen deposition in bleomycin (BLM)-induced lungs. Moreover, GSPE attenuated lung inflammation by reducing the total number of cells in bronchoalveolar lavage (BAL) fluid and decreasing the expression of IL-6. We observed that the levels of H2O2 leading to oxidative stress were increased following BLM instillation, which significantly decreased with GSPE treatment both in vivo and in vitro. These findings showed that GSPE attenuated BLM-induced epithelial apoptosis in the mouse lung and A549 alveolar epithelial cell through the inhibition of oxidative stress. Furthermore, GSPE could attenuate mitochondrial-associated cell apoptosis via decreasing the Bax/Bcl-2 ratio. The present study demonstrates that GSPE could ameliorate bleomycin-induced pulmonary fibrosis in mice via inhibition of epithelial apoptosis through the inhibition of oxidative stress.
Collapse
|
4
|
Pan L, Lu Y, Li Z, Tan Y, Yang H, Ruan P, Li R. Ginkgo biloba Extract EGb761 Attenuates Bleomycin-Induced Experimental Pulmonary Fibrosis in Mice by Regulating the Balance of M1/M2 Macrophages and Nuclear Factor Kappa B (NF-κB)-Mediated Cellular Apoptosis. Med Sci Monit 2020; 26:e922634. [PMID: 32799214 PMCID: PMC7448693 DOI: 10.12659/msm.922634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study was to show whether the standardized Ginkgo biloba extract EGb761, a traditional Chinese medicine, has a therapeutic effect on pulmonary fibrosis (PF). Material/Methods Bleomycin (BLM) was used for establishing the PF mouse model. The mice were treated with a gradient of EGb761 for 28 days to determine an appropriate drug dose. On day 28, the effect of EGb761 on lung injury and inflammation was confirmed by hematoxylin and eosin and Masson staining and evaluated by pulmonary alveolitis and Ashcroft score. The balance of M1/M2 macrophages was evaluated with the respective markers inducible nitric oxide synthase and and interleukin-10 by real-time polymerase chain reaction. Furthermore, the expressions of fibrosis-associated protein α-smooth muscle actin (SMA), related inflammatory protein transforming growth factor (TGF)-β1, the apoptosis-related proteins B-cell lymphoma-associated X protein (Bax), B-cell lymphoma (Bcl)-2, caspase-3, caspase-9, and phosphorylated nuclear factor (NF)-κB (p65) were assessed by western blot. Results On day 28, PF was induced by treating with BLM, whereas EGb761 suppressed the PF of lung tissue. The BLM-induced imbalance of M1/M2 macrophages was reduced by EGb761. Furthermore, the increasing amounts of α-SMA and TGF-β1 induced by BLM were suppressed by EGb761. In addition, the protein or messenger ribonucleic acid expression levels of phosphorylated NF-κB (p65), caspase-3, and caspase-9 were upregulated, whereas Bax and Bcl-2 were downregulated. Treatment with EGb761 restored the levels of these proteins except for caspase-9. Conclusions This study illustrated the protective effect of EGb761 on BLM-induced PF by regulating the balance of M1/M2 macrophages and NF-κB (p65)-mediated apoptosis. The results demonstrated the potential clinical therapeutic effect of EGb761, providing a novel possibility for curing PF.
Collapse
Affiliation(s)
- Ling Pan
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Yuehong Lu
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Zhanhua Li
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Yuping Tan
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Hongmei Yang
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Ping Ruan
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| | - Ruixiang Li
- Respiratory Medicine Department, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
5
|
Gao X, Luo Z, Xiang T, Wang K, Li J, Wang P. Dihydroartemisinin Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in HepG2 Human Hepatoma Cells. TUMORI JOURNAL 2018; 97:771-80. [DOI: 10.1177/030089161109700615] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aims and Background Previous studies showed that dihydroartemisinin (DHA) possessed antitumor activity in many human tumor cells through the induction of apoptosis. The aim of this study was to investigate the effects of DHA on apoptosis in the human hepatocellular carcinoma cell line HepG2 and the possible molecular mechanisms involved. Methods The inhibitory effect of DHA on HepG2 cells was measured by MTT assay. The percentage of apoptotic cells was detected by flow cytometry with double staining of fluorescein isothiocyanate-annexin V/propidium iodide. The intracellular production of reactive oxygen species (ROS) and intracellular Ca2+ concentration ([Ca2+]i) were detected by fluorescence spectrophotometry. Protein expression of GADD153, Bcl-2 and Bax in HepG2 cells was examined by Western blot and immunocytochemistry. Results DHA significantly inhibited proliferation of HepG2 cells in a dose- and time-dependent manner. The apoptosis rates in HepG2 cells treated with 0, 50, 100 and 200 mol/L DHA for 24 hours were 2.53 ± 0.88%, 24.85 ± 3.63%, 35.27 ± 5.92% and 48.53 ± 7.76%, respectively. Compared with the control group, DHA significantly increased ROS generation and [Ca2+]i level (P <0.05), with the generation of ROS preceding the increase in [Ca2+]i. An increase in GADD153 and Bax expression and a decrease in Bcl-2 were observed in DHA-treated cells. Pretreatment with the antioxidant N-acetylcysteine could attenuate the effects of DHA in the experiments. Conclusion DHA could inhibit proliferation and induce apoptosis in HepG2 cell lines through increasing the intracellular production of ROS and [Ca2+]i. Endoplasmic reticulum stress-induced apoptosis may contribute to this effect by regulating the expression of GADD153, proapoptotic Bax, and antiapoptotic Bcl-2.
