1
|
Santos IL, Amante ER, da Cruz Rodrigues AM, da Silva LHM. Amazonian natural products used as functional food and medicine. Food Chem 2025; 478:143656. [PMID: 40068256 DOI: 10.1016/j.foodchem.2025.143656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 04/06/2025]
Abstract
The use of natural products for therapeutic purposes is a common practice since the beginning of time, as it was already known that they contained biological components beneficial to health, which also justifies the growing demand for products made from Amazonian raw materials. The accessibility to information and an aggressive marketing favored the consumption of these products globally. However, the legislation in different countries on how to obtain plant raw materials, process them and subsequently sell them can leave gaps and doubts leading the consumer to make mistakes. This may interfere with an efficient inspection by official control agencies, also leading to inappropriate consumption. This exploratory study investigated chemical properties of natural products from Amazonian sources sold on the Web in several countries, as well as the prevailing norms, in order to contribute to the safety of consumption for this type of products.
Collapse
Affiliation(s)
- Ivone Lima Santos
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil
| | - Edna Regina Amante
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil..
| | - Antonio Manoel da Cruz Rodrigues
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil
| | - Luiza Helena Meller da Silva
- Universidade Federal do Pará (UFPA), Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Belém, Pará, Brazil
| |
Collapse
|
2
|
Fonseca ASAD, Monteiro IDS, Dos Santos CR, Carneiro MLB, Morais SS, Araújo PL, Santana TF, Joanitti GA. Effects of andiroba oil (Carapa guianensis aublet) on the immune system in inflammation and wound healing: A scoping review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118004. [PMID: 38432579 DOI: 10.1016/j.jep.2024.118004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Andiroba seed oil (Carapa guianensis Aubl.) is widely used by traditional populations in tropical countries, especially in the Brazilian Amazon, because of its anti-inflammatory, antirheumatic, antiseptic, healing and antipyretic properties, among others, which makes it useful for the treatment, mainly, of skin afflictions and wounds. AIM OF THE STUDY To describe the modulation of the immune system by andiroba oil (Carapa guianensis Aubl.) in inflammation and wound healing. MATERIALS AND METHODS A scoping review was performed, following the recommendations of the Joanna Briggs Institute (JBI) and PRISMA for Scoping Reviews (PRISMA-ScR). As inclusion criteria, in vitro, in vivo, ex vivo, and clinical studies were selected, in Portuguese, English, or Spanish, in thirteen databases of published studies, gray literature, and references of the included studies, which deal with immune modulation by andiroba oil in the context of the various therapeutic applications that make use of its anti-inflammatory and wound healing properties. The selection of information sources was carried out by two independent reviewers between November 2022 and January 2023. The process of data extraction and evidence analysis was conducted by four pairs of independent reviewers between January and February 2023. RESULTS 22 sources of evidence were included in this scoping review, mostly scientific articles published between 2005 and 2021 with in vivo sampling. The evidence suggests that andiroba oil reduces inflammation and promotes the healing of wounds of multiple etiologies by reducing leukocyte infiltration, increasing phagocytic activity, enhancing interleukin and inflammatory cytokine activity, promoting fibroblast recovery, increasing growth factors, reducing apoptotic cells, promoting reepithelialization, as well as promoting angiogenesis, reducing edema, and stimulating the production of glucocorticoids that alleviate pain. Additionally, different formulations of the oil (such as nanoemulsions, films and gels) are more effective in modulating inflammation and wound healing compared to in natura oil. CONCLUSIONS Evidence in the literature suggests that andiroba oil (Carapa guianensis Aubl.) has positive effects on immune modulation in inflammation and wound healing, which makes it a biocompound with high therapeutic potential.
Collapse
Affiliation(s)
- Aimê Stefany Alves da Fonseca
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil; Post-Graduation Program in Microbial Biology, Institute of Biological Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil.
| | - Isolda de Souza Monteiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil.
| | - Carolina Ramos Dos Santos
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil.
| | - Marcella Lemos Brettas Carneiro
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil; Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil; Post-Graduation Program in Biomedical Engineering, Faculty of Gama, University of Brasilia, Brasilia 72444-240, DF, Brazil.
| | - Samuel Silva Morais
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil.
| | - Paula Lauane Araújo
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil.
| | - Thamis Fernandes Santana
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil.
| | - Graziella Anselmo Joanitti
- Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, University of Brasilia, Centro Metropolitano, Ceilândia Sul, Brasilia 72220-275, DF, Brazil; Post-Graduation Program in Nanoscience and Nanobiotechnology, Institute of Biological Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, DF, Brazil.
| |
Collapse
|
3
|
Malheiros DF, Videira MN, Carvalho AA, Salomão CB, Ferreira IM, Canuto KM, Yoshioka ETO, Tavares-Dias M. Efficacy of Carapa guianensis oil (Meliaceae) against monogeneans infestations: a potential antiparasitic for Colossoma macropomum and its effects in hematology and histopathology of gills. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2023; 32:e007123. [PMID: 37672470 PMCID: PMC10503822 DOI: 10.1590/s1984-29612023051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/17/2023] [Indexed: 09/08/2023]
Abstract
This study evaluated the efficacy of therapeutic baths with Carapa guianensis (andiroba) oil against monogeneans of Colossoma macropomum (tambaqui), as well as the hematological and histological effects on fish. Among the fatty acids identified in C. guianensis oil, oleic acid (53.4%) and palmitic acid (28.7%) were the major compounds, and four limonoids were also identified. Therapeutic baths of 1 hour were performed for five consecutive days, and there was no fish mortality in any of the treatments. Therapeutic baths using 500 mg/L of C. guianensis oil had an anthelmintic efficacy of 91.4% against monogeneans. There was increase of total plasma protein and glucose, number of erythrocytes, thrombocytes, leukocytes, lymphocytes and number of monocytes and decrease in mean corpuscular volume. Histological changes such as epithelium detachment, hyperplasia, lamellar fusion and aneurysm were found in the gills of tambaqui from all treatments, including controls with water of culture tank and water of culture tank plus iso-propyl alcohol. Therapeutic baths with 500 mg/L of C. guianensis oil showed high efficacy and caused few physiological changes capable of compromising fish gill function. Results indicate that C. guianensis oil has an anthelmintic potential for control and treatment of infections by monogeneans in tambaqui.
