1
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
2
|
Hızlı F, Demirci A, Benzer E, Hızlı H, Başar H. The effect of intraurethral heparin on inflammation and spongiofibrosis in a rat model of experimentally induced urethral trauma. Int Urol Nephrol 2023; 55:1421-1426. [PMID: 37115457 DOI: 10.1007/s11255-023-03613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
AIM To determine the effect of heparin administered during the early post urethral trauma period on inflammation and spongiofibrosis in rats. MATERIALS AND METHODS The study included 24 male rats that were randomized into 3 groups of 8 each. The urethra was traumatized using a 24-G needle sheath in all rats. Group 1 (control group) received intraurethral saline 0.9% injected b.i.d. for 27 days, group 2 received intraurethral Na-heparin (liquemine-Roche) 1500 IU kg-1 injected b.i.d. for 27 days, and group 3 received intraurethral Na-heparin 1500 IU kg-1 injected b.i.d and saline 0.9% s.i.d. for 27 days. On day 28 the rats' penises were degloved and penectomy was performed. Inflammation, spongiofibrosis, and congestion in the urethra were investigated in each group. RESULTS A statistically significant difference was found between the three groups (control, heparin, and heparin + saline) in the histopathological status of spongiofibrosis, inflammation, and congestion, respectively (P = 0.0001, P = 0.002, P = 0.0001). Severe spongiofibrosis was observed in six (75%) of the rats in group 1 (control group), whereas severe spongiofibrosis was not observed in group 2 (heparin) or group 3 (heparin + saline). CONCLUSION We observed that intraurethral Na-heparin 1500 IU kg-1 injectioned during the early posturethral trauma period in rats significantly decreased inflammation, spongiofibrosis, and congestion.
Collapse
Affiliation(s)
- Fatih Hızlı
- Department of Urology, Dr. A.Y. Oncology Training and Research Hospital, University of Health Sciences, Demetevler, Ankara, Turkey.
| | - Aykut Demirci
- Department of Urology, Dr. A.Y. Oncology Training and Research Hospital, University of Health Sciences, Demetevler, Ankara, Turkey
| | - Emine Benzer
- Department of Pathology, Dr. A.Y. Oncology Training and Research Hospital, University of Health Sciences, Demetevler, Ankara, Turkey
| | - Hatice Hızlı
- Mediterranean Agricultural Research Institute, Adana, Turkey
| | - Halil Başar
- Department of Urology, Dr. A.Y. Oncology Training and Research Hospital, University of Health Sciences, Demetevler, Ankara, Turkey
| |
Collapse
|
3
|
Kniggendorf V, Souza MEP, Russo T, de Lima MA, Grupenmacher AT, Regatieri CV, Dreyfuss JL. New anti-angiogenic compound based on chemically modified heparin. Graefes Arch Clin Exp Ophthalmol 2022; 260:3847-3855. [PMID: 36097187 DOI: 10.1007/s00417-022-05828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The purpose of this study was to measure the anti-angiogenic effect of N-desulfated Re-N-acetylated, a chemically modified heparin (mHep). METHODS In vitro assays (cell tube formation, viability, proliferation, and migration) with endothelial cells were performed after 24 h of treatment with mHep at 10, 100, and 1000 ng/mL or saline. In vivo tests were performed after laser-induced choroidal neovascularization (CNV) in rats, followed by an intravitreal injection (5 µL) of mHep (10, 100, 1000 ng/mL) or balanced salt solution. Immunofluorescence analysis of the CNV was performed after 14 days. RESULTS mHep produced a statistically significant reduction in cell proliferation, tube formation, and migration, without cell viability changes when compared to saline. Mean measures of CNV area were 54.84 × 106 pixels/mm (± 12.41 × 106), 58.77 × 106 pixels/mm (± 17.52 × 106), and 59.42 × 106 pixels/mm (± 17.33 × 106) in groups 100, 1000, and 10,000 ng/mL, respectively, while in the control group, mean area was 72.23 × 106 (± 16.51 × 106). The P value was 0.0065. Perimeter analysis also demonstrated statistical significance (P = 0.0235) with the mean measure of 93.55 × 104, 94.23 × 104, and 102 × 104 in the 100 ng/mL, 1000 ng/mL, and control groups, respectively. CONCLUSIONS These results suggest that mHep N-DRN is a potent anti-angiogenic, anti-proliferative, and anti-migratory compound with negligible anticoagulant or hemorrhagic action and no cytotoxicity for retina cells. This compound may serve as a candidate for treating choroidal neovascularization.
Collapse
Affiliation(s)
- Vinicius Kniggendorf
- Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 821, 1o andar, São Paulo, SP, 04023-062, Brazil.
| | - Maria Eduarda Perrud Souza
- Department of Biochemistry, Molecular Biology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thatiane Russo
- Department of Biochemistry, Molecular Biology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo Andrade de Lima
- Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 821, 1o andar, São Paulo, SP, 04023-062, Brazil.,Molecular & Structural Biosciences, School of Life Sciences, Keele University, Staffordshire, Newcastle-Under-Lyme, ST5 5BG, UK
| | - Alex Treiger Grupenmacher
- Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 821, 1o andar, São Paulo, SP, 04023-062, Brazil
| | - Caio V Regatieri
- Department of Ophthalmology and Visual Sciences, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu, 821, 1o andar, São Paulo, SP, 04023-062, Brazil.,Department of Biochemistry, Molecular Biology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juliana L Dreyfuss
- Department of Biochemistry, Molecular Biology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Heparin: An old drug for new clinical applications. Carbohydr Polym 2022; 295:119818. [DOI: 10.1016/j.carbpol.2022.119818] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/23/2022]
|
5
|
Revuelta J, Fraile I, Monterrey DT, Peña N, Benito-Arenas R, Bastida A, Fernández-Mayoralas A, García-Junceda E. Heparanized chitosans: towards the third generation of chitinous biomaterials. MATERIALS HORIZONS 2021; 8:2596-2614. [PMID: 34617543 DOI: 10.1039/d1mh00728a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The functionalization of chitosans is an emerging research area in the design of solutions for a wide range of biomedical applications. In particular, the modification of chitosans to incorporate sulfate groups has generated great interest since they show structural similarity to heparin and heparan sulfates. Most of the biomedical applications of heparan sulfates are derived from their ability to bind different growth factors and other proteins, as through these interactions they can modulate the cellular response. This review aims to summarize the most recent advances in the synthesis, and structural and physicochemical characterization of heparanized chitosan, a remarkably interesting family of polysaccharides that have demonstrated the ability to mimic heparan sulfates as ligands for different proteins, thereby exerting their biological activity by mimicking the function of these glycosaminoglycans.
Collapse
Affiliation(s)
- Julia Revuelta
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Isabel Fraile
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Dianelis T Monterrey
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Nerea Peña
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Raúl Benito-Arenas
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Agatha Bastida
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Alfonso Fernández-Mayoralas
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Eduardo García-Junceda
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
6
|
Luo Z, Liu Y, Tong KC, Chang XY, To WP, Che CM. Luminescent Platinum(II) Complexes with Bidentate Diacetylide Ligands: Structures, Photophysical Properties and Application Studies. Chem Asian J 2021; 16:2978-2992. [PMID: 34374225 DOI: 10.1002/asia.202100756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Indexed: 01/19/2023]
Abstract
A series of platinum(II) complexes supported by terphenyl diacetylide as well as diimine or bis-N-heterocyclic carbene (NHC) ligands have been prepared. The diacetylide ligands adopt a cis coordination mode featuring non-planar terphenyl moieties as revealed by X-ray crystallographic analyses. The electrochemical, photophysical and photochemical properties of these platinum(II) complexes have been investigated. These platinum(II) diimine complexes show broad emission with peak maxima from 566 nm to 706 nm, with two of them having emission quantum yields >60% and lifetimes <2 μs in solutions at room temperature, whereas the platinum(II) diacetylide complexes having bis-N-heterocyclic carbene instead of diimine ligand display photoluminescence with quantum yields of up to 28% in solutions and excited state lifetimes of up to 62 μs at room temperature. Application studies revealed that one of the complexes can catalyze photoinduced aerobic dehydrogenation of alcohols and alkenes, and a relatively non-toxic water-soluble Pt(II) complex displays anti-angiogenic activity.
