1
|
El-Saudi AM, Altouhamy MA, Shaaban S, Badria FA, Youssef MM, El-Senduny FF. Down regulation of fatty acid synthase via inhibition of PI3K/AKT/mTOR in ovarian cancer cell line by novel organoselenium pseudopeptide. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100134. [PMID: 36568265 PMCID: PMC9780069 DOI: 10.1016/j.crphar.2022.100134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Ovarian cancer (OC) is the 7th most common cancer in women world-wide and the 3rd most common female cancer. For the treatment of OC, there is no successful therapeutic. The medications that are currently available have significant side effects and a low therapeutic index. This work aimed to evaluate the anticancer activity of organoselenium pseudopeptide compound against OC cell lines. After treatment with 50 μM of compound 4 (CPD 4), the viability was determined. The anticancer activity was further investigated by different methods including cell cycle and apoptosis analysis, colony formation assay, zymography, comet assay and Western blot. In comparison to a positive control, compound 4 showed cytotoxicity toward A2780CP cells rather than A2780 and SKOV-3 cells. Compound 4 was more selective to OC cells rather than HSF cells. Moreover, Compound 4 was able to inhibit cell migration and proliferation. The anticancer effect of compound 4 was found to be partially via cell cycle arrest, overexpression of p27 cell cycle inhibitor and induction of apoptosis through DNA fragmentation and activated production of ROS. Compound 4 had a differential effect on the modulation of PI3K/AKT/mTOR signaling pathway in the OC treated cell lines, also inhibited lipogenesis process via downregulation of FASN expression. Conclusion: This work highlights the unique role of Compound 4 against OC via modulation of oxidative stress, inhibition of survival PI3K/AKT/mTOR pathway. Compound 4 was found to be a promising alternative therapy for the treatment of OC in this investigation.
Collapse
Affiliation(s)
- Abeer M. El-Saudi
- Biochemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
| | - Miram A. Altouhamy
- Biochemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
- Faculty of Medicine, New Mansoura University, New Mansoura City, Egypt
| | - Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia
- Organic Chemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
| | - Farid A. Badria
- Department of Pharmacognosy, Mansoura University, Mansoura, 35516, Egypt
| | - Magdy M. Youssef
- Biochemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
| | - Fardous F. El-Senduny
- Biochemistry Division, Chemistry Department, Mansoura University, Mansoura 35516, Egypt
- Department of Pathology & Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States
| |
Collapse
|
2
|
Wolf I, Gratzke C, Wolf P. Prostate Cancer Stem Cells: Clinical Aspects and Targeted Therapies. Front Oncol 2022; 12:935715. [PMID: 35875084 PMCID: PMC9304860 DOI: 10.3389/fonc.2022.935715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite decades of research and successful improvements in diagnosis and therapy, prostate cancer (PC) remains a major challenge. In recent years, it has become clear that PC stem cells (PCSCs) are the driving force in tumorigenesis, relapse, metastasis, and therapeutic resistance of PC. In this minireview, we discuss the impact of PCSCs in the clinical practice. Moreover, new therapeutic approaches to combat PCSCs are presented with the aim to achieve an improved outcome for patients with PC.
Collapse
Affiliation(s)
- Isis Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Philipp Wolf,
| |
Collapse
|
3
|
Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resist Updat 2022; 63:100844. [DOI: 10.1016/j.drup.2022.100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
El-Dirany R, Shahrour H, Dirany Z, Abdel-Sater F, Gonzalez-Gaitano G, Brandenburg K, Martinez de Tejada G, Nguewa PA. Activity of Anti-Microbial Peptides (AMPs) against Leishmania and Other Parasites: An Overview. Biomolecules 2021; 11:984. [PMID: 34356608 PMCID: PMC8301979 DOI: 10.3390/biom11070984] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022] Open
Abstract
Anti-microbial peptides (AMPs), small biologically active molecules, produced by different organisms through their innate immune system, have become a considerable subject of interest in the request of novel therapeutics. Most of these peptides are cationic-amphipathic, exhibiting two main mechanisms of action, direct lysis and by modulating the immunity. The most commonly reported activity of AMPs is their anti-bacterial effects, although other effects, such as anti-fungal, anti-viral, and anti-parasitic, as well as anti-tumor mechanisms of action have also been described. Their anti-parasitic effect against leishmaniasis has been studied. Leishmaniasis is a neglected tropical disease. Currently among parasitic diseases, it is the second most threating illness after malaria. Clinical treatments, mainly antimonial derivatives, are related to drug resistance and some undesirable effects. Therefore, the development of new therapeutic agents has become a priority, and AMPs constitute a promising alternative. In this work, we describe the principal families of AMPs (melittin, cecropin, cathelicidin, defensin, magainin, temporin, dermaseptin, eumenitin, and histatin) exhibiting a potential anti-leishmanial activity, as well as their effectiveness against other microorganisms.
Collapse
Affiliation(s)
- Rima El-Dirany
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain;
- Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon; (H.S.); (F.A.-S.)
| | - Hawraa Shahrour
- Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon; (H.S.); (F.A.-S.)
- Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, 31008 Pamplona, Navarra, Spain;
| | - Zeinab Dirany
- Department of Chemistry, Faculty of Sciences, University of Navarra, 31080 Pamplona, Navarra, Spain; (Z.D.); (G.G.-G.)
| | - Fadi Abdel-Sater
- Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon; (H.S.); (F.A.-S.)
| | - Gustavo Gonzalez-Gaitano
- Department of Chemistry, Faculty of Sciences, University of Navarra, 31080 Pamplona, Navarra, Spain; (Z.D.); (G.G.-G.)
| | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, Leibniz Lungenzentrum, 23845 Borstel, Germany;
| | - Guillermo Martinez de Tejada
- Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, 31008 Pamplona, Navarra, Spain;
| | - Paul A. Nguewa
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain;
| |
Collapse
|
5
|
Chuai H, Zhang SQ, Bai H, Li J, Wang Y, Sun J, Wen E, Zhang J, Xin M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur J Med Chem 2021; 223:113621. [PMID: 34217061 DOI: 10.1016/j.ejmech.2021.113621] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential micronutrient of organism and has important function. It participates in the functions of selenoprotein in several manners. In recent years, Se has attracted much attention because of its therapeutic potential against several diseases. Many natural and synthetic organic Se-containing compounds were studied and explored for the treatment of cancer and other diseases. Studies have showed that incorporation of Se atom into small molecules significantly enhanced their bioactivities. In this paper, according to different applications and structural characteristics, the research progress and therapeutic application of Se-containing compounds are reviewed, and more than 110 Se-containing compounds were selected as representatives which showed potent activities such as anticancer, antioxidant, antifibrolytic, antiparasitic, antibacterial, antiviral, antifungal and central nervous system related effects. This review is expected to provide a basis for further study of new promising Se-containing compounds.
Collapse
Affiliation(s)
- Hongyan Chuai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Huanrong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiyu Li
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Yang Wang
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Jiajia Sun
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Ergang Wen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiye Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
6
|
Dispirooxindoles Based on 2-Selenoxo-Imidazolidin-4-Ones: Synthesis, Cytotoxicity and ROS Generation Ability. Int J Mol Sci 2021; 22:ijms22052613. [PMID: 33807662 PMCID: PMC7961907 DOI: 10.3390/ijms22052613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022] Open
Abstract
A regio- and diastereoselective synthesis of two types of dispiro derivatives of 2-selenoxoimidazolidin-4-ones, differing in the position of the nitrogen atom in the central pyrrolidine ring of the spiro-fused system-namely, 2-selenoxodispiro[imidazolidine-4,3'-pyrrolidine-2',3″-indoline]-2″,5-diones (5a-h) and 2-senenoxodispiro[imidazolidine-4,3'-pyrrolidine-4',3″-indoline]-2″,5-diones (6a-m)-were developed based on a 1,3-dipolar cycloaddition of azomethine ylides generated from isatin and sarcosine or formaldehyde and sarcosine to 5-arylidene or 5-indolidene-2-selenoxo-tetrahydro-4H-imidazole-4-ones. Selenium-containing dispiro indolinones generally exhibit cytotoxic activity near to the activity of the corresponding oxygen and sulfur-containing derivatives. Compounds 5b, 5c, and 5e demonstrated considerable in vitro cytotoxicity in the 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) test (concentration of compounds that caused 50% death of cells (CC50) 7.6-8.7 μM) against the A549 cancer cell line with the VA13/A549 selectivity index 5.2-6.9; some compounds (5 and 6) increased the level of intracellular reactive oxygen species (ROS) in the experiment on A549 and PC3 cells using platinized carbon nanoelectrode. The tests for p53 activation for compounds 5 and 6 on the transcriptional reporter suggest that the investigated compounds can only have an indirect p53-dependent mechanism of action. For the compounds 5b, 6b, and 6l, the ROS generation may be one of the significant mechanisms of their cytotoxic action.
Collapse
|
7
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
8
|
Poluboyarinov PA, Elistratov DG, Moiseeva IJ. Antitumor Activity of Selenium and Search Parameters for Its New Potentially Active Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Aghajani M, Mokhtarzadeh A, Aghebati-Maleki L, Mansoori B, Mohammadi A, Safaei S, Asadzadeh Z, Hajiasgharzadeh K, Khaze Shahgoli V, Baradaran B. CD133 suppression increases the sensitivity of prostate cancer cells to paclitaxel. Mol Biol Rep 2020; 47:3691-3703. [PMID: 32246247 DOI: 10.1007/s11033-020-05411-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
One of the major barriers in cancer therapy is the resistance to conventional therapies and cancer stem cells (CSCs) are among the main causes of this problem. CD133 as a CSC marker displays stem cell-like properties, tumorigenic capacity, and drug resistance in various cancers. However, the molecular mechanism behind CD133 function in prostate cancer (PC) still remains unclear. This research aimed to illustrate the probabilistic mechanism of CD133-siRNA and paclitaxel in the reduction of chemoresistance in PC cells. To measure the cell viability, migratory capacity, CSCs properties, invasive potential, apoptosis and cell cycle progression of the cells, the MTT, wound healing, spheroid assay, colony formation assay, DAPI staining and flow cytometry assays were applied in the LNCaP cell line, respectively. Also, quantitative real-time PCR (qRT-PCR) and western blot method were used for measuring the expression of CD133 and the effects of CD133 silencing on the AKT/mTOR/c-myc axis and pro-metastatic genes expression. We showed that the CD133-siRNA considerably decreased the CD133 expression. Moreover, CD133-siRNA and paclitaxel treatment significantly decreased cell proliferation and also inhibited the ability of cell migration and invasion and reduced pro-metastatic genes expression. Additionally, we found that the simultaneous use of CD133-siRNA and paclitaxel increased the paclitaxel-induced apoptosis. Our results confirmed that CD133 silencing combined with paclitaxel synergistically could suppress cell migration, invasion, and proliferation and enhance the chemosensitivity compared with mono treatment. Therefore, CD133 silencing therapy could be viewed as a promising and efficient strategy in PC targeted therapies.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Behzad Mansoori
