1
|
Feng T, Xie F, Lyu Y, Yu P, Chen B, Yu J, Zhang G, To KF, Tsang CM, Kang W. The arginine metabolism and its deprivation in cancer therapy. Cancer Lett 2025; 620:217680. [PMID: 40157492 DOI: 10.1016/j.canlet.2025.217680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Arginine deprivation has emerged as a promising therapeutic strategy in cancer treatment due to the auxotrophy of certain tumors. Many cancers, such as pancreatic, colorectal, and hepatocellular carcinoma, exhibit downregulated argininosuccinate synthetase, making them reliant on external arginine sources. This dependency allows targeted therapies that deplete arginine, inhibiting tumor growth while sparing normal cells. Arginine is crucial for various cellular processes, including protein synthesis and immune function. Its deprivation affects both tumor metabolism and immune responses, potentially enhancing cancer therapy. Studies have explored using enzymes like arginine deiminase and arginase, often modified for increased stability and reduced immunogenicity, to effectively lower arginine levels in the tumor microenvironment. These approaches show promise, particularly in tumors with low argininosuccinate synthetase expression. However, the impact on immune cells and the potential for resistance highlight the need for further research. Combining arginine deprivation with other treatments might improve outcomes, offering a novel approach to combat arginine-dependent cancers.
Collapse
Affiliation(s)
- Tiejun Feng
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Yang Lyu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Peiyao Yu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; CUHK-Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
2
|
Dimeji IY, Abass KS, Audu NM, Ayodeji AS. L-Arginine and immune modulation: A pharmacological perspective on inflammation and autoimmune disorders. Eur J Pharmacol 2025; 997:177615. [PMID: 40216179 DOI: 10.1016/j.ejphar.2025.177615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
L- Arginine (2-Amino-5-guanidinovaleric acid, L-Arg) is a semi-essential amino acid that is mainly produced within the urea cycle. It acts as a key precursor in the synthesis of proteins, urea, creatine, prolamines (including putrescine, spermine, and spermidine), proline, and nitric oxide (NO). WhenL-Arg is metabolized, it produces NO, glutamate, and prolamines, which all play important regulatory roles in various physiological functions. In addition to its metabolic roles,L-Arg significantly influences immune responses, especially in the context of inflammation and autoimmune diseases. It affects the activity of immune cells by modulating T-cell function, the polarization of macrophages, and the release of cytokines. Importantly,L-Arg plays a dual role in immune regulation, functioning as both an immunostimulatory and immunosuppressive agent depending on the specific cellular and biochemical environments. This review examines the immunopharmacological mechanisms of L-Arg, emphasizing its involvement in inflammatory responses and its potential therapeutic uses in autoimmune conditions like rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. By influencing the pathways of nitric oxide synthase (NOS) and arginase (ARG), L-Arg helps maintain immune balance and contributes to the pathophysiology of diseases. Gaining a better understanding of the pharmacological effects of L-Arg on immune regulation could yield new perspectives on targeted treatments for immune-related diseases. Exploring its impact on immune signaling and metabolic pathways may result in novel therapeutic approaches for chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Igbayilola Yusuff Dimeji
- Department of Human Physiology, College of Medicine and Health Sciences, Baze University, Nigeria.
| | - Kasim Sakran Abass
- Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, University of Kirkuk, Kirkuk 36001, Iraq
| | - Ngabea Murtala Audu
- Department of Medicine Maitama District Hospital/ College of Medicine Baze University, Abuja, Nigeria
| | - Adekola Saheed Ayodeji
- Department of Chemical Pathology, Medical Laboratory Science Program, Faculty of Nursing and Allied Health Sciences, University of Abuja, Abuja, Nigeria.
| |
Collapse
|
3
|
Lin Y, Zhang Y, Huang T, Chen J, Li G, Zhang B, Xu L, Wang K, He H, Chen H, Liu D, Guo S, He X, Lan P. Arginine Deprivation Induces Quiescence and Confers Vulnerability to Ferroptosis in Colorectal Cancer. Cancer Res 2025; 85:1663-1679. [PMID: 39992728 PMCID: PMC12046318 DOI: 10.1158/0008-5472.can-24-1940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/21/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Metabolic reprogramming is a hallmark of cancer. Rewiring of amino acid metabolic processes provides the basis for amino acid deprivation therapies. In this study, we found that arginine biosynthesis is limited in colorectal cancer because of the deficiency of ornithine transcarbamylase. Accordingly, colorectal cancer cells met the demand for arginine by increasing external uptake. The addiction to environmental arginine resulted in the susceptibility of colorectal cancer to arginine deprivation, which dramatically decreased proliferation in colorectal cancer cells and promoted these cells to enter a reversible quiescence state. Arginine deprivation induced quiescence by activating the AMPK-p53-p21 pathway. RNA sequencing data indicated that colorectal cancer cells may be vulnerable to ferroptosis during arginine deprivation and the combination of ferroptosis inducers and arginine deprivation strongly impeded tumor growth in vivo. These findings suggest that dietary modification combined with ferroptosis induction could be a potential therapeutic strategy for colorectal cancer. Significance: Colorectal cancer dependency on arginine uptake creates a metabolic vulnerability to arginine deficiency that causes cell cycle arrest and ferroptosis sensitivity, highlighting arginine deprivation plus ferroptosis induction as a promising treatment.
Collapse
Affiliation(s)
- Yanyun Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanhong Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianze Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junguo Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Thoracic Surgery, Thoracic Cancer Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanman Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Xu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danling Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Guo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaosheng He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| |
Collapse
|
4
|
Zarrella S, Miranda MR, Covelli V, Restivo I, Novi S, Pepe G, Tesoriere L, Rodriquez M, Bertamino A, Campiglia P, Tecce MF, Vestuto V. Endoplasmic Reticulum Stress and Its Role in Metabolic Reprogramming of Cancer. Metabolites 2025; 15:221. [PMID: 40278350 PMCID: PMC12029571 DOI: 10.3390/metabo15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Endoplasmic reticulum (ER) stress occurs when ER homeostasis is disrupted, leading to the accumulation of misfolded or unfolded proteins. This condition activates the unfolded protein response (UPR), which aims to restore balance or trigger cell death if homeostasis cannot be achieved. In cancer, ER stress plays a key role due to the heightened metabolic demands of tumor cells. This review explores how metabolomics can provide insights into ER stress-related metabolic alterations and their implications for cancer therapy. Methods: A comprehensive literature review was conducted to analyze recent findings on ER stress, metabolomics, and cancer metabolism. Studies examining metabolic profiling of cancer cells under ER stress conditions were selected, with a focus on identifying potential biomarkers and therapeutic targets. Results: Metabolomic studies highlight significant shifts in lipid metabolism, protein synthesis, and oxidative stress management in response to ER stress. These metabolic alterations are crucial for tumor adaptation and survival. Additionally, targeting ER stress-related metabolic pathways has shown potential in preclinical models, suggesting new therapeutic strategies. Conclusions: Understanding the metabolic impact of ER stress in cancer provides valuable opportunities for drug development. Metabolomics-based approaches may help identify novel biomarkers and therapeutic targets, enhancing the effectiveness of antitumor therapies.
Collapse
Affiliation(s)
- Salvatore Zarrella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| |
Collapse
|
5
|
Carpentier J, Freitas M, Morales V, Bianchi K, Bomalaski J, Szlosarek P, Martin SA. Overcoming resistance to arginine deprivation therapy using GC7 in pleural mesothelioma. iScience 2025; 28:111525. [PMID: 39758821 PMCID: PMC11699351 DOI: 10.1016/j.isci.2024.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Pleural mesothelioma is a highly chemotherapy-resistant cancer. Approximately 50% of mesotheliomas do not express argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme in arginine biosynthesis, making arginine depletion with pegylated arginine deiminase (ADI-PEG20) an attractive therapeutic strategy. We investigated whether combinatory treatment composed of ADI-PEG20 and polyamine inhibitors constitutes a promising novel therapeutic strategy to overcome ADI-PEG20 resistance in mesothelioma patients. Treatment of ADI-PEG20-resistant cell lines with a range of different polyamine inhibitors demonstrated that ADI-PEG20-resistant cell lines were highly sensitive to the spermidine-analog GC7. We observed a synergistic effect of GC7 and ADI-PEG20 in both ADI-PEG20-sensitive and ADI-PEG20-resistant cell lines. Metabolomic analysis revealed that sensitivity to GC7 is due to inhibition of the Tricarboxylic (TCA) cycle. Significantly, combination of GC7 and ADI-PEG20 prevented the emergence of resistant cells in vitro. Taken together, we have identified the therapeutic potential of combinatorial treatment of ADI-PEG20 with GC7 for mesothelioma management.
