1
|
Diaz M, Avila A, Degens H, Coeckelberghs E, Vanhees L, Cornelissen V, Azzawi M. Acute resveratrol supplementation in coronary artery disease: towards patient stratification. SCAND CARDIOVASC J 2019; 54:14-19. [PMID: 31429599 DOI: 10.1080/14017431.2019.1657584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Resveratrol (RV) is a polyphenol with antioxidant, anti-inflammatory and cardio-protective properties. Our objective was to investigate whether acute supplementation with high doses of RV would improve flow-mediated dilation (FMD) and oxygen consumption (VO2) kinetics in older coronary artery disease (CAD) patients. Design: We employed a placebo-controlled, single-blind, crossover design in which ten participants (aged 66.6 ± 7.8 years) received either RV or placebo (330 mg, 3× day-1) during three consecutive days plus additional 330 mg in the morning of the fourth day with a seven-day wash-out period in-between. On the fourth day, FMD of the brachial artery and VO2 on-kinetics were determined. Results: RV improved FMD in patients who had undergone coronary artery bypass grafting (CABG; -1.4 vs. 5.0%; p = .004), but not in those who had undergone percutaneous coronary intervention (PCI; 4.2 vs. -0.2%; NS). Conclusion: Acute high dose supplementation with RV improved FMD in patients after CABG surgery but impaired FMD in patients who underwent PCI. The revascularization method-related differential effects of RV may be due to its direct effects on endothelial-dependent dilator responses. Our findings have important implications for personalized treatment and stratification of older CAD patients.
Collapse
Affiliation(s)
- M Diaz
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.,Swedish Red Cross University College, Huddinge, Sweden
| | - A Avila
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.,Research Group for Cardiovascular and Respiratory Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - H Degens
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - E Coeckelberghs
- Research Group for Cardiovascular and Respiratory Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - L Vanhees
- Research Group for Cardiovascular and Respiratory Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - V Cornelissen
- Research Group for Cardiovascular and Respiratory Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - M Azzawi
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
2
|
Korzeniewski B. Muscle V˙O2-power output nonlinearity in constant-power, step-incremental, and ramp-incremental exercise: magnitude and underlying mechanisms. Physiol Rep 2018. [PMCID: PMC6234149 DOI: 10.14814/phy2.13915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A computer model of the skeletal muscle bioenergetic system was used to simulate time courses of muscle oxygen consumption (V˙O2), cytosolic metabolite (ADP, PCr, Pi, and ATP) concentrations, and pH during whole‐body constant‐power exercise (CPE) (6 min), step‐incremental exercise (SIE) (30 W/3 min), and slow (10 W/min), medium (30 W/min), and fast (50 W/min) ramp‐incremental exercise (RIE). Different ESA (each‐step activation) of oxidative phosphorylation (OXPHOS) intensity‐ATP usage activity relationships, representing different muscle fibers recruitment patterns, gave best agreement with experimental data for CPE, and for SIE and RIE. It was assumed that the muscle V˙O2‐power output (PO) nonlinearity is related to a time‐ and PO‐dependent increase in the additional ATP usage underlying the slow component of the V˙O2 on‐kinetics minus the increase in ATP supply by anaerobic glycolysis leading to a decrease in V˙O2. The muscle V˙O2‐PO relationship deviated upward (+) or downward (−) from linearity above critical power (CP), and the nonlinearity equaled +16% (CPE),+12% (SIE), +8% (slow RIE), +1% (moderate RIE), and −2% (fast RIE) at the end of exercise, in agreement with experimental data. During SIE and RIE, changes in PCr and Pi accelerated moderately above CP, while changes in ADP and pH accelerated significantly with time and PO. It is postulated that the intensity of the additional ATP usage minus ATP supply by anaerobic glycolysis determines the size of the muscle V˙O2‐PO nonlinearity. It is proposed that the extent of the additional ATP usage is proportional to the time integral of PO ‐ CP above CP.