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology 2020; 28:667-695. [PMID: 32144521 PMCID: PMC7222958 DOI: 10.1007/s10787-020-00690-x] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Abstract Selenium is an essential immunonutrient which holds the human’s metabolic activity with its chemical bonds. The organic forms of selenium naturally present in human body are selenocysteine and selenoproteins. These forms have a unique way of synthesis and translational coding. Selenoproteins act as antioxidant warriors for thyroid regulation, male-fertility enhancement, and anti-inflammatory actions. They also participate indirectly in the mechanism of wound healing as oxidative stress reducers. Glutathione peroxidase (GPX) is the major selenoprotein present in the human body, which assists in the control of excessive production of free radical at the site of inflammation. Other than GPX, other selenoproteins include selenoprotein-S that regulates the inflammatory cytokines and selenoprotein-P that serves as an inducer of homeostasis. Previously, reports were mainly focused on the cellular and molecular mechanism of wound healing with reference to various animal models and cell lines. In this review, the role of selenium and its possible routes in translational decoding of selenocysteine, synthesis of selenoproteins, systemic action of selenoproteins and their indirect assimilation in the process of wound healing are explained in detail. Some of the selenium containing compounds which can acts as cancer preventive and therapeutics are also discussed. These compounds directly or indirectly exhibit antioxidant properties which can sustain the intracellular redox status and these activities protect the healthy cells from reactive oxygen species induced oxidative damage. Although the review covers the importance of selenium/selenoproteins in wound healing process, still some unresolved mystery persists which may be resolved in near future. Graphic abstract ![]()
Collapse
Affiliation(s)
- Sneha Hariharan
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India
| | - Selvakumar Dharmaraj
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
11
|
Chen Z, Lai H, Hou L, Chen T. Rational design and action mechanisms of chemically innovative organoselenium in cancer therapy. Chem Commun (Camb) 2020; 56:179-196. [PMID: 31782422 DOI: 10.1039/c9cc07683b] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organo-seleno compounds (org-Se) have been widely used in antitumor, antiviral, and antiinflammatory therapy; antioxidation and other biological fields. As such, they have made an important contribution to overcoming various kinds of diseases, and researchers are increasingly attracted to org-Se's synthesis and functional design. This review is mainly focused on the design and synthesis of various kinds of org-Se, followed by their anticancer mechanisms such as the mitochondria mediated pathway induced by ROS, death receptor mediated pathways involving p53 phosphorylation, and the activation of the AMPK pathway to promote apoptosis. Org-Se also serves as a sensitizer in chemotherapy and radiotherapy, and an antagonist against the cytotoxic effects induced by chemotherapeutic agents. Finally, we will summarize the development of cancer-targeted org-Se containing complexes, and nanotechnology-based org-Se for anticancer application. This review could provide information for the future design of chemically innovative org-Se with anticancer potential, and shed light on the discovery of nanomaterial-based pharmaceuticals to improve drug development and formation.
Collapse
Affiliation(s)
- Zhen Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | |
Collapse
|
12
|
The Novel Serine/Threonine Protein Kinase LmjF.22.0810 from Leishmania major may be Involved in the Resistance to Drugs such as Paromomycin. Biomolecules 2019; 9:biom9110723. [PMID: 31718000 PMCID: PMC6920834 DOI: 10.3390/biom9110723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
The identification and clarification of the mechanisms of action of drugs used against leishmaniasis may improve their administration regimens and prevent the development of resistant strains. Herein, for the first time, we describe the structure of the putatively essential Ser/Thr kinase LmjF.22.0810 from Leishmania major. Molecular dynamics simulations were performed to assess the stability of the kinase model. The analysis of its sequence and structure revealed two druggable sites on the protein. Furthermore, in silico docking of small molecules showed that aminoglycosides preferentially bind to the phosphorylation site of the protein. Given that transgenic LmjF.22.0810-overexpressing parasites displayed less sensitivity to aminoglycosides such as paromomycin, our predicted models support the idea that the mechanism of drug resistance observed in those transgenic parasites is the tight binding of such compounds to LmjF.22.0810 associated with its overexpression. These results may be helpful to understand the complex machinery of drug response in Leishmania.
Collapse
|
13
|
Ruberte AC, Sanmartin C, Aydillo C, Sharma AK, Plano D. Development and Therapeutic Potential of Selenazo Compounds. J Med Chem 2019; 63:1473-1489. [PMID: 31638805 DOI: 10.1021/acs.jmedchem.9b01152] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incorporation of selenium (Se) atom into small molecules can substantially enhance their antioxidant, anti-inflammatory, antimutagenic, antitumoral or chemopreventive, antiviral, antibacterial, antifungal, antiparasitic, and neuroprotective effects. Specifically, selenazo compounds have received great attention owing to their chemical properties, pharmaceutical applications, and low toxicity. In this Perspective, we compile extensive literature evidence with the description and discussion of the most recent advances in different selenazo and selenadiazo motifs as potential pharmacological candidates. We also provide some perspectives on the challenges and future directions in the advancement of these selenazo compounds, each of which could generate drug candidates for various diseases.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carmen Sanmartin
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain.,Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| |
Collapse
|
14
|
Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 2018; 127:80-97. [PMID: 29746900 DOI: 10.1016/j.freeradbiomed.2018.05.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
Selenium(Se)-containing compounds have attracted a growing interest as anticancer agents over recent decades, with mounting reports demonstrating their high efficacy and selectivity against cancer cells. Typically, Se compounds exert their cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis. However, the precise intracellular targets, signalling pathways affected and mechanisms of cell death engaged following treatment vary with the chemical properties of the selenocompound and its metabolites, as well as the cancer model that is used. Naturally occurring organic Se compounds, besides encompassing a significant antitumor activity with an apparent ability to prevent metastasis, also seem to have fewer side effects and less systemic effects as reported for many inorganic Se compounds. On this basis, many novel organoselenium compounds have also been synthesized and examined as potential chemotherapeutic agents. This review aims to summarize the most well studied natural and synthetic organoselenium compounds and provide the most recent developments in our understanding of the molecular mechanisms that underlie their potential anticancer effects.