Collapse
Affiliation(s)
- Josephine Carpentier
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Marta Freitas
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Valle Morales
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Katiuscia Bianchi
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | - Peter Szlosarek
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sarah A. Martin
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
6
|
Barciszewska AM, Belter A, Barciszewski JF, Gawrońska I, Giel-Pietraszuk M, Naskręt-Barciszewska MZ. Mechanistic Insights on Metformin and Arginine Implementation as Repurposed Drugs in Glioblastoma Treatment. Int J Mol Sci 2024; 25:9460. [PMID: 39273414 PMCID: PMC11394688 DOI: 10.3390/ijms25179460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
As the most common and aggressive primary malignant brain tumor, glioblastoma is still lacking a satisfactory curative approach. The standard management consisting of gross total resection followed by radiotherapy and chemotherapy with temozolomide only prolongs patients' life moderately. In recent years, many therapeutics have failed to give a breakthrough in GBM treatment. In the search for new treatment solutions, we became interested in the repurposing of existing medicines, which have established safety profiles. We focused on the possible implementation of well-known drugs, metformin, and arginine. Metformin is widely used in diabetes treatment, but arginine is mainly a cardiovascular protective drug. We evaluated the effects of metformin and arginine on total DNA methylation, as well as the oxidative stress evoked by treatment with those agents. In glioblastoma cell lines, a decrease in 5-methylcytosine contents was observed with increasing drug concentration. When combined with temozolomide, both guanidines parallelly increased DNA methylation and decreased 8-oxo-deoxyguanosine contents. These effects can be explained by specific interactions of the guanidine group with m5CpG dinucleotide. We showed that metformin and arginine act on the epigenetic level, influencing the foreground and potent DNA regulatory mechanisms. Therefore, they can be used separately or in combination with temozolomide, in various stages of disease, depending on desired treatment effects.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
- Department of Neurosurgery and Neurotraumatology, University Clinical Hospital, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Agnieszka Belter
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Jakub F Barciszewski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Iwona Gawrońska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | - Małgorzata Giel-Pietraszuk
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | | |
Collapse
|
7
|
Vonderohe C, Stoll B, Didelija I, Nguyen T, Mohammad M, Jones-Hall Y, Cruz MA, Marini J, Burrin D. Citrulline and ADI-PEG20 reduce inflammation in a juvenile porcine model of acute endotoxemia. Front Immunol 2024; 15:1400574. [PMID: 39176089 PMCID: PMC11338849 DOI: 10.3389/fimmu.2024.1400574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Background Arginine is a conditionally essential amino acid that is depleted in critically ill or surgical patients. In pediatric and adult patients, sepsis results in an arginine-deficient state, and the depletion of plasma arginine is associated with greater mortality. However, direct supplementation of arginine can result in the excessive production of nitric oxide (NO), which can contribute to the hypotension and macrovascular hypo-reactivity observed in septic shock. Pegylated arginine deiminase (ADI-PEG20, pegargiminase) reduces plasma arginine and generates citrulline that can be transported intracellularly to generate local arginine and NO, without resulting in hypotension, while maintaining microvascular patency. The objective of this study was to assess the efficacy of ADI-PEG20 with and without supplemental intravenous citrulline in mitigating hypovolemic shock, maintaining tissue levels of arginine, and reducing systemic inflammation in an endotoxemic pediatric pig model. Methods Twenty 3-week-old crossbred piglets were implanted with jugular and carotid catheters as well as telemetry devices in the femoral artery to measure blood pressure, body temperature, heart rate, and respiration rate. The piglets were assigned to one of three treatments before undergoing a 5 h lipopolysaccharide (LPS) infusion protocol. Twenty-four hours before LPS infusion, control pigs (LPS; n=6) received saline, ADI-PEG20 pigs (n=7) received an injection of ADI-PEG20, and seven pigs (ADI-PEG20 + CIT pigs [n=7]) received ADI-PEG20 and 250 mg/kg citrulline intravenously. Pigs were monitored throughout LPS infusion and tissue was harvested at the end of the protocol. Results Plasma arginine levels decreased and remained low in ADI-PEG20 + CIT and ADI-PEG20 pigs compared with LPS pigs but tissue arginine levels in the liver and kidney were similar across all treatments. Mean arterial pressure in all groups decreased from 90 mmHg to 60 mmHg within 1 h of LPS infusion but there were no significant differences between treatment groups. ADI-PEG20 and ADI-PEG20 + CIT pigs had less CD45+ infiltrate in the liver and lung and lower levels of pro-inflammatory cytokines in the plasma. Conclusion ADI-PEG20 and citrulline supplementation failed to ameliorate the hypotension associated with acute endotoxic sepsis in pigs but reduced systemic and local inflammation in the lung and liver.
Collapse
Affiliation(s)
- Caitlin Vonderohe
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Barbara Stoll
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Inka Didelija
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Trung Nguyen
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veteran Administration Medical Center, Houston, TX, United States
| | - Mahmoud Mohammad
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Yava Jones-Hall
- Department of Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Science, College Station, TX, United States
| | - Miguel A. Cruz
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veteran Administration Medical Center, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Juan Marini
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Douglas Burrin
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Liu TA, Stewart TM, Casero RA. The Synergistic Benefit of Combination Strategies Targeting Tumor Cell Polyamine Homeostasis. Int J Mol Sci 2024; 25:8173. [PMID: 39125742 PMCID: PMC11311409 DOI: 10.3390/ijms25158173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.
Collapse
Affiliation(s)
- Ting-Ann Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| |
Collapse
|
9
|
Prasad YR, Anakha J, Pande AH. Treating liver cancer through arginine depletion. Drug Discov Today 2024; 29:103940. [PMID: 38452923 DOI: 10.1016/j.drudis.2024.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Liver cancer, the sixth most common cancer globally and the second-leading cause of cancer-related deaths, presents a critical public health threat. Diagnosis often occurs in advanced stages of the disease, aligning incidence with fatality rates. Given that established treatments, such as stereotactic body radiation therapy and transarterial radioembolization, face accessibility and affordability challenges, the emerging focus on cancer cell metabolism, particularly arginine (Arg) depletion, offers a promising research avenue. Arg-depleting enzymes show efficacy against Arg-auxotrophic cancers, including hepatocellular carcinoma (HCC). Thus, in this review, we explore the limitations of current therapies and highlight the potential of Arg depletion, emphasizing various Arg-hydrolyzing enzymes in clinical development.
Collapse
Affiliation(s)
- Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
10
|
Chew HY, Cvetkovic G, Tepic S, Wells JW. Arginase-induced cell death pathways and metabolic changes in cancer cells are not altered by insulin. Sci Rep 2024; 14:4112. [PMID: 38374190 PMCID: PMC10876525 DOI: 10.1038/s41598-024-54520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
Arginine, a semi-essential amino acid, is critical for cell growth. Typically, de novo synthesis of arginine is sufficient to support cellular processes, however, it becomes vital for cancer cells that are unable to synthesise arginine due to enzyme deficiencies. Targeting this need, arginine depletion with enzymes such as arginase (ARG) has emerged as a potential cancer therapeutic strategy. Studies have proposed using high dose insulin to induce a state of hypoaminoacidaemia in the body, thereby further reducing circulating arginine levels. However, the mitogenic and metabolic properties of insulin could potentially counteract the therapeutic effects of ARG. Our study examined the combined impact of insulin and ARG on breast, lung, and ovarian cell lines, focusing on cell proliferation, metabolism, apoptosis, and autophagy. Our results showed that the influence of insulin on ARG uptake varied between cell lines but failed to promote the proliferation of ARG-treated cells or aid recovery post-ARG treatment. Moreover, insulin was largely ineffective in altering ARG-induced metabolic changes and did not prevent apoptosis. In vitro, at least, these findings imply that insulin does not offer a growth or survival benefit to cancer cells being treated with ARG.
Collapse
Affiliation(s)
- Hui Yi Chew
- Faculty of Medicine, Frazer Institute, The University of Queensland, 37 Kent Street, Brisbane, QLD, 4102, Australia
| | | | | | - James W Wells
- Faculty of Medicine, Frazer Institute, The University of Queensland, 37 Kent Street, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
11
|
Jawalekar SS, Kawathe PS, Sharma N, Anakha J, Tikoo K, Pande AH. Development and characterization of fused human arginase I for cancer therapy. Invest New Drugs 2023; 41:652-663. [PMID: 37532976 DOI: 10.1007/s10637-023-01387-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Recombinant human arginase I (rhArg I) have emerged as a potential candidate for the treatment of varied pathophysiological conditions ranging from arginine-auxotrophic cancer, inflammatory conditions and microbial infection. However, rhArg I have a low circulatory half-life, leading to poor pharmacokinetic and pharmacodynamic properties, which necessitating the rapid development of modifications to circumvent these limitations. To address this, polyethylene glycol (PEG)ylated-rhArg I variants are being developed by pharmaceutical companies. However, because of the limitations associated with the clinical use of PEGylated proteins, there is a dire need in the art to develop rhArg I variant(s) which is safe (devoid of limitations of PEGylated counterpart) and possess increased circulatory half-life. In this study, we described the generation and characterization of a fused human arginase I variant (FHA-3) having improved circulatory half-life. FHA-3 protein was engineered by fusing rhArg I with a half-life extension partner (domain of human serum albumin) via a peptide linker and was produced using P. pastoris expression system. This purified biopharmaceutical (FHA-3) exhibits (i) increased arginine-hydrolyzing activity in buffer, (ii) cofactor - independency, (iii) increased circulatory half-life (t1/2) and (iv) potent anti-cancer activity against human cancer cell lines under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Snehal Sainath Jawalekar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Priyanka Sugriv Kawathe
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
12
|
Wang Z, Zhang J, Shi S, Ma H, Wang D, Zuo C, Zhang Q, Lian C. Predicting lung adenocarcinoma prognosis, immune escape, and pharmacomic profile from arginine and proline-related genes. Sci Rep 2023; 13:15198. [PMID: 37709932 PMCID: PMC10502151 DOI: 10.1038/s41598-023-42541-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly heterogeneous disease that ranks first in morbidity and mortality. Abnormal arginine metabolism is associated with inflammatory lung disease and may influence alterations in the tumor immune microenvironment. However, the potential role of arginine and proline metabolic patterns and immune molecular markers in LUAD is unclear. Gene expression, somatic mutations, and clinicopathological information of LUAD were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis was performed to identify metabolic genes associated with overall survival (OS). Unsupervised clustering divided the sample into two subtypes with different metabolic and immunological profiles. Gene set enrichment analysis (GESA) and gene set variation analysis (GSVA) were used to analyze the underlying biological processes of the two subtypes. Drug sensitivity between subtypes was also predicted; then prognostic features were developed by multivariate Cox regression analysis. In addition, validation was obtained in the GSE68465, and GSE50081 dataset. Then, gene expression, and clinical characterization of hub genes CPS1 and SMS were performed; finally, in vitro validation experiments for knockdown of SMS were performed in LUAD cell lines. In this study, we first identified 12 arginine and proline-related genes (APRGs) significantly associated with OS and characterized the clinicopathological features and tumor microenvironmental landscape of two different subtypes. Then, we established an arginine and proline metabolism-related scoring system and identified two hub genes highly associated with prognosis, namely CPS1, and SMS. In addition, we performed CCK8, transwell, and other functional experiments on SMS to obtain consistent results. Our comprehensive analysis revealed the potential molecular features and clinical applications of APRGs in LUAD. A model based on 2 APRGs can accurately predict survival outcomes in LUAD, improve our understanding of APRGs in LUAD, and pave a new pathway to guide risk stratification and treatment strategy development for LUAD patients.