Collapse
|
3
|
Korzeniewski B, Rossiter HB, Zoladz JA. Mechanisms underlying extremely fast muscle V˙O 2 on-kinetics in humans. Physiol Rep 2018; 6:e13808. [PMID: 30156055 PMCID: PMC6113137 DOI: 10.14814/phy2.13808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 01/31/2023] Open
Abstract
The time constant of the primary phase of pulmonary V˙O2 on-kinetics (τp ), which reflects muscle V˙O2 kinetics during moderate-intensity exercise, is about 30 s in young healthy untrained individuals, while it can be as low as 8 s in endurance-trained athletes. We aimed to determine the intramuscular factors that enable very low values of t0.63 to be achieved (analogous to τp , t0.63 is the time to reach 63% of the V˙O2 amplitude). A computer model of oxidative phosphorylation (OXPHOS) in skeletal muscle was used. Muscle t0.63 was near-linearly proportional to the difference in phosphocreatine (PCr) concentration between rest and work (ΔPCr). Of the two main factors that determine t0.63 , a huge increase in either OXPHOS activity (six- to eightfold) or each-step activation (ESA) of OXPHOS intensity (>3-fold) was needed to reduce muscle t0.63 from the reference value of 29 s (selected to represent young untrained subjects) to below 10 s (observed in athletes) when altered separately. On the other hand, the effect of a simultaneous increase of both OXPHOS activity and ESA intensity required only a twofold elevation of each to decrease t0.63 below 10 s. Of note, the dependence of t0.63 on OXPHOS activity and ESA intensity is hyperbolic, meaning that in trained individuals a large increase in OXPHOS activity and ESA intensity are required to elicit a small reduction in τp . In summary, we postulate that the synergistic action of elevated OXPHOS activity and ESA intensity is responsible for extremely low τp (t0.63 ) observed in highly endurance-trained athletes.
Collapse
Affiliation(s)
| | - Harry B. Rossiter
- Rehabilitation Clinical Trials CenterDivision of Pulmonary Critical Care Physiology and MedicineLos Angeles Biomedical Research Institute at Harbor‐UCLA Medical CenterTorranceCalifornia
- Faculty of Biological SciencesUniversity of LeedsLeedsUnited Kingdom
| | - Jerzy A. Zoladz
- Department of Muscle PhysiologyChair of Physiology and BiochemistryFaculty of RehabilitationUniversity School of Physical EducationKrakówPoland
| |
Collapse
|
4
|
McNulty CR, Robergs RA. New Methods for Processing and Quantifying VO 2 Kinetics to Steady State: VO 2 Onset Kinetics. Front Physiol 2017; 8:740. [PMID: 29018361 PMCID: PMC5623047 DOI: 10.3389/fphys.2017.00740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Current methods of oxygen uptake (VO2) kinetics data handling may be too simplistic for the complex physiology involved in the underlying physiological processes. Therefore, the aim of this study was to quantify the VO2 kinetics to steady state across the full range of sub-ventilatory threshold work rates, with a particular focus on the VO2 onset kinetics. Ten healthy, moderately trained males participated in five bouts of cycling. Each bout involved 10 min at a percentage of the subject's ventilation threshold (30, 45, 60, 75, 90%) from unloaded cycling. The VO2 kinetics was quantified using the conventional mono-exponential time constant (tau, τ), as well as the new methods for VO2 onset kinetics. Compared to linear modeling, non-linear modeling caused a deterioration of goodness of fit (main effect, p < 0.001) across all exercise intensities. Remainder kinetics were also improved using a modified application of the mono-exponential model (main effect, p < 0.001). Interestingly, the slope from the linear regression of the onset kinetics data is similar across all subjects and absolute exercise intensities, and thereby independent of subject fitness and τ. This could indicate that there are no functional limitations between subjects during this onset phase, with limitations occurring for the latter transition to steady state. Finally, the continuing use of mono-exponential modeling could mask important underlying physiology of more instantaneous VO2 responses to steady state. Consequently, further research should be conducted on this new approach to VO2 onset kinetics.