Collapse
Affiliation(s)
- Dayna Filocreão Malheiros
- Programa de Pós-graduação em Biodeversidade Tropical – PPGBIO, Universidade Federal do Amapá – UNIFAP, Macapá, AP, Brasil
| | | | | | | | - Irlon Maciel Ferreira
- Laboratório de Biocatálise e Síntese Orgânica Aplicada, Universidade Federal do Amapá – UNIFAP, Macapá, AP, Brasil
| | | | - Eliane Tie Oba Yoshioka
- Programa de Pós-graduação em Biodeversidade Tropical – PPGBIO, Universidade Federal do Amapá – UNIFAP, Macapá, AP, Brasil
- Embrapa Amapá, Macapá, AP, Brasil
| | - Marcos Tavares-Dias
- Programa de Pós-graduação em Biodeversidade Tropical – PPGBIO, Universidade Federal do Amapá – UNIFAP, Macapá, AP, Brasil
- Embrapa Amapá, Macapá, AP, Brasil
| |
Collapse
|
4
|
Pereira da Silva V, de Carvalho Brito L, Mesquita Marques A, da Cunha Camillo F, Raquel Figueiredo M. Bioactive limonoids from Carapa guianensis seeds oil and the sustainable use of its by-products. Curr Res Toxicol 2023; 4:100104. [PMID: 37020602 PMCID: PMC10068018 DOI: 10.1016/j.crtox.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Carapa guianensis (Andiroba, Meliaceae) is considered a multipurpose tree. In Brazil, Indigenous people have used it as insect repellent and in the treatment of various diseases. Most biological activities and popular uses are attributed to limonoids, which are highly oxygenated tetranortriterpenoids. More than 300 limonoids have been described in Meliaceae family. Limonoids from Andiroba oil have shown high anti-inflammatory and anti-allergic activities in vivo, by inhibiting platelet activating factors and many inflammatory mediators such as IL-5, IL-1β and TNF-α. It also reduced T lymphocytes, eosinophils and mast cells. In corroboration with the wide popular use of Andiroba oil, no significant cytotoxicity or genotoxicity in vivo was reported. This oil promotes apoptosis in a gastric cancer cell line (ACP02) at high concentrations, without showing mutagenic effects, and is suggested to increase the body's nonspecific resistance and adaptive capacity to stressors, exhibit some antioxidant activity, and protect against oxidative DNA damages. Recently, new methodologies of toxicological assays have been applied. They include in chemico, in vitro, in silico and ex vivo procedures, and take place to substitute the use of laboratory animals. Andiroba by-products have been used in sustainable oil production processes and as fertilizers and soil conditioners, raw material for soap production, biodegradable surfactants and an alternative natural source of biodegradable polymer in order to reduce environmental impacts. This review reinforces the relevance of Andiroba and highlights its ability to add value to its by-products and to minimize possible risks to the health of the Amazonian population.
Collapse
|
5
|
Kelvin Barros Dias K, Lima Cardoso A, Alice Farias da Costa A, Fonseca Passos M, Emmerson Ferreira da Costa C, Narciso da Rocha Filho G, Helena de Aguiar Andrade E, Luque R, Adriano Santos do Nascimento L, Coelho Rodrigues Noronha R. Biological activities from andiroba (Carapa guianensis Aublet.) and its biotechnological applications: a systematic review. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
6
|
The influence of different bioadhesive polymers on physicochemical properties of thermoresponsive emulgels containing Amazonian andiroba oil. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Nagatomo A, Ninomiya K, Marumoto S, Sakai C, Watanabe S, Ishikawa W, Manse Y, Kikuchi T, Yamada T, Tanaka R, Muraoka O, Morikawa T. A Gedunin-Type Limonoid, 7-Deacetoxy-7-Oxogedunin, from Andiroba ( Carapa guianensis Aublet) Reduced Intracellular Triglyceride Content and Enhanced Autophagy in HepG2 Cells. Int J Mol Sci 2022; 23:13141. [PMID: 36361930 PMCID: PMC9655357 DOI: 10.3390/ijms232113141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2025] Open
Abstract
The seed oil of Carapa guianensis Aublet (Andiroba) has been used in folk medicine for its insect-repelling, anti-inflammatory, and anti-malarial activities. This study aimed to examine the triglyceride (TG) reducing effects of C. guianensis-derived limonoids or other commercially available limonoids in human hepatoblastoma HepG2 cells and evaluate the expression of lipid metabolism or autophagy-related proteins by treatment with 7-deacetoxy-7-oxogedunin (DAOG; 1), a principal limonoid of C. guianensis. The gedunin-type limonoids, such as DAOG (% of control at 20 μM: 70.9 ± 0.9%), gedunin (2, 74.0 ± 1.1%), epoxyazadiradione (4, 73.4 ± 2.0%), 17β-hydroxyazadiradione (5, 79.9 ± 0.6%), 7-deacetoxy-7α-hydroxygedunin (6, 61.0 ± 1.2%), andirolide H (7, 87.4 ± 2.2%), and 6α-hydroxygedunin (8, 84.5 ± 1.1%), were observed to reduce the TG content at lower concentrations than berberine chloride (BBR, a positive control, 84.1 ± 0.3% at 30 μM) in HepG2 cells pretreated with high glucose and oleic acid. Andirobin-, obacunol-, nimbin-, and salannin-type limonoids showed no effect on the intracellular TG content in HepG2 cells. The TG-reducing effect of DAOG was attenuated by the concomitant use of compound C (dorsomorphin), an AMPK inhibitor. Further investigation on the detailed mechanism of action of DAOG at non-cytotoxic concentrations revealed that the expressions of autophagy-related proteins, LC3 and p62, were upregulated by treatment with DAOG. These findings suggested that gedunin-type limonoids from Andiroba could ameliorate fatty liver, and that the action of DAOG in particular is mediated by autophagy.