Collapse
Affiliation(s)
- Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Shuhua Shi
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Hongyu Ma
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, 233030, China
| | - Dongqin Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Chao Zuo
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| | - Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China.
| |
Collapse
|
13
|
Thakker DP, Narayanan R. Arginine deiminase produced by lactic acid bacteria as a potent anti-cancer drug. Med Oncol 2023; 40:175. [PMID: 37171497 DOI: 10.1007/s12032-023-02043-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
Bacterial-based cancer immunotherapy has recently gained widespread attention due to its exceptional mechanism of rich pathogen-associated molecular patterns in anti-cancer immune responses. Contrary to conventional cancer therapies such as surgery, chemotherapy, radiation and phototherapy, bacteria-based cancer immunotherapy has the unique ability to suppress cancer by selectively accumulating and growing in tumours. In the view of this, several bacterial strains are being used for the treatment of cancer. Of which, lactic acid bacteria are a powerful, albeit still inadequately understood bacteria that possess a wide source of bioactive chemicals. Lactic acid bacteria metabolites, such as bacteriocins, short-chain fatty acids, exopolysaccharides show antitumour property. Amino acid pathways, which have lately been focussed as a new strategy to cancer therapy, are key element of the adaptability and dysregulation of metabolic pathways identified in proliferation of tumour cells. Arginine metabolism, in particular, has been shown to be critical for cancer therapy. As a result, better understanding of arginine metabolism in LAB and cancer cells could lead to new cancer therapeutic targets. This review will outline current advances in the interaction of arginine metabolism with cancer therapy and propose an arginine deiminase expression system to combat cancer more effectively.
Collapse
Affiliation(s)
- Darshali P Thakker
- Department of Genetic Engineering, College of Engineering & Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India
| | - Rajnish Narayanan
- Department of Genetic Engineering, College of Engineering & Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
14
|
Anakha J, Prasad YR, Sharma N, Pande AH. Human arginase I: a potential broad-spectrum anti-cancer agent. 3 Biotech 2023; 13:159. [PMID: 37152001 PMCID: PMC10156892 DOI: 10.1007/s13205-023-03590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/23/2023] [Indexed: 05/09/2023] Open
Abstract
With high rates of morbidity and mortality, cancer continues to pose a serious threat to public health on a global scale. Considering the discrepancies in metabolism between cancer and normal cells, metabolism-based anti-cancer biopharmaceuticals are gaining importance. Normal cells can synthesize arginine, but they can also take up extracellular arginine, making it a semi-essential amino acid. Arginine auxotrophy occurs when a cancer cell has abnormalities in the enzymes involved in arginine metabolism and relies primarily on extracellular arginine to support its biological functions. Taking advantage of arginine auxotrophy in cancer cells, arginine deprivation, which can be induced by introducing recombinant human arginase I (rhArg I), is being developed as a broad-spectrum anti-cancer therapy. This has led to the development of various rhArg I variants, which have shown remarkable anti-cancer activity. This article discusses the importance of arginine auxotrophy in cancer and different arginine-hydrolyzing enzymes that are in various stages of clinical development and reviews the need for a novel rhArg I that mitigates the limitations of the existing therapies. Further, we have also analyzed the necessity as well as the significance of using rhArg I to treat various arginine-auxotrophic cancers while considering the importance of their genetic profiles, particularly urea cycle enzymes.
Collapse
Affiliation(s)
- J. Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Abhay H. Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| |
Collapse
|
15
|
Fantone S, Ermini L, Piani F, Di Simone N, Barbaro G, Giannubilo SR, Gesuita R, Tossetta G, Marzioni D. Downregulation of argininosuccinate synthase 1 (ASS1) is associated with hypoxia in placental development. Hum Cell 2023; 36:1190-1198. [PMID: 36995581 DOI: 10.1007/s13577-023-00901-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Argininosuccinate synthase (ASS1) is involved in nitric oxide production, which has a key role in placental development improving pregnancy outcomes. Syncytiotrophoblast and extravillous trophoblast differentiations are milestones of placental development and their impairment can cause pathologies, such as preeclampsia (PE) and fetal growth restriction (FGR). Immunohistochemistry and Western blotting were used to localize and quantify ASS1 in first trimester (8.2 ± 1.8 weeks), third trimester (38.6 ± 1.1 weeks), and PE (36.3 ± 1.5 weeks) placentas. In addition, cell cultures were used to evaluate ASS1 expression under hypoxic conditions and the syncytialization process. Our data showed that ASS1 is localized in the villous cytotrophoblast of first trimester, third trimester, and PE placentas, while the villous cytotrophoblast adjacent to the extravillous trophoblast of cell columns as well as the extravillous trophoblast were negative for ASS1 in first trimester placentas. In addition, ASS1 was decreased in third trimester compared to the first trimester placentas (p = 0.003) and no differences were detected between third trimester and PE placentas. Moreover, ASS1 expression was decreased in hypoxic conditions and syncytialized cells compared to those not syncytialized. In conclusion, we suggest that the expression of ASS1 in villous cytotrophoblast is related to maintaining proliferative phenotype, while ASS1 absence may be involved in promoting the differentiation of villous cytotrophoblast in extravillous cytotrophoblast of cell columns in first trimester placentas.
Collapse
Affiliation(s)
- Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Leonardo Ermini
- Department of Life Science, University of Siena, 53100, Siena, Italy
| | - Federica Piani
- Cardiovascular Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40128, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, 20089, Milan, Italy
| | - Greta Barbaro
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Stefano Raffaele Giannubilo
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy
| | - Rosaria Gesuita
- Centre of Epidemiology and Biostatistics, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy.
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
16
|
Weiss MC, Van Tine BA. Relapsed Synovial Sarcoma: Treatment Options. Curr Treat Options Oncol 2023; 24:229-239. [PMID: 36867389 DOI: 10.1007/s11864-023-01056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 03/04/2023]
Abstract
OPINION STATEMENT Synovial sarcoma (SS) is a fusion-driven subtype of sarcoma that is a more chemo-sensitive subtype of soft tissue sarcoma. While chemotherapy options are currently standard of care, our fundamental understanding of the biology of SS is driving new therapies. We will review the current standard of care, as well as the current therapies showing promise in a clinical trial. It is our hope that by encouraging participation in clinical trials, the fundamental therapies available for SS will change the current treatment paradigm.
Collapse
Affiliation(s)
- Mia C Weiss
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, St. Louis, MO, USA.
| | - Brian A Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, St. Louis, MO, USA.
- Division of Pediatric Hematology and Oncology, St. Louis Children's Hospital, St. Louis, MO, USA.
| |
Collapse
|
17
|
The Role of PI3K/AKT/mTOR Signaling in Hepatocellular Carcinoma Metabolism. Int J Mol Sci 2023; 24:ijms24032652. [PMID: 36768977 PMCID: PMC9916527 DOI: 10.3390/ijms24032652] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths in the world. Metabolic reprogramming is considered a new hallmark of cancer, but it remains unclearly described in HCC. The dysregulation of the PI3K/AKT/mTOR signaling pathway is common in HCC and is, therefore, a topic of further research and the concern of developing a novel target for liver cancer therapy. In this review, we illustrate mechanisms by which this signaling network is accountable for regulating HCC cellular metabolism, including glucose metabolism, lipid metabolism, amino acid metabolism, pyrimidine metabolism, and oxidative metabolism, and summarize the ongoing clinical trials based on the inhibition of the PI3K/AKT/mTOR pathway in HCC.
Collapse
|
18
|
Wanjari UR, Mukherjee AG, Gopalakrishnan AV, Murali R, Dey A, Vellingiri B, Ganesan R. Role of Metabolism and Metabolic Pathways in Prostate Cancer. Metabolites 2023; 13:183. [PMID: 36837801 PMCID: PMC9962346 DOI: 10.3390/metabo13020183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer (PCa) is the common cause of death in men. The pathophysiological factors contributing to PCa are not well known. PCa cells gain a protective mechanism via abnormal lipid signaling and metabolism. PCa cells modify their metabolism in response to an excessive intake of nutrients to facilitate advancement. Metabolic syndrome (MetS) is inextricably linked to the carcinogenic progression of PCa, which heightens the severity of the disease. It is hypothesized that changes in the metabolism of the mitochondria contribute to the onset of PCa. The studies of particular alterations in the progress of PCa are best accomplished by examining the metabolome of prostate tissue. Due to the inconsistent findings written initially, additional epidemiological research is required to identify whether or not MetS is an aspect of PCa. There is a correlation between several risk factors and the progression of PCa, one of which is MetS. The metabolic symbiosis between PCa cells and the tumor milieu and how this type of crosstalk may aid in the development of PCa is portrayed in this work. This review focuses on in-depth analysis and evaluation of the metabolic changes that occur within PCa, and also aims to assess the effect of metabolic abnormalities on the aggressiveness status and metabolism of PCa.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
19
|
Yan Y, Chen C, Li Z, Zhang J, Park N, Qu CK. Extracellular arginine is required but the arginine transporter CAT3 (Slc7a3) is dispensable for mouse normal and malignant hematopoiesis. Sci Rep 2022; 12:21832. [PMID: 36528691 PMCID: PMC9759514 DOI: 10.1038/s41598-022-24554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Amino acid-mediated metabolism is one of the key catabolic and anabolic processes involved in diverse cellular functions. However, the role of the semi-essential amino acid arginine in normal and malignant hematopoietic cell development is poorly understood. Here we report that a continuous supply of exogenous arginine is required for the maintenance/function of normal hematopoietic stem cells (HSCs). Surprisingly, knockout of Slc7a3 (CAT3), a major L-arginine transporter, does not affect HSCs in steady-state or under stress. Although Slc7a3 is highly expressed in naïve and activated CD8 T cells, neither T cell development nor activation/proliferation is impacted by Slc7a3 depletion. Furthermore, the Slc7a3 deletion does not attenuate leukemia development driven by Pten loss or the oncogenic Ptpn11E76K mutation. Arginine uptake assays reveal that L-arginine uptake is not disrupted in Slc7a3 knockout cells. These data suggest that extracellular arginine is critically important for HSCs, but CAT3 is dispensable for normal hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Yuhan Yan
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Chao Chen
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Zhiguo Li
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Jing Zhang
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Narin Park
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| | - Cheng-Kui Qu
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, HSRB E302, Atlanta, GA 30322 USA
| |
Collapse
|
20
|
Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr 2022; 9:1082500. [PMID: 36570149 PMCID: PMC9772031 DOI: 10.3389/fnut.2022.1082500] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition plays an essential role in the regulation of optimal immunological response, by providing adequate nutrients in sufficient concentrations to immune cells. There are a large number of micronutrients, such as minerals, and vitamins, as well as some macronutrients such as some amino acids, cholesterol and fatty acids demonstrated to exert a very important and specific impact on appropriate immune activity. This review aims to summarize at some extent the large amount of data accrued to date related to the modulation of immune function by certain micro and macronutrients and to emphasize their importance in maintaining human health. Thus, among many, some relevant case in point examples are brought and discussed: (1) The role of vitamin A/all-trans-retinoic-acids (ATRA) in acute promyelocytic leukemia, being this vitamin utilized as a very efficient therapeutic agent via effective modulation of the immune function (2) The involvement of vitamin C in the fight against tumor cells via the increase of the number of active NK cells. (3) The stimulation of apoptosis, the suppression of cancer cell proliferation, and delayed tumor development mediated by calcitriol/vitamin D by means of immunity regulation (4) The use of selenium as a cofactor to reach more effective immune response to COVID vaccination (5). The crucial role of cholesterol to regulate the immune function, which is demonstrated to be very sensitive to the variations of this macronutrient concentration. Other important examples are reviewed as well.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania,Camelia Munteanu,
| | - Betty Schwartz
- Robert H. Smith Faculty of Agriculture, Food and Environment, The School of Nutritional Sciences, The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel,*Correspondence: Betty Schwartz,
| |
Collapse
|
21
|
Anand ST, Ryckman KK, Baer RJ, Charlton ME, Breheny PJ, Terry WW, Kober K, Oltman S, Rogers EE, Jelliffe-Pawlowski LL, Chrischilles EA. Metabolic differences among newborns born to mothers with a history of leukemia or lymphoma. J Matern Fetal Neonatal Med 2022; 35:6751-6758. [PMID: 33980115 PMCID: PMC8586052 DOI: 10.1080/14767058.2021.1922378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Leukemia and lymphoma are cancers affecting children, adolescents, and young adults and may affect reproductive outcomes and maternal metabolism. We evaluated for metabolic changes in newborns of mothers with a history of these cancers. METHODS A cross-sectional study was conducted on California births from 2007 to 2011 with linked maternal hospital discharge records, birth certificate, and newborn screening metabolites. History of leukemia or lymphoma was determined using ICD-9-CM codes from hospital discharge data and newborn metabolite data from the newborn screening program. RESULTS A total of 2,068,038 women without cancer history and 906 with history of leukemia or lymphoma were included. After adjusting for differences in maternal age, infant sex, age at metabolite collection, gestational age, and birthweight, among newborns born to women with history of leukemia/lymphoma, several acylcarnitines were significantly (p < .001 - based on Bonferroni correction for multiple testing) higher compared to newborns of mothers without cancer history: C3-DC (mean difference (MD) = 0.006), C5-DC (MD = 0.009), C8:1 (MD = 0.008), C14 (MD = 0.010), and C16:1 (MD = 0.011), whereas citrulline levels were significantly lower (MD = -0.581) among newborns born to mothers with history of leukemia or lymphoma compared to newborns of mothers without a history of cancer. CONCLUSION The varied metabolite levels suggest history of leukemia or lymphoma has metabolic impact on newborn offspring, which may have implications for future metabolic consequences such as necrotizing enterocolitis and urea cycle enzyme disorders in children born to mothers with a history of leukemia or lymphoma.
