1
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3527-3555. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Benaceur O, Ferreira Montenegro P, Kahi M, Fontaine-Vive F, Mazure NM, Mehiri M, Bost F, Peraldi P. Development of a reliable, sensitive, and convenient assay for the discovery of new eIF5A hypusination inhibitors. PLoS One 2025; 20:e0308049. [PMID: 39937781 DOI: 10.1371/journal.pone.0308049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/21/2024] [Indexed: 02/14/2025] Open
Abstract
eIF5A is a translation factor dysregulated in several pathologies such as cancer and diabetes. eIF5A activity depends upon its hypusination, a unique post-translational modification catalyzed by two enzymes: DHPS and DOHH. Only a few molecules able to inhibit hypusination have been described, and none are used for the treatment of patients. The scarcity of new inhibitors is probably due to the challenge of measuring DHPS and DOHH activities. Here, we describe the Hyp'Assay, a convenient cell-free assay to monitor eIF5A hypusination. Hypusination is performed in 96-well plates using recombinant human eIF5A, DHPS, and DOHH and is revealed by an antibody against hypusinated eIF5A. Pharmacological values obtained with the Hyp'Assay, such as the EC50 of DHPS for spermidine or the IC50 of GC7 for DHPS, were similar to published data, supporting the reliability of the Hyp'Assay. As a proof of concept, we synthesized four new GC7 analogs and showed, using the Hyp'Assay, that these derivatives inhibit hypusination. In summary, we present the Hyp'Assay; a reliable and sensitive assay for new hypusination inhibitors. This assay could be of interest to researchers wanting an easier way to study hypusination, and also a valuable tool for large-scale screening of chemical libraries for new hypusination inhibitors.
Collapse
Affiliation(s)
| | | | - Michel Kahi
- Université Côte d'Azur, Inserm U1065, C3M, Nice, France
| | | | | | - Mohamed Mehiri
- Université Côte d'Azur, CNRS UMR 7272, Institut de Chimie de Nice, Nice, France
| | - Frederic Bost
- Université Côte d'Azur, Inserm U1065, C3M, Nice, France
| | | |
Collapse
|
3
|
Du E, Jia X, Li X, Zhang B, Zhai Y, Qin F. Neuroprotective effect of ciclopirox olamine in retinal ischemia/reperfusion injury. BMC Mol Cell Biol 2024; 25:22. [PMID: 39385121 PMCID: PMC11465616 DOI: 10.1186/s12860-024-00520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024] Open
Abstract
Retinal ischemia-reperfusion (IR) injury is a basic pathological procedure in clinic and associated with various ischemic retinal diseases, including glaucoma, diabetic retinopathy, retinal vascular occlusion, etc. The purpose of this work is to investigate the effect of ciclopirox olamine (CPX) on retinal IR injury and further explore the underlying mechanism. In vitro assay exhibited that CPX exhibited significant neuroprotection against oxygen glucose deprivation (OGD) and oxidative stress-induced injuries in 661W photoreceptor cells. OGD injury showed a proinflammatory phenotype characterized by significantly increased production of cytokines (IL-6, IL-23 and TNF-α), while CPX significantly inhibited their secretion. In addition, the in vivo experiment demonstrated that CPX significantly preserved the normal thickness of the retina. Therefore, we suggest that CPX is identified in our research as a prospective therapeutic agent for retinal IR injury.
Collapse
Affiliation(s)
- Enming Du
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaolin Jia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Beibei Zhang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yaping Zhai
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Fangyuan Qin
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
4
|
Li W, Xue Y, Zhang F, Xiao L, Huang Z, Li W, Zhu L, Ge G. In Vitro Ciclopirox Glucuronidation in Liver Microsomes from Humans and Various Experimental Animals. Eur J Drug Metab Pharmacokinet 2024; 49:619-629. [PMID: 38990427 DOI: 10.1007/s13318-024-00907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND OBJECTIVE Ciclopirox is a widely used antifungal drug, redisposition of which has drawn increasing attentions due to multiple promising activities. The drug undergoes extensive glucuronidation, which acts as a major obstacle in the ongoing novel application and still remains poorly understood. The current study aims to phenotype ciclopirox glucuronidation pathway and as well to decipher the related species differences. METHODS Ciclopirox glucuronidation was investigated in liver microsomes from humans (HLM) and various experimental animals. Assays with recombinant uridine diphosphate glucuronosyltransferases (UGTs), enzyme kinetic analyses and selective inhibitors were used to determine the role of individual UGTs in ciclopirox glucuronidation. RESULTS HLM is highly active in ciclopirox glucuronidation with Michaelis-Menten constant (Km), maximum velocity (Vmax), and intrinsic clearance (CLint) values of 139 μM, 7.89 nmol/min/mg, and 56 μL/min/mg, respectively. UGT1A9 displays by far the highest activity, whereas several other isoforms (UGT1A6, UGT1A7, and UGT1A8) catalyze formation of traced glucuronides. Further kinetic analysis demonstrates that UGT1A9 has a closed Km value (167 μM) to HLM. UGT1A9 selective inhibitor (magnolol) can potently inhibit ciclopirox glucuronidation in HLM with the IC50 value of 0.12 μM. The reaction displays remarkable differences across liver microsomes from mice, rats, cynomolgus monkey, minipig, and beagle dog, with the CLint values in the range of 26-369 μL/min/mg. In addition, ciclopirox glucuronidation activities of experimental animals' liver microsomes were less sensitive to magnolol than that of HLM. CONCLUSIONS Ciclopirox glucuronidation displays remarkable species differences with UGT1A9 as a dominant contributor in humans. It is suggested that the pharmacological or toxicological effects of ciclopirox may be UGT1A9 and species dependent.
Collapse
Affiliation(s)
- Wenjing Li
- School of Life Science, Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, 1318 Jixianbei Road, Anqing, 246133, People's Republic of China
| | - Yufan Xue
- School of Life Science, Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, 1318 Jixianbei Road, Anqing, 246133, People's Republic of China
| | - Feng Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology and Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, People's