Collapse
Affiliation(s)
- Xiaoling Gao
- Institute of Life Science, Chongqing Medical University, Chongqing, PR China
| | - Ziguo Luo
- Institute of Life Science, Chongqing Medical University, Chongqing, PR China
| | - Tingxiu Xiang
- Molecular Oncology and Epigenetics Laboratory, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Kejian Wang
- Department of Anatomy, Chongqing Medical University, Chongqing, PR China
| | - Jian Li
- Institute of Life Science, Chongqing Medical University, Chongqing, PR China
| | - Pilong Wang
- Department of Gastroenterology, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
6
|
Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. Biosci Rep 2017; 37:BSR20171301. [PMID: 29026006 PMCID: PMC5696455 DOI: 10.1042/bsr20171301] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis (PF) is characterized by inflammation and fibrosis of the interstitium and destruction of alveolar histoarchitecture ultimately leading to a fatal impairment of lung function. Different concepts describe either a dominant role of inflammatory pathways or a disturbed remodeling of resident cells of the lung parenchyma during fibrogenesis. Further, a combination of both the mechanisms has been postulated. The present review emphasizes the particular involvement of alveolar epithelial type I cells in all these processes, their contribution to innate immune/inflammatory functions and maintenance of proper alveolar barrier functions. Amongst the different inflammatory and repair events the purinergic receptor P2X7, an ATP-gated cationic channel that regulates not only apoptosis, necrosis, autophagy, and NLPR3 inflammosome activation, but also the turnover of diverse tight junction (TJ) and water channel proteins, seems to be essential for the stability of alveolar barrier integrity and for the interaction with protective factors during lung injury.
Collapse
|
7
|
Owusu BY, Zimmerman KA, Murphy-Ullrich JE. The role of the endoplasmic reticulum protein calreticulin in mediating TGF-β-stimulated extracellular matrix production in fibrotic disease. J Cell Commun Signal 2017; 12:289-299. [PMID: 29080087 DOI: 10.1007/s12079-017-0426-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a key factor contributing to fibrotic disease. Although ER stress is a short-term adaptive response, with chronic stimulation, it can activate pathways leading to fibrosis. ER stress can induce TGF-β signaling, a central driver of extracellular matrix production in fibrosis. This review will discuss the role of an ER protein, calreticulin (CRT), which has both chaperone and calcium regulatory functions, in fibrosis. CRT expression is upregulated in multiple different fibrotic diseases. The roles of CRT in regulation of fibronectin extracellular matrix assembly, extracellular matrix transcription, and collagen secretion and processing into the extracellular matrix will be discussed. Evidence for the importance of CRT in ER calcium release and NFAT activation downstream of TGF-β signaling will be presented. Finally, we will summarize evidence from animal models in which CRT expression is genetically reduced or experimentally downregulated in targeted tissues of adult animals and discuss how these models define a key role for CRT in fibrotic diseases.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Pathology, University of Alabama at Birmingham, G001A Volker Hall, Birmingham, AL, 35294, USA
| | - Kurt A Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Joanne E Murphy-Ullrich
- Department of Pathology, University of Alabama at Birmingham, G001A Volker Hall, Birmingham, AL, 35294, USA. .,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
8
|
Wheaton AK, Agarwal M, Jia S, Kim KK. Lung epithelial cell focal adhesion kinase signaling inhibits lung injury and fibrosis. Am J Physiol Lung Cell Mol Physiol 2017; 312:L722-L730. [PMID: 28283477 DOI: 10.1152/ajplung.00478.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 01/11/2023] Open
Abstract
Progressive pulmonary fibrosis is a devastating consequence of many acute and chronic insults to the lung. Lung injury leads to alveolar epithelial cell (AEC) death, destruction of the basement membrane, and activation of transforming growth factor-β (TGF-β). There is subsequent resolution of the injury and a coordinated and concurrent initiation of fibrosis. Both of these processes may involve activation of similar intracellular signaling pathways regulated in part by dynamic changes to the extracellular matrix. Matrix signaling can augment the profibrotic fibroblast response to TGF-β. However, similar matrix/integrin signaling pathways may also be involved in the inhibition of ongoing TGF-β-induced AEC apoptosis. Focal adhesion kinase (FAK) is an integrin-associated signaling molecule expressed by many cell types. We used mice with AEC-specific FAK deletion to isolate the epithelial aspect of integrin signaling in the bleomycin model of lung injury and fibrosis. Mice with AEC-specific deletion of FAK did not exhibit spontaneous lung injury but did have significantly greater terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling-positive cells (18.6 vs. 7.1) per ×200 field, greater bronchoalveolar lavage protein (3.2 vs. 1.8 mg/ml), and significantly greater death (77 vs. 19%) after bleomycin injury compared with littermate control mice. Within primary AECs, activated FAK directly associates with caspase-8 and inhibits activation of the caspase cascade resulting in less apoptosis in response to TGF-β. Our studies support a model in which dynamic changes to the extracellular matrix after injury promote fibroblast activation and inhibition of epithelial cell apoptosis in response to TGF-β through FAK activation potentially complicating attempts to nonspecifically target this pathway for antifibrotic therapy.