Collapse
Affiliation(s)
- Sonia T. Anand
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Kelli K. Ryckman
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Rebecca J. Baer
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, California, United States of America
| | - Mary E. Charlton
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick J. Breheny
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, United States of America
| | - William W. Terry
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Kord Kober
- Department of Physiological Nursing, University of California San Francisco, San Francisco, California, United States of America
| | - Scott Oltman
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Elizabeth E. Rogers
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Laura L. Jelliffe-Pawlowski
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | | |
Collapse
|
22
|
Identification of the ultrahigh-risk subgroup in neuroblastoma cases through DNA methylation analysis and its treatment exploiting cancer metabolism. Oncogene 2022; 41:4994-5007. [PMID: 36319669 PMCID: PMC9652143 DOI: 10.1038/s41388-022-02489-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Neuroblastomas require novel therapies that are based on the exploitation of their biological mechanism. To address this need, we analyzed the DNA methylation and expression datasets of neuroblastomas, extracted a candidate gene characterizing the aggressive features, and conducted functional studies. Based on the DNA methylation data, we identified a subgroup of neuroblastoma cases with 11q loss of heterozygosity with extremely poor prognosis. PHGDH, a serine metabolism-related gene, was extracted as a candidate with strong expression and characteristic methylation in this subgroup as well as in cases with MYCN amplification. PHGDH inhibition suppressed neuroblastoma cell proliferation in vitro and in vivo, indicating that the inhibition of serine metabolism by PHGDH inhibitors is a therapeutic alternative for neuroblastoma. Inhibiting the arginine metabolism, which is closely related to serine metabolism using arginine deiminase, had a combination effect both in vitro and in vivo, especially on extracellular arginine-dependent neuroblastoma cells with ASS1 deficiency. Expression and metabolome analyses of post-dose cells confirmed the synergistic effects of treatments targeting serine and arginine indicated that xCT inhibitors that inhibit cystine uptake could be candidates for further combinatorial treatment. Our results highlight the rational therapeutic strategy of targeting serine/arginine metabolism for intractable neuroblastoma.
Collapse
|
23
|
Diwan D, Cheng L, Usmani Z, Sharma M, Holden N, Willoughby N, Sangwan N, Baadhe RR, Liu C, Gupta VK. Microbial cancer therapeutics: A promising approach. Semin Cancer Biol 2022; 86:931-950. [PMID: 33979677 DOI: 10.1016/j.semcancer.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The success of conventional cancer therapeutics is hindered by associated dreadful side-effects of antibiotic resistance and the dearth of antitumor drugs' selectivity and specificity. Hence, the conceptual evolution of anti-cancerous therapeutic agents that selectively target cancer cells without impacting the healthy cells or tissues, has led to a new wave of scientific interest in microbial-derived bioactive molecules. Such strategic solutions may pave the way to surmount the shortcomings of conventional therapies and raise the potential and hope for the cure of wide range of cancer in a selective manner. This review aims to provide a comprehensive summary of anti-carcinogenic properties and underlying mechanisms of bioactive molecules of microbial origin, and discuss the current challenges and effective therapeutic application of combinatorial strategies to attain minimal systemic side-effects.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Lei Cheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 230032, China
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Nicola Holden
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Neelam Sangwan
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
24
|
Jiménez JA, Lawlor ER, Lyssiotis CA. Amino acid metabolism in primary bone sarcomas. Front Oncol 2022; 12:1001318. [PMID: 36276057 PMCID: PMC9581121 DOI: 10.3389/fonc.2022.1001318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/19/2022] [Indexed: 12/30/2022] Open
Abstract
Primary bone sarcomas, including osteosarcoma (OS) and Ewing sarcoma (ES), are aggressive tumors with peak incidence in childhood and adolescence. The intense standard treatment for these patients consists of combined surgery and/or radiation and maximal doses of chemotherapy; a regimen that has not seen improvement in decades. Like other tumor types, ES and OS are characterized by dysregulated cellular metabolism and a rewiring of metabolic pathways to support the biosynthetic demands of malignant growth. Not only are cancer cells characterized by Warburg metabolism, or aerobic glycolysis, but emerging work has revealed a dependence on amino acid metabolism. Aside from incorporation into proteins, amino acids serve critical functions in redox balance, energy homeostasis, and epigenetic maintenance. In this review, we summarize current studies describing the amino acid metabolic requirements of primary bone sarcomas, focusing on OS and ES, and compare these dependencies in the normal bone and malignant tumor contexts. We also examine insights that can be gleaned from other cancers to better understand differential metabolic susceptibilities between primary and metastatic tumor microenvironments. Lastly, we discuss potential metabolic vulnerabilities that may be exploited therapeutically and provide better-targeted treatments to improve the current standard of care.
Collapse
Affiliation(s)
- Jennifer A. Jiménez
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Elizabeth R. Lawlor
- Department of Pediatrics, University of Washington, Seattle, WA, United States,Seattle Children’s Research Institute, Seattle, WA, United States,*Correspondence: Elizabeth R. Lawlor, ; Costas A. Lyssiotis,
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI, United States,*Correspondence: Elizabeth R. Lawlor, ; Costas A. Lyssiotis,
| |
Collapse
|
25
|
Hassabo AA, Abdelraof M, Allam RM. L-arginase from Streptomyces diastaticus MAM5 as a potential therapeutic agent in breast cancer: Purification, characterization, G1 phase arrest and autophagy induction. Int J Biol Macromol 2022; 224:634-645. [DOI: 10.1016/j.ijbiomac.2022.10.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
26
|
Manjunath M, Swaroop S, Pradhan SS, Rao K R, Mahadeva R, Sivaramakrishnan V, Choudhary B. Integrated Transcriptome and Metabolomic Analysis Reveal Anti-Angiogenic Properties of Disarib, a Novel Bcl2-Specific Inhibitor. Genes (Basel) 2022; 13:genes13071208. [PMID: 35885991 PMCID: PMC9316176 DOI: 10.3390/genes13071208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Transcriptomic profiling of several drugs in cancer cell lines has been utilised to obtain drug-specific signatures and guided combination therapy to combat drug resistance and toxicity. Global metabolomics reflects changes due to altered activity of enzymes, environmental factors, etc. Integrating transcriptomics and metabolomics can provide genotype-phenotype correlation, providing meaningful insights into alterations in gene expression and its outcome to understand differential metabolism and guide therapy. This study uses a multi-omics approach to understand the global gene expression and metabolite changes induced by Disarib, a novel Bcl2-specific inhibitor in the Ehrlich adenocarcinoma (EAC) breast cancer mouse model. RNAseq analysis was performed on EAC mouse tumours treated with Disarib and compared to the controls. The expression of 6 oncogenes and 101 tumour suppressor genes interacting with Bcl2 and Bak were modulated upon Disarib treatment. Cancer hallmark pathways like DNA repair, Cell cycle, angiogenesis, and mitochondrial metabolism were downregulated, and programmed cell death platelet-related pathways were upregulated. Global metabolomic profiling using LC-MS revealed that Oncometabolites like carnitine, oleic acid, glycine, and arginine were elevated in tumour mice compared to normal and were downregulated upon Disarib treatment. Integrated transcriptomic and metabolomic profiles identified arginine metabolism, histidine, and purine metabolism to be altered upon Disarib treatment. Pro-angiogenic metabolites, arginine, palmitic acid, oleic acid, and myristoleic acid were downregulated in Disarib-treated mice. We further validated the effect of Disarib on angiogenesis by qRT-PCR analysis of genes in the VEGF pathway. Disarib treatment led to the downregulation of pro-angiogenic markers. Furthermore, the chorioallantoic membrane assay displayed a reduction in the formation of the number of secondary blood vessels upon Disarib treatment. Disarib reduces tumours by reducing oncometabolite and activating apoptosis and downregulating angiogenesis.