Collapse
Affiliation(s)
- Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Prajakta Khalkar
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jeremy Braude
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
15
|
Díaz-Argelich N, Encío I, Plano D, Fernandes AP, Palop JA, Sanmartín C. Novel Methylselenoesters as Antiproliferative Agents. Molecules 2017; 22:E1288. [PMID: 28767087 PMCID: PMC6152192 DOI: 10.3390/molecules22081288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 01/30/2023] Open
Abstract
Selenium (Se) compounds are potential therapeutic agents in cancer. Importantly, the biological effects of Se compounds are exerted by their metabolites, with methylselenol (CH₃SeH) being one of the key executors. In this study, we developed a new series of methylselenoesters with different scaffolds aiming to modulate the release of CH₃SeH. The fifteen compounds follow Lipinski's Rule of Five and with exception of compounds 1 and 14, present better drug-likeness values than the positive control methylseleninic acid. The compounds were evaluated to determine their radical scavenging activity. Compound 11 reduced both DPPH and ABTS radicals. The cytotoxicity of the compounds was evaluated in a panel of five cancer cell lines (prostate, colon and lung carcinoma, mammary adenocarcinoma and chronic myelogenous leukemia) and two non-malignant (lung and mammary epithelial) cell lines. Ten compounds had GI50 values below 10 μM at 72 h in four cancer cell lines. Compounds 5 and 15 were chosen for further characterization of their mechanism of action in the mammary adenocarcinoma cell line due to their similarity with methylseleninic acid. Both compounds induced G₂/M arrest whereas cell death was partially executed by caspases. The reduction and metabolism were also investigated, and both compounds were shown to be substrates for redox active enzyme thioredoxin reductase.
Collapse
Affiliation(s)
- Nuria Díaz-Argelich
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
- Oncology and Hematology Section, IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, E-31008 Pamplona, Spain.
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Ignacio Encío
- Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain.
| | - Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
- Oncology and Hematology Section, IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, E-31008 Pamplona, Spain.
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Juan Antonio Palop
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
- Oncology and Hematology Section, IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, E-31008 Pamplona, Spain.
| | - Carmen Sanmartín
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
- Oncology and Hematology Section, IdiSNA, Navarra Institute for Health Research, Irunlarrea 3, E-31008 Pamplona, Spain.
| |
Collapse
|
16
|
Begnini KR, Duarte WR, da Silva LP, Buss JH, Goldani BS, Fronza M, Segatto NV, Alves D, Savegnago L, Seixas FK, Collares T. Apoptosis induction by 7-chloroquinoline-1,2,3-triazoyl carboxamides in triple negative breast cancer cells. Biomed Pharmacother 2017; 91:510-516. [PMID: 28482288 DOI: 10.1016/j.biopha.2017.04.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/09/2017] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a major public health burden in both developed and developing countries and there is still a need to screen new molecules with different modes of actions. The aims of this study were to evaluate the selectivity profile, apoptotic cell death and cell cycle arrest induced by 7-chloroquinoline-1,2,3-triazoyl carboxamides derivatives in hormonal-dependent and hormonal-independent breast cancer cells. Results showed significantly decreased MCF-7 and MDA-MB-231 cells viability in vitro in a dose dependent manner after treatment with 7-chloroquinoline derivatives QTCA-1, QTCA-2 and QTCA-3. QTCA-1 displayed the highest cytotoxic activity from all the tested compounds in MDA-MB-231 with IC50 values of 20.60, 20.42 and 19.91μM in 24, 48 and 72h of treatment respectively. Apoptosis induction was also significantly higher in the hormonal-independent breast cancer cells, with 80.4% of dead cells in MDA-MB-231 and only 16.8% of dead in MCF-7 cells. As a result, G0/G1 cycle arrest was observed in MCF-7 cells and no cell cycle arrest at all was observed in MDA-MB-231 cells. Molecular docking showed a high affinity of QTCA-1 to PARP-1, Scr and PI3K/mTOR targets. These results suggest a strong activity of the 7-chloroquinoline derivative QTCA-1 in independent-hormonal cells and suggest selectivity for triple negative cells.
Collapse
Affiliation(s)
- Karine Rech Begnini
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wladimir R Duarte
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Liziane Pereira da Silva
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Julieti H Buss
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bruna S Goldani
- Laboratório de Síntese Orgânica Limpa (LASOL), CCQFA, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mariana Fronza
- Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natália Vieira Segatto
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa (LASOL), CCQFA, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fabiana Kömmling Seixas
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
17
|
Bartolini D, Sancineto L, Fabro de Bem A, Tew KD, Santi C, Radi R, Toquato P, Galli F. Selenocompounds in Cancer Therapy: An Overview. Adv Cancer Res 2017; 136:259-302. [PMID: 29054421 DOI: 10.1016/bs.acr.2017.07.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In vitro and in vivo experimental models clearly demonstrate the efficacy of Se compounds as anticancer agents, contingent upon chemical structures and concentrations of test molecules, as well as on the experimental model under investigation that together influence cellular availability of compounds, their molecular dynamics and mechanism of action. The latter includes direct and indirect redox effects on cellular targets by the activation and altered compartmentalization of molecular oxygen, and the interaction with protein thiols and Se proteins. As such, Se compounds interfere with the redox homeostasis and signaling of cancer cells to produce anticancer effects that include alterations in key regulatory elements of energy metabolism and cell cycle checkpoints that ultimately influence differentiation, proliferation, senescence, and death pathways. Cys-containing proteins and Se proteins involved in the response to Se compounds as sensors and transducers of anticancer signals, i.e., the pharmacoproteome of Se compounds, are described and include critical elements in the different phases of cancer onset and progression from initiation and escape of immune surveillance to tumor growth, angiogenesis, and metastasis. The efficacy and mode of action on these compounds vary depending on the inorganic and organic form of Se used as either supplement or pharmacological agent. In this regard, differences in experimental/clinical protocols provide options for either chemoprevention or therapy in different human cancers.