Collapse
Affiliation(s)
- Amanda K Wheaton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Manisha Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shijing Jia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Warsinske HC, Wheaton AK, Kim KK, Linderman JJ, Moore BB, Kirschner DE. Computational Modeling Predicts Simultaneous Targeting of Fibroblasts and Epithelial Cells Is Necessary for Treatment of Pulmonary Fibrosis. Front Pharmacol 2016; 7:183. [PMID: 27445819 PMCID: PMC4917547 DOI: 10.3389/fphar.2016.00183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/10/2016] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGF-β1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. Thus, a two-hit therapeutic intervention strategy may prove necessary to halt and reverse disease dynamics.
Collapse
Affiliation(s)
- Hayley C. Warsinske
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Amanda K. Wheaton
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Kevin K. Kim
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | | | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| |
Collapse
|
10
|
Radu Balas M, Din Popescu IM, Hermenean A, Cinteză OL, Burlacu R, Ardelean A, Dinischiotu A. Exposure to Iron Oxide Nanoparticles Coated with Phospholipid-Based Polymeric Micelles Induces Biochemical and Histopathological Pulmonary Changes in Mice. Int J Mol Sci 2015; 16:29417-35. [PMID: 26690409 PMCID: PMC4691116 DOI: 10.3390/ijms161226173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 11/19/2015] [Indexed: 01/16/2023] Open
Abstract
The biochemical and histopathological changes induced by the exposure to iron oxide nanoparticles coated with phospholipid-based polymeric micelles (IONPs-PM) in CD-1 mice lungs were analyzed. After 2, 3, 7 and 14 days following the intravenous injection of IONPs-PM (5 and 15 mg Fe/kg bw), lactate dehydrogenase (LDH) activity, oxidative stress parameters and the expression of Bax, Bcl-2, caspase-3 and TNF-α were evaluated in lung tissue. An increase of catalase (CAT) and glutathione reductase (GR) activities on the second day followed by a decrease on the seventh day, as well as a decline of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity on the third and seventh day were observed in treated groups vs. controls. However, all these enzymatic activities almost fully recovered on the 14th day. The reduced glutathione (GSH) and protein thiols levels decreased significantly in nanoparticles-treated groups and remained diminished during the entire experimental period; by contrast malondialdehyde (MDA) and protein carbonyls increased between the 3rd and 14th day of treatment vs. control. Relevant histopathological modifications were highlighted using Hematoxylin and Eosin (H&E) staining. In addition, major changes in the expression of apoptosis markers were observed in the first week, more pronounced for the higher dose. The injected IONPs-PM generated a dose-dependent decrease of the mouse lung capacity, which counteracted oxidative stress, thus creating circumstances for morphopathological lesions and oxidation processes.
Collapse
Affiliation(s)
- Mihaela Radu Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania.
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, Arad 310414, Romania.
| | - Ioana Mihaela Din Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, Arad 310414, Romania.
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 1 Feleacului, Arad 310396, Romania.
| | - Otilia Ludmila Cinteză
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd, Bucharest 030018, Romania.
| | - Radu Burlacu
- Department of Mathematics, University of Agriculture Sciences and Veterinary Medicine, 59 Marasti, Bucharest 011464, Romania.
| | - Aurel Ardelean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, Arad 310414, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| |
Collapse
|
11
|
Swarnkar T, Simoes SN, Martins DC, Anura A, Brentani H, Hashimoto RF, Mitra P. Multiview Clustering on PPI Network for Gene Selection and Enrichment from Microarray Data. 2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING 2014:15-22. [DOI: 10.1109/bibe.2014.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Thickett DR, Kendall C, Spencer LG, Screaton N, Wallace WA, Pinnock H, Bott J, Pigram L, Watson S, Millar AB. Improving care for patients with idiopathic pulmonary fibrosis (IPF) in the UK: a round table discussion. Thorax 2014; 69:1136-40. [DOI: 10.1136/thoraxjnl-2014-206284] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Effect of P2X7 receptor knockout on AQP-5 expression of type I alveolar epithelial cells. PLoS One 2014; 9:e100282. [PMID: 24941004 PMCID: PMC4062497 DOI: 10.1371/journal.pone.0100282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 05/26/2014] [Indexed: 01/13/2023] Open
Abstract
P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis.
Collapse
|
14
|
Keyser BM, Andres DK, Holmes WW, Paradiso D, Appell A, Letukas VA, Benton B, Clark OE, Gao X, Ray P, Anderson DR, Ray R. Mustard Gas Inhalation Injury. Int J Toxicol 2014; 33:271-281. [DOI: 10.1177/1091581814532959] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mustard gas (sulfur mustard [SM], bis-[2-chloroethyl] sulfide) is a vesicating chemical warfare agent and a potential chemical terrorism agent. Exposure of SM causes debilitating skin blisters (vesication) and injury to the eyes and the respiratory tract; of these, the respiratory injury, if severe, may even be fatal. Therefore, developing an effective therapeutic strategy to protect against SM-induced respiratory injury is an urgent priority of not only the US military but also the civilian antiterrorism agencies, for example, the Homeland Security. Toward developing a respiratory medical countermeasure for SM, four different classes of therapeutic compounds have been evaluated in the past: anti-inflammatory compounds, antioxidants, protease inhibitors and antiapoptotic compounds. This review examines all of these different options; however, it suggests that preventing cell death by inhibiting apoptosis seems to be a compelling strategy but possibly dependent on adjunct therapies using the other drugs, that is, anti-inflammatory, antioxidant, and protease inhibitor compounds.