Collapse
Affiliation(s)
- Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sai Swaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Raksha Rao K
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
| | - Raghunandan Mahadeva
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
- Correspondence:
| |
Collapse
|
27
|
Du W, Nair P, Johnston A, Wu PH, Wirtz D. Cell Trafficking at the Intersection of the Tumor-Immune Compartments. Annu Rev Biomed Eng 2022; 24:275-305. [PMID: 35385679 PMCID: PMC9811395 DOI: 10.1146/annurev-bioeng-110320-110749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Migration is an essential cellular process that regulates human organ development and homeostasis as well as disease initiation and progression. In cancer, immune and tumor cell migration is strongly associated with immune cell infiltration, immune escape, and tumor cell metastasis, which ultimately account for more than 90% of cancer deaths. The biophysics and molecular regulation of the migration of cancer and immune cells have been extensively studied separately. However, accumulating evidence indicates that, in the tumor microenvironment, the motilities of immune and cancer cells are highly interdependent via secreted factors such as cytokines and chemokines. Tumor and immune cells constantly express these soluble factors, which produce a tightly intertwined regulatory network for these cells' respective migration. A mechanistic understanding of the reciprocal regulation of soluble factor-mediated cell migration can provide critical information for the development of new biomarkers of tumor progression and of tumor response to immuno-oncological treatments. We review the biophysical andbiomolecular basis for the migration of immune and tumor cells and their associated reciprocal regulatory network. We also describe ongoing attempts to translate this knowledge into the clinic.
Collapse
Affiliation(s)
- Wenxuan Du
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Praful Nair
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adrian Johnston
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pei-Hsun Wu
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Denis Wirtz
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA,Department of Oncology, Department of Pathology, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Buel GR, Dang H, Asara JM, Blenis J, Mutvei AP. Prolonged deprivation of arginine or leucine induces PI3K/Akt-dependent reactivation of mTORC1. J Biol Chem 2022; 298:102030. [PMID: 35577075 PMCID: PMC9194872 DOI: 10.1016/j.jbc.2022.102030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023] Open
|
29
|
Lin Y, Yang Z, Li J, Sun Y, Zhang X, Qu Z, Luo Y, Zhang L. Effects of glutamate and aspartate on prostate cancer and breast cancer: a Mendelian randomization study. BMC Genomics 2022; 23:213. [PMID: 35296245 PMCID: PMC8925075 DOI: 10.1186/s12864-022-08442-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Background Respectively, prostate cancer (PCa) and breast cancer (BC) are the second most and most commonly diagnosed cancer in men and women, and they account for a majority of cancer-related deaths world-wide. Cancer cells typically exhibit much-facilitated growth that necessitates upregulated glycolysis and augmented amino acid metabolism, that of glutamine and aspartate in particular, which is tightly coupled with an increased flux of the tricarboxylic acid (TCA) cycle. Epidemiological studies have exploited metabolomics to explore the etiology and found potentially effective biomarkers for early detection or progression of prostate and breast cancers. However, large randomized controlled trials (RCTs) to establish causal associations between amino acid metabolism and prostate and breast cancers have not been reported. Objective Utilizing two-sample Mendelian randomization (MR), we aimed to estimate how genetically predicted glutamate and aspartate levels could impact upon prostate and breast cancers development. Methods Single nucleotide polymorphisms (SNPs) as instrumental variables (IVs), associated with the serum levels of glutamate and aspartate were extracted from the publicly available genome-wide association studies (GWASs), which were conducted to associate genetic variations with blood metabolite levels using comprehensive metabolite profiling in 1,960 adults; and the glutamate and aspartate we have chosen were two of 644 metabolites. The summary statistics for the largest and latest GWAS datasets for prostate cancer (61,106 controls and 79,148 cases) were from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium, and datasets for breast cancer (113,789 controls and 133,384 cases) were from Breast Cancer Association Consortium (BCAC). The study was performed through two-sample MR method. Results Causal estimates were expressed as odds ratios (OR) and 95% confidence interval (CI) per standard deviation increment in serum level of aspartate or glutamate. Aspartate was positively associated with prostate cancer (Effect = 1.043; 95% confidence interval, 1.003 to 1.084; P = 0.034) and breast cancer (Effect = 1.033; 95% confidence interval, 1.004 to 1.063; P = 0.028); however, glutamate was neither associated with prostate cancer nor with breast cancer. The potential causal associations were robust to the sensitivity analysis. Conclusions Our study found that the level of serum aspartate could serve as a risk factor that contributed to the development of prostate and breast cancers. Efforts on a detailed description of the underlying biochemical mechanisms would be extremely valuable in early assessment and/or diagnosis, and strategizing clinical intervention, of both cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08442-7.
Collapse
Affiliation(s)
- Yindan Lin
- Department of Biochemistry and Cancer Institute, (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Xihu District, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Ze Yang
- Department of Biochemistry and Cancer Institute, (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Xihu District, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Jingjia Li
- Department of Biochemistry and Cancer Institute, (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Xihu District, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Yandi Sun
- Department of Biochemistry and Cancer Institute, (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Xihu District, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Xueyun Zhang
- Department of Biochemistry and Cancer Institute, (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Xihu District, Zijingang Campus, Zhejiang, 310058, Hangzhou, China
| | - Zihao Qu
- Orthopedic Research Institute of Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Yan Luo
- Department of Biochemistry and Cancer Institute, (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Xihu District, Zijingang Campus, Zhejiang, 310058, Hangzhou, China.
| | - Lihong Zhang
- Department of Biochemistry and Cancer Institute, (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Xihu District, Zijingang Campus, Zhejiang, 310058, Hangzhou, China.
| |
Collapse
|
30
|
Meng W, Palmer JD, Siedow M, Haque SJ, Chakravarti A. Overcoming Radiation Resistance in Gliomas by Targeting Metabolism and DNA Repair Pathways. Int J Mol Sci 2022; 23:ijms23042246. [PMID: 35216362 PMCID: PMC8880405 DOI: 10.3390/ijms23042246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Gliomas represent a wide spectrum of brain tumors characterized by their high invasiveness, resistance to chemoradiotherapy, and both intratumoral and intertumoral heterogeneity. Recent advances in transomics studies revealed that enormous abnormalities exist in different biological layers of glioma cells, which include genetic/epigenetic alterations, RNA expressions, protein expression/modifications, and metabolic pathways, which provide opportunities for development of novel targeted therapeutic agents for gliomas. Metabolic reprogramming is one of the hallmarks of cancer cells, as well as one of the oldest fields in cancer biology research. Altered cancer cell metabolism not only provides energy and metabolites to support tumor growth, but also mediates the resistance of tumor cells to antitumor therapies. The interactions between cancer metabolism and DNA repair pathways, and the enhancement of radiotherapy sensitivity and assessment of radiation response by modulation of glioma metabolism are discussed herein.
Collapse
|
31
|
Arginine and Arginases Modulate Metabolism, Tumor Microenvironment and Prostate Cancer Progression. Nutrients 2021; 13:nu13124503. [PMID: 34960055 PMCID: PMC8704013 DOI: 10.3390/nu13124503] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 12/30/2022] Open
Abstract
Arginine availability and activation of arginine-related pathways at cancer sites have profound effects on the tumor microenvironment, far beyond their well-known role in the hepatic urea cycle. Arginine metabolism impacts not only malignant cells but also the surrounding immune cells behavior, modulating growth, survival, and immunosurveillance mechanisms, either through an arginase-mediated effect on polyamines and proline synthesis, or by the arginine/nitric oxide pathway in tumor cells, antitumor T-cells, myeloid-derived suppressor cells, and macrophages. This review presents evidence concerning the impact of arginine metabolism and arginase activity in the prostate cancer microenvironment, highlighting the recent advances in immunotherapy, which might be relevant for prostate cancer. Even though further research is required, arginine deprivation may represent a novel antimetabolite strategy for the treatment of arginine-dependent prostate cancer.
Collapse
|
32
|
Li Z, Zhou S, Yang X, Li X, Yang GX, Chant J, Snyder M, Wang X. Broad Anti-Cancer Activity Produced by Targeted Nutrients Deprivation (TND) of Multiple Non-Essential Amino Acids. Nutr Cancer 2021; 74:2607-2621. [PMID: 34905997 DOI: 10.1080/01635581.2021.2013904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It has been known for close to 100 years that the metabolism of cancer cells is altered and different than that of healthy cells in the body. On that basis, we have developed an entirely novel approach to managing cancer, termed Targeted Nutrients Deprivation (TND). TND employs a formulated diet depleted of multiple non-essential amino acids (NEAAs) that are required by tumor cells but not by normal cells. Cancer cells specifically require those NEAAs due to their heightened and rewired metabolism. We demonstrated that our first proprietary formulated TND diet-FTN203-significantly reduced the growth of multiple human tumor xenografts in mouse. In combination with chemotherapy and immunotherapy, FTN203 further enhanced therapeutic efficacy. Reliance on FTN203 as the sole nutrition source was shown to be safe without causing detrimental body-weight loss or internal organ damage. Our findings indicate that TND is a novel and safe approach to managing cancer.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.2013904 .