Collapse
Affiliation(s)
- Craig R McNulty
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Robert A Robergs
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
5
|
Barclay CJ. Energy demand and supply in human skeletal muscle. J Muscle Res Cell Motil 2017; 38:143-155. [PMID: 28286928 DOI: 10.1007/s10974-017-9467-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022]
Abstract
The energy required for muscle contraction is provided by the breakdown of ATP but the amount of ATP in muscles cells is sufficient to power only a short duration of contraction. Buffering of ATP by phosphocreatine, a reaction catalysed by creatine kinase, extends the duration of activity possible but sustained activity depends on continual regeneration of PCr. This is achieved using ATP generated by oxidative processes and, during intense activity, by anaerobic glycolysis. The rate of ATP breakdown ranges from 70 to 140 mM min-1 during isometric contractions of various intensity to as much as 400 mM min-1 during intense, dynamic activity. The maximum rate of oxidative energy supply in untrained people is ~50 mM min-1 which, if the contraction duty cycle is 0.5 as is often the case in cyclic activity, is sufficient to match an ATP breakdown rate during contraction of 100 mM min-1. During brief, intense activity the rate of ATP turnover can exceed the rates of PCr regeneration by combined oxidative and glycolytic energy supply, resulting in a net decrease in PCr concentration. Glycolysis has the capacity to produce between 30 and 50 mM of ATP so that, for example, anaerobic glycolysis could provide ATP at an average of 100 mM min-1 over 30 s of exhausting activity. The creatine kinase reaction plays an important role not only in buffering ATP but also in communicating energy demand from sites of ATP breakdown to the mitochondria. In that role, creatine kinases acts to slow and attenuate the response of mitochondria to changes in energy demand.
Collapse
Affiliation(s)
- C J Barclay
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
6
|
The effects of creatine supplementation on thermoregulation and physical (cognitive) performance: a review and future prospects. Amino Acids 2016; 48:1843-55. [PMID: 27085634 DOI: 10.1007/s00726-016-2237-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022]
Abstract
Creatine (Cr) is produced endogenously in the liver or obtained exogenously from foods, such as meat and fish. In the human body, 95 % of Cr is located in the cytoplasm of skeletal muscle either in a phosphorylated (PCr) or free form (Cr). PCr is essential for the immediate rephosphorylation of adenosine diphosphate to adenosine triphosphate. PCr is rapidly degraded at the onset of maximal exercise at a rate that results in muscle PCr reservoirs being substantially depleted. A well-established strategy followed to increase muscle total Cr content is to increase exogenous intake by supplementation with chemically pure synthetic Cr. Most Cr supplementation regimens typically follow a well-established loading protocol of 20 g day(-1) of Cr for approximately 5-7 days, followed by a maintenance dose at between 2 and 5 g day(-1) for the duration of interest, although more recent studies tend to utilize a 0.3-g kg(-1) day(-1) supplementation regimen. Some studies have also investigated long-term supplementation of up to 1 year. Uptake of Cr is enhanced when taken together with carbohydrate and protein and/or while undertaking exercise. Cr supplementation has been shown to augment muscle total Cr content and enhance anaerobic performance; however, there is also some evidence of indirect benefits to aerobic endurance exercise through enhanced thermoregulation. While there is an abundance of data supporting the ergogenic effects of Cr supplementation in a variety of different applications, some individuals do not respond, the efficacy of which is dependent on a number of factors, such as dose, age, muscle fiber type, and diet, although further work in this field is warranted. Cr is increasingly being used in the management of some clinical conditions to enhance muscle mass and strength. The application of Cr in studies of health and disease has widened recently with encouraging results in studies involving sleep deprivation and cognitive performance.
Collapse
|
7
|
Murias JM, Edwards JA, Paterson DH. Effects of short-term training and detraining on VO2 kinetics: Faster VO2 kinetics response after one training session. Scand J Med Sci Sports 2015; 26:620-9. [PMID: 25946038 DOI: 10.1111/sms.12487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 11/28/2022]
Abstract
This study examined the time course of short-term training and detraining-induced changes in oxygen uptake ( V ˙ O 2 ) kinetics. Twelve men (24 ± 3 years) were assigned to either a 50% or a 70% of V ˙ O 2 m a x training intensity (n = 6 per group). V ˙ O 2 was measured breath-by-breath. Changes in deoxygenated-hemoglobin concentration (Δ[HHb]) were measured by near-infrared spectroscopy. Moderate-intensity exercise on-transient V ˙ O 2 and Δ[HHb] were modeled with a mono-exponential and normalized (0-100% of response) and the [ H H b ] / V ˙ O 2 ratio was calculated. Similar changes in time constant of V ˙ O 2 ( t V ˙ O 2 ) were observed in both groups. The combined group mean for t V ˙ O 2 decreased ∼14% (32.3 to 27.9 s, P < 0.05) after one training session with a further ∼11% decrease (27.9 to 24.8 s, P < 0.05) following two training sessions. The t V ˙ O 2 p remained unchanged throughout the remaining of training and detraining. A significant "overshoot" in the [ H H b ] / V ˙ O 2 ratio was decreased (albeit not significant) after one training session, and abolished (P < 0.05) after the second one, with no overshoot observed thereafter. Speeding of V ˙ O 2 kinetics was remarkably quick with no further changes being observed with continuous training or during detraining. Improve matching of local O2 delivery to O2 utilization is a mechanism proposed to influence this response.