Collapse
Affiliation(s)
- Akifumi Nagatomo
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Okayama, Japan
| | - Shinsuke Marumoto
- Joint Research Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Chie Sakai
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Shuta Watanabe
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Wakana Ishikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Takashi Kikuchi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
- Faculty of Pharmacy, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan
| | - Takeshi Yamada
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| | - Reiko Tanaka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| |
Collapse
|
8
|
Musco N, Morittu VM, Mastellone V, Spina AA, Vassalotti G, D'Aniello B, Tudisco R, Infascelli F, Lombardi P. Effects of ecotrofin™ on milk yield, milk quality and serum biochemistry in lactating goats. J Anim Physiol Anim Nutr (Berl) 2021; 105 Suppl 1:26-33. [PMID: 34467578 PMCID: PMC8518588 DOI: 10.1111/jpn.13592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 01/05/2023]
Abstract
A nutritional supplement (Ecotrofin™, by Vetoquinol Italia S.r.l) recommended in ruminants feeding to strengthen the physiological condition and improve digestive performance was tested in 20 pluriparae grazing goats divided in two groups (control and treated) to assess its possible effects on milk yield and quality and to assess eventual adverse effects. Animals from both groups also received 400 g/day of corn meal, and the treated group was supplemented with 20 g/head/day of the nutritional supplement. At the doses suggested by the manufacturer, despite a transient increase after 30 days of supplementation, Ecotrofin™ did not show significant effects on milk yield and, although some changes were found in the fatty acids profile, no significant improvement of MUFA and PUFA, as well as of omega‐6:omega‐3 ratio and CLA content were seen. Therefore, in our experimental conditions the supplementation of diet with Ecotrofin™ did not appear useful to improve goat's performance. A significant effect on kidney health markers (27 vs. 22.5 for urea and 0.83 vs. 0.76 for creatinine, p < 0.05) suggested a beneficial effect on renal function but, since levels fell in the normal ranges in both groups, such hypothesis would need further studies to be addressed.
Collapse
Affiliation(s)
- Nadia Musco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Vincenzo Mastellone
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Anna Antonella Spina
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Vassalotti
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Biagio D'Aniello
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Raffaella Tudisco
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Federico Infascelli
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| |
Collapse
|
9
|
Silva DF, Lima KT, Bastos GNT, Oliveira JAR, do Nascimento LAS, Costa CEF, Filho GNR, Concha VOC, Passos MF. PCL/Andiroba Oil ( Carapa guianensis Aubl.) Hybrid Film for Wound Healing Applications. Polymers (Basel) 2021; 13:1591. [PMID: 34069314 PMCID: PMC8157046 DOI: 10.3390/polym13101591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022] Open
Abstract
Developing a biomimetic material to wound care is an emerging need for the healing process. Poly (ε-caprolactone) (PCL) is a polymer with the necessary dressing's requirements often used in medicine. Their surface, physic-chemical and biological properties can be modified by adding bioactive compounds, such as andiroba seed oil (Carapa guianensis). This Amazonian natural plant has medicinal and pharmacological properties. For this purpose, PCL polymeric films incorporated with andiroba oil were investigated. The synthesis of hybrids materials was carried out in the solvent casting method. Thermal properties were evaluated using thermogravimetric analysis (TGA/DTGA) and differential scanning calorimetry (DSC). The solvent type on the surface and hydrophilicity of samples was studied using a scanning electron microscope (SEM). Additionally, contact angle measurements, functional groups analysis, fluid absorption capacity, and cell viability were performed. The results demonstrated the influences of andiroba oil under the morphology and thermal properties of the polymeric matrix; the hydrophilicity of the hybrid film obtained by acetic acid was reduced by 13%; the porosity decreased as the concentration of oil increased, but its higher thermal stability. The L929 cell line's proliferation was observed in all materials, and it presented nontoxic nature. It was demonstrated the ability of PCL hybrid film as a matrix for cell growth. Then, the materials were proved potential candidates for biomedical applications.
Collapse
Affiliation(s)
- Debora F. Silva
- Laboratory of Oils of the Amazon, Federal University of Pará, Belém 66075-750, PA, Brazil; (D.F.S.); (L.A.S.d.N.); (C.E.F.C.); (G.N.R.F.)
| | - Klinsmann T. Lima
- Laboratory of Neuroinflammation, Federal University of Pará, Belém 66075-110, PA, Brazil; (K.T.L.); (G.N.T.B.)
| | - Gilmara N. T. Bastos
- Laboratory of Neuroinflammation, Federal University of Pará, Belém 66075-110, PA, Brazil; (K.T.L.); (G.N.T.B.)
| | | | - Luís Adriano S. do Nascimento
- Laboratory of Oils of the Amazon, Federal University of Pará, Belém 66075-750, PA, Brazil; (D.F.S.); (L.A.S.d.N.); (C.E.F.C.); (G.N.R.F.)