Collapse
Affiliation(s)
- Zaoli Luo
- Department Key Laboratory of Pesticide & Chemical Biology Ministry of Education and Chemical Biology Center College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Ka-Chung Tong
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China.,State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
7
|
Nguyen TH, Xu Y, Brandt S, Mandelkow M, Raschke R, Strobel U, Delcea M, Zhou W, Liu J, Greinacher A. Characterization of the interaction between platelet factor 4 and homogeneous synthetic low molecular weight heparins. J Thromb Haemost 2020; 18:390-398. [PMID: 31573759 PMCID: PMC7236814 DOI: 10.1111/jth.14657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/25/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Heparins are usually produced from animal tissues. It is now possible to synthesize heparins. This provides the abilities to overcome shortages of heparin, to optimize biological effects, and to reduce adverse drug effects. Heparins interact with platelet factor 4 (PF4), which can induce an immune response causing thrombocytopenia. This side effect is called heparin-induced thrombocytopenia (HIT). We characterized the interaction of PF4 and HIT antibodies with oligosaccharides of 6-, 8-, 10-, and 12-mer size and a hypersulfated 12-mer (S12-mer). METHODS We utilized multiple methodologies including isothermal calorimetry, circular dichroism spectroscopy, single molecule force spectroscopy (SMFS), enzyme immunosorbent assay (EIA), and platelet aggregation test to characterize the interaction of synthetic heparin analogs with PF4 and anti-PF4/heparin antibodies. RESULTS The synthetic heparin-like compounds display stronger binding characteristics to PF4 than animal-derived heparins of corresponding lengths. Upon complexation with PF4, 6-mer and S12-mer heparins showed much lower enthalpy, induced less conformational changes in PF4, and interacted with weaker forces than 8-, 10-, and 12-mer heparins. Anti-PF4/heparin antibodies bind more weakly to complexes formed between PF4 and heparins ≤ 8-mer than with complexes formed between PF4 and heparins ≥ 10-mer. Addition of one sulfate group to the 12-mer resulted in a S12-mer, which showed substantial changes in its binding characteristics to PF4. CONCLUSIONS We provide a template for characterizing interactions of newly developed heparin-based anticoagulant drugs with proteins, especially PF4 and the resulting potential antigenicity.
Collapse
Affiliation(s)
- Thi-Huong Nguyen
- institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
- Institute for Bioprocessing and Analytical Measurement Techniques, Heiligenstadt, Germany
- ZIK HIKE—Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University Greifswald, Greifswald, Germany
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, School of Pharmacy, University of North Carolina, Eshelman, Chapel Hill, NC, USA
| | - Sven Brandt
- ZIK HIKE—Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University Greifswald, Greifswald, Germany
| | - Martin Mandelkow
- ZIK HIKE—Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University Greifswald, Greifswald, Germany
| | - Ricarda Raschke
- institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Strobel
- institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Mihaela Delcea
- ZIK HIKE—Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University Greifswald, Greifswald, Germany
- Division of Chemical Biology and Medicinal Chemistry, School of Pharmacy, University of North Carolina, Eshelman, Chapel Hill, NC, USA
| | - Wen Zhou
- Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Jian Liu
- Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Tunicate Heparan Sulfate Enriched in 2-Sulfated β-Glucuronic Acid: Structure, Anticoagulant Activity, and Inhibitory Effect on the Binding of Human Colon Adenocarcinoma Cells to Immobilized P-Selectin. Mar Drugs 2019; 17:md17060351. [PMID: 31212795 PMCID: PMC6627333 DOI: 10.3390/md17060351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Heparin or highly sulfated heparan sulfate (HS) has been described in different invertebrates. In ascidians (Chordata-Tunicata), these glycosaminoglycans occur in intracellular granules of oocyte accessory cells and circulating basophil-like cells, resembling mammalian mast cells and basophils, respectively. HS is also a component of the basement membrane of different ascidian organs. We have analyzed an HS isolated from the internal organs of the ascidian Phallusia nigra, using solution 1H/13C NMR spectroscopy, which allowed us to identify and quantify the monosaccharides found in this glycosaminoglycan. A variety of α-glucosamine units with distinct degrees of sulfation and N-acetylation were revealed. The hexuronic acid units occur both as α-iduronic acid and β-glucuronic acid, with variable sulfation at the 2-position. A peculiar structural aspect of the tunicate HS is the high content of 2-sulfated β-glucuronic acid, which accounts for one-third of the total hexuronic acid units. Another distinct aspect of this HS is the occurrence of high content of N-acetylated α-glucosamine units bearing a sulfate group at position 6. The unique ascidian HS is a potent inhibitor of the binding of human colon adenocarcinoma cells to immobilized P-selectin, being 11-fold more potent than mammalian heparin, but almost ineffective as an anticoagulant. Thus, the components of the HS structure required to inhibit coagulation and binding of tumor cells to P-selectin are distinct. Our results also suggest that the regulation of the pathway involved in the biosynthesis of glycosaminoglycans suffered variations during the evolution of chordates.
Collapse
|
9
|
Reheem RNAMA, Fattah MAHMA. Serum vitamin D and parathormone (PTH) concentrations as predictors of the development and severity of diabetic retinopathy. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2012.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
10
|
Dianat-Moghadam H, Teimoori-Toolabi L. Implications of Fibroblast Growth Factors (FGFs) in Cancer: From Prognostic to Therapeutic Applications. Curr Drug Targets 2019; 20:852-870. [DOI: 10.2174/1389450120666190112145409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factors (FGFs) are pleiotropic molecules exerting autocrine, intracrine
and paracrine functions via activating four tyrosine kinase FGF receptors (FGFR), which further trigger
a variety of cellular processes including angiogenesis, evasion from apoptosis, bone formation,
embryogenesis, wound repair and homeostasis. Four major mechanisms including angiogenesis, inflammation,
cell proliferation, and metastasis are active in FGF/FGFR-driven tumors. Furthermore,
gain-of-function or loss-of-function in FGFRs1-4 which is due to amplification, fusions, mutations,
and changes in tumor–stromal cells interactions, is associated with the development and progression
of cancer. Although, the developed small molecule or antibodies targeting FGFR signaling offer immense
potential for cancer therapy, emergence of drug resistance, activation of compensatory pathways
and systemic toxicity of modulators are bottlenecks in clinical application of anti-FGFRs. In this
review, we present FGF/FGFR structure and the mechanisms of its function, as well as cross-talks
with other nodes and/or signaling pathways. We describe deregulation of FGF/FGFR-related mechanisms
in human disease and tumor progression leading to the presentation of emerging therapeutic approaches,
resistance to FGFR targeting, and clinical potentials of individual FGF family in several
human cancers. Additionally, the underlying biological mechanisms of FGF/FGFR signaling, besides
several attempts to develop predictive biomarkers and combination therapies for different cancers
have been explored.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Li Y, Wang W, Zhang Y, Wang X, Gao X, Yuan Z, Li Y. Chitosan sulfate inhibits angiogenesis via blocking the VEGF/VEGFR2 pathway and suppresses tumor growth in vivo. Biomater Sci 2019; 7:1584-1597. [DOI: 10.1039/c8bm01337c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SCTS inhibits neovascularization by blocking the VEGF/VEGFR2 signal pathway and exerts anti-tumor effects.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yapei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xinyu Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xuefeng Gao
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yu Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
12
|
|
13
|
Giurdanella G, Lazzara F, Caporarello N, Lupo G, Anfuso CD, Eandi CM, Leggio GM, Drago F, Bucolo C, Salomone S. Sulodexide prevents activation of the PLA2/COX-2/VEGF inflammatory pathway in human retinal endothelial cells by blocking the effect of AGE/RAGE. Biochem Pharmacol 2017; 142:145-154. [PMID: 28651842 DOI: 10.1016/j.bcp.2017.06.130] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy is characterized by the breakdown of endothelial blood-retinal barrier. We tested the hypothesis that sulodexide (SDX), a highly purified glycosaminoglycan composed of 80% iduronylglycosaminoglycan sulfate and 20% dermatan sulfate, protects human retinal endothelial cells (HREC) from high glucose (HG)-induced damage, through the suppression of inflammatory ERK/cPLA2/COX-2/PGE2 pathway, by blocking the effect of advanced glycation end-products (AGEs). HREC were treated with HG (25mM) or AGEs (glycated-BSA, 2mg/ml) for 48h, with or without SDX (60μg/ml) or aflibercept (AFL, 40μg/ml), a VEGF-trap. SDX protected HREC from HG-induced damage (MTT and LDH release) and preserved their blood-retinal barrier-like properties (Trans Endothelial Electrical Resistance and junction proteins, claudin-5, VE-cadherin and occludin, immunofluorescence and immunoblot) as well as their angiogenic potential (Tube Formation Assay). Both HG and AGEs increased phosphoERK and phospho-cPLA2, an effect counteracted by SDX and, less efficiently, by AFL. Both HG and exogenous VEGF (80ng/ml) increased PGE2 release, an effect partially reverted by SDX for HG and by AFL for VEGF. Analysis of NFκB activity revealed that HG increased the abundance of p65 in the nuclear fraction (nuclear translocation), an effect entirely reverted by SDX, but only partially by AFL. SDX, AFL and SDX+AFL protected HREC even when added 24h after HG. These data show that SDX protects HREC from HG damage and suggest that it counteracts the activation of ERK/cPLA2/COX-2/PGE2 pathway by reducing AGE-related signaling and downstream NFκB activity. This mechanism, partially distinct from VEGF blockade, may contribute to the therapeutic effect of SDX.