Collapse
Affiliation(s)
| | | | - Andreza Fabro de Bem
- Center of Biological Sciences (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Kenneth D Tew
- Medical University of South Carolina, Charleston, SC, United States
| | | | - Rafael Radi
- Center for Free Radical and Biomedical Research (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
18
|
Ivanenkov YA, Veselov MS, Rezekin IG, Skvortsov DA, Sandulenko YB, Polyakova MV, Bezrukov DS, Vasilevsky SV, Kukushkin ME, Moiseeva AA, Finko AV, Koteliansky VE, Klyachko NL, Filatova LA, Beloglazkina EK, Zyk NV, Majouga AG. Synthesis, isomerization and biological activity of novel 2-selenohydantoin derivatives. Bioorg Med Chem 2016; 24:802-11. [PMID: 26780833 DOI: 10.1016/j.bmc.2015.12.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/25/2015] [Accepted: 12/31/2015] [Indexed: 11/16/2022]
Abstract
A set of novel selenohydantoins were synthesized via a convenient and versatile approach involving the reaction of isoselenocyanates with various amines. We also revealed an unexpected Z→E isomerization of pyridin-2-yl-substituted selenohydantoins in the presence of Cu(2+) cations. The detailed mechanism of this transformation was suggested on the basis of quantum-chemical calculations, and the key role of Cu(2+) was elucidated. The obtained compounds were subsequently evaluated against a panel of different cancer cell lines. As a result, several molecules were identified as promising micromolar hits with good selectivity index. Instead of analogous thiohydantoins, which have been synthesized previously, selenohydantoins demonstrated a relatively high antioxidant activity comparable (or greater) to the reference molecule, Ebselen, a clinically approved drug candidate. The most active compounds have been selected for further biological trials.
Collapse
Affiliation(s)
- Yan A Ivanenkov
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation; National University of Science and Technology MISiS, Moscow 119049, Russian Federation; Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, InstitutskiPereulok 9, Moskovskaya Oblast, Russian Federation.
| | - Mark S Veselov
- Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, InstitutskiPereulok 9, Moskovskaya Oblast, Russian Federation.
| | - Igor G Rezekin
- Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, InstitutskiPereulok 9, Moskovskaya Oblast, Russian Federation
| | - Dmitriy A Skvortsov
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation
| | - Yuri B Sandulenko
- Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, InstitutskiPereulok 9, Moskovskaya Oblast, Russian Federation
| | - Marina V Polyakova
- Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, InstitutskiPereulok 9, Moskovskaya Oblast, Russian Federation
| | - Dmitry S Bezrukov
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation
| | - Sergey V Vasilevsky
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation
| | - Maxim E Kukushkin
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation
| | - Anna A Moiseeva
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation
| | - Alexander V Finko
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation
| | - Victor E Koteliansky
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation
| | - Natalia L Klyachko
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation; National University of Science and Technology MISiS, Moscow 119049, Russian Federation
| | - Lubov A Filatova
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation
| | - Elena K Beloglazkina
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation; National University of Science and Technology MISiS, Moscow 119049, Russian Federation
| | - Nikolay V Zyk
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation
| | - Alexander G Majouga
- Moscow State University, Chemistry Dept., 119991 Moscow, Leninskie Gory, Building 1/3, GSP-1, Russian Federation; National University of Science and Technology MISiS, Moscow 119049, Russian Federation.
| |
Collapse
|
19
|
Stoedter M, Renko K, Ibáñez E, Plano D, Becker NP, Martitz J, Palop JA, Calvo A, Sanmartín C, Schomburg L. Strong induction of iodothyronine deiodinases by chemotherapeutic selenocompounds. Metallomics 2015; 7:347-54. [PMID: 25579002 DOI: 10.1039/c4mt00273c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biological activity of thyroid hormones (TH) is regulated by selenoenzymes of the iodothyronine deiodinase (DIO) family catalysing TH activating and inactivating reactions. Besides TH metabolism, several studies indicate an important role of DIO isoenzymes in tumorigenesis and cancer growth. It is therefore of therapeutic importance to identify modulators of DIO expression. We have synthesized and studied a series of selenocompounds containing a methyl- or benzyl-imidoselenocarbamate backbone. One of these novel compounds had chemotherapeutic activities in a murine xenograft tumour model by an unknown mechanism. Therefore, we tested their effects on DIO expression in vitro. In HepG2 hepatocarcinoma cells, DIO1 activity was strongly (up to 10-fold) increased by the methyl- but not by the corresponding benzyl-imidoselenocarbamates. Steady-state mRNA levels remained unaltered under these conditions indicating a post-transcriptional mode of action. The effects were further characterized in HEK293 cells stably expressing DIO1, DIO2 or DIO3. Even within the artificial genetic context of the expression vectors, all three DIO isoenzymes were up-regulated by the methyl- and to a lesser extent by the benzyl-imidoselenocarbamates. Consistent stimulating effects were observed with methyl-N,N'-di(quinolin-3-ylcarbonyl)-imidoselenocarbamate (EI201), a selenocompound known for its anti-tumour activity. DIO inducing effects were unrelated to the intracellular accumulation of selenium, yet the precise mode of action remains elusive. Collectively, our data highlight that these selenocompounds may constitute interesting pharmacological compounds for modifying DIO expression potentially affecting the balance between cell differentiation and proliferation.