| | - Carlos Emmerson F. Costa
- Laboratory of Oils of the Amazon, Federal University of Pará, Belém 66075-750, PA, Brazil; (D.F.S.); (L.A.S.d.N.); (C.E.F.C.); (G.N.R.F.)
| | - Geraldo N. R. Filho
- Laboratory of Oils of the Amazon, Federal University of Pará, Belém 66075-750, PA, Brazil; (D.F.S.); (L.A.S.d.N.); (C.E.F.C.); (G.N.R.F.)
| | - Viktor O. C. Concha
- Department of Chemical Engineering, Federal University of São Paulo, Diadema 09913-030, SP, Brazil;
| | - Marcele F. Passos
- Laboratory of Oils of the Amazon, Federal University of Pará, Belém 66075-750, PA, Brazil; (D.F.S.); (L.A.S.d.N.); (C.E.F.C.); (G.N.R.F.)
| |
Collapse
|
10
|
Soares ADS, Wanzeler AMV, Cavalcante GHS, Barros EMDS, Carneiro RDCM, Tuji FM. Therapeutic effects of andiroba (Carapa guianensis Aubl) oil, compared to low power laser, on oral mucositis in children underwent chemotherapy: A clinical study. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113365. [PMID: 32920135 DOI: 10.1016/j.jep.2020.113365] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE The Carapa guianensis Aubl, popularly known as andiroba, is a large tree of the Meliaceae family, commonly found in the Amazon region. The oil extracted from its seeds is recognized in traditional medicine and has high anti-inflammatory and analgesic potential, which are the basic prerequisites for a therapeutic agent that can be used in the treatment of oral mucositis (OM). Moreover, the aforementioned oil has antimicrobial, antiallergic, and parasiticidal actions and is effective in the management of cutaneous and muscular dysfunctions. AIM OF THE STUDY To evaluate the therapeutic effects of andiroba gel (Carapa guianensis Aubl) on the symptomatology and evolution of OM in children with leukemia who underwent chemotherapy and to compare it to the effects of low power laser. MATERIALS AND METHODS This randomized, double-blind clinical trial involved 60 patients of both genders with leukemia, with age ranging from six to twelve years. The patients were divided into two study groups: the andiroba group (n = 30) and the laser group (n = 30). The level of pain experienced by the patients was assessed using the Wong-Baker visual analog scale and the degree of severity of OM was assessed using a table, recommended by the World Health Organization, that depicts the degrees of severity of OM. The data obtained were analyzed using the Mann-Whitney test, with statistical significance indicated by a P value less than or equal to 0.05. RESULTS A statistically significant reduction in the degree of OM was observed on the fourth, fifth, and sixth days and in the pain scores on the second, third, and fourth days in the andiroba group after the manifestation of OM, compared to the laser group. CONCLUSIONS The use of andiroba oil effectively reduced the severity of OM and relieved pain, which resulted in a decrease in the severity of signs and symptoms in the patients in the andiroba group, compared to the laser group.
Collapse
Affiliation(s)
- Artur Dos Santos Soares
- Department of Odontology, Federal University of Pará, Street Augusto Corrêa, Number 01, 66075-110, Belém, PA, Brazil.
| | - Ana Márcia Viana Wanzeler
- Department of Odontology, Federal University of Pará, Street Augusto Corrêa, Number 01, 66075-110, Belém, PA, Brazil.
| | | | - Elsa Maria da Silva Barros
- Radiotherapy Service of Hospital Ophir Loyola, Avenue. Gov Magalhães Barata, Number 992, 66060-281, Belém, PA, Brazil.
| | - Rita de Cássia Matos Carneiro
- Radiotherapy Service of Hospital Ophir Loyola, Avenue. Gov Magalhães Barata, Number 992, 66060-281, Belém, PA, Brazil.
| | - Fabrício Mesquita Tuji
- Department of Odontology, Federal University of Pará, Street Augusto Corrêa, Number 01, 66075-110, Belém, PA, Brazil; Radiotherapy Service of Hospital Ophir Loyola, Avenue. Gov Magalhães Barata, Number 992, 66060-281, Belém, PA, Brazil.
| |
Collapse
|
11
|
Kikuchi T, Akita K, Koike H, In Y, Yamada T, Tanaka R. Carapanins A-C: new limonoids from andiroba ( Carapa guianensis) fruit oil. Org Biomol Chem 2020; 18:9268-9274. [PMID: 33155007 DOI: 10.1039/d0ob01872d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Carapanins A-C (1-3) were isolated from the fruit oil of Carapa guianensis. Compounds 1 and 2 are limonoids with unique structures. Namely, compound 1 is an andirobin-type limonoid with a C-15/C-30 γ-lactone instead of the δ-lactone of the D-ring, and compound 2 is a mexicanolide-type limonoid with a C-16/C-30 δ-lactone ring. The absolute structures of 1 and 2 were determined using X-ray crystallography, whereas the structure of 3 was established mainly via NMR and mass spectroscopy. The inhibitory effects of 1-3 on nitric oxide production were evaluated, and it was revealed that 2 and 3 were potent nitric oxide inhibitors.