Collapse
Affiliation(s)
- Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy
| | - Nunzia Caporarello
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy
| | | | - Chiara M Eandi
- Institut de la Vision, UMRS_968 Inserm/Université Pierre et Marie Curie, Equipe 14, Paris, France; Department of Surgical Sciences, Eye Clinic, University of Torino, Torino, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy.
| |
Collapse
|
14
|
Poupard N, Badarou P, Fasani F, Groult H, Bridiau N, Sannier F, Bordenave-Juchereau S, Kieda C, Piot JM, Grillon C, Fruitier-Arnaudin I, Maugard T. Assessment of Heparanase-Mediated Angiogenesis Using Microvascular Endothelial Cells: Identification of λ-Carrageenan Derivative as a Potent Anti Angiogenic Agent. Mar Drugs 2017; 15:md15050134. [PMID: 28486399 PMCID: PMC5450540 DOI: 10.3390/md15050134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 01/22/2023] Open
Abstract
Heparanase is overexpressed by tumor cells and degrades the extracellular matrix proteoglycans through cleavage of heparan sulfates (HS), allowing pro-angiogenic factor release and thus playing a key role in tumor angiogenesis and metastasis. Here we propose new HS analogs as potent heparanase inhibitors: Heparin as a positive control, Dextran Sulfate, λ-Carrageenan, and modified forms of them obtained by depolymerization associated to glycol splitting (RD-GS). After heparanase activity assessment, 11 kDa RD-GS-λ-Carrageenan emerged as the most effective heparanase inhibitor with an IC50 of 7.32 ng/mL compared to 10.7 ng/mL for the 16 kDa unfractionated heparin. The fractionated polysaccharides were then tested in a heparanase-rich medium-based in vitro model, mimicking tumor microenvironment, to determine their effect on microvascular endothelial cells (HSkMEC) angiogenesis. As a preliminary study, we identified that under hypoxic and nutrient poor conditions, MCF-7 cancer cells released much more mature heparanase in their supernatant than in normal conditions. Then a MatrigelTM assay using HSkMEC cultured under hypoxic conditions in the presence (or not) of this heparanase-rich supernatant was realized. Adding heparanase-rich media strongly enhanced angiogenic network formation with a production of twice more pseudo-vessels than with the control. When sulfated polysaccharides were tested in this angiogenesis assay, RD-GS-λ-Carrageenan was identified as a promising anti-angiogenic agent.
Collapse
Affiliation(s)
- Nicolas Poupard
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Pamela Badarou
- Centre de Biophysique Moléculaire, UPR CNRS 4301, 45071 Orléans, France.
| | - Fabienne Fasani
- Centre de Biophysique Moléculaire, UPR CNRS 4301, 45071 Orléans, France.
| | - Hugo Groult
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Nicolas Bridiau
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Frédéric Sannier
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Stéphanie Bordenave-Juchereau
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, UPR CNRS 4301, 45071 Orléans, France.
| | - Jean-Marie Piot
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Catherine Grillon
- Centre de Biophysique Moléculaire, UPR CNRS 4301, 45071 Orléans, France.
| | - Ingrid Fruitier-Arnaudin
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| | - Thierry Maugard
- Université de la Rochelle, UMR CNRS 7266, LIENSs, Equipe Approches Moléculaires, Environnement-Santé, Avenue Michel Crépeau, 17000 La Rochelle, France.
| |
Collapse
|
15
|
Unexpected and striking effect of heparin-free dialysis on cytokine release. Int Urol Nephrol 2017; 49:1447-1452. [PMID: 28425077 PMCID: PMC5522500 DOI: 10.1007/s11255-017-1589-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/09/2017] [Indexed: 11/21/2022]
Abstract
Heparin (both unfractionated and low molecular weight) is not only a potent anticoagulant but also has many pleiotropic effects, some of which are mediated by cytokine release. We compared the effect of hemodialysis (HD) with enoxaparin as an anticoagulant and without systemic anticoagulation (heparin-grafted membrane—Evodial) on the release of monocyte chemoattractant protein 1 (MCP-1), endostatin (ES) and activin A (Act-A). Nineteen stable HD patients were dialyzed with or without heparin, and plasma levels of MCP-1, ES and Act-A were measured after such a dialysis. During HD with Evodial, the intradialytic levels of all three cytokines were 2–3 folds lower. The between-anticoagulant differences were significant over time for all three cytokines: MCP-1 (P < 0.001), ES (P < 0.001) and Act-A (P < 0.001). This striking effect of heparin-free dialysis with Evodial membrane may be beneficial not only because it reduces the possibility of bleeding complications but also because it might reduce proinflammatory cytokine concentration and therefore contribute to the improvement in endothelial function. Further studies are needed to determine whether it has a positive effect on morbidity and mortality of maintenance HD patients.
Collapse
|
16
|
Wang X, Ding J, Feng Y, Weng L, Zhao G, Xiang J, Zhang M, Xing D. Targeting of growth factors in the treatment of hepatocellular carcinoma: The potentials of polysaccharides. Oncol Lett 2017; 13:1509-1517. [PMID: 28454283 DOI: 10.3892/ol.2017.5602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/19/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become a leading cause of cancer-associated mortality worldwide and is thus of great concern. Although various chemotherapeutic drugs are currently used for the treatment of HCC, severe side effects associated with these treatments have prompted interest in novel therapies, including the use of certain biological macromolecules such as polysaccharides. Several studies have shown that polysaccharides have anticancer and antiproliferative effects on HCC. Vascular endothelial growth factor, transforming growth factor β, epidermal growth factor and fibroblast growth factor may be effective targets for polysaccharides and may modulate tumor growth and immunity through increasing the expression levels of cytokines. The present review focuses on the ways in which growth factors contribute to the development of HCC, and on the anti-growth factor activities of natural and synthetic polysaccharides, as well as their effect on proinflammatory cytokines.
Collapse
Affiliation(s)
- Xuan Wang
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jieyu Ding
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yuanyuan Feng
- Oncology Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| | - Lingling Weng
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Guangqiang Zhao
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jianfeng Xiang
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Minguang Zhang
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Dongwei Xing
- Radiology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
17
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Giacomini A, Chiodelli P, Matarazzo S, Rusnati M, Presta M, Ronca R. Blocking the FGF/FGFR system as a two-compartment antiangiogenic/antitumor approach in cancer therapy. Pharmacol Res 2016; 107:172-185. [PMID: 27013279 DOI: 10.1016/j.phrs.2016.03.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/22/2022]
|
19
|
Kuhnast B, El Hadri A, Boisgard R, Hinnen F, Richard S, Caravano A, Nancy-Portebois V, Petitou M, Tavitian B, Dollé F. Synthesis, radiolabeling with fluorine-18 and preliminary in vivo evaluation of a heparan sulphate mimetic as potent angiogenesis and heparanase inhibitor for cancer applications. Org Biomol Chem 2016; 14:1915-20. [DOI: 10.1039/c5ob02513c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A rationally designed, fully synthetic, octasaccharide-based, HS mimetic has been synthesized, in vitro characterized, labeled with fluorine-18, and in vivo imaged with PET in rats.