Collapse
Affiliation(s)
- Zehui Li
- Filtricine, Inc, Santa Clara, California, USA
| | - Shuang Zhou
- Filtricine, Inc, Santa Clara, California, USA
| | | | - Xiyan Li
- Filtricine, Inc, Santa Clara, California, USA
| | | | - John Chant
- Filtricine, Inc, Santa Clara, California, USA
| | | | - Xin Wang
- Filtricine, Inc, Santa Clara, California, USA
| |
Collapse
|
33
|
Deciphering the Role of Pyrvinium Pamoate in the Generation of Integrated Stress Response and Modulation of Mitochondrial Function in Myeloid Leukemia Cells through Transcriptome Analysis. Biomedicines 2021; 9:biomedicines9121869. [PMID: 34944685 PMCID: PMC8698814 DOI: 10.3390/biomedicines9121869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/15/2023] Open
Abstract
Pyrvinium pamoate, a widely-used anthelmintic agent, reportedly exhibits significant anti-tumor effects in several cancers. However, the efficacy and mechanisms of pyrvinium against myeloid leukemia remain unclear. The growth inhibitory effects of pyrvinium were tested in human AML cell lines. Transcriptome analysis of Molm13 myeloid leukemia cells suggested that pyrvinium pamoate could trigger an unfolded protein response (UPR)-like pathway, including responses to extracellular stimulus [p-value = 2.78 × 10-6] and to endoplasmic reticulum stress [p-value = 8.67 × 10-7], as well as elicit metabolic reprogramming, including sulfur compound catabolic processes [p-value = 2.58 × 10-8], and responses to a redox state [p-value = 5.80 × 10-5]; on the other hand, it could elicit a pyrvinium blunted protein folding function, including protein folding [p-value = 2.10 × 10-8] and an ATP metabolic process [p-value = 3.95 × 10-4]. Subsequently, pyrvinium was verified to induce an integrated stress response (ISR), demonstrated by activation of the eIF2α-ATF4 pathway and inhibition of mTORC1 signaling, in a dose- and time-dependent manner. Additionally, pyrvinium could co-localize with mitochondria and then decrease the mitochondrial basal oxidative consumption rate, ultimately dysregulating the mitochondrial function. Similar effects were observed in cabozantinib-resistant Molm13-XR cell lines. Furthermore, pyrvinium treatment retarded Molm13 and Molm13-XR xenograft tumor growth. Thus, we concluded that pyrvinium exerts anti-tumor activity, at least, via the modulation of the mitochondrial function and by triggering ISR.
Collapse
|
34
|
Wang S, Zhao Y, Zhang Z, Zhang Y, Li L. Recent advances in amino acid-metal coordinated nanomaterials for biomedical applications. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Wilder CS, Chen Z, DiGiovanni J. Pharmacologic approaches to amino acid depletion for cancer therapy. Mol Carcinog 2021; 61:127-152. [PMID: 34534385 DOI: 10.1002/mc.23349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022]
Abstract
Cancer cells undergo metabolic reprogramming to support increased demands in bioenergetics and biosynthesis and to maintain reactive oxygen species at optimum levels. As metabolic alterations are broadly observed across many cancer types, metabolic reprogramming is considered a hallmark of cancer. A metabolic alteration commonly seen in cancer cells is an increased demand for certain amino acids. Amino acids are involved in a wide range of cellular functions, including proliferation, redox balance, bioenergetic and biosynthesis support, and homeostatic functions. Thus, targeting amino acid dependency in cancer is an attractive strategy for a number of cancers. In particular, pharmacologically mediated amino acid depletion has been evaluated as a cancer treatment option for several cancers. Amino acids that have been investigated for the feasibility of drug-induced depletion in preclinical and clinical studies for cancer treatment include arginine, asparagine, cysteine, glutamine, lysine, and methionine. In this review, we will summarize the status of current research on pharmacologically mediated amino acid depletion as a strategy for cancer treatment and potential chemotherapeutic combinations that synergize with amino acid depletion to further inhibit tumor growth and progression.
Collapse
Affiliation(s)
- Carly S Wilder
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhao Chen
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.,Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
36
|
Kumari N, Bansal S. Arginine depriving enzymes: applications as emerging therapeutics in cancer treatment. Cancer Chemother Pharmacol 2021; 88:565-594. [PMID: 34309734 DOI: 10.1007/s00280-021-04335-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death globally. Chemotherapy and radiation therapy and other medications are employed to treat various types of cancer. However, each treatment has its own set of side effects, owing to its low specificity. As a result, there is an urgent need for newer therapeutics that do not disrupt healthy cells' normal functioning. Depriving nutrient or non/semi-essential amino acids to which cancerous cells are auxotrophic remains one such promising anticancer strategy. L-Arginine (Arg) is a semi-essential vital amino acid involved in versatile metabolic processes, signaling pathways, and cancer cell proliferation. Hence, the administration of Arg depriving enzymes (ADE) such as arginase, arginine decarboxylase (ADC), and arginine deiminase (ADI) could be effective in cancer therapy. The Arg auxotrophic cancerous cells like hepatocellular carcinoma, human colon cancer, leukemia, and breast cancer cells are sensitive to ADE treatment due to low expression of crucial enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL), and ornithine transcarbamylase (OCT). These therapeutic enzyme treatments induce cell death through inducing autophagy, apoptosis, generation of oxidative species, i.e., oxidative stress, and arresting the progression and expansion of cancerous cells at certain cell cycle checkpoints. The enzymes are undergoing clinical trials and could be successfully exploited as potential anticancer agents in the future.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India.
| |
Collapse
|
37
|
Hsu SC, Chen CL, Cheng ML, Chu CY, Changou CA, Yu YL, Yeh SD, Kuo TC, Kuo CC, Chuu CP, Li CF, Wang LH, Chen HW, Yen Y, Ann DK, Wang HJ, Kung HJ. Arginine starvation elicits chromatin leakage and cGAS-STING activation via epigenetic silencing of metabolic and DNA-repair genes. Theranostics 2021; 11:7527-7545. [PMID: 34158865 PMCID: PMC8210599 DOI: 10.7150/thno.54695] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: One of the most common metabolic defects in cancers is the deficiency in arginine synthesis, which has been exploited therapeutically. Yet, challenges remain, and the mechanisms of arginine-starvation induced killing are largely unclear. Here, we sought to demonstrate the underlying mechanisms by which arginine starvation-induced cell death and to develop a dietary arginine-restriction xenograft model to study the in vivo effects. Methods: Multiple castration-resistant prostate cancer cell lines were treated with arginine starvation followed by comprehensive analysis of microarray, RNA-seq and ChIP-seq were to identify the molecular and epigenetic pathways affected by arginine starvation. Metabolomics and Seahorse Flux analyses were used to determine the metabolic profiles. A dietary arginine-restriction xenograft mouse model was developed to assess the effects of arginine starvation on tumor growth and inflammatory responses. Results: We showed that arginine starvation coordinately and epigenetically suppressed gene expressions, including those involved in oxidative phosphorylation and DNA repair, resulting in DNA damage, chromatin-leakage and cGAS-STING activation, accompanied by the upregulation of type I interferon response. We further demonstrated that arginine starvation-caused depletion of α-ketoglutarate and inactivation of histone demethylases are the underlying causes of epigenetic silencing. Significantly, our dietary arginine-restriction model showed that arginine starvation suppressed prostate cancer growth in vivo, with evidence of enhanced interferon responses and recruitment of immune cells. Conclusions: Arginine-starvation induces tumor cell killing by metabolite depletion and epigenetic silencing of metabolic genes, leading to DNA damage and chromatin leakage. The resulting cGAS-STING activation may further enhance these killing effects.
Collapse
Affiliation(s)
- Sheng-Chieh Hsu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Chia-Lin Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Cheng-Ying Chu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- CRISPR Gene Targeting Core Lab, Taipei Medical University, Taipei 110, Taiwan
| | - Chun A. Changou
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- The PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan
| | - Yen-Ling Yu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Shauh-Der Yeh
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Urology, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Tse-Chun Kuo
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan City 73657, Taiwan
- Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Lu-Hai Wang
- Chinese Medicine Research Center and Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - David K. Ann
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hung-Jung Wang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien 97004, Taiwan
| | - Hsing-Jien Kung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County 35053, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
38
|
Du T, Han J. Arginine Metabolism and Its Potential in Treatment of Colorectal Cancer. Front Cell Dev Biol 2021; 9:658861. [PMID: 34095122 PMCID: PMC8172978 DOI: 10.3389/fcell.2021.658861] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer is the leading cause of death from cancer globally. The current treatment protocol still heavily relies on early detection and surgery. The molecular mechanisms underlying development of colorectal cancer are clinically important and determine the prognosis and treatment response. The arginine metabolism pathway is hyperactive in colorectal cancer and several molecules involved in the pathway are potential targets for chemoprevention and targeted colorectal cancer therapy. Endothelial nitric oxide synthase (eNOS), argininosuccinate synthetase and ornithine decarboxylase (ODC) are the main enzymes for arginine metabolism. Limiting arginine-rich meat consumption and inhibiting ODC activity largely reduces polyamine synthesis and the incidence of colorectal cancer. Arginine transporter CAT-1 and Human member 14 of the solute carrier family 6 (SLC6A14) are overexpressed in colorectal cancer cells and contributes to intracellular arginine levels. Human member 9 of the solute carrier family 38 (SLC38A9) serves as a component of the lysosomal arginine-sensing machinery. Pharmaceutical inhibition of single enzyme or arginine transporter is hard to meet requirement of restoring of abnormal arginine metabolic network. Apart from application in early screening for colorectal cancer, microRNA-based therapeutic strategy that simultaneously manipulating multiple targets involved in arginine metabolism brings promising future in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tao Du
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| | - Junyi Han
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| |
Collapse
|
39
|
Integrated Metabolomics and Transcriptomics Analysis of Monolayer and Neurospheres from Established Glioblastoma Cell Lines. Cancers (Basel) 2021; 13:cancers13061327. [PMID: 33809510 PMCID: PMC8001840 DOI: 10.3390/cancers13061327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Glioblastomas are very aggressive tumours without efficient treatment, where cancer stem-like cells are thought to be responsible for relapse. This pilot study investigated the metabolic discrepancies between monolayer and neurosphere cultures of two glioblastoma cell lines using transcriptomics and metabolomics. We show that the two culture systems display substantial differences regarding their metabolome and transcriptome. Specifically, we found that metabolic reactions connected to arginine biosynthesis are crucial to support the different metabolic needs of neurospheres from the two cell lines. By identifying metabolic vulnerabilities in different glioblastoma subpopulations, new therapeutic strategies may be emerging that can be explored to treat this disease. Moreover, this data set may be of great value as a resource for the scientific community. Abstract Altered metabolic processes contribute to carcinogenesis by modulating proliferation, survival and differentiation. Tumours are composed of different cell populations, with cancer stem-like cells being one of the most prominent examples. This specific pool of cells is thought to be responsible for cancer growth and recurrence and plays a particularly relevant role in glioblastoma (GBM), the most lethal form of primary brain tumours. Here, we have analysed the transcriptome and metabolome of an established GBM cell line (U87) and a patient-derived GBM stem-like cell line (NCH644) exposed to neurosphere or monolayer culture conditions. By integrating transcriptome and metabolome data, we identified key metabolic pathways and gene signatures that are associated with stem-like and differentiated states in GBM cells, and demonstrated that neurospheres and monolayer cells differ substantially in their metabolism and gene regulation. Furthermore, arginine biosynthesis was identified as the most significantly regulated pathway in neurospheres, although individual nodes of this pathway were distinctly regulated in the two cellular systems. Neurosphere conditions, as opposed to monolayer conditions, cause a transcriptomic and metabolic rewiring that may be crucial for the regulation of stem-like features, where arginine biosynthesis may be a key metabolic pathway. Additionally, TCGA data from GBM patients showed significant regulation of specific components of the arginine biosynthesis pathway, providing further evidence for the importance of this metabolic pathway in GBM.