Collapse
Affiliation(s)
- J M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - J A Edwards
- Canadian Centre for Activity and Aging, Ontario, London, Canada.,School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - D H Paterson
- Canadian Centre for Activity and Aging, Ontario, London, Canada.,School of Kinesiology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
do Nascimento PC, de Lucas RD, de Souza KM, de Aguiar RA, Denadai BS, Guglielmo LGA. The effect of prior exercise intensity on oxygen uptake kinetics during high-intensity running exercise in trained subjects. Eur J Appl Physiol 2014; 115:147-56. [PMID: 25240480 DOI: 10.1007/s00421-014-3000-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The aim of this study was to compare the effects of two different kinds of prior exercise protocols [continuous exercise (CE) versus intermittent repeated sprint (IRS)] on oxygen uptake (VO2) kinetics parameters during high-intensity running. METHODS Thirteen male amateur futsal players (age 22.8 ± 6.1 years; mass 76.0 ± 10.2 kg; height 178.7 ± 6.6 cm; VO2max 58.1 ± 4.5 mL kg(-1) min(-1)) performed a maximal incremental running test for the determination of the gas exchange threshold (GET) and maximal VO2 (VO2max). On two different days, the subjects completed a 6-min bout of high-intensity running (50 % ∆) on a treadmill that was 6-min after (1) an identical bout of high-intensity exercise (from control to CE), and (2) a protocol of IRS (6 × 40 m). RESULT We found significant differences between CE and IRS for the blood lactate concentration ([La]; 6.1 versus 10.7 mmol L(-1), respectively), VO2 baseline (0.74 versus 0.93 L min(-1), respectively) and the heart rate (HR; 102 versus 124 bpm, respectively) before the onset of high-intensity exercise. However, both prior CE and prior IRS significantly increased the absolute primary VO2 amplitude (3.77 and 3.79 L min(-1), respectively, versus control 3.54 L min(-1)), reduced the amplitude of the VO2 slow component (0.26 and 0.21 L min(-1), respectively, versus control 0.50 L min(-1)), and decreased the mean response time (MRT; 28.9 and 28.0 s, respectively, versus control 36.9 s) during subsequent bouts. CONCLUSION This study showed that different protocols and intensities of prior exercise trigger similar effects on VO2 kinetics during high-intensity running.
Collapse
Affiliation(s)
- Paulo Cesar do Nascimento
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianopolis, Brazil,
| | | | | | | | | | | |
Collapse
|
9
|
Kano Y, Miura S, Eshima H, Ezaki O, Poole DC. The effects of PGC-1α on control of microvascular Po2 kinetics following onset of muscle contractions. J Appl Physiol (1985) 2014; 117:163-70. [DOI: 10.1152/japplphysiol.00080.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
During contractions, regulation of microvascular oxygen partial pressure (Pmvo2), which drives blood-myocyte O2 flux, is a function of skeletal muscle fiber type and oxidative capacity and can be altered by exercise training. The kinetics of Pmvo2 during contractions in predominantly fast-twitch muscles evinces a more rapid fall to far lower levels compared with slow-twitch counterparts. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) improves endurance performance, in part, due to mitochondrial biogenesis, a fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. We tested the hypothesis that improvement of exercise capacity by genetic overexpression of PGC-1α would be associated with an altered Pmvo2 kinetics profile of the fast-twitch (white) gastrocnemius during contractions toward that seen in slow-twitch muscles (i.e., slowed response kinetics and elevated steady-state Pmvo2). Phosphorescence quenching techniques were used to measure Pmvo2 at rest and during separate bouts of twitch (1 Hz) and tetanic (100 Hz) contractions in gastrocnemius muscles of mice with overexpression of PGC-1α and wild-type littermates (WT) mice under isoflurane anesthesia. Muscles of PGC-1α mice exhibited less fatigue than WT ( P < 0.01). However, except for the Pmvo2 response immediately following onset of contractions, WT and PGC-1α mice demonstrated similar Pmvo2 kinetics. Specifically, the time delay of the Pmvo2 response was shortened in PGC-1α mice compared with WT (1 Hz: WT, 6.6 ± 2.4 s; PGC-1α, 2.9 ± 0.8 s; 100 Hz: WT, 3.3 ± 1.1 s, PGC-1α, 0.9 ± 0.3 s, both P < 0.05). The ratio of muscle force to Pmvo2 was higher for the duration of tetanic contractions in PGC-1α mice. Slower dynamics and maintenance of higher Pmvo2 following muscle contractions is not obligatory for improved fatigue resistance in fast-twitch muscle of PGC-1α mice. Moreover, overexpression of PGC-1α may accelerate O2 utilization kinetics to a greater extent than O2 delivery kinetics.