Collapse
Affiliation(s)
- Takashi Kikuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Keiko Akita
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Hiroki Koike
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Yasuko In
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Takeshi Yamada
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Reiko Tanaka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
12
|
Matsumoto C, Maehara T, Tanaka R, Fujimori K. Limonoid 7-Deacetoxy-7-oxogedunin from Andiroba, Carapa guianensis, Meliaceae, Decreased Body Weight Gain, Improved Insulin Sensitivity, and Activated Brown Adipose Tissue in High-Fat-Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10107-10115. [PMID: 31434473 DOI: 10.1021/acs.jafc.9b04362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We examined the antiobesity effect of a limonoid 7-deacetoxy-7-oxogedunin, named CG-1, purified from the seeds of Carapa guianensis, Meliaceae, known as andiroba in high-fat-diet (HFD)-fed mice. C57BL/6 mice were fed a low-fat diet or an HFD and orally administered CG-1 (20 mg/kg) for 7 weeks. CG-1 lowered the body weight gain and improved the serum triglyceride level and insulin sensitivity in HFD-fed mice. The expression level of the adipogenesis-related genes was lowered by CG-1 in the visceral white adipose tissue (vWAT). The mRNA expression level of the macrophage-related genes decreased in vWAT following the administration of CG-1 to HFD-fed mice. It is noteworthy that CG-1 activated the brown adipose tissue (BAT) with enhanced expression of uncoupling protein 1 and increased the rectal temperature in HFD-fed mice. These results indicate that the limonoid CG-1 decreased body weight gain and ameliorated hypertriglyceridemia and insulin resistance with the activation of BAT in HFD-fed mice.
Collapse
|
13
|
Jin Z, Ma J, Zhu G, Zhang H. Discovery of Novel Anti-cryptosporidial Activities From Natural Products by in vitro High-Throughput Phenotypic Screening. Front Microbiol 2019; 10:1999. [PMID: 31551955 PMCID: PMC6736568 DOI: 10.3389/fmicb.2019.01999] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/15/2019] [Indexed: 01/12/2023] Open
Abstract
Cryptosporidium parvum is a globally distributed zoonotic protozoan parasite of both medical and veterinary importance. Nitazoxanide is the only FDA-approved drug to treat cryptosporidiosis in immunocompetent people, but it is not fully effective. There is no drug approved by FDA for use in immunocompromised patients or in animals. In the present study, we conducted phenotypic screening of 800 nature products with defined chemical structures for potential novel activity against the growth of C. parvum in vitro. We identified a large number of compounds showing low to sub-micromolar anti-cryptosporidial activity, and fully characterized 16 top hits for anti-parasitic efficacies in vitro [EC50 values from 0.122 to 3.940 μM, cytotoxicity (TC50) values from 6.31 to >100 μm] and their safety margins. Among them, 11 compounds were derived from plants with EC50 values from 0.267 to 3.940 μM [i.e., cedrelone, deoxysappanone B 7,4'-dimethyl ether (Deox B 7,4), tanshinone IIA, baicalein, deoxysappanone B 7,3'-dimethyl ether acetate, daunorubicin, dihydrogambogic acid, deacetylgedunin, deacetoxy-7-oxogedunin, dihydrotanshinone I, 2,3,4'-trihydroxy-4-methoxybenzophenone, and 3-deoxo-3beta-hydroxy-mexicanolide 16-enol ether]. Three compounds with sub-micromolar EC50 values (i.e., cedrelone, Deox B 7,4, and baicalein) were further investigated for their effectiveness on various parasite developmental stages in vitro. Cedrelone and baicalein were more effective than Dexo B 7,4 when treating parasite for shorter periods of time, but all three compounds could kill the parasite irreversibly. These findings provide us a large selection of new structures derived from natural products to be explored for developing anti-cryptosporidial therapeutics.
Collapse
Affiliation(s)
- Zi Jin
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jingbo Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States.,Department of Parasitology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
14
|
Tom S, Rane A, Katewa AS, Chamoli M, Matsumoto RR, Andersen JK, Chinta SJ. Gedunin Inhibits Oligomeric Aβ1–42-Induced Microglia Activation Via Modulation of Nrf2-NF-κB Signaling. Mol Neurobiol 2019; 56:7851-7862. [DOI: 10.1007/s12035-019-1636-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
|
15
|
Matsumoto C, Koike A, Tanaka R, Fujimori K. A Limonoid, 7-Deacetoxy-7-Oxogedunin (CG-1) from Andiroba ( Carapa guianensis, Meliaceae) Lowers the Accumulation of Intracellular Lipids in Adipocytes via Suppression of IRS-1/Akt-Mediated Glucose Uptake and a Decrease in GLUT4 Expression. Molecules 2019; 24:molecules24091668. [PMID: 31035366 PMCID: PMC6540142 DOI: 10.3390/molecules24091668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/28/2023] Open
Abstract
Limonoids are phytochemicals with a variety of biological properties. In the present study, we elucidated the molecular mechanism of suppression of adipogenesis in adipocytes by a limonoid, 7-deacetoxy-7-oxogedunin (CG-1) from Carapa guianensis (Meliaceae), known as andiroba. CG-1 reduced the accumulation of intracellular triglycerides in a concentration-dependent manner. The expression levels of the adipogenic, lipogenic, and lipolytic genes were decreased by CG-1 treatment, whereas the glycerol release level was not affected. When CG-1 was added into the medium during days 0-2 of 6-days-adipogenesis, the accumulation of intracellular lipids and the mRNA levels of the adipogenesis-related genes were decreased. In addition, the phosphorylation level of insulin receptor substrate-1 (IRS-1) and Akt in the early phase of adipocyte differentiation (within 1 day after initiating adipocyte differentiation) was reduced by CG-1. Furthermore, insulin-activated translocation of glucose transporter 4 to the plasma membranes in adipocytes was suppressed by CG-1, followed by decreased glucose uptake into the cells. These results indicate that an andiroba limonoid CG-1 suppressed the accumulation of intracellular lipids in the early phase of adipocyte differentiation through repression of IRS-1/Akt-mediated glucose uptake in adipocytes.