Collapse
Affiliation(s)
- B. Kuhnast
- CEA
- Institut d'imagerie biomédicale
- Service Hospitalier Frédéric Joliot
- 91400 Orsay
- France
| | - A. El Hadri
- Endotis Pharma
- Biocitech Park
- 93230 Romainville
- France
- CarboMimetics
| | - R. Boisgard
- CEA
- Institut d'imagerie biomédicale
- Service Hospitalier Frédéric Joliot
- 91400 Orsay
- France
| | - F. Hinnen
- CEA
- Institut d'imagerie biomédicale
- Service Hospitalier Frédéric Joliot
- 91400 Orsay
- France
| | - S. Richard
- Endotis Pharma
- Biocitech Park
- 93230 Romainville
- France
| | - A. Caravano
- Endotis Pharma
- Biocitech Park
- 93230 Romainville
- France
| | | | - M. Petitou
- Endotis Pharma
- Biocitech Park
- 93230 Romainville
- France
| | - B. Tavitian
- Laboratoire PARCC UMR 970 Inserm/Université Paris Descartes
- Sorbonne Paris Cité
- Assistance Publique – Hôpitaux de Paris
- Hôpital Européen Georges Pompidou
- 75015 Paris
| | - F. Dollé
- CEA
- Institut d'imagerie biomédicale
- Service Hospitalier Frédéric Joliot
- 91400 Orsay
- France
| |
Collapse
|
20
|
Rezzola S, Dal Monte M, Belleri M, Bugatti A, Chiodelli P, Corsini M, Cammalleri M, Cancarini A, Morbidelli L, Oreste P, Bagnoli P, Semeraro F, Presta M. Therapeutic Potential of Anti-Angiogenic Multitarget N,O-Sulfated E. Coli K5 Polysaccharide in Diabetic Retinopathy. Diabetes 2015; 64:2581-92. [PMID: 25695948 DOI: 10.2337/db14-1378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/10/2015] [Indexed: 11/13/2022]
Abstract
Vascular endothelial growth factor (VEGF) blockers have been developed for the treatment of proliferative diabetic retinopathy (PDR), the leading cause of visual impairments in the working-age population in the Western world. However, limitations to anti-VEGF therapies may exist because of the local production of other proangiogenic factors that may cause resistance to anti-VEGF interventions. Thus, novel therapeutic approaches targeting additional pathways are required. Here, we identified a sulfated derivative of the Escherichia coli polysaccharide K5 [K5-N,OS(H)] as a multitarget molecule highly effective in inhibiting VEGF-driven angiogenic responses in different in vitro, ex vivo, and in vivo assays, including a murine model of oxygen-induced retinopathy. Furthermore, K5-N,OS(H) binds a variety of heparin-binding angiogenic factors upregulated in PDR vitreous humor besides VEGF, thus inhibiting their biological activity. Finally, K5-N,OS(H) hampers the angiogenic activity exerted in vitro and in vivo by human vitreous fluid samples collected from patients with PDR. Together, the data provide compelling experimental evidence that K5-N,OS(H) represents an antiangiogenic multitarget molecule with potential implications for the therapy of pathologic neovessel formation in the retina of patients with PDR.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Mirella Belleri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonella Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Brescia, Italy
| | | | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
21
|
Niu TT, Zhang DS, Chen HM, Yan XJ. Modulation of the binding of basic fibroblast growth factor and heparanase activity by purified λ-carrageenan oligosaccharides. Carbohydr Polym 2015; 125:76-84. [DOI: 10.1016/j.carbpol.2015.02.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/06/2015] [Accepted: 02/28/2015] [Indexed: 12/28/2022]
|
22
|
Ronca R, Giacomini A, Rusnati M, Presta M. The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert Opin Ther Targets 2015; 19:1361-77. [PMID: 26125971 DOI: 10.1517/14728222.2015.1062475] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) are endowed with a potent pro-angiogenic activity. Activation of the FGF/FGF receptor (FGFR) system occurs in a variety of human tumors. This may lead to neovascularization, supporting tumor progression and metastatic dissemination. Thus, a compelling biologic rationale exists for the development of anti-FGF/FGFR agents for the inhibition of tumor angiogenesis in cancer therapy. AREAS COVERED A comprehensive search on PubMed was performed to identify studies on the role of the FGF/FGFR system in angiogenesis. Endothelial FGFR signaling, the pro-angiogenic function of canonical FGFs, and their role in human tumors are described. In addition, experimental approaches aimed at the identification and characterization of nonselective and selective FGF/FGFR inhibitors and their evaluation in clinical trials are summarized. EXPERT OPINION Different approaches can be envisaged to inhibit the FGF/FGFR system, a target for the development of 'two-compartment' anti-angiogenic/anti-tumor agents, including FGFR selective and nonselective small-molecule tyrosine kinase inhibitors, anti-FGFR antibodies, and FGF ligand traps. Further studies are required to define the correlation between tumor vascularization and activation of the FGF/FGFR system and for the identification of cancer patients more likely to benefit from anti-FGF/FGFR treatments. In addition, advantages and disadvantages about the use of selective versus non-selective FGF inhibitors remain to be elucidated.
Collapse
Affiliation(s)
- Roberto Ronca
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Arianna Giacomini
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Rusnati
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Presta
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| |
Collapse
|
23
|
Nguyen TH, Greinacher A, Delcea M. Quantitative description of thermodynamic and kinetic properties of the platelet factor 4/heparin bonds. NANOSCALE 2015; 7:10130-9. [PMID: 25981976 DOI: 10.1039/c5nr02132d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heparin is the most important antithrombotic drug in hospitals. It binds to the endogenous tetrameric protein platelet factor 4 (PF4) forming PF4/heparin complexes which may cause a severe immune-mediated adverse drug reaction, so-called heparin-induced thrombocytopenia (HIT). Although new heparin drugs have been synthesized to reduce such a risk, detailed bond dynamics of the PF4/heparin complexes have not been clearly understood. In this study, single molecule force spectroscopy (SMFS) is utilized to characterize the interaction of PF4 with heparins of defined length (5-, 6-, 8-, 12-, and 16-mers). Analysis of the force-distance curves shows that PF4/heparin binding strength rises with increasing heparin length. In addition, two binding pathways in the PF4/short heparins (≤8-mers) and three binding pathways in the PF4/long heparins (≥8-mers) are identified. We provide a model for the PF4/heparin complexes in which short heparins bind to one PF4 tetramer, while long heparins bind to two PF4 tetramers. We propose that the interaction between long heparins and PF4s is not only due to charge differences as generally assumed, but also due to hydrophobic interaction between two PF4s which are brought close to each other by long heparin. This complicated interaction induces PF4/heparin complexes more stable than other ligand-receptor interactions. Our results also reveal that the boundary between antigenic and non-antigenic heparins is between 8- and 12-mers. These observations are particularly important to understand processes in which PF4-heparin interactions are involved and to develop new heparin-derived drugs.
Collapse
Affiliation(s)
- Thi-Huong Nguyen
- Nanostructure Group, ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany.
| | | | | |
Collapse
|
24
|
Angiogenic growth factors interactome and drug discovery: The contribution of surface plasmon resonance. Cytokine Growth Factor Rev 2014; 26:293-310. [PMID: 25465594 DOI: 10.1016/j.cytogfr.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 11/21/2022]
Abstract
Angiogenesis is implicated in several pathological conditions, including cancer, and in regenerative processes, including the formation of collateral blood vessels after stroke. Physiological angiogenesis is the outcome of a fine balance between the action of angiogenic growth factors (AGFs) and anti-angiogenic molecules, while pathological angiogenesis occurs when this balance is pushed toward AGFs. AGFs interact with multiple endothelial cell (EC) surface receptors inducing cell proliferation, migration and proteases upregulation. On the contrary, free or extracellular matrix-associated molecules inhibit angiogenesis by sequestering AGFs (thus hampering EC stimulation) or by interacting with specific EC receptors inducing apoptosis or decreasing responsiveness to AGFs. Thus, angiogenesis results from an intricate network of interactions among pro- and anti-angiogenic molecules, EC receptors and various modulators. All these interactions represent targets for the development of pro- or anti-angiogenic therapies. These aims call for suitable technologies to study the countless interactions occurring during neovascularization. Surface plasmon resonance (SPR) is a label-free optical technique to study biomolecular interactions in real time. It has become the golden standard technology for interaction analysis in biomedical research, including angiogenesis. From a survey of the literature it emerges that SPR has already contributed substantially to the better understanding of the neovascularization process, laying the basis for the decoding of the angiogenesis "interactome" and the identification of "hub molecules" that may represent preferential targets for an efficacious modulation of angiogenesis. Here, the still unexploited full potential of SPR is enlightened, pointing to improvements in its use for a deeper understanding of the mechanisms of neovascularization and the identification of novel anti-angiogenic drugs.