Collapse
Affiliation(s)
- Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Shinji Miura
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiroaki Eshima
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Osamu Ezaki
- Department of Human Health and Design, Showa Women's University, Tokyo, Japan; and
| | - David C. Poole
- Departments of Anatomy, Physiology, and Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
10
|
Zoladz JA, Grassi B, Majerczak J, Szkutnik Z, Korostyński M, Karasiński J, Kilarski W, Korzeniewski B. Training-induced acceleration of O(2) uptake on-kinetics precedes muscle mitochondrial biogenesis in humans. Exp Physiol 2012. [PMID: 23204290 DOI: 10.1113/expphysiol.2012.069443] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of 5 weeks of moderate-intensity endurance training on pulmonary oxygen uptake kinetics (V(O(2)) on-kinetics) were studied in 15 healthy men (mean ± SD: age 22.7 ± 1.8 years, body weight 76.4 ± 8.9 kg and maximal V(O(2)) 46.0 ± 3.7 ml kg(-1) min(-1)). Training caused a significant acceleration (P = 0.003) of V(O(2)) on-kinetics during moderate-intensity cycling (time constant of the 'primary' component 30.0 ± 6.6 versus 22.8 ± 5.6 s before and after training, respectively) and a significant decrease (P = 0.04) in the amplitude of the primary component (837 ± 351 versus 801 ± 330 ml min(-1)). No changes in myosin heavy chain distribution, muscle fibre capillarization, level of peroxisome proliferator-activated receptor γ coactivator 1α and other markers of mitochondrial biogenesis (mitochondrial DNA copy number, cytochrome c and cytochrome oxidase subunit I contents) in the vastus lateralis were found after training. A significant downregulation in the content of the sarcoplasmic reticulum ATPase 2 (SERCA2; P = 0.03) and a tendency towards a decrease in SERCA1 (P = 0.055) was found after training. The decrease in SERCA1 was positively correlated (P = 0.05) with the training-induced decrease in the gain of the V(O(2)) on-kinetics (ΔV(O(2)) at steady state/Δpower output). In the early stage of training, the acceleration in V(O(2)) on-kinetics during moderate-intensity cycling can occur without enhanced mitochondrial biogenesis or changes in muscle myosin heavy chain distribution and in muscle fibre capillarization. The training-induced decrease of the O(2) cost of cycling could be caused by the downregulation of SERCA pumps.