Collapse
Affiliation(s)
- Chihiro Matsumoto
- Department of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Atsushi Koike
- Department of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Reiko Tanaka
- Department of Medicinal Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Ko Fujimori
- Department of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
16
|
Luz TSA, Leite JC, Bezerra S, de Mesquita LS, Ribeiro EG, De Mesquita JC, Silveira DB, Brito MA, Vilanova C, do Amaral FM, Coutinho D. Pharmacognostic evaluation of Carapa guianensis Aubl. leaves: A medicinal plant native from Brazilian Amazon. Pharmacognosy Res 2019. [DOI: 10.4103/pr.pr_41_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Chia CY, Medeiros AD, Corraes ADMS, Manso JEF, Silva CSCD, Takiya CM, Vanz RL. Healing effect of andiroba-based emulsion in cutaneous wound healing via modulation of inflammation and transforming growth factor beta 31. Acta Cir Bras 2018; 33:1000-1015. [PMID: 30517327 DOI: 10.1590/s0102-865020180110000007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To evaluate the effects and mechanisms of andiroba-based emulsion (ABE) topical treatment on full-thickness cutaneous wounds in rats. METHODS The wounds were harvested on days 3, 7, 15, and 20 post-surgery. Wound contraction rate, quantitative immunohistochemistry [macrophages, myofibroblasts, capillaries, collagens (col) I and III, transforming growth factor β3β (TGFβ3)], and tensile strength were assessed. RESULTS Treated wounds were smaller, contracted earlier and had increased angiogenesis, fewer CD68+ and M2 macrophages on days 7 and 15, but higher on day 20. Myofibroblasts appeared on days 3 to 7 in untreated wounds and on days 7 to 15 in treated wounds. TGFβ3 levels were higher in the treated wounds, less dense collagen fibers, lower col I/III ratios and a higher tensile strength. CONCLUSION These results demonstrate the important anti-inflammatory role of treatment and the associated modulation of macrophages, myofibroblasts, and TGFβ3 levels. Collagen fibers in the treated wounds were more organized and less dense, similar to unwounded skin, which likely contributed to the higher tensile strength.
Collapse
Affiliation(s)
- Chang Yung Chia
- MD, Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, and Immunopathology Laboratory, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Brazil. Conception and design of the study, analysis and interpretation of data, statistics analysis, technical procedures, manuscript writing, critical revision
| | - Andréia Dantas Medeiros
- PhD, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro-RJ, Brazil. Technical procedures, manuscript writing, critical revision, final approval
| | - André de Menezes Silva Corraes
- PhD, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro-RJ, Brazil. Technical procedures, manuscript writing, critical revision, final approval
| | - José Eduardo Ferreira Manso
- PhD, Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brazil. Design of the study, analysis and interpretation of data, final approval
| | - César Silveira Claudio da Silva
- PhD, Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brazil. Design of the study, analysis and interpretation of data, final approval
| | - Christina Maeda Takiya
- PhD, Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, and Immunopathology Laboratory, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro-RJ, Brazil. Design of the study, analysis and interpretation of data, immunohistochemical examinations, statistics analysis, manuscript writing, critical revision, final approval
| | - Ricardo Luís Vanz
- MD, Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, UFRJ, Rio de Janeiro-RJ, Brazil. Manuscript writing, critical revision, final approval
| |
Collapse
|
18
|
Ribeiro VP, Arruda C, Abd El-Salam M, Bastos JK. Brazilian medicinal plants with corroborated anti-inflammatory activities: a review. PHARMACEUTICAL BIOLOGY 2018; 56:253-268. [PMID: 29648503 PMCID: PMC6130656 DOI: 10.1080/13880209.2018.1454480] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Inflammatory disorders are common in modern life, and medicinal plants provide an interesting source for new compounds bearing anti-inflammatory properties. In this regard, Brazilian medicinal plants are considered to be a promising supply of such compounds due to their great biodiversity. OBJECTIVES To undertake a review on Brazilian medicinal plants with corroborated anti-inflammatory activities by selecting data from the literature reporting the efficacy of plants used in folk medicine as anti-inflammatory, including the mechanisms of action of their extracts and isolated compounds. METHODS A search in the literature was undertaken by using the following Web tools: Web of Science, SciFinder, Pub-Med and Science Direct. The terms 'anti-inflammatory' and 'Brazilian medicinal plants' were used as keywords in search engine. Tropicos and Reflora websites were used to verify the origin of the plants, and only the native plants of Brazil were included in this review. The publications reporting the use of well-accepted scientific protocols to corroborate the anti-inflammatory activities of Brazilian medicinal plants with anti-inflammatory potential were considered. RESULTS We selected 70 Brazilian medicinal plants with anti-inflammatory activity. The plants were grouped according to their anti-inflammatory mechanisms of action. The main mechanisms involved inflammatory mediators, such as interleukins (ILs), nuclear factor kappa B (NF-κB), prostaglandin E2 (PGE2), cyclooxygenase (COX) and reactive oxygen species (ROS). CONCLUSIONS The collected data on Brazilian medicinal plants, in the form of crude extract and/or isolated compounds, showed significant anti-inflammatory activities involving different mechanisms of action, indicating Brazilian plants as an important source of anti-inflammatory compounds.