Collapse
Affiliation(s)
- Brian M. Keyser
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Devon K. Andres
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Wesley W. Holmes
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Danielle Paradiso
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Ashley Appell
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Valerie A. Letukas
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Betty Benton
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Offie E. Clark
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Xiugong Gao
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Prabhati Ray
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dana R. Anderson
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Radharaman Ray
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
15
|
Lim SK, Choi H, Park MJ, Kim DI, Kim JC, Kim GY, Jeong SY, Rodionov RN, Han HJ, Yoon KC, Park SH. The ER stress-mediated decrease in DDAH1 expression is involved in formaldehyde-induced apoptosis in lung epithelial cells. Food Chem Toxicol 2013; 62:763-9. [PMID: 24140967 DOI: 10.1016/j.fct.2013.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
Formaldehyde (FA) is toxic to the respiratory system, and nitric oxide (NO) dysfunction stimulates the onset of respiratory diseases. The involvement of dimethylarginine dimethylaminohydrolase (DDAH), the l-arginine analogue asymmetric dimethylarginine (ADMA) degrading enzyme, in FA-induced cell death in lung epithelial cells has not been investigated. In this study, we assessed the effect of FA on DDAH expression and endoplasmic reticulum (ER) stress in A549 cells. We also investigated the preventive effect of DDAH overexpression on ER stress and apoptosis in FA-induced cell death. FA decreased viability in A549 cells and decreased DDAH1 and DDAH2 mRNA and protein expression in a time-dependent manner (>4h). This coincided with increased phosphorylation of the ER stress proteins IRE1α, PERK, and eIF-2α, as well as increased expression of pro-apoptotic proteins such as Bax, C/EPB homologous protein (CHOP), cleaved PARP, and cleaved caspase-3, but decreased expression of the anti-apoptotic protein Bcl-2. ADMA treatment mimicked the effect of FA. Overexpression of DDAH1, but not DDAH2, prevented FA-induced decreases in cell viability, phosphorylation of IRE1α, PERK, and eIF2α, and expression of CHOP. Effects of DDAH1 overexpression, but not DDAH2 overexpression, restored FA-induced increases in Bax, CHOP, cleaved PARP, cleaved caspase-3 and decreases in Bcl-2. In conclusion, FA induces apoptosis of lung epithelial cells via a decrease of DDAH1 through ER stress.
Collapse
Affiliation(s)
- Seul Ki Lim
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Keyser BM, Andres DK, Nealley E, Holmes WW, Benton B, Paradiso D, Appell A, Carpin C, Anderson DR, Smith WJ, Ray R. Postexposure application of Fas receptor small-interfering RNA to suppress sulfur mustard-induced apoptosis in human airway epithelial cells: implication for a therapeutic approach. J Pharmacol Exp Ther 2013; 344:308-16. [PMID: 23129783 DOI: 10.1124/jpet.112.199935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sulfur mustard (SM) is a vesicant chemical warfare and terrorism agent. Besides skin and eye injury, respiratory damage has been mainly responsible for morbidity and mortality after SM exposure. Previously, it was shown that suppressing the death receptor (DR) response by the dominant-negative Fas-associated death domain protein prior to SM exposure blocked apoptosis and microvesication in skin. Here, we studied whether antagonizing the Fas receptor (FasR) pathway by small-interfering RNA (siRNA) applied after SM exposure would prevent apoptosis and, thus, airway injury. Normal human bronchial/tracheal epithelial (NHBE) cells were used as an in vitro model with FasR siRNA, FasR agonistic antibody CH11, and FasR antagonistic antibody ZB4 as investigative tools. In NHBE cells, both SM (300 µM) and CH11 (100 ng/ml) induced caspase-3 activation, which was inhibited by FasR siRNA and ZB4, indicating that SM-induced apoptosis was via the Fas response. FasR siRNA inhibited SM-induced caspase-3 activation when added to NHBE cultures up to 8 hours after SM. Results using annexin V/propidium iodide-stained cells showed that both apoptosis and necrosis were involved in cell death due to SM; FasR siRNA decreased both apoptotic and necrotic cell populations. Bronchoalveolar lavage fluid (BALF) of rats exposed to SM (1 mg/kg, 50 minutes) revealed a significant (P < 0.05) increase in soluble Fas ligand and active caspase-3 in BALF cells. These findings suggest an intervention of Fas-mediated apoptosis as a postexposure therapeutic strategy with a therapeutic window for SM inhalation injury and possibly other respiratory diseases involving the Fas response.