Collapse
Affiliation(s)
- Jerzy A Zoladz
- Department of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jones AM, Krustrup P, Wilkerson DP, Berger NJ, Calbet JA, Bangsbo J. Influence of exercise intensity on skeletal muscle blood flow, O2 extraction and O2 uptake on-kinetics. J Physiol 2012; 590:4363-76. [PMID: 22711961 PMCID: PMC3473291 DOI: 10.1113/jphysiol.2012.233064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/15/2012] [Indexed: 11/08/2022] Open
Abstract
Following the start of low-intensity exercise in healthy humans, it has been established that the kinetics of skeletal muscle O(2) delivery is faster than, and does not limit, the kinetics of muscle O(2) uptake (V(O(2)(m))). Direct data are lacking, however, on the question of whether O(2) delivery might limit (V(O(2)(m))) kinetics during high-intensity exercise. Using multiple exercise transitions to enhance confidence in parameter estimation, we therefore investigated the kinetics of, and inter-relationships between, muscle blood flow (Q(m)), a-(V(O(2))) difference and (V(O(2)(m))) following the onset of low-intensity (LI) and high-intensity (HI) exercise. Seven healthy males completed four 6 min bouts of LI and four 6 min bouts of HI single-legged knee-extension exercise. Blood was frequently drawn from the femoral artery and vein during exercise and Q(m), a-(V(O(2))) difference and (V(O(2)(m))) were calculated and subsequently modelled using non-linear regression techniques. For LI, the fundamental component mean response time (MRT(p)) for Q(m) kinetics was significantly shorter than (V(O(2)(m))) kinetics (mean ± SEM, 18 ± 4 vs. 30 ± 4 s; P < 0.05), whereas for HI, the MRT(p) for Q(m) and (V(O(2)(m))) was not significantly different (27 ± 5 vs. 29 ± 4 s, respectively). There was no difference in the MRT(p) for either Q(m) or (V(O(2)(m))) between the two exercise intensities; however, the MRT(p)for a-(V(O(2)) difference was significantly shorter for HI compared with LI (17 ± 3 vs. 28 ± 4 s; P < 0.05). Excess O(2), i.e. oxygen not taken up (Q(m) x (V(O(2))), was significantly elevated within the first 5 s of exercise and remained unaltered thereafter, with no differences between LI and HI. These results indicate that bulk O(2) delivery does not limit (V(O(2)(m))) kinetics following the onset of LI or HI knee-extension exercise.
Collapse
Affiliation(s)
- Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Heavitree Road, Exeter, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Gandra PG, Nogueira L, Hogan MC. Mitochondrial activation at the onset of contractions in isolated myofibres during successive contractile periods. J Physiol 2012; 590:3597-609. [PMID: 22711953 DOI: 10.1113/jphysiol.2012.232405] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
At the onset of skeletal muscle repetitive contractions, there is a significant delay in the time to achieve oxidative phosphorylation steady state. The purpose of the present study was to examine the factors that limit oxidative phosphorylation at the onset of contractions. NAD(P)H was measured in real time during two contractile periods (2 min each) separated by 5 min of rest in intact single muscle fibres (n = 7) isolated from Xenopus laevis. The fibres were then loaded with the dye tetramethylrhodamine methyl ester perchlorate (TMRM) to evaluate the kinetics of the mitochondrial membrane potential (Δψ (m)) during two further successive contractile periods. At the onset of contractions in the first period, NAD(P)H exhibited a time delay (14.1 ± 1.3 s) before decreasing toward a steady state. In contrast, Δψ(m) decreased immediately after the first contraction and started to be reestablished after 10.7 ± 0.9 s, with restoration to the pre-stimulation values after approximately 32 s. In the second contractile period (5 min after the first), NAD(P)H decreased immediately (i.e. no time delay) after the first contraction and had a significantly shorter time constant compared to the first contractile bout (3.3 ± 0.3 vs. 5.0 ± 0.2 s, P < 0.05). During the second bout, Δψ(m) remained unchanged from pre-stimulation values. These results suggest: (1) that at the onset of contractions, oxidative phosphorylation is primarily limited by the activity of the electron transport chain complexes rather than by a limited level of substrates; and (2) when the muscle is 'primed' by previous contractile activity, the faster enhancement of the cellular respiratory rate is due to intrinsic factors within the myofibre.