Collapse
Affiliation(s)
- Victor Pena Ribeiro
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Caroline Arruda
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mohamed Abd El-Salam
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- CONTACT Jairo Kenupp BastosDepartment of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP14040-903, Brazil
| |
Collapse
|
19
|
Oliveira IDSDS, Moragas Tellis CJ, Chagas MDSDS, Behrens MD, Calabrese KDS, Abreu-Silva AL, Almeida-Souza F. Carapa guianensis Aublet (Andiroba) Seed Oil: Chemical Composition and Antileishmanial Activity of Limonoid-Rich Fractions. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5032816. [PMID: 30258850 PMCID: PMC6146648 DOI: 10.1155/2018/5032816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is a complex of diseases caused by protozoa of the genus Leishmania and affects millions of people around the world. Several species of plants are used by traditional communities for the treatment of this disease, among which is Carapa guianensis Aubl. (Meliaceae), popularly known as andiroba. The objective of the present work was to conduct a chemical study of C. guianensis seed oil and its limonoid-rich fractions, with the aim of identifying its secondary metabolites, particularly the limonoids, in addition to investigating its anti-Leishmania potential. The chemical analyses of the C. guianensis seed oil and fractions were obtained by electrospray ionization mass spectrometry (ESI-MS). The cytotoxic activity was tested against peritoneal macrophages, and antileishmanial activity was evaluated against promastigotes and intracellular amastigotes of Leishmania amazonensis. All the C. guianensis seed oil samples analyzed exhibited the same pattern of fatty acids, while the limonoids 7-deacetoxy-7-hydroxygedunin, deacetyldihydrogedunin, deoxygedunin, andirobin, gedunin, 11β-hydroxygedunin, 17-glycolyldeoxygedunin, 6α-acetoxygedunin, and 6α,11β-diacetoxygedunin were identified in the limonoid-rich fractions of the oil. The C. guianensis seed oil did not exhibit antileishmanial activity, and cytotoxicity was higher than 1000 μg/mL. Three limonoid-rich oil fractions demonstrated activity against promastigotes (IC50 of 10.53±0.050, 25.3±0.057, and 56.9±0.043μg/mL) and intracellular amastigotes (IC50 of 27.31±0.091, 78.42±0.086, and 352.2±0.145 μg/mL) of L. amazonensis, as well as cytotoxicity against peritoneal macrophages (CC50 of 78.55±1.406, 139.0±1.523, and 607.7±1.217 μg/mL). The anti-Leishmania activity of the limonoid-rich fractions of C. guianensis can be attributed to the limonoids 11β-hydroxygedunin and 6α,11β-diacetoxygedunin detected in the chemical analysis.
Collapse
Affiliation(s)
| | | | | | - Maria Dutra Behrens
- Laboratório de Produtos Naturais 5, Farmanguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Fernando Almeida-Souza
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Mestrado em Ciência Animal, Universidade Estadual do Maranhão, São Luís, Brazil
| |
Collapse
|
20
|
Wanzeler AMV, Júnior SMA, Gomes JT, Gouveia EHH, Henriques HYB, Chaves RH, Soares BM, Salgado HLC, Santos AS, Tuji FM. Therapeutic effect of andiroba oil (Carapa guianensis Aubl.) against oral mucositis: an experimental study in golden Syrian hamsters. Clin Oral Investig 2018; 22:2069-2079. [PMID: 29256157 DOI: 10.1007/s00784-017-2300-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the healing activity of andiroba (Carapa guianensis Aubl.) against oral mucositis (OM) induced by 5-fluorouracil in golden Syrian hamsters. MATERIALS AND METHODS A total of 122 animals were randomized and divided into six groups: andiroba oil 100%, andiroba oil 10%, andiroba oil 10% refined, no treatment group, all n = 28; and negative control (NC) and cyclophosphamide (CPA) groups, both n = 5. OM was induced by intraperitoneal administration of 60 mg/kg 5-FU on days 0, 5 and 10 followed by mechanical trauma on the oral mucosa on days 1 and 2. From day 1 to day 15, the animals of the andiroba group were treated three times a day. On days 4, 8, 12 and 15, the mucosa was photographed and removed for clinical and histopathological analysis. The bone marrow of the femur was removed and the micronucleus test was performed to evaluate the cytotoxicity and genotoxicity. The data were subjected to analysis of variance, followed by the Tukey and Bonferroni test. RESULTS Treatment with 100% andiroba oil reduced the degree of OM compared to that reported in the other groups (p < 0.05). Andiroba oil at both concentrations was not cytotoxic, but treatment with 100% andiroba oil showed a genotoxic potential (p < 0.001). CONCLUSIONS Frequent administration of andiroba oil accelerated the healing process in an experimental model of 5-fluorouracil-induced OM. However, the genotoxicity of andiroba in other cell systems and under other conditions are being tested. CLINICAL RELEVANCE The use of andiroba in topical form may be associated with reduced intensity of OM. Seek therapeutic alternatives to minimize the pain and suffering that these side effects cause cancer patients is an important scientific step.
Collapse
Affiliation(s)
| | | | | | | | | | - Rosa Helena Chaves
- Department of Medicine, University of the State of Pará, Belém, Pará, Brazil
| | - Bruno Moreira Soares
- Department of Genetics, Human Cytogenetics Laboratory of the Federal University of Pará, Belém, Pará, Brazil
| | - Hugo Leonardo Crisóstomo Salgado
- Department of Chemistry, Systematic Research in Biotechnology and Molecular Diversity Laboratory of the Federal University of Pará, Belém, Pará, Brazil
| | - Alberdan Silva Santos
- Department of Chemistry, Systematic Research in Biotechnology and Molecular Diversity Laboratory of the Federal University of Pará, Belém, Pará, Brazil
| | | |
Collapse
|
21
|
Antioxidant Activity and Genotoxic Assessment of Crabwood (Andiroba, Carapa guianensis Aublet) Seed Oils. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3246719. [PMID: 29854079 PMCID: PMC5954914 DOI: 10.1155/2018/3246719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/22/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
Abstract
The seed oil of Carapa guianensis (Aublet), a tree from the Meliaceae family commonly known as andiroba, is widely used in Brazilian traditional medicine because of its multiple curative properties against fever and rheumatism and as an anti-inflammatory agent, antibacterial agent, and insect repellant. Since there is no consensus on the best way to obtain the C. guianensis oil and due to its ethnomedicinal properties, the aim of the present research was to evaluate the chemical composition, free-radical scavenging activity, and mutagenic and genotoxicity properties of three C. guianensis oils obtained by different extraction methods. The phenolic contents were evaluated by spectrophotometry. Oil 1 was obtained by pressing the dried seeds at room temperature; oil 2 was obtained by autoclaving, drying, and pressing; oil 3 was obtained by Soxhlet extraction at 30–60°C using petroleum ether. The oil from each process presented differential yields, physicochemical properties, and phenolic contents. Oil 1 showed a higher scavenging activity against the DPPH radical when compared to oils 2 and 3, suggesting a significant antioxidant activity. All oils were shown to be cytotoxic to bacteria and to CHO-K1 and RAW264.7 cells. At noncytotoxic concentrations, oil 2 presented mutagenicity to Salmonella enterica serovar Typhimurium and induced micronuclei in both cell types. Under the same conditions, oil 3 also induced micronucleus formation. However, the present data demonstrated that oil 1, extracted without using high temperatures, was the safest for use as compared to the other two oils, not showing mutagenicity or micronucleus induction.