Collapse
Affiliation(s)
- M Stoedter
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, CVK, Südring 10, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang YH, Scadden DT. Harnessing the apoptotic programs in cancer stem-like cells. EMBO Rep 2015; 16:1084-98. [PMID: 26253117 DOI: 10.15252/embr.201439675] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/19/2015] [Indexed: 12/12/2022] Open
Abstract
Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population.
Collapse
Affiliation(s)
- Ying-Hua Wang
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
21
|
Collery P, Mohsen A, Kermagoret A, Corre S, Bastian G, Tomas A, Wei M, Santoni F, Guerra N, Desmaële D, d’Angelo J. Antitumor activity of a rhenium (I)-diselenoether complex in experimental models of human breast cancer. Invest New Drugs 2015; 33:848-60. [PMID: 26108551 PMCID: PMC4491361 DOI: 10.1007/s10637-015-0265-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/17/2015] [Indexed: 12/24/2022]
Abstract
Rhenium (I)-diselenother (Re-diselenoether) is a water soluble metal-based compound, combining one atom of rhenium and two atoms of selenium. This compound has been reported to exhibit marked activities against several solid tumor cell lines. We now disclose an improved synthesis of this complex. The Re-diselenoether showed a potent inhibitory effect on MDA-MB231 cell division in vitro, which lasted when the complex was no longer present in the culture. Re-diselenoether induced a remarkable reduction of the volume of the primitive breast tumors and of the pulmonary metastases without clinical signs of toxicity, in mice-bearing a MDA-MB231 Luc+ tumor, orthotopically transplanted, after a daily oral administration at the dose of 10 mg/kg/d. Interestingly, an antagonism was observed when cisplatin was administered as a single i.p. injection 1 week after the end of the Re-diselenoether administration. In an effort to gain insight of the mechanisms of action of Re-diselenoether complex, interaction with 9-methylguanine as a nucleic acid base model was studied. We have shown that Re-diselenoether gave both mono- and bis-guanine Re adducts, the species assumed to be responsible for the DNA intrastrand lesions.
Collapse
Affiliation(s)
- Philippe Collery
- />Société de Coordination de Recherches Thérapeutiques, Algajola, France
| | - Ahmed Mohsen
- />Faculté de Pharmacie, Université Paris-Sud, Institut Galien, UMR CNRS 8612, Chatenay-Malabry, France
| | - Anthony Kermagoret
- />Faculté de Pharmacie, Université Paris-Sud, UMR CNRS 8076 BIOCIS, Chatenay-Malabry, France
| | - Samantha Corre
- />Department of Life Science, Imperial College of London, London, UK
| | - Gérard Bastian
- />Département de Pharmacologie, Centre Hospitalier Universitaire Pitié-Salpêtrière, Paris, France
| | - Alain Tomas
- />Laboratoire de Cristallographie et RMN, Faculté de Pharmacie, UMR CNRS 8015, Université Paris Descartes, Paris, France
| | - Ming Wei
- />Laboratoire Cellvax, Ecole Vétérinaire Nationale d’Alfort, Maisons Alfort, France
| | - François Santoni
- />Laboratoire de l’Office d’Equipement Hydraulique de Corse, Bastia, France
| | - Nadia Guerra
- />Department of Life Science, Imperial College of London, London, UK
| | - Didier Desmaële
- />Faculté de Pharmacie, Université Paris-Sud, Institut Galien, UMR CNRS 8612, Chatenay-Malabry, France
| | - Jean d’Angelo
- />Faculté de Pharmacie, Université Paris-Sud, UMR CNRS 8076 BIOCIS, Chatenay-Malabry, France
| |
Collapse
|
22
|
Leishmanicidal activities of novel methylseleno-imidocarbamates. Antimicrob Agents Chemother 2015; 59:5705-13. [PMID: 26149985 DOI: 10.1128/aac.00997-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022] Open
Abstract
The generation of new antileishmanial drugs has become a priority. Selenium and its derivatives stand out as having promising leishmanicidal activity. In fact, some parasites express selenoproteins and metabolize selenium. Recently, selenium derivatives have shown the potential to reduce parasitemia, clinical manifestations, and mortality in parasite-infected mice. In this paper, after selecting four candidates according to drug similarity parameters, we observed that two of them, called compounds 2b [methyl-N,N'-di(thien-2-ylcarbonyl)-imidoselenocarbamate] and 4b [methyl-N,N'-di(5-nitrothien-3-ylcarbonyl)-imidoselenocarbamate], exhibit low 50% inhibitory concentrations (IC50s) (<3 μM) and good selectivity indexes (SIs) (>5) in Leishmania major promastigotes and lack toxicity on macrophages. In addition, in analysis of their therapeutic potential against L. major in vitro infection, both compounds display a dramatic reduction of amastigote burden (∼80%) with sublethal concentrations. Furthermore, in macrophages, these selenocompounds induce nitric oxide production, which has been described to be critical for defense against intracellular pathogens. Compounds 2b and 4b were demonstrated to cause cell cycle arrest in G1. Interestingly, evaluation of expression of genes related to proliferation (PCNA), treatment resistance (ABC transporter and alpha-tubulin), and virulence (quinonoid dihydropteridine reductase [QDPR]) showed several alterations in gene expression profiling. All these results prompt us to propose both compounds as candidates to treat leishmanial infections.