Collapse
Affiliation(s)
- Paulo G Gandra
- Department of Medicine-0623, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0623, USA
| | | | | |
Collapse
|
13
|
Kano Y, Poole DC, Sudo M, Hirachi T, Miura S, Ezaki O. Control of microvascular PO₂ kinetics following onset of muscle contractions: role for AMPK. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1350-7. [PMID: 21849631 DOI: 10.1152/ajpregu.00294.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The microvascular partial pressure of oxygen (Pmv(o(2))) kinetics following the onset of exercise reflects the relationship between muscle O(2) delivery and uptake (Vo(2)). Although AMP-activated protein kinase (AMPK) is known as a regulator of mitochondria and nitric oxide metabolism, it is unclear whether the dynamic balance of O(2) delivery and Vo(2) at exercise onset is dependent on AMPK activation level. We used transgenic mice with muscle-specific AMPK dominant-negative (AMPK-DN) to investigate a role for skeletal muscle AMPK on Pmv(o(2)) kinetics following onset of muscle contractions. Phosphorescence quenching techniques were used to measure Pmv(o(2)) at rest and across the transition to twitch (1 Hz) and tetanic (100 Hz, 3-5 V, 4-ms pulse duration, stimulus duration of 100 ms every 1 s for 1 min) contractions in gastrocnemius muscles (each group n = 6) of AMPK-DN mice and wild-type littermates (WT) under isoflurane anesthesia with 100% inspired O(2) to avoid hypoxemia. Baseline Pmv(o(2)) before contractions was not different between groups (P > 0.05). Both muscle contraction conditions exhibited a delay followed by an exponential decrease in Pmv(o(2)). However, compared with WT, AMPK-DN demonstrated 1) prolongation of the time delay before Pmv(o(2)) began to decline (1 Hz: WT, 3.2 ± 0.5 s; AMPK-DN, 6.5 ± 0.4 s; 100 Hz: WT, 4.4 ± 1.0 s; AMPK-DN, 6.5 ± 1.4 s; P < 0.05), 2) a faster response time (i.e., time constant; 1 Hz: WT, 19.4 ± 3.9 s; AMPK-DN, 12.4 ± 2.6 s; 100 Hz: WT, 15.1 ± 2.2 s; AMPK-DN, 9.0 ± 1.7 s; P < 0.05). These findings are consistent with the presence of substantial mitochondrial and microvascular dysfunction in AMPK-DN mice, which likely slows O(2) consumption kinetics (i.e., oxidative phosphorylation response) and impairs the hyperemic response at the onset of contractions thereby sowing the seeds for exercise intolerance.
Collapse
Affiliation(s)
- Yutaka Kano
- Dept. of Engineering Science, Bioscience and Technology Program, Univ. of Electro-Communications, Chofu,Tokyo, 1828585, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Wüst RCI, Grassi B, Hogan MC, Howlett RA, Gladden LB, Rossiter HB. Kinetic control of oxygen consumption during contractions in self-perfused skeletal muscle. J Physiol 2011; 589:3995-4009. [PMID: 21690197 PMCID: PMC3179998 DOI: 10.1113/jphysiol.2010.203422] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 06/13/2011] [Indexed: 12/13/2022] Open
Abstract
Fast kinetics of muscle oxygen consumption (VO2) is characteristic of effective physiological systems integration. The mechanism of VO2 kinetic control in vivo is equivocal as measurements are complicated by the twin difficulties of making high-frequency direct measurements of VO2 and intramuscular metabolites, and in attaining high [ADP]; complexities that can be overcome utilising highly aerobic canine muscle for the investigation of the transition from rest to contractions at maximal VO2. Isometric tetanic contractions of the gastrocnemius complex of six anaesthetised, ventilated dogs were elicited via sciatic nerve stimulation (50 Hz; 200 ms duration; 1 contraction s(−1)). Muscle VO2 and lactate efflux were determined from direct Fick measurements. Muscle biopsies were taken at rest and every ∼10 s during the transient and analysed for [phosphates], [lactate] and pH. The temporal VO2 vs. [PCr] and [ADP] relationships were not well fitted by linear or classical hyperbolic models (respectively), due to the high sensitivity of VO2 to metabolic perturbations early in the transient. The time course of this apparent sensitisation was closely aligned to that of ATP turnover, which was lower in the first ∼25 s of contractions compared to the steady state. These findings provide the first direct measurements of skeletal muscle VO2 and [PCr] in the non-steady state, and suggest that simple phosphate feedback models (which are adequate for steady-state observations in vitro) are not sufficient to explain the dynamic control of VO2 in situ. Rather an allosteric or 'parallel activation' mechanism of energy consuming and producing processes is required to explain the kinetic control of VO2 in mammalian skeletal muscle.