Collapse
Affiliation(s)
- Brian M Keyser
- Cellular and Molecular Biology Branch, U.S. Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Rd, Aberdeen Proving Ground, MD 21010-5400, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hard-metal (WC–Co) particles trigger a signaling cascade involving p38 MAPK, HIF-1α, HMOX1, and p53 activation in human PBMC. Arch Toxicol 2012; 87:259-68. [DOI: 10.1007/s00204-012-0943-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/13/2012] [Indexed: 01/20/2023]
|
18
|
Abstract
OBJECTIVES Many mechanically ventilated patients with acute respiratory distress syndrome develop pulmonary fibrosis. Stresses induced by mechanical ventilation may explain the development of fibrosis by a number of mechanisms (e.g., damage the alveolar epithelium, biotrauma). The objective of this study was t test the hypothesis that mechanical ventilation plays an important role in the pathogenesis of lung fibrosis. METHODS C57BL/6 mice were randomized into four groups: healthy controls; hydrochloric acid aspiration alone; vehicle control solution followed 24 hrs later by mechanical ventilation (peak inspiratory pressure 22 cm H(2)O and positive end-expiratory pressure 2 cm H(2)O for 2 hrs); and acid aspiration followed 24 hrs later by mechanical ventilation. The animals were monitored for up to 15 days after acid aspiration. To explore the direct effects of mechanical stress on lung fibrotic formation, human lung epithelial cells (BEAS-2B) were exposed to mechanical stretch for up to 48 hrs. MEASUREMENT AND MAIN RESULTS Impaired lung mechanics after mechanical ventilation was associated with increased lung hydroxyproline content, and increased expression of transforming growth factor-β, β-catenin, and mesenchymal markers (α-smooth muscle actin and vimentin) at both the gene and protein levels. Expression of epithelial markers including cytokeratin-8, E-cadherin, and prosurfactant protein B decreased. Lung histology demonstrated fibrosis formation and potential epithelia-mesenchymal transition. In vitro direct mechanical stretch of BEAS-2B cells resulted in similar fibrotic and epithelia-mesenchymal transition formation. CONCLUSIONS Mechanical stress induces lung fibrosis, and epithelia-mesenchymal transition may play an important role in mediating the ventilator-induced lung fibrosis.
Collapse
|
19
|
Nathan N, Thouvenin G, Fauroux B, Corvol H, Clement A. Interstitial lung disease: physiopathology in the context of lung growth. Paediatr Respir Rev 2011; 12:216-22. [PMID: 22018034 DOI: 10.1016/j.prrv.2011.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Interstitial lung diseases (ILDs) in children represent a heterogeneous group of respiratory disorders characterized by derangements of the alveolar walls. The key pathologic feature of ILDs is the altered repair of the alveolar surface after injury with a marked disruption in the integrity of the epithelium and, consequently, a dysregulated communication between epithelial and mesenchymal pulmonary components. Concomitant to the loss of cell-cell contact, epithelial cells undergo a process called epithelial to mesenchymal transition and acquire a mesenchymal identity. Among the factors involved in disease progression, transforming growth factor-β has been identified as a master switch in the induction of fibrosis. This article reviews recent advances in the understanding of the mechanisms involved in the pathogenesis of ILDs, and provides information on their adaptation in the context of lung growth.
Collapse
|
20
|
Homer RJ, Elias JA, Lee CG, Herzog E. Modern concepts on the role of inflammation in pulmonary fibrosis. Arch Pathol Lab Med 2011; 135:780-8. [PMID: 21631273 DOI: 10.5858/2010-0296-ra.1] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Idiopathic pulmonary fibrosis is a uniformly lethal disease with limited biomarkers and no proven therapeutic intervention short of lung transplantation. Pulmonary fibrosis at one time was thought to be a result of inflammation in the lung. Although some forms of pulmonary fibrosis may result from inflammation, idiopathic pulmonary fibrosis is currently thought to result from cell death primarily and inflammation secondarily. OBJECTIVE To determine the role of inflammation in pulmonary fibrosis in light of our laboratory's published and unpublished research and published literature. DATA SOURCES Review based on our laboratory's published and unpublished experimental data with relevant background and clinical context provided. CONCLUSIONS Although cell death is central to pulmonary fibrosis, the proper cytokine environment leading to macrophage polarization is also critical. Evaluation of this environment is promising both for the development of disease biomarkers and for targets for therapeutic intervention.
Collapse
Affiliation(s)
- Robert J Homer
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520-8070, USA.
| | | | | | | |
Collapse
|
21
|
Peng X, Mathai SK, Murray LA, Russell T, Reilkoff R, Chen Q, Gulati M, Elias JA, Bucala R, Gan Y, Herzog EL. Local apoptosis promotes collagen production by monocyte-derived cells in transforming growth factor β1-induced lung fibrosis. FIBROGENESIS & TISSUE REPAIR 2011; 4:12. [PMID: 21586112 PMCID: PMC3123188 DOI: 10.1186/1755-1536-4-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/17/2011] [Indexed: 12/04/2022]
Abstract
BACKGROUND Collagen-containing leukocytes (CD45+Col-I+) accumulate in diseased and fibrotic tissues. However, the precise identity of these cells and whether injury is required for their recruitment remain unknown. Using a murine model of pulmonary fibrosis in which an inducible, bioactive form of the human transforming growth factor (TGF)-β1 gene is targeted to the lung, we characterized the cell surface phenotype of collagen-containing CD45+ cells in the lung and tested the hypothesis that apoptotic cell death responses are essential to the accumulation of CD45+Col-I+ cells. RESULTS Our studies demonstrate that CD45+Col-I+ cells appearing in the TGF-β1-exposed murine lung express markers of the monocyte lineage. Inhibition of apoptosis via pharmacological caspase blockade led to a significant reduction in CD45+Col-I+ cells, which appear to accumulate independently of alternatively activated macrophages. There are also increased levels of apoptosis and greater numbers of CD45+Col-I+ in the lung tissue of patients with two distinct forms of fibrotic lung disease, idiopathic pulmonary fibrosis and connective tissue disease-related interstitial lung disease, when compared to lung from healthy normal controls. These findings are accompanied by an increase in collagen production in cultured monocytes obtained from subjects with fibrotic lung disease. Treatment of these cultured cells with the caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD/fmk) reduces both apoptosis and collagen production in all subjects. CONCLUSIONS Interventions that prevent collagen production by monocytes via modulation of caspase activation and of apoptosis may be ameliorative in monocyte-associated, TGF-β1-driven processes such as pulmonary fibrosis.