Collapse
|
25
|
Kitazume S, Imamaki R, Kurimoto A, Ogawa K, Kato M, Yamaguchi Y, Tanaka K, Ishida H, Ando H, Kiso M, Hashii N, Kawasaki N, Taniguchi N. Interaction of platelet endothelial cell adhesion molecule (PECAM) with α2,6-sialylated glycan regulates its cell surface residency and anti-apoptotic role. J Biol Chem 2014; 289:27604-13. [PMID: 25135639 DOI: 10.1074/jbc.m114.563585] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The luminal sides of vascular endothelial cells are heavily covered with a so-called glycocalyx, but the precise role of the endothelial glycocalyx remains unclear. Our previous study showed that N-glycan α2,6-sialylation regulates the cell surface residency of an anti-apoptotic molecule, platelet endothelial cell adhesion molecule (PECAM), as well as the sensitivity of endothelial cells toward apoptotic stimuli. As PECAM itself was shown to be modified with biantennary N-glycans having α2,6-sialic acid, we expected that PECAM would possess lectin-like activity toward α2,6-sialic acid to ensure its homophilic interaction. To verify this, a series of oligosaccharides were initially added to observe their inhibitory effects on the homophilic PECAM interaction in vitro. We found that a longer α2,6-sialylated oligosaccharide exhibited strong inhibitory activity. Furthermore, we found that a cluster-type α2,6-sialyl N-glycan probe specifically bound to PECAM-immobilized beads. Moreover, the addition of the α2,6-sialylated oligosaccharide to endothelial cells enhanced the internalization of PECAM as well as the sensitivity to apoptotic stimuli. Collectively, these findings suggest that PECAM is a sialic acid binding lectin and that this binding property supports endothelial cell survival. Notably, our findings that α2,6-sialylated glycans influenced the susceptibility to endothelial cell apoptosis shed light on the possibility of using a glycan-based method to modulate angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Masaki Kato
- Structural Glycobiology Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, and
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, and
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, Saitama 351-0198, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-1193, Japan
| | - Hiromune Ando
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-1193, Japan, Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan, and
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-1193, Japan, Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan, and
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Nana Kawasaki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | | |
Collapse
|
26
|
Investigation of the antiangiogenic behaviors of rivaroxaban and low molecular weight heparins. Blood Coagul Fibrinolysis 2014; 25:303-8. [DOI: 10.1097/mbc.0000000000000019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Liang Y, Kiick KL. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater 2014; 10:1588-600. [PMID: 23911941 PMCID: PMC3937301 DOI: 10.1016/j.actbio.2013.07.031] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/15/2013] [Accepted: 07/24/2013] [Indexed: 11/26/2022]
Abstract
Heparin plays an important role in many biological processes via its interaction with various proteins, and hydrogels and nanoparticles comprising heparin exhibit attractive properties, such as anticoagulant activity, growth factor binding, and antiangiogenic and apoptotic effects, making them great candidates for emerging applications. Accordingly, this review summarizes recent efforts in the preparation of heparin-based hydrogels and formation of nanoparticles, as well as the characterization of their properties and applications. The challenges and future perspectives for heparin-based materials are also discussed. Prospects are promising for heparin-containing polymeric biomaterials in diverse applications ranging from cell carriers for promoting cell differentiation to nanoparticle therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Yingkai Liang
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, 15 Innovation Way, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
28
|
Nugent MA, Zaia J, Spencer JL. Heparan sulfate-protein binding specificity. BIOCHEMISTRY (MOSCOW) 2014; 78:726-35. [PMID: 24010836 DOI: 10.1134/s0006297913070055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heparan sulfate (HS) represents a large class of linear polysaccharides that are required for the function of all mammalian physiological systems. HS is characterized by a repeating disaccharide backbone that is subject to a wide range of modifications, making this class of macromolecules arguably the most information dense in all of biology. The majority of HS functions are associated with the ability to bind and regulate a wide range of proteins. Indeed, recent years have seen an explosion in the discovery of new activities for HS where it is now recognized that this class of glycans functions as co-receptors for growth factors and cytokines, modulates cellular uptake of lipoproteins, regulates protease activity, is critical to amyloid plaque formation, is used by opportunistic pathogens to enter cells, and may even participate in epigenetic regulation. This review will discuss the current state of understanding regarding the specificity of HS-protein binding and will describe the concept that protein binding to HS depends on the overall organization of domains within HS rather than fine structure.
Collapse
Affiliation(s)
- M A Nugent
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
29
|
Glycol-split nonanticoagulant heparins are inhibitors of hepcidin expression in vitro and in vivo. Blood 2014; 123:1564-73. [PMID: 24398330 DOI: 10.1182/blood-2013-07-515221] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepcidin controls systemic iron availability, and its excess contributes to the anemia of chronic diseases, the most prevalent anemia in hospitalized patients. We previously reported that heparins are efficient hepcidin inhibitors both in vitro and in vivo, but their anticoagulant activity limits therapeutic use. We studied nonanticoagulant heparins produced by N-acetylation and oxidation/reduction (glycol-split) that lost antithrombin-binding affinity. Four nonanticoagulant heparins inhibited hepcidin expression in hepatic HepG2 cells and primary hepatocytes. The 2 most potent ones used in mice suppressed liver hepcidin expression and serum hepcidin in 6 hours, with a significant decrease of spleen iron. This occurred also in lipopolysaccharide (LPS)-treated animals that mimic inflammation, as well as after chronic 1-week treatments, without evident adverse effects on coagulation. Heparin injections increased iron mobilization and facilitated the recovery from the anemia induced by heat-killed Brucella abortus, a model of inflammatory anemia. The heparins were used also in Bmp6(-/-) mice. A single dose of heparin reduced the already low level of hepcidin of these mice and prevented its induction by LPS. These nonanticoagulant compounds impair bone morphogenetic protein /sons of mothers against decapentaplegic signaling with no evident adverse effect in vivo, even when administered chronically. They may offer a strategy for the treatment of diseases with high hepcidin levels.
Collapse
|
30
|
Hwang SR, Seo DH, Al-Hilal TA, Jeon OC, Kang JH, Kim SH, Kim HS, Chang YT, Kang YM, Yang VC, Byun Y. Orally active desulfated low molecular weight heparin and deoxycholic acid conjugate, 6ODS-LHbD, suppresses neovascularization and bone destruction in arthritis. J Control Release 2012; 163:374-84. [DOI: 10.1016/j.jconrel.2012.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/31/2012] [Accepted: 09/21/2012] [Indexed: 12/21/2022]
|
31
|
Tardajos MG, García-Fernández L, Reinecke H, Aguilar MR, Gallardo A, Román JS. Microstructure and biological activity of sulfonated N-vinylpyrrolidone copolymers. J BIOACT COMPAT POL 2012. [DOI: 10.1177/0883911512457761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article deals with the preparation, characterization, and in vitro evaluation of new copolymers based on functionalized N-vinylpyrrolidone bearing pendant sulfonic acid groups statistically or alternately distributed in the macromolecular chains. Statistical copolymers were obtained by free radical polymerization of N-vinylpyrrolidone and sulfonated N-vinylpyrrolidone ( r VP = 1.61; r VPSulf = 0.90) in water, and alternating copolymers were synthesized by free radical polymerization of N-vinylpyrrolidone or sulfonated N-vinylpyrrolidone with methyl maleate in N,N-dimethylformamide followed by hydrolysis of the resulting copolymers. The influence of these new materials on acidic fibroblast growth factor–mediated mitogenesis of fibroblasts demonstrated that sequence distribution (copolymer microstructure) plays a key role in the biological performance of these polymers. Alternating copolymers did not present biological activity, whereas statistical copolymers inhibited acidic fibroblast growth factor activity in a sulfonated N-vinylpyrrolidone dose-dependent manner.