Collapse
|
23
|
Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta Gen Subj 2014; 1850:1642-60. [PMID: 25459512 DOI: 10.1016/j.bbagen.2014.10.008] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND With cancer cells encompassing consistently higher production of reactive oxygen species (ROS) and with an induced antioxidant defense to counteract the increased basal ROS production, tumors have a limited reserve capacity resulting in an increased vulnerability of some cancer cells to ROS. Based on this, oxidative stress has been recognized as a tumor-specific target for the rational design of new anticancer agents. Among redox modulating compounds, selenium compounds have gained substantial attention due to their promising chemotherapeutic potential. SCOPE OF REVIEW This review aims in summarizing and providing the recent developments of our understanding of the molecular mechanisms that underlie the potential anticancer effects of selenium compounds. MAJOR CONCLUSIONS It is well established that selenium at higher doses readily can turn into a prooxidant and thereby exert its potential anticancer properties. However, the biological activity of selenium compounds and the mechanism behind these effects are highly dependent on its speciation and the specific metabolic pathways of cells and tissues. Conversely, the chemical properties and the main molecular mechanisms of the most relevant inorganic and organic selenium compounds as well as selenium-based nanoparticles must be taken into account and are discussed herein. GENERAL SIGNIFICANCE Elucidating and deepening our mechanistic knowledge of selenium compounds will help in designing and optimizing compounds with more specific antitumor properties for possible future application of selenium compounds in the treatment of cancer. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
24
|
Moreno E, Doughty-Shenton D, Plano D, Font M, Encío I, Palop JA, Sanmartín C. A dihydroselenoquinazoline inhibits S6 ribosomal protein signalling, induces apoptosis and inhibits autophagy in MCF-7 cells. Eur J Pharm Sci 2014; 63:87-95. [DOI: 10.1016/j.ejps.2014.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/12/2014] [Accepted: 06/29/2014] [Indexed: 11/17/2022]
|
25
|
Guo S, Singh KK, Lillard JW, Yang L. Leptin Signaling in the Regulation of Stem and Cancer Stem Cells. CANCER STEM CELLS 2014:347-360. [DOI: 10.1002/9781118356203.ch26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
26
|
Domínguez-Álvarez E, Plano D, Font M, Calvo A, Prior C, Jacob C, Palop JA, Sanmartín C. Synthesis and antiproliferative activity of novel selenoester derivatives. Eur J Med Chem 2013; 73:153-66. [PMID: 24389510 DOI: 10.1016/j.ejmech.2013.11.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 11/08/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022]
Abstract
A series of 31 new selenoesters were synthesized and their cytotoxic activity was evaluated against a prostate cancer cell line (PC-3). The most active compounds were also tested against three tumoural cell lines (MCF-7, A-549 and HT-29) and one non-tumour prostate cell line (RWPE-1). Thirteen compounds showed significant activity towards all tumour cells investigated, and some of them were even more potent than etoposide and cisplatin, which were used as reference drugs. Because of their pronounced potency and/or selectivity, four analogues (5, 21, 28 and 30), were selected in order to assess their redox properties related to a possible redox modulating activity. The glutathione peroxidase (GPx) assay showed slight activity for compound 30 and the 2,2-diphenyl-1-picrylhydrazyl-(DPPH) assay showed a weak activity for compounds 5 and 28. The present results revealed that analogues 5, 21, 28 and 30 might serve as a useful starting point for the design of improved anti-tumour agents.
Collapse
Affiliation(s)
- Enrique Domínguez-Álvarez
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus, 66123 Saarbruecken, Germany
| | - Daniel Plano
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - María Font
- Molecular Modeling Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Alfonso Calvo
- Oncology Division, Center for Applied Medical Research, CIMA, University of Navarra, Pío XII 53, E-31008 Pamplona, Spain
| | - Celia Prior
- Oncology Division, Center for Applied Medical Research, CIMA, University of Navarra, Pío XII 53, E-31008 Pamplona, Spain
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus, 66123 Saarbruecken, Germany
| | - Juan Antonio Palop
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
| | - Carmen Sanmartín
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
27
|
Fan J, Zeng X, Li Y, Wang S, Wang Z, Sun Y, Gao H, Zhang G, Feng M, Ju D. Autophagy plays a critical role in ChLym-1-induced cytotoxicity of non-hodgkin's lymphoma cells. PLoS One 2013; 8:e72478. [PMID: 24015249 PMCID: PMC3756084 DOI: 10.1371/journal.pone.0072478] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a critical mechanism in both cancer therapy resistance and tumor suppression. Monoclonal antibodies have been documented to kill tumor cells via apoptosis, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In this study, we report for the first time that chLym-1, a chimeric anti-human HLA-DR monoclonal antibody, induces autophagy in Raji Non-Hodgkin’s Lymphoma (NHL) cells. Interestingly, inhibition of autophagy by pharmacological inhibitors (3-methyladenine and NH4Cl) or genetic approaches (siRNA targeting Atg5) suppresses chLym-1-induced growth inhibition, apoptosis, ADCC and CDC in Raji cells, while induction of autophagy could accelerate cytotoxic effects of chLym-1 on Raji cells. Furthermore, chLym-1-induced autophagy can mediate apoptosis through Caspase 9 activation, demonstrating the tumor-suppressing role of autophagy in antilymphoma effects of chLym-1. Moreover, chLym-1 can activate several upstream signaling pathways of autophagy including Akt/mTOR and extracellular signal-regulated kinase 1/2 (Erk1/2). These results elucidate the critical role of autophagy in cytotoxicity of chLym-1 antibody and suggest a potential therapeutic strategy of NHL therapy by monoclonal antibody chLym-1 in combination with autophagy inducer.