Collapse
|
40
|
Mohammad MA, Didelija IC, Stoll B, Nguyen TC, Marini JC. Pegylated arginine deiminase depletes plasma arginine but maintains tissue arginine availability in young pigs. Am J Physiol Endocrinol Metab 2021; 320:E641-E652. [PMID: 33427052 PMCID: PMC7988784 DOI: 10.1152/ajpendo.00472.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pegylated arginine deiminase (ADI-PEG20) results in the depletion of arginine with the production of isomolar amounts of citrulline. This citrulline has the potential to be utilized by the citrulline recycling pathway regenerating arginine and sustaining tissue arginine availability. The goal of this research was to test the hypothesis that ADI-PEG20 depletes circulating arginine in pigs but maintains tissue arginine concentration and function, and to characterize the kinetics of citrulline and arginine. Two multitracer approaches (bolus dose and primed-continuous infusion) were used to investigate the metabolism of arginine and citrulline in Control (n = 7) and ADI-PEG20 treated (n = 8) pigs during the postprandial period. In addition, blood pressure was monitored by telemetry, and multiple tissues were collected to determine arginine concentration. Plasma arginine was depleted immediately after ADI-PEG20 administration, with an increase in plasma citrulline concentration (P < 0.01). The depletion of arginine did not affect (P > 0.10) blood pressure, whole body protein synthesis, or urea production. Despite the lack of circulating arginine in ADI-PEG20-treated pigs, most tissues were able to maintain concentrations similar (P > 0.10) to those in Control animals. The kinetics of citrulline and arginine indicated the high citrulline turnover and regeneration of arginine through the citrulline recycling pathway. ADI-PEG20 administration resulted in an absolute and almost instantaneous depletion of circulating arginine, thus reducing global availability without affecting cardiovascular parameters and protein metabolism. The citrulline produced from the deimination of arginine was in turn utilized by the citrulline recycling pathway restoring local tissue arginine availability.NEW & NOTEWORTHY Pegylated arginine deiminase depletes circulating arginine, but the citrulline generated is utilized by multiple tissues to regenerate arginine and sustain local arginine availability. Preempting the arginine depletion that occurs as result of sepsis and trauma with arginine deiminase offers the possibility of maintaining tissue arginine availability despite negligible plasma arginine concentrations.
Collapse
Affiliation(s)
- Mahmoud A Mohammad
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
- Food Science and Nutrition Department, National Research Centre, Giza, Egypt
| | - Inka C Didelija
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Trung C Nguyen
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Juan C Marini
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
41
|
Bacteria in Carcinogenesis and Cancer Prevention: A Review Study. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.107956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Context: Although conventional therapies improve the conditions of patients with cancer, adverse side effects, and resistance to different therapies have convinced scientists to use alternative methods to overcome these problems. One of the most promising research directions is the application of specific types of bacteria and their components to prevent and treat different cancers. Apart from the ability of bacteria to modulate immune responses, various particular properties such as toxin production and anaerobic lifestyle, have made them one of the potential candidates to help cancer therapy. Evidence Acquisition: In this review, the latest information on the role of bacteria in carcinogenesis and cancer prevention in PubMed, Google scholar, and Science Direct databases in 2020 were considered using a combination of keywords “bacteria”, “carcinogenesis”, “cancer” and “prevention”. Results: Bacteria-cancer interactions can be studied in 2 areas of bacteria and carcinogenesis and the other bacteria and cancer treatment or prevention. In this review, bacterial carcinogenicity has been mentioned with 3 main mechanisms: bacterial toxin, bacterial metabolites, and chronic inflammation caused by bacteria. Bacterial-mediated tumor therapy (BMTT) is briefly discussed in 8 mechanisms including tumor-targeting bacterial therapy, gene therapy and vectors, bacterial products, arginine metabolism, magnetotactic bacteria, combination bacteriolytic therapy (COBALT), immunomodulation of bacteria in cancer, and immune survival. Conclusions: The importance of bacteria in terms of diversity in their interaction with humans, as well as their components that can affect homeostasis and the immune system, has made them a powerful factor in describing the human condition in health and disease. These important elements can be used in the prevention and treatment of many complex diseases with different origins like cancer. The present study can provide an overview of the role of bacteria in cancer development or prevention and potential approaches for bacteria in cancer therapy.
Collapse
|
42
|
Abstract
Metabolic reprogramming with heterogeneity is a hallmark of cancer and is at the basis of malignant behaviors. It supports the proliferation and metastasis of tumor cells according to the low nutrition and hypoxic microenvironment. Tumor cells frantically grab energy sources (such as glucose, fatty acids, and glutamine) from different pathways to produce a variety of biomass to meet their material needs via enhanced synthetic pathways, including aerobic glycolysis, glutaminolysis, fatty acid synthesis (FAS), and pentose phosphate pathway (PPP). To survive from stress conditions (e.g., metastasis, irradiation, or chemotherapy), tumor cells have to reprogram their metabolism from biomass production towards the generation of abundant adenosine triphosphate (ATP) and antioxidants. In addition, cancer cells remodel the microenvironment through metabolites, promoting an immunosuppressive microenvironment. Herein, we discuss how the metabolism is reprogrammed in cancer cells and how the tumor microenvironment is educated via the metabolic products. We also highlight potential metabolic targets for cancer therapies.
Collapse
Affiliation(s)
- Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
43
|
Pathria G, Verma S, Yin J, Scott DA, Ronai ZA. MAPK signaling regulates c-MYC for melanoma cell adaptation to asparagine restriction. EMBO Rep 2021; 22:e51436. [PMID: 33554439 DOI: 10.15252/embr.202051436] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Amino acid restriction is among promising potential cancer treatment strategies. However, cancer cells employ a multitude of mechanisms to mount resistance to amino acid restriction, which impede the latter's clinical development. Here we show that MAPK signaling activation in asparagine-restricted melanoma cells impairs GSK3-β-mediated c-MYC degradation. In turn, elevated c-MYC supports ATF4 translational induction by enhancing the expression of the amino acid transporter SLC7A5, increasing the uptake of essential amino acids, and the subsequent maintenance of mTORC1 activity in asparagine-restricted melanoma cells. Blocking the MAPK-c-MYC-SLC7A5 signaling axis cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. This work reveals a previously unknown axis of cancer cell adaptation to asparagine restriction and informs mechanisms that may be targeted for enhanced therapeutic efficacy of asparagine limiting strategies.
Collapse
Affiliation(s)
- Gaurav Pathria
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sachin Verma
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jun Yin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David A Scott
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
44
|
Zheng-Lin B, O'Reilly EM. Pancreatic ductal adenocarcinoma in the era of precision medicine. Semin Oncol 2021; 48:19-33. [PMID: 33637355 PMCID: PMC8355264 DOI: 10.1053/j.seminoncol.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The paradigm for treatment of PDAC is shifting from a "one size fits all" of cytotoxic therapy to a precision medicine approach based on specific predictive biomarkers for a subset of patients. As the genomic landscape of pancreatic carcinogenesis has become increasingly defined, several oncogenic alterations have emerged as actionable targets and their use has been validated in novel approaches such as targeting mutated germline DNA damage response genes (BRCA) and mismatch deficiency (dMMR/MSI-H) or blockade of rare somatic oncogenic fusions. Chemotherapy selection based on transcriptomic subtypes and developing stroma- and immune-modulating strategies have yielded encouraging results and may open therapeutic refinement to a broader PDAC population. Notwithstanding, a series of negative late-stage trials over the last year continue to underscore the inherent challenges in the treatment of PDAC. Multifactorial therapy resistance warrants further exploration in PDAC "omics" and tumor-stroma-immune cells crosstalk. Herein, we discuss precision medicine approaches applied to the treatment of PDAC, its current state and future perspective.