Collapse
|
22
|
Morikawa T, Nagatomo A, Kitazawa K, Muraoka O, Kikuchi T, Yamada T, Tanaka R, Ninomiya K. Collagen Synthesis-Promoting Effects of Andiroba Oil and its Limonoid Constituents in Normal Human Dermal Fibroblasts. J Oleo Sci 2018; 67:1271-1277. [DOI: 10.5650/jos.ess18143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute
- Antiaging Center, Kindai University
| | | | | | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute
- Antiaging Center, Kindai University
| | | | | | | | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute
- Antiaging Center, Kindai University
| |
Collapse
|
23
|
|
24
|
Ricardo LM, Paula-Souza JD, Andrade A, Brandão MG. Plants from the Brazilian Traditional Medicine: species from the books of the Polish physician Piotr Czerniewicz (Pedro Luiz Napoleão Chernoviz, 1812–1881). REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Borges PV, Moret KH, Raghavendra NM, Maramaldo Costa TE, Monteiro AP, Carneiro AB, Pacheco P, Temerozo JR, Bou-Habib DC, das Graças Henriques M, Penido C. Protective effect of gedunin on TLR-mediated inflammation by modulation of inflammasome activation and cytokine production: Evidence of a multitarget compound. Pharmacol Res 2017; 115:65-77. [DOI: 10.1016/j.phrs.2016.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/09/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023]
|
26
|
Borges PV, Moret KH, Maya-Monteiro CM, Souza-Silva F, Alves CR, Batista PR, Caffarena ER, Pacheco P, Henriques MDG, Penido C. Gedunin Binds to Myeloid Differentiation Protein 2 and Impairs Lipopolysaccharide-Induced Toll-Like Receptor 4 Signaling in Macrophages. Mol Pharmacol 2015; 88:949-61. [PMID: 26330549 DOI: 10.1124/mol.115.098970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/26/2015] [Indexed: 12/16/2022] Open
Abstract
Recognition of bacterial lipopolysaccharide (LPS) by innate immune system is mediated by the cluster of differentiation 14/Toll-like receptor 4/myeloid differentiation protein 2 (MD-2) complex. In this study, we investigated the modulatory effect of gedunin, a limonoid from species of the Meliaceae family described as a heat shock protein Hsp90 inhibitor, on LPS-induced response in immortalized murine macrophages. The pretreatment of wild-type (WT) macrophages with gedunin (0.01-100 µM, noncytotoxic concentrations) inhibited LPS (50 ng/ml)-induced calcium influx, tumor necrosis factor-α, and nitric oxide production in a concentration-dependent manner. The selective effect of gedunin on MyD88-adapter-like/myeloid differentiation primary response 88- and TRIF-related adaptor molecule/TIR domain-containing adapter-inducing interferon-β-dependent signaling pathways was further investigated. The pretreatment of WT, TIR domain-containing adapter-inducing interferon-β knockout, and MyD88 adapter-like knockout macrophages with gedunin (10 µM) significantly inhibited LPS (50 ng/ml)-induced tumor necrosis factor-α and interleukin-6 production, at 6 hours and 24 hours, suggesting that gedunin modulates a common event between both signaling pathways. Furthermore, gedunin (10 µM) inhibited LPS-induced prostaglandin E2 production, cyclooxygenase-2 expression, and nuclear factor κB translocation into the nucleus of WT macrophages, demonstrating a wide-range effect of this chemical compound. In addition to the ability to inhibit LPS-induced proinflammatory mediators, gedunin also triggered anti-inflammatory factors interleukin-10, heme oxygenase-1, and Hsp70 in macrophages stimulated or not with LPS. In silico modeling studies revealed that gedunin efficiently docked into the MD-2 LPS binding site, a phenomenon further confirmed by surface plasmon resonance. Our results reveal that, in addition to Hsp90 modulation, gedunin acts as a competitive inhibitor of LPS, blocking the formation of the Toll-like receptor 4/MD-2/LPS complex.
Collapse
Affiliation(s)
- Perla Villani Borges
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Katelim Hottz Moret
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Clarissa Menezes Maya-Monteiro
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Franklin Souza-Silva
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carlos Roberto Alves
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paulo Ricardo Batista
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ernesto Raúl Caffarena
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia Pacheco
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria das Graças Henriques
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carmen Penido
- Laboratory of Applied Pharmacology, Institute of Drug Technology (P.V.B., K.H.M., P.P., M.d.G.H., C.P.), Computational Science Program, Computational Biophysics and Molecular Modeling Group (P.R.B.; E.R.C.), and Center for Technological Development in Health (M.G.H., C.P.), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; and Laborator of Immunopharmacology (C.M.M.-M.) and Molecular Biology and Endemic Diseases (F.S.S., C.R.A.), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|