Collapse
Affiliation(s)
- Jiajun Fan
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China
| | - Xian Zeng
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China
| | - Yubin Li
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China
- Key Laboratory for Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shaofei Wang
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China
| | - Ziyu Wang
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China
| | - Yun Sun
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongjian Gao
- School of Medicine, Fudan University, Shanghai, China
| | - Guoping Zhang
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China
- * E-mail: (DJ); (MF)
| | - Dianwen Ju
- Department of Biosynthesis, School of Pharmacy, Fudan University, Shanghai, China
- * E-mail: (DJ); (MF)
| |
Collapse
|
28
|
Font M, Lizarraga E, Ibáñez E, Plano D, Sanmartín C, Palop JA. Structural variations on antitumour agents derived from bisacylimidoselenocarbamate. A proposal for structure–activity relationships based on the analysis of conformational behaviour. Eur J Med Chem 2013; 66:489-98. [DOI: 10.1016/j.ejmech.2013.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 01/18/2023]
|
29
|
Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 2013; 17:30-54. [PMID: 23301832 PMCID: PMC3560853 DOI: 10.1111/jcmm.12004] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/20/2012] [Indexed: 12/12/2022] Open
Abstract
Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
30
|
Autophagy and Prostate Cancer Therapeutics. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Nie J, Liu L, He F, Fu X, Han W, Zhang L. CKIP-1: a scaffold protein and potential therapeutic target integrating multiple signaling pathways and physiological functions. Ageing Res Rev 2013; 12:276-81. [PMID: 22878216 DOI: 10.1016/j.arr.2012.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 11/16/2022]
Abstract
The PH domain-containing casein kinase 2 interacting protein-1 (CKIP-1, also known as PLEKHO1) acts as a scaffold protein mediating interactions with multiple proteins, including CK2α, CPα, AP-1/c-Jun, Akt, ATM, IFP35/Nmi and Smurf1. CKIP-1 functions through different ways, such as plasma membrane recruitment, transcriptional activity modulation and posttranscriptional modification regulation. Moreover, the subcellular localization of CKIP-1 is determined by several key amino acids in a cell type dependent style, and the nucleus/plasma membrane shuttle of CKIP-1 is regulated by different cell stresses. As an adaptor protein, CKIP-1 is involved in various important signaling pathways, controlling cell growth, apoptosis, differentiation, cytoskeleton and bone formation. Strikingly, CKIP-1 has been recently demonstrated to be a promising target for treatment of osteoporosis in rat models. In addition, more evidences suggest that CKIP-1 might also function as a potential tumor suppressor.
Collapse
Affiliation(s)
- Jing Nie
- Department of Molecular Biology, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
32
|
Sanmartín C, Plano D, Sharma AK, Palop JA. Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. Int J Mol Sci 2012; 13:9649-9672. [PMID: 22949823 PMCID: PMC3431821 DOI: 10.3390/ijms13089649] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 02/07/2023] Open
Abstract
Selenium (Se) is an essential trace element involved in different physiological functions of the human body and plays a role in cancer prevention and treatment. Induction of apoptosis is considered an important cellular event that can account for the cancer preventive effects of Se. The mechanisms of Se-induced apoptosis are associated with the chemical forms of Se and their metabolism as well as the type of cancer studied. So, some selenocompounds, such as SeO2 involve the activation of caspase-3 while sodium selenite induces apoptosis in the absence of the activation of caspases. Modulation of mitochondrial functions has been reported to play a key role in the regulation of apoptosis and also to be one of the targets of Se compounds. Other mechanisms for apoptosis induction are the modulation of glutathione and reactive oxygen species levels, which may function as intracellular messengers to regulate signaling pathways, or the regulation of kinase, among others. Emerging evidence indicates the overlaps between the apoptosis and other types of cell death such as autophagy. In this review we report different processes of cell death induced by Se compounds in cancer treatment and prevention.
Collapse
Affiliation(s)
- Carmen Sanmartín
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-948-425-600; Fax: +34-948-425-649
| | - Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, CH72, 500 University Drive, Hershey, PA 17033, USA; E-Mail:
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, CH72, 500 University Drive, Hershey, PA 17033, USA; E-Mail:
| | - Juan Antonio Palop
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
| |
Collapse
|
33
|
Font M, Zuazo A, Ansó E, Plano D, Sanmartín C, Palop JA, Martínez-Irujo JJ. Novel structural insights for imidoselenocarbamates with antitumoral activity related to their ability to generate methylselenol. Bioorg Med Chem 2012; 20:5110-6. [PMID: 22863528 DOI: 10.1016/j.bmc.2012.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/27/2012] [Accepted: 07/06/2012] [Indexed: 12/26/2022]
Abstract
In the search for molecules with potential antiangiogenic activity we found that several imidoselenocarbamate derivatives, which have pro-apoptotic and antiproliferative activities, under hypoxic conditions release methylselenol, a volatile and highly reactive gas that was considered to be responsible for the observed biological activity. The kinetic for the liberation of methylselenol is highly dependent on the nature of the overall structure and correlate with their proven pro-apoptotic activity in lung cancer cell line H157. The preliminary structure-activity relationships allow us to select as the basic structural element a scaffold constructed with an imidoselenocarbamate fragment decorated with a methyl residue on the Se central atom and two heteroaromatic lateral rings. These imidoselenocarbamate derivatives may be of interest both for their antitumoral activities and because they have a structure that can be considered as a template for the design of new derivatives with apoptotic activity. This activity is related to the controlled delivery of methylselenol and makes this an interesting approach to develop new antitumoral agents.
Collapse
Affiliation(s)
- María Font
- Sección de Modelización Molecular, Departamento de Química Orgánica y Farmacéutica, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ibáñez E, Stoedter M, Hofmann PJ, Plano D, Calvo A, Nguewa PA, Palop JA, Sanmartín C, Schomburg L. Structure- and cell-specific effects of imidoselenocarbamates on selenoprotein expression and activity in liver cells in culture. Metallomics 2012; 4:1297-307. [DOI: 10.1039/c2mt20096a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|