Collapse
Affiliation(s)
- Xueyan Peng
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, TAC 441S, New Haven, CT, USA
| | - Susan K Mathai
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, TAC 441S, New Haven, CT, USA
| | | | - Thomas Russell
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, TAC 441S, New Haven, CT, USA
| | - Ronald Reilkoff
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, TAC 441S, New Haven, CT, USA
| | - Qingsheng Chen
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, TAC 441S, New Haven, CT, USA
| | - Mridu Gulati
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, TAC 441S, New Haven, CT, USA
| | - Jack A Elias
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, TAC 441S, New Haven, CT, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, TAC 441S, New Haven, CT, USA
| | - Ye Gan
- Department of Medicine, Central South University, Changsha, Hunan China
| | - Erica L Herzog
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, TAC 441S, New Haven, CT, USA
| |
Collapse
|
22
|
Dhami R, He X, Schuchman EH. Acid sphingomyelinase deficiency attenuates bleomycin-induced lung inflammation and fibrosis in mice. Cell Physiol Biochem 2010; 26:749-60. [PMID: 21063112 DOI: 10.1159/000322342] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2010] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND/AIMS The sphingomyelin/ceramide signaling pathway is an important component of many cellular processes implicated in the pathogenesis of lung disease. Acid sphingomyelinase (ASM) is a key mediator of this pathway, but its specific role in pulmonary fibrosis has not been previously investigated. Here we used the bleomycin model of pulmonary fibrosis to investigate fibrotic responses in normal and ASM knockout (ASM(-/-)) mice, and in NIH3T3 fibroblasts with and without ASM siRNA treatment. METHODS Mice and cells with and without ASM activity were treated with bleomycin, and the effects on lung inflammation, formation of collagen producing myofibroblasts, and apoptosis were assessed. RESULTS The development of bleomycin-induced inflammation and fibrosis in wildtype mice correlated with the rapid activation of ASM, and was markedly attenuated in the absence of ASM activity. Along with the elevated ASM activity, there also was an elevation of acid ceramidase (AC) activity, which was sustained for up to 14 days post-bleomycin treatment. Studies in NIH3T3 fibroblasts confirmed these findings, and revealed a direct effect of ASM/AC activation on the formation of myofibroblasts. Cell studies also showed that a downstream effect of bleomycin treatment was the production of sphingosine-1-phosphate. CONCLUSIONS These data demonstrate that the sphingomyelin/ceramide signaling pathway is involved in the pathogenesis of bleomycin-induced pulmonary fibrosis, and suggest that inhibition of ASM may potentially slow the fibrotic process in the lung.
Collapse
Affiliation(s)
- Rajwinder Dhami
- Department of Genetics & Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
23
|
Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor. Part Fibre Toxicol 2010; 7:18. [PMID: 20663163 PMCID: PMC2914693 DOI: 10.1186/1743-8977-7-18] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/21/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Nowadays, effects of fine particulate matter (PM2.5) are well-documented and related to oxidative stress and pro-inflammatory response. Nevertheless, epidemiological studies show that PM2.5 exposure is correlated with an increase of pulmonary cancers and the remodeling of the airway epithelium involving the regulation of cell death processes. Here, we investigated the components of Parisian PM2.5 involved in either the induction or the inhibition of cell death quantified by different parameters of apoptosis and delineated the mechanism underlying this effect. RESULTS In this study, we showed that low levels of Parisian PM2.5 are not cytotoxic for three different cell lines and primary cultures of human bronchial epithelial cells. Conversely, a 4 hour-pretreatment with PM2.5 prevent mitochondria-driven apoptosis triggered by broad spectrum inducers (A23187, staurosporine and oligomycin) by reducing the mitochondrial transmembrane potential loss, the subsequent ROS production, phosphatidylserine externalization, plasma membrane permeabilization and typical morphological outcomes (cell size decrease, massive chromatin and nuclear condensation, formation of apoptotic bodies). The use of recombinant EGF and specific inhibitor led us to rule out the involvement of the classical EGFR signaling pathway as well as the proinflammatory cytokines secretion. Experiments performed with different compounds of PM2.5 suggest that endotoxins as well as carbon black do not participate to the antiapoptotic effect of PM2.5. Instead, the water-soluble fraction, washed particles and organic compounds such as polycyclic aromatic hydrocarbons (PAH) could mimic this antiapoptotic activity. Finally, the activation or silencing of the aryl hydrocarbon receptor (AhR) showed that it is involved into the molecular mechanism of the antiapoptotic effect of PM2.5 at the mitochondrial checkpoint of apoptosis. CONCLUSIONS The PM2.5-antiapoptotic effect in addition to the well-documented inflammatory response might explain the maintenance of a prolonged inflammation state induced after pollution exposure and might delay repair processes of injured tissues.