Collapse
Affiliation(s)
- Myriam G Tardajos
- Polymer Functionalization Group, Polymer Physics, Elastomers and Energy Department, Polymer Science and Technology Institute (ICTP-CSIC), Madrid, Spain
| | - Luis García-Fernández
- Biomaterials Group, Polymeric Nanomaterials and Biomaterials Department, Polymer Science and Technology Institute (ICTP-CSIC), Madrid, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Helmut Reinecke
- Polymer Functionalization Group, Polymer Physics, Elastomers and Energy Department, Polymer Science and Technology Institute (ICTP-CSIC), Madrid, Spain
| | - María R Aguilar
- Biomaterials Group, Polymeric Nanomaterials and Biomaterials Department, Polymer Science and Technology Institute (ICTP-CSIC), Madrid, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Alberto Gallardo
- Polymer Functionalization Group, Polymer Physics, Elastomers and Energy Department, Polymer Science and Technology Institute (ICTP-CSIC), Madrid, Spain
| | - Julio S Román
- Biomaterials Group, Polymeric Nanomaterials and Biomaterials Department, Polymer Science and Technology Institute (ICTP-CSIC), Madrid, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
32
|
Liekens S, Bronckaers A, Belleri M, Bugatti A, Sienaert R, Ribatti D, Nico B, Gigante A, Casanova E, Opdenakker G, Pérez-Pérez MJ, Balzarini J, Presta M. The thymidine phosphorylase inhibitor 5'-O-tritylinosine (KIN59) is an antiangiogenic multitarget fibroblast growth factor-2 antagonist. Mol Cancer Ther 2012; 11:817-29. [PMID: 22302099 DOI: 10.1158/1535-7163.mct-11-0738] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
5'-O-Tritylinosine (KIN59) is an allosteric inhibitor of the angiogenic enzyme thymidine phosphorylase. Previous observations showed the capacity of KIN59 to abrogate thymidine phosphorylase-induced as well as developmental angiogenesis in the chicken chorioallantoic membrane (CAM) assay. Here, we show that KIN59 also inhibits the angiogenic response triggered by fibroblast growth factor-2 (FGF2) but not by VEGF in the CAM assay. Immunohistochemical and reverse transcriptase PCR analyses revealed that the expression of laminin, the major proteoglycan of the basement membrane of blood vessels, is downregulated by KIN59 administration in control as well as in thymidine phosphorylase- or FGF2-treated CAMs, but not in CAMs treated with VEGF. Also, KIN59 abrogated FGF2-induced endothelial cell proliferation, FGF receptor activation, and Akt signaling in vitro with no effect on VEGF-stimulated biologic responses. Accordingly, KIN59 inhibited the binding of FGF2 to FGF receptor-1 (FGFR1), thus preventing the formation of productive heparan sulphate proteoglycan/FGF2/FGFR1 ternary complexes, without affecting heparin interaction. In keeping with these observations, systemic administration of KIN59 inhibited the growth and neovascularization of subcutaneous tumors induced by FGF2-transformed endothelial cells injected in immunodeficient nude mice. Taken together, the data indicate that the thymidine phosphorylase inhibitor KIN59 is endowed with a significant FGF2 antagonist activity, thus representing a promising lead compound for the design of multitargeted antiangiogenic cancer drugs.
Collapse
Affiliation(s)
- Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang SX, Zhu C, Ba Y, Chen D, Zhou XL, Cao R, Wang LP, Ren Y, Wu XZ. Gekko-sulfated glycopeptide inhibits tumor angiogenesis by targeting basic fibroblast growth factor. J Biol Chem 2012; 287:13206-15. [PMID: 22371501 DOI: 10.1074/jbc.m111.321521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) is a therapeutic target of anti-angiogenesis. Here, we report that a novel sulfated glycopeptide derived from Gekko swinhonis Guenther (GSPP), an anticancer drug in traditional Chinese medicine, inhibits tumor angiogenesis by targeting bFGF. GSPP significantly decreased the production of bFGF in hepatoma cells by suppressing early growth response-1. GSPP inhibited the release of bFGF from extracellular matrix by blocking heparanase enzymatic activity. Moreover, GSPP competitively inhibited bFGF binding to heparin/heparan sulfate via direct binding to bFGF. Importantly, GSPP abrogated the bFGF-stimulated proliferation and migration of endothelial cells, whereas it had no inhibitory effect on endothelial cells in the absence of bFGF. Further study revealed that GSPP prevented bFGF-induced neovascularization and inhibited tumor angiogenesis and tumor growth in a xenograft mouse model. These results demonstrate that GSPP inhibits tumor angiogenesis by blocking bFGF production, release from the extracellular matrix, and binding to its low affinity receptor, heparin/heparan sulfate.
Collapse
Affiliation(s)
- Shuang-Xia Zhang
- Tianjin Medical University Cancer Institute and Hospital, Ti Yuan Bei, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li S, Chen X, Wu T, Zhang M, Zhang X, Ji Z. Role of heparin on serum VEGF levels and local VEGF contents in reducing the severity of experimental severe acute pancreatitis in rats. Scand J Gastroenterol 2012; 47:237-44. [PMID: 22214372 DOI: 10.3109/00365521.2011.647063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The aims of this study were to examine the effects of prophylactic heparin treatment during taurocholate-induced pancreatitis in rats and its impact on serum VEGF levels and local VEGF contents within the pancreas. METHODS Severe acute pancreatitis (SAP) was induced by injecting 4% sodium taurocholate into the pancreatic duct. Heparin at a dose of 150 IU/kg s.c. was administered 30 min before the operation. The rats were sacrificed 1 h, 3 h, 6 h and 12 h (n = 5 per time point) after the onset of pancreatitis. The severity of pancreatitis, serum VEGF levels and local VEGF contents were evaluated with and without heparin pretreatment. RESULTS The serum VEGF levels increased at an early phase of pancreatitis, and the highest level was found at 12 h after inducing pancreatitis. The gray value of the local VEGF showed a remarkable increase from the onset of the pancreatitis. However, the gray value of VEGF did not show an increase over time but maintained a high level during the entire process. Prophylactic heparin treatment significantly improved the morphologic changes, myeloperoxidase (MPO), TNF-α and malondialdehyde (MDA) activities. Meanwhile, it decreased the serum VEGF levels and the contents of VEGF within the pancreatic tissue. CONCLUSIONS The present study suggests that prophylactic heparin ameliorates the severity of taurocholate-induced pancreatitis via its anti-inflammatory properties. These protective effects may be partly due to decreasing serum VEGF levels and VEGF contents within the pancreas.
Collapse
Affiliation(s)
- Shunle Li
- First Department of General Surgery, the 2nd Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, PR, China
| | | | | | | | | | | |
Collapse
|
35
|
Cui W, Cui Y, Zhu P, Zhao J, Su Y, Yang Y, Li J. An Anticoagulant Activity System Using Nanoengineered Autofluorescent Heparin Nanotubes. Chem Asian J 2011; 7:127-32. [DOI: 10.1002/asia.201100425] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Indexed: 11/10/2022]
|
36
|
Chiodelli P, Mitola S, Ravelli C, Oreste P, Rusnati M, Presta M. Heparan sulfate proteoglycans mediate the angiogenic activity of the vascular endothelial growth factor receptor-2 agonist gremlin. Arterioscler Thromb Vasc Biol 2011; 31:e116-27. [PMID: 21921258 DOI: 10.1161/atvbaha.111.235184] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Heparan sulfate proteoglycans (HSPGs) modulate the interaction of proangiogenic heparin-binding vascular endothelial growth factors (VEGFs) with signaling VEGF receptor-2 (VEGFR2) and neuropilin coreceptors in endothelial cells (ECs). The bone morphogenic protein antagonist gremlin is a proangiogenic ligand of VEGFR2, distinct from canonical VEGFs. Here we investigated the role of HSPGs in VEGFR2 interaction, signaling, and proangiogenic capacity of gremlin in ECs. METHODS AND RESULTS Surface plasmon resonance demonstrated that gremlin binds heparin and heparan sulfate, but not other glycosaminoglycans, via N-, 2-O, and 6-O-sulfated groups of the polysaccharide. Accordingly, gremlin binds HSPGs of the EC surface and extracellular matrix. Gremlin/HSPG interaction is prevented by free heparin and heparan sulfate digestion or undersulfation following EC treatment with heparinase II or sodium chlorate. However, at variance with canonical heparin-binding VEGFs, gremlin does not interact with neuropilin-1 coreceptor. On the other hand, HSPGs mediate VEGFR2 engagement and autophosphorylation, extracellular signaling-regulated kinase(1/2) and p38 mitogen-activated protein kinase activation, and consequent proangiogenic responses of ECs to gremlin. On this basis, we evaluated the gremlin-antagonist activity of a panel of chemically sulfated derivatives of the Escherichia coli K5 polysaccharide. The results demonstrate that the highly N,O-sulfated derivative K5-N,OS(H) binds gremlin with high potency, thus inhibiting VEGFR2 interaction and angiogenic activity in vitro and in vivo. CONCLUSIONS HSPGs act as functional gremlin coreceptors in ECs, affecting its productive interaction with VEGFR2 and angiogenic activity. This has allowed the identification of the biotechnological K5-N,OS(H) as a novel angiostatic gremlin antagonist.