Collapse
Affiliation(s)
- Rob C I Wüst
- Department of Kinesiology, Auburn University, Auburn, AL, USA
| | | | | | | | | | | |
Collapse
|
15
|
Jones AM, Wilkerson DP, Fulford J. Influence of dietary creatine supplementation on muscle phosphocreatine kinetics during knee-extensor exercise in humans. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1078-87. [PMID: 19211722 DOI: 10.1152/ajpregu.90896.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We hypothesized that increasing skeletal muscle total creatine (Cr) content through dietary Cr supplementation would result in slower muscle phosphocreatine concentration ([PCr]) kinetics, as assessed using (31)P magnetic resonance spectroscopy, following the onset and offset of both moderate-intensity (Mod) and heavy-intensity (Hvy) exercise. Seven healthy males (age 29 +/- 6 yr, mean +/- SD) completed a series of square-wave transitions to Mod and Hvy knee extensor exercise inside the bore of a 1.5-T superconducting magnet both before and after a 5-day period of Cr loading (4x 5 g/day of creatine monohydrate). Cr supplementation resulted in an approximately 8% increase in the resting muscle [PCr]-to-[ATP] ratio (4.66 +/- 0.27 vs. 5.04 +/- 0.22; P < 0.05), consistent with a significant increase in muscle total Cr content consequent to the intervention. The time constant for muscle [PCr] kinetics was increased following Cr loading for Mod exercise (control: 15 +/- 8 vs. Cr: 25 +/- 9 s; P < 0.05) and subsequent recovery (control: 14 +/- 8 vs. Cr: 27 +/- 8 s; P < 0.05) and for Hvy exercise (control: 54 +/- 18 vs. Cr: 72 +/- 30 s; P < 0.05), but not for subsequent recovery (control: 41 +/- 11 vs. Cr: 44 +/- 6 s). The magnitude of the increase in [PCr] following Cr loading was correlated (P < 0.05) with the extent of the slowing of the [PCr] kinetics for the moderate off-transient (r = 0.92) and the heavy on-transient (r = 0.71). These data demonstrate, for the first time in humans, that an increase in muscle [PCr] results in a slowing of [PCr] dynamics in exercise and subsequent recovery.
Collapse
|
16
|
Ono Y, Hayashi C, Doi N, Kitamura F, Shindo M, Kudo K, Tsubata T, Yanagida M, Sorimachi H. Comprehensive survey of p94/calpain 3 substrates by comparative proteomics--possible regulation of protein synthesis by p94. Biotechnol J 2007; 2:565-76. [PMID: 17373644 PMCID: PMC2978325 DOI: 10.1002/biot.200700018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 02/15/2007] [Accepted: 02/19/2007] [Indexed: 11/21/2022]
Abstract
Calpain represents a family of Ca(2+)-dependent cytosolic cysteine proteases found in almost all eukaryotes and some bacteria, and is involved in a variety of biological phenomena, including brain function. Several substrates of calpain are aggressively proteolyzed under pathological conditions, e.g., in neurodegenerating processes, fodrin is proteolyzed by calpain. Because very small amounts of substrate are proteolyzed by calpain under normal biological conditions, the molecular identities of calpain substrates are largely unknown. In this study, an extensive survey of the substrates of p94/calpain 3 in COS7 cells was executed using iTRAQ(TM) labeling and 2-D LC-MALDI analysis. p94 was used because: (i) several p94 splicing variants are expressed in brain tissue even though p94 itself is a skeletal-muscle-specific calpain, and (ii) it exhibits Ca(2+)-independent activity in COS cells, which makes it useful for evaluating the effects of p94 protease activity on proteins without perturbing the cells. Our approach revealed several novel protein substrates for p94, including the substrates of conventional calpains, components of the protein synthesis system, and enzymes of the glycolytic pathway. The results demonstrate the usefulness and sensitivity of this approach for mining calpain substrates. A combination of this method with other analytical methods would contribute to elucidation of the biological relevance of the calpain family.
Collapse
Affiliation(s)
- Yasuko Ono
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
| | - Chikako Hayashi
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of ScienceChiba, Japan
| | - Naoko Doi
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
- CREST, Japan Science and Technology (JST)Saitama, Japan
| | - Fujiko Kitamura
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
- CREST, Japan Science and Technology (JST)Saitama, Japan
| | - Mayumi Shindo
- Proteomics & Small Molecules Division, Applied Biosystems Japan Ltd.Tokyo, Japan
| | | | - Takuichi Tsubata
- Proteomics & Small Molecules Division, Applied Biosystems Japan Ltd.Tokyo, Japan
| | - Mitsuaki Yanagida
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of MedicineChiba, Japan
| | - Hiroyuki Sorimachi
- Department of Enzymatic Regulation for Cell Functions (Calpain Project), The Tokyo Metropolitan Institute of Medical Science (Rinshoken)Tokyo, Japan
- CREST, Japan Science and Technology (JST)Saitama, Japan
| |
Collapse
|