Collapse
|
24
|
Jonigk D, Theophile K, Hussein K, Bock O, Lehmann U, Bockmeyer CL, Gottlieb J, Fischer S, Simon A, Welte T, Maegel L, Kreipe H, Laenger F. Obliterative airway remodelling in transplanted and non-transplanted lungs. Virchows Arch 2010; 457:369-80. [PMID: 20632031 DOI: 10.1007/s00428-010-0949-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/28/2010] [Accepted: 07/06/2010] [Indexed: 02/06/2023]
Abstract
Obliterative airway remodelling is a morphological sequence in a variety of pulmonary diseases. Notably, bronchiolitis obliterans represents one of the key complications of lung transplantation, induced by (immigrating) myofibroblasts. A comparative expression analysis of obliterative airway remodelling in transplanted and non-transplanted patients has not been reported so far. Obliterated and unremodelled airways from explanted lungs (n = 19) from patients suffering from chronic allograft dysfunction, infection, graft-versus-host disease and toxic exposure were isolated by laser-assisted microdissection. Airways from lung allografts harvested shortly before and after transplantation (n = 4) as well as fibroblastic foci from lungs with interstitial pulmonary fibrosis (n = 4) served as references. Pre-amplified cDNA was analysed by quantitative real-time RT-PCR for expression of fibrosis, inflammation and apoptosis-associated genes. Composition of infiltrating cells and protein expression were assessed by conventional histology and immunohistochemistry. Bronchiolitis obliterans in transplanted patients showed a significant increase of BMP-7 expression (p = 0.0141 compared with controls), while TGF-beta1 and FGF-2 as well as BMP-4 and BMP-7 were up-regulated in fibroblastic foci in interstitial pulmonary fibrosis (p < 0.0424 compared with controls). Regarding other fibrosis-associated genes (BMP-6, SMAD-3, CASP-3 and CASP-9, FASLG, NF-KB1, IL-1 and IL-2) as well as cellularity and cellular composition, no significant differences between obliterative airway remodelling in transplanted and non-transplanted patients could be shown. Obliterative airway remodelling in lung allografts and in non-transplanted patients share many morphological and genetic traits. BMPs, especially BMP-7, warrant further investigation as possible markers for the aggravation of airway remodelling.
Collapse
Affiliation(s)
- Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chung WY, Sun JS, Park JH, Lee HL, Lee KS, Kim YS, Sheen SS, Park KJ, Hwang SC, Lee KB, Park KJ. Epithelial apoptosis as a clinical marker in idiopathic interstitial pneumonia. Respir Med 2010; 104:1722-8. [PMID: 20542676 DOI: 10.1016/j.rmed.2010.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 03/29/2010] [Accepted: 05/16/2010] [Indexed: 01/19/2023]
Abstract
BACKGROUNDS Epithelial cell apoptosis plays an important role in the pathogenesis of idiopathic interstitial pneumonia (IIP). METHODS Serum levels of caspase-cleaved cytokeratin-18 (M30) were measured in 55 patients with IIP and 34 healthy controls using enzyme-linked immunosorbent assays. The IIP cases included usual interstitial pneumonia (UIP; n = 30), nonspecific interstitial pneumonia (NSIP; n = 15), and cryptogenic organizing pneumonia (COP; n = 10). The radiological scoring was performed based on high-resolution computed tomography (HRCT) findings. RESULTS Patients with IIP had higher serum M30 levels than did the control group (178.6 ± 91.5 vs. 113.7 ± 46.8 U/L, p < 0.05). Among IIP patients, COP patients had higher serum M30 levels than did UIP or NSIP patients (264.9 ± 132.7, 139.2 ± 49.7, and 201.2 ± 81.1 U/L, respectively; COP vs. UIP, p < 0.01). Serum M30 levels were negatively correlated with forced vital capacity (FVC; r(s) = -0.31), percent-predicted FVC (FVC%; r(s) = -0.38), and percent-predicted forced expiratory volume in 1 s (FEV(1)%; r(s) = -0.36). Serum M30 levels were correlated with radiological ground-glass opacity scores (r(s) = 0.61). CONCLUSION The epithelial apoptosis marker serum level was correlated with IIP clinical status and is a potential marker to assess IIP.