Collapse
Affiliation(s)
- Paola Chiodelli
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
37
|
A homogalacturonan from the radix of Platycodon grandiflorum and the anti-angiogenesis activity of poly-/oligogalacturonic acids derived therefrom. Carbohydr Res 2011; 346:1930-6. [DOI: 10.1016/j.carres.2011.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022]
|
38
|
Wang X, Li J, Wang Y, Koenig L, Gjyrezi A, Giannakakou P, Shin EH, Tighiouart M, Chen Z(G, Nie S, Shin DM. A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS NANO 2011; 5:6184-94. [PMID: 21728341 PMCID: PMC3773705 DOI: 10.1021/nn200739q] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Resistance to chemotherapy is a major obstacle in cancer therapy. The main purpose of this study is to evaluate the potential of a folate receptor-targeting nanoparticle to overcome/minimize drug resistance and to explore the underlying mechanisms. This is accomplished with enhanced cellular accumulation and retention of paclitaxel (one of the most effective anticancer drugs in use today and a well-known P-glycoprotein (P-gp) substrate) in a P-gp-overexpressing cancer model. The folate receptor-targeted nanoparticle, HFT-T, consists of a heparin-folate-paclitaxel (HFT) backbone with an additional paclitaxel (T) loaded in its hydrophobic core. In vitro analyses demonstrated that the HFT-T nanoparticle was superior to free paclitaxel or nontargeted nanoparticle (HT-T) in inhibiting proliferation of P-gp-overexpressing cancer cells (KB-8-5), partially due to its enhanced uptake and prolonged intracellular retention. In a subcutaneous KB-8-5 xenograft model, HFT-T administration enhanced the specific delivery of paclitaxel into tumor tissues and remarkably prolonged retention within tumor tissues. Importantly, HFT-T treatment markedly retarded tumor growth in a xenograft model of resistant human squamous cancer. Immunohistochemical analysis further indicated that increased in vivo efficacy of HFT-T nanoparticles was associated with a higher degree of microtubule stabilization, mitotic arrest, antiangiogenic activity, and inhibition of cell proliferation. These findings suggest that when the paclitaxel was delivered as an HFT-T nanoparticle, the drug is better retained within the P-gp-overexpressing cells than the free form of paclitaxel. These results indicated that the targeted HFT-T nanoparticle may be promising in minimizing P-gp related drug resistance and enhancing therapeutic efficacy compared with the free form of paclitaxel.
Collapse
Affiliation(s)
- Xu Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine Atlanta, GA
| | - Jun Li
- Department of Biomedical Engineering, Emory University School of Medicine Atlanta, GA
| | - Yuxiang Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine Atlanta, GA
| | - Lydia Koenig
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine Atlanta, GA
| | - Ada Gjyrezi
- Department of Pharmacology, Weill Medical College of Cornell University. New York, NY
| | - Paraskevi Giannakakou
- Department of Pharmacology, Weill Medical College of Cornell University. New York, NY
| | - Edwin H. Shin
- Franklin College of Art and Science, University of Georgia, Athens, GA
| | - Mourad Tighiouart
- Department of Biostatistics & Bioinformatics, Winship Cancer Institute, Emory University Rollins School of Public Health Atlanta, GA
| | - Zhuo (Georgia) Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine Atlanta, GA
| | - Shuming Nie
- Department of Biomedical Engineering, Emory University School of Medicine Atlanta, GA
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine Atlanta, GA
| |
Collapse
|
39
|
Roy S, Lai H, Zouaoui R, Duffner J, Zhou H, P Jayaraman L, Zhao G, Ganguly T, Kishimoto TK, Venkataraman G. Bioactivity screening of partially desulfated low-molecular-weight heparins: a structure/activity relationship study. Glycobiology 2011; 21:1194-205. [PMID: 21515908 DOI: 10.1093/glycob/cwr053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A series of size-defined low-molecular-weight heparins were generated by regioselective chemical modifications and profiled for their in vitro and in vivo activities. The compounds displayed reduced anti-coagulant activity, demonstrated varying affinities toward angiogenic growth factors (fibroblast growth factor-2, vascular endothelial growth factor and stromal cell-derived factor-1α), inhibited the P-selectin/P-selectin glycoprotein ligand-1 interaction and, notably, exhibited anti-tumor efficacy in a murine melanoma experimental metastasis model. Our results demonstrate that modulating specific sequences, especially the N-domains (-NS or -NH(2) or -NHCOCH(3)) in these polysaccharide sequences, has a major impact on the participation in a diverse range of biological activities. These results also suggest that the 6-O-sulfates, but not the 2-O-sulfates, critically affect the binding of a desulfated derivative to certain angiogenic proteins as well as its ability to inhibit P-selectin-mediated B16F10 melanoma metastases. Furthermore, N-desulfation followed by N-acetylation regenerates the affinity/inhibition properties to different extents in all the compounds tested in the in vitro assays. This systematic study lays a conceptual foundation for detailed structure function elucidation and will facilitate the rational design of targeted heparan sulfate proteoglycan-based anti-metastatic therapeutic candidates.
Collapse
|
40
|
Bhattacharjee PS, Huq TS, Mandal TK, Graves RA, Muniruzzaman S, Clement C, McFerrin HE, Hill JM. A novel peptide derived from human apolipoprotein E is an inhibitor of tumor growth and ocular angiogenesis. PLoS One 2011; 6:e15905. [PMID: 21253017 PMCID: PMC3017052 DOI: 10.1371/journal.pone.0015905] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/25/2010] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp) derived from the receptor binding region of human apolipoprotein E (apoE) inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo. This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.
Collapse
Affiliation(s)
- Partha S. Bhattacharjee
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Tashfin S. Huq
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Tarun K. Mandal
- College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Richard A. Graves
- College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Syed Muniruzzaman
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Christian Clement
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Harris E. McFerrin
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - James M. Hill
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
41
|
Li L, Qin J, Feng Q, Tang H, Liu R, Xu L, Chen Z. Heparin promotes suspension adaptation process of CHO-TS28 cells by eliminating cell aggregation. Mol Biotechnol 2011; 47:9-17. [PMID: 20589456 DOI: 10.1007/s12033-010-9306-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
While heparin has been shown to eliminate cell aggregation in suspension adaptations of insect and HEK293 cells for virus-based cell cultures, the role of heparin in long period serum-free suspension adaptation of the anchorage-dependent Chinese hamster ovary (CHO) cell lines remains inconclusive. In this paper, we explore the potential application of heparin in suspension adaptation of CHO cell line which produces an anti-human chimeric antibody cHAb18. Heparin showed a concentration-dependent inhibition of CHO-TS28 cell-to-cell adhesion, with a significant inhibitory effect occurring when the concentration exceeded 250 μg/ml (P < 0.001). Heparin also exhibited a cell aggregation elimination role at all concentrations (P < 0.001). Furthermore, heparin promoted cell growth and antibody secretion, with the highest cell density ((99.83 ± 12.21) × 10(4) cells/ml, P = 0.034) and maximum antibody yield ((9.46 ± 0.94) mg/l, P < 0.001) both occurring at 250 μg/ml heparin. When agitated, cell aggregates were effectively dispersed by 250 μg/ml heparin and a single-cell suspension culture process was promoted. In suspension adapted CHO-TS28 cells, cell growth rates and specific antibody productivity were maintained; while antigen-binding activity improved slightly. Together, our results show that heparin may promote suspension adaptation of anchorage-depended CHO cells by resisting cell aggregation without reducing cell growth, antibody secretion, and antigen-binding activity.
Collapse
Affiliation(s)
- Ling Li
- Cell Engineering Research Centre & Department of Cell Biology, National Key Discipline of Cell Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, 710032, Xi'an, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Liu J, Zhao T, Tan H, Cheng Y, Cao J, Wang F. Pharmacokinetic analysis of in vivo disposition of heparin–superoxide dismutase. Biomed Pharmacother 2010; 64:686-91. [DOI: 10.1016/j.biopha.2010.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 09/05/2010] [Indexed: 10/19/2022] Open
|
43
|
Abstract
Hepcidin is a major regulator of iron homeostasis, and its expression in liver is regulated by iron, inflammation, and erythropoietic activity with mechanisms that involve bone morphogenetic proteins (BMPs) binding their receptors and coreceptors. Here we show that exogenous heparin strongly inhibited hepcidin expression in hepatic HepG2 cells at pharmacologic concentrations, with a mechanism that probably involves bone morphogenetic protein 6 sequestering and the blocking of SMAD signaling. Treatment of mice with pharmacologic doses of heparin inhibited liver hepcidin mRNA expression and SMAD phosphorylation, reduced spleen iron concentration, and increased serum iron. Moreover, we observed a strong reduction of serum hepcidin in 5 patients treated with heparin to prevent deep vein thrombosis, which was accompanied by an increase of serum iron and a reduction of C-reactive protein levels. The data show an unrecognized role for heparin in regulating iron homeostasis and indicate novel approaches to the treatment of iron-restricted iron deficiency anemia.