Collapse
Affiliation(s)
- Binbin Zheng-Lin
- Department of Medicine, Icahn School of Medicine at Mount Sinai Morningside and Mount Sinai West, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, NY, USA; David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
45
|
Yu T, Dong T, Eyvani H, Fang Y, Wang X, Zhang X, Lu X. Metabolic interventions: A new insight into the cancer immunotherapy. Arch Biochem Biophys 2021; 697:108659. [PMID: 33144083 PMCID: PMC8638212 DOI: 10.1016/j.abb.2020.108659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming confers cancer cells plasticity and viability under harsh conditions. Such active alterations lead to cell metabolic dependency, which can be exploited as an attractive target in development of effective antitumor therapies. Similar to cancer cells, activated T cells also execute global metabolic reprogramming for their proliferation and effector functions when recruited to the tumor microenvironment (TME). However, the high metabolic activity of rapidly proliferating cancer cells can compete for nutrients with immune cells in the TME, and consequently, suppressing their anti-tumor functions. Thus, therapeutic strategies could aim to restore T cell metabolism and anti-tumor responses in the TME by targeting the metabolic dependence of cancer cells. In this review, we highlight current research progress on metabolic reprogramming and the interplay between cancer cells and immune cells. We also discuss potential therapeutic intervention strategies for targeting metabolic pathways to improve cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tianhan Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Haniyeh Eyvani
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yuanzhang Fang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiyu Wang
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
46
|
Li F, Ning H, Duan X, Chen Z, Xu L. Effect of dietary l-arginine of broiler breeder hens on embryonic development, apparent metabolism, and immunity of offspring. Domest Anim Endocrinol 2021; 74:106537. [PMID: 32891986 DOI: 10.1016/j.domaniend.2020.106537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/18/2022]
Abstract
This study investigated the effects of supplemented l-arginine (l-Arg) in broiler breeder hens' diets on the embryonic development and physiological changes of offspring during the hatching period. A total of 480 35-wk-old healthy female Arbor Acres broiler breeders were randomly divided into 6 groups and fed a corn and soybean meal diet with 6 digestible Arg levels (0.96%, 1.16%, 1.35%, 1.55%, 1.74%, and 1.93%). After a 10-wk experiment, eggs were collected for incubation. At embryonic day (E) 11 to E21, eggs, embryos, and organs (liver, breast muscle, and thigh muscle) were weighed. Total protein, urea nitrogen, creatinine, cholesterol, and triglyceride in plasma, were measured. Plasma level of immunoglobulin G (IgG), immunoglobulin M (IgM), and nitric oxide synthase (NOS) were measured at E13, E17, and E21. Messenger RNA expression of carbamoyl phosphate synthase I (CPS1), ornithine transcarbamylase (OTC), and argininosuccinate synthase (ASS) in liver and breast muscle tissues was assessed at E13, E17, and E21. The results showed that 1.16% Arg in maternal diet increased egg weight (P < 0.05). The level of Arg in maternal diet has a significant effect on organ index and embryo weight of multiple embryonic days (P < 0.05). Embryonic plasma total protein concentration was significantly affected by maternal dietary Arg level (P < 0.05) and exhibited quadratic responses at E11, E15, E17, and E21 (P < 0.01). Plasma urea nitrogen, creatinine, triglyceride, and cholesterol level were also significantly affected by the level of maternal Arg at different embryonic ages (P < 0.05). Dietary digestible Arg levels quadratically influenced plasma urea nitrogen level at E21 (P < 0.05) and cholesterol concentration at E17 and E19 (P < 0.01). L-Arg supplementation in maternal diet significantly improved the IgG level at E17 and E21 (1.16%, 1.35%, 1.55%, and 1.74%; P < 0.05), the IgM level at E13 (1.35%, 1.55%, 1.74%, and 1.93%) and E17 (P < 0.05) and the NOS level at E13, E17, and E21 (P < 0.05). Maternal dietary L-Arg supplementation significantly improved the expression of CPS1 gene, OTC gene (1.16%, 1.35%, and 1.55%), and ASS gene (1.35% and 1.55%) in the liver (P < 0.05), and also enhanced the CPS1 gene (except 1.35%) and OTC gene (1.55% and 1.74%) expression in the breast muscle (P < 0.05). In conclusion, maternal Arg level affected the embryonic development of offspring and regulated the apparent metabolic programming and immunity state of the embryo. Arginine level of 1.55% in hens' diet was beneficial to the protein synthesis and immunity of the offspring in the embryonic period, and it was recommended to obtain healthy offspring.
Collapse
Affiliation(s)
- F Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - H Ning
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - X Duan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Z Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - L Xu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
47
|
Qi H, Wang Y, Yuan X, Li P, Yang L. Selective extracellular arginine deprivation by a single injection of cellular non-uptake arginine deiminase nanocapsules for sustained tumor inhibition. NANOSCALE 2020; 12:24030-24043. [PMID: 33291128 DOI: 10.1039/d0nr06823c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolic enzyme-based arginine deprivation represents a tremendous opportunity to treat argininosuccinate synthetase (ASS1)-deficient tumors. Arginine deiminase (ADI), a typical representative, has aroused great interest. To date, the functional modification of ADI, such as PEGylation, has been applied to improve its weakness significantly, reducing its immunogenicity and extending its blood circulation time. However, the advantages of ADI, such as the cellular non-uptake property, are often deprived by current modification methods. The cellular non-uptake property of ADI only renders extracellular arginine degradation that negligibly influences normal cells. However, current-functionalized ADIs can be readily phagocytized by cells, causing the imbalance of intracellular amino acids and the consequent damage to normal cells. Therefore, it is necessary to exploit a new method that can simultaneously improve the weakness of ADI and maintain its advantage of cellular non-uptake. Here, we utilized a kind of phosphorylcholine (PC)-rich nanocapsule to load ADI. These nanocapsules possessed extremely weak cellular interaction and could avoid uptake by endothelial cells (HUVEC), immune cells (RAW 264.7), and tumor cells (H22), selectively depriving extracellular arginine. Besides, these nanocapsules increased the blood half-life time of ADI from the initial 2 h to 90 h and efficiently avoided its immune or inflammatory responses. After a single injection of ADI nanocapsules into H22 tumor-bearing mice, tumors were stably suppressed for 25 d without any detectable side effects. This new strategy first realizes the selective extracellular arginine deprivation for the treatment of ASS1-deficient tumors, potentially promoting the clinical translation of metabolic enzyme-based amino acid deprivation therapy. Furthermore, the research reminds us that the functionalization of drugs can not only improve its weakness but also maintain its advantages.
Collapse
Affiliation(s)
- Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | | | | | | | | |
Collapse
|
48
|
Chen O, Manig F, Lehmann L, Sorour N, Löck S, Yu Z, Dubrovska A, Baumann M, Kessler BM, Stasyk O, Kunz-Schughart LA. Dual role of ER stress in response to metabolic co-targeting and radiosensitivity in head and neck cancer cells. Cell Mol Life Sci 2020; 78:3021-3044. [PMID: 33230565 PMCID: PMC8004506 DOI: 10.1007/s00018-020-03704-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Arginine deprivation therapy (ADT) is a new metabolic targeting approach with high therapeutic potential for various solid cancers. Combination of ADT with low doses of the natural arginine analog canavanine effectively sensitizes malignant cells to irradiation. However, the molecular mechanisms determining the sensitivity of intrinsically non-auxotrophic cancers to arginine deficiency are still poorly understood. We here show for the first time that arginine deficiency is accompanied by global metabolic changes and protein/membrane breakdown, and results in the induction of specific, more or less pronounced (severe vs. mild) ER stress responses in head and neck squamous cell carcinoma (HNSCC) cells that differ in their intrinsic ADT sensitivity. Combination of ADT with canavanine triggered catastrophic ER stress via the eIF2α-ATF4(GADD34)-CHOP pathway, thereby inducing apoptosis; the same signaling arm was irrelevant in ADT-related radiosensitization. The particular strong supra-additive effect of ADT, canavanine and irradiation in both intrinsically more and less sensitive cancer cells supports the rational of ER stress pathways as novel target for improving multi-modal metabolic anti-cancer therapy.
Collapse
Affiliation(s)
- Oleg Chen
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstraße 74, 01307, Dresden, Germany.,Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Friederike Manig
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstraße 74, 01307, Dresden, Germany.,Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | - Loreen Lehmann
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nagwa Sorour
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstraße 74, 01307, Dresden, Germany
| | - Steffen Löck
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstraße 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Zhanru Yu
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anna Dubrovska
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstraße 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Baumann
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstraße 74, 01307, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Oleh Stasyk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Leoni A Kunz-Schughart
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstraße 74, 01307, Dresden, Germany. .,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany.
| |
Collapse
|
49
|
Dehhaghi M, Kazemi Shariat Panahi H, Heng B, Guillemin GJ. The Gut Microbiota, Kynurenine Pathway, and Immune System Interaction in the Development of Brain Cancer. Front Cell Dev Biol 2020; 8:562812. [PMID: 33330446 PMCID: PMC7710763 DOI: 10.3389/fcell.2020.562812] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Human gut microbiota contains a large, complex, dynamic microbial community of approximately 1014 microbes from more than 1,000 microbial species, i.e., equivalent to 4 × 106 genes. Numerous evidence links gut microbiota with human health and diseases. Importantly, gut microbiota is involved in the development and function of the brain through a bidirectional pathway termed as the gut-brain axis. Interaction between gut microbiota and immune responses can modulate the development of neuroinflammation and cancer diseases in the brain. With respect of brain cancer, gut microbiota could modify the levels of antioxidants, amyloid protein and lipopolysaccharides, arginase 1, arginine, cytochrome C, granulocyte-macrophage colony-stimulating factor signaling (GM-CSF), IL-4, IL-6, IL-13, IL-17A, interferon gamma (IFN-γ), reactive oxygen species (ROS), reactive nitrogen species (e.g., nitric oxide and peroxynitrite), short-chain fatty acids (SCFAs), tryptophan, and tumor necrosis factor-β (TGF-β). Through these modifications, gut microbiota can modulate apoptosis, the aryl hydrocarbon receptor (AhR), autophagy, caspases activation, DNA integrity, microglia dysbiosis, mitochondria permeability, T-cell proliferation and functions, the signal transducer and activator of transcription (STAT) pathways, and tumor cell proliferation and metastasis. The outcome of such interventions could be either oncolytic or oncogenic. This review scrutinizes the oncogenic and oncolytic effects of gut microbiota by classifying the modification mechanisms into (i) amino acid deprivation (arginine and tryptophan); (ii) kynurenine pathway; (iii) microglia dysbiosis; and (iv) myeloid-derived suppressor cells (MDSCs). By delineating the complexity of the gut-microbiota-brain-cancer axis, this review aims to help the research on the development of novel therapeutic strategies that may aid the efficient eradication of brain cancers.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Pandis Community, Sydney, NSW, Australia.,Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Pandis Community, Sydney, NSW, Australia
| |
Collapse
|
50
|
Grimes JM, Khan S, Badeaux M, Rao RM, Rowlinson SW, Carvajal RD. Arginine depletion as a therapeutic approach for patients with COVID-19. Int J Infect Dis 2020; 102:566-570. [PMID: 33160064 PMCID: PMC7641537 DOI: 10.1016/j.ijid.2020.10.100] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a source of significant morbidity and death worldwide, and effective treatments are urgently needed. Clinical trials have focused largely on direct antiviral therapies or on immunomodulation in patients with severe manifestations of COVID-19. One therapeutic approach that remains to be clinically investigated is disruption of the host-virus relationship through amino acid restriction, a strategy used successfully in the setting of cancer treatment. Arginine is an amino acid that has been shown in nonclinical studies to be essential in the life cycle of many viruses. Therefore, arginine depletion may be an effective therapeutic approach against SARS-CoV-2. Several arginine-metabolizing enzymes in clinical development may be a viable approach to induce a low arginine environment to treat COVID-19 and other viral diseases. Herein, we explore the rationale for arginine depletion as a therapeutic approach for COVID-19.
Collapse
Affiliation(s)
- Joseph M Grimes
- Columbia University Irving Medical Center, New York, NY, USA
| | - Shaheer Khan
- Columbia University Irving Medical Center, New York, NY, USA
| | | | - Ravi M Rao
- Aeglea Biotherapeutics Inc., Austin, TX, USA
| | | | - Richard D Carvajal
- Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| |
Collapse
|