Collapse
Affiliation(s)
- Wou Young Chung
- Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Yeongtong-gu, Suwon, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bargagli E, Olivieri C, Bennett D, Prasse A, Muller-Quernheim J, Rottoli P. Oxidative stress in the pathogenesis of diffuse lung diseases: a review. Respir Med 2009; 103:1245-56. [PMID: 19464864 DOI: 10.1016/j.rmed.2009.04.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 04/03/2009] [Accepted: 04/15/2009] [Indexed: 02/06/2023]
Abstract
Oxidative stress is an imbalance between oxidants (reactive oxygen and nitrogen species) and antioxidants that may affect lipids, DNA, carbohydrates and proteins. The lung is continuously exposed to endogenous and exogenous oxidants (cigarette smoke, mineral dust, ozone, radiation). Reactive oxygen and nitrogen species are mainly produced by phagocytes as well as by polymorphonuclear, alveolar, bronchial and endothelial cells. A potential role of oxidative stress in the pathogenesis of diffuse lung diseases (particularly idiopathic pulmonary fibrosis) has been demonstrated. Increased oxidant levels and decreased antioxidant defences can contribute to the progression of idiopathic pulmonary fibrosis and other diffuse lung diseases. The growing number of papers on the different aspects of oxidant/antioxidant imbalance in diffuse lung diseases in the last decade reflects increasing interest in this topic and suggests that specific DLDs may be characterized by specific patterns of oxidation and antioxidant responses. The study of oxidative stress can provide insights into etiopathogenesis and favour the discovery of new treatments. In this review of the literature on oxidants and antioxidants in diffuse lung diseases, the focus is on idiopathic pulmonary fibrosis, sarcoidosis, pneumoconiosis and pulmonary fibrosis associated with systemic sclerosis.
Collapse
Affiliation(s)
- E Bargagli
- Respiratory Diseases Section, Department of Clinical Medicine and Immunological Sciences, University of Siena, viale Bracci, Siena, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Lung alveolar epithelium and interstitial lung disease. Int J Biochem Cell Biol 2009; 41:1643-51. [PMID: 19433305 DOI: 10.1016/j.biocel.2009.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 02/06/2023]
Abstract
Interstitial lung diseases (ILDs) comprise a group of lung disorders characterized by various levels of inflammation and fibrosis. The current understanding of the mechanisms underlying the development and progression of ILD strongly suggests a central role of the alveolar epithelium. Following injury, alveolar epithelial cells (AECs) may actively participate in the restoration of a normal alveolar architecture through a coordinated process of re-epithelialization, or in the development of fibrosis through a process known as epithelial-mesenchymal transition (EMT). Complex networks orchestrate EMT leading to changes in cell architecture and behaviour, loss of epithelial characteristics and gain of mesenchymal properties. In the lung, AECs themselves may serve as a source of fibroblasts and myofibroblasts by acquiring a mesenchymal phenotype. This review covers recent knowledge on the role of alveolar epithelium in the pathogenesis of ILD. The mechanisms underlying disease progression are discussed, with a main focus on the apoptotic pathway, the endoplasmic reticulum stress response and the developmental pathway.
Collapse
|
28
|
Jin YT, Wu YH, Hu FL, Hu XY. Transformation and apoptosis of NIH/3T3 cells treated with nickel-smelting fumes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:733-739. [PMID: 19492236 DOI: 10.1080/15287390902841482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The purpose of this study was to investigate the transformation and apoptosis of NIH/3T3 cells treated with nickel (Ni) smelting fumes. Cytotoxicity of NIH/3T3 cells was detected with a methyl thiazolyl tetrazolium (MTT) colorimetric assay. The cell translation model was established by cell focus translation using two types of Ni-smelting fumes from a Ni smelting plant in China. The transformed focus was determined by soft agar culture assay. The apoptotic characteristics of NIH/3T3 cells treated with Ni-smelting fumes were detected by flow cytometry using Annexin V-FITC and PI as markers. The DNA fragment of apoptosis in NIH/3T3 cells treated with nickel smelting fumes was detected by observing agarose electrophoresis and morphological characteristics of cells under electron microscopy. With increase in exposure time, growth of NIH/3T3 cells was inhibited. The NIH/3T3 cell transformation model was established successfully using two Ni-smelting fumes, and the transformed cells grow in soft agar. No apoptosis peak was detected by flow cytometry. Apoptotic cells characterized by necrosis were observed using electron microscopy. There was no apparent "ladder" observed by DNA fragment analysis. Data indicated that Ni-smelting fumes produced cytotoxicity by mechanisms associated with necrosis but not apoptosis.
Collapse
Affiliation(s)
- Yan-Tao Jin
- Department of Occupational Health, Public Health College, Harbin Medical University, Heilongjiang Province, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Abstract
Sphingolipids such as sphingosine-1-phosphate (S1P), ceramide, or sphingomyelin are essential constituents of plasma membranes and regulate many (patho)physiological cellular responses inducing apoptosis and cell survival, vascular permeability, mast cell activation, and airway smooth muscle functions. The complexity of sphingolipid biology is generated by a great variety of compounds, diverse receptors, and often antagonistic functions of different sphingolipids. For instance, apoptosis is promoted by ceramide and prevented by S1P, and pulmonary vascular permeability is increased by S1P2/3 receptors and by ceramide, whereas S1P1 receptors stabilize barrier integrity. Several enzymes of the sphingolipid metabolism respond to external stimuli such as sphingomyelinase isoenzymes that are activated by many stress stimuli and the sphingosine kinase isoenzymes that are activated by allergens. The past years have provided increasing evidence that these processes contribute to pulmonary disorders including asthma, chronic obstructive pulmonary disease, acute lung injury, and cystic fibrosis. Sphingolipid metabolism offers several novel therapeutic targets for the treatment of lung diseases such as emphysema, asthma, cystic fibrosis, respiratory tract infection, sepsis, and acute lung injury.
Collapse
Affiliation(s)
- Stefan Uhlig
- Institute of Pharmacology and Toxicology, University Hospital Aachen, RWTH Aachen, Aachen, Germany.
| | | |
Collapse
|