Collapse
|
44
|
High antiangiogenic and low anticoagulant efficacy of orally active low molecular weight heparin derivatives. J Control Release 2010; 148:317-26. [PMID: 20869408 DOI: 10.1016/j.jconrel.2010.09.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 07/02/2010] [Accepted: 09/14/2010] [Indexed: 11/23/2022]
Abstract
Heparin, an anticoagulant that is widely used clinically, is also known to bind to several kinds of proteins through electrostatic interactions because of its polyanionic character. These interactions are mediated by the physicochemical properties of heparin such as sequence composition, sulfation patterns, charge distribution, overall charge density, and molecular size. Although this electrostatic character mediates its binding to many proteins related with tumor progression, thereby providing its antiangiogenic property, the administration of heparin for treating cancer is limited in clinical applications due to several drawbacks, such as its low oral absorption, unsatisfactory therapeutic effects, and strong anticoagulant activity which induces hemorrhaging. Here, we evaluated novel, orally active, low molecular weight heparin (LMWH) derivatives (LHD) conjugated with deoxycholic acid (DOCA) that show reduced anticoagulant activity and enhanced antiangiogenic activity. The chemical conjugate of LMWH and DOCA was synthesized by conjugating the amine group of N-deoxycholylethylamine (EtDOCA) with the carboxylic groups of heparin at various DOCA conjugation ratios. The LMWH-DOCA conjugate series (LHD1, LHD1.5, LHD2, and LHD4) were further formulated with poloxamer 407 as a solubilizer for oral administration. An in vitro endothelial tubular formation and in vivo Matrigel plug assay were performed to verify the antiangiogenic potential of LHD. Finally, we evaluated tumor growth inhibition of oral LHD administration in a SCC7 model as well as in A549 human cancer cell lines in a mouse xenograft model. Increasing DOCA conjugation ratios showed decreased anticoagulant activity, eventually to zero. LHD could block angiogenesis in the tubular formation assay and the Matrigel plug assay. In particular, oral administration of LHD4, which has 4 molecules of DOCA per mole of LMWH, inhibited tumor growth in SCC7 mice model as well as A549 mice xenograft model. LHD4 was orally absorbable, showed minimal anticoagulant activity and inhibits tumor growth via antiangiogenesis. These findings demonstrate the therapeutic potential of LHD4 as a new oral anti-cancer drug.
Collapse
|
45
|
Xu Y, Dong Q, Qiu H, Cong R, Ding K. Structural Characterization of an Arabinogalactan from Platycodon grandiflorum Roots and Antiangiogenic Activity of Its Sulfated Derivative. Biomacromolecules 2010; 11:2558-66. [DOI: 10.1021/bm100402n] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuxia Xu
- Glycobiology and Glycochemistry Laboratory, Joint Laboratory for The Research of Chinese Herbal Polysaccharides, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Infinitus, Shanghai 201203, China
| | - Qun Dong
- Glycobiology and Glycochemistry Laboratory, Joint Laboratory for The Research of Chinese Herbal Polysaccharides, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Infinitus, Shanghai 201203, China
| | - Hong Qiu
- Glycobiology and Glycochemistry Laboratory, Joint Laboratory for The Research of Chinese Herbal Polysaccharides, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Infinitus, Shanghai 201203, China
| | - Renhuai Cong
- Glycobiology and Glycochemistry Laboratory, Joint Laboratory for The Research of Chinese Herbal Polysaccharides, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Infinitus, Shanghai 201203, China
| | - Kan Ding
- Glycobiology and Glycochemistry Laboratory, Joint Laboratory for The Research of Chinese Herbal Polysaccharides, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Infinitus, Shanghai 201203, China
| |
Collapse
|
46
|
Dreyfuss JL, Regatieri CV, Lima MA, Paredes-Gamero EJ, Brito AS, Chavante SF, Belfort R, Farah ME, Nader HB. A heparin mimetic isolated from a marine shrimp suppresses neovascularization. J Thromb Haemost 2010; 8:1828-37. [PMID: 20492474 DOI: 10.1111/j.1538-7836.2010.03916.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Choroidal neovascularization (CNV) is the main cause of severe visual loss in age-related macular degeneration (AMD). Heparin/heparan sulfate are known to play important roles in neovascularization due to their abilities to bind and modulate angiogenic growth factors and cytokines. Previously, we have isolated from marine shrimp a heparin-like compound with striking anti-inflammatory action and negligible anticoagulant and hemorrhagic activities. OBJECTIVES To investigate the role of this novel heparin-like compound in angiogenic processes. METHODS AND RESULTS The anti-angiogenic effect of this heparinoid in laser-induced CNV and in vitro models is reported. The compound binds to growth factors (FGF-2, EGF and VEGF), blocks endothelial cell proliferation and shows no cytotoxic effect. The decrease in proliferation is not related to cell death either by apoptosis or secondary necrosis. The results also showed that the heparinoid modified the 2-D network organization in capillary-like structures of endothelial cells in Matrigel and reduced the CNV area. The effect on CNV area correlates with decreases in the levels of VEGF and TGF-β1 in the choroidal tissue. The low content of 2-O-sulfate groups in this heparinoid may explain its potent anti-angiogenic effect. CONCLUSIONS The properties of the shrimp heparinoid, such as potent anti-angiogenic and anti-inflammatory activities but insignificant anticoagulant or hemorrhagic actions, point to this compound as a compelling drug candidate for treating neovascular AMD and other angioproliferative diseases. A mechanism for the anti-angiogenic effect of the heparinoid is proposed.
Collapse
Affiliation(s)
- J L Dreyfuss
- Departmento de Bioquímica, Disciplina de Biologia Molecular, Universidade Federal de São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Johnstone KD, Karoli T, Liu L, Dredge K, Copeman E, Li CP, Davis K, Hammond E, Bytheway I, Kostewicz E, Chiu FCK, Shackleford DM, Charman SA, Charman WN, Harenberg J, Gonda TJ, Ferro V. Synthesis and Biological Evaluation of Polysulfated Oligosaccharide Glycosides as Inhibitors of Angiogenesis and Tumor Growth. J Med Chem 2010; 53:1686-99. [DOI: 10.1021/jm901449m] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ken D. Johnstone
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Tomislav Karoli
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Ligong Liu
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Keith Dredge
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Elizabeth Copeman
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Cai Ping Li
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Kat Davis
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Edward Hammond
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Ian Bytheway
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Edmund Kostewicz
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Francis C. K. Chiu
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - William N. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Job Harenberg
- Clinical Pharmacology, Faculty of Medicine Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Thomas J. Gonda
- Molecular Oncogenesis Group, Diamantina Institute for Cancer, Immunology and Metabolic Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Vito Ferro
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
48
|
Nelea V, Kaartinen MT. Periodic beaded-filament assembly of fibronectin on negatively charged surface. J Struct Biol 2010; 170:50-9. [PMID: 20109553 DOI: 10.1016/j.jsb.2010.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/04/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
Fibronectin (FN) is an extracellular glycoprotein with critical roles in many fundamental biological processes. A hallmark of FN function is its characteristic assembly into filaments and fibers to form an insoluble matrix which functions as a scaffolding onto which cells attach, migrate, and deposit other matrix constituents. In this study, we have investigated the effects of differently charged and functionalized surfaces on FN conformations using atomic force microscopy. We demonstrate that a negatively charged polysulfonated surface promotes the formation of highly periodic, micrometer-long FN filaments having a "bead-on-a-string" structure with a bead periodicity of about 60 nm. Beaded filaments were observed when FN was adsorbed to polysulfonate surface in water; higher ionic strength allowed formation of filamentous structures but altered the regularity of the beads. FN did not form filaments when adsorbed onto the polysulfonate surface in the presence of soluble polysulfonates emphasizing the role of negatively charged, solid-phase elements on FN assembly. This charge-driven assembly likely derives from the negative surface promoting extension and opening of the protein, and we suggest a model where this assembly pattern is further stabilized by known self-assembly regions. Our results give insight into how FN fibrillogenesis might be promoted in vivo at cell surfaces by the negatively charged and sulfonated environment created by cell-surface, transmembrane proteoglycans.
Collapse
Affiliation(s)
- Valentin Nelea
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
49
|
Conconi MT, Ghezzo F, Dettin M, Urbani L, Grandi C, Guidolin D, Nico B, Di Bello C, Ribatti D, Parnigotto PP. Effects on in vitro and in vivo angiogenesis induced by small peptides carrying adhesion sequences. J Pept Sci 2010; 16:349-57. [DOI: 10.1002/psc.1251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Fairweather JK, Karoli T, Liu L, Bytheway I, Ferro V. Synthesis of a heparan sulfate mimetic disaccharide with a conformationally locked residue from a common intermediate. Carbohydr Res 2009; 344:2394-8. [DOI: 10.1016/j.carres.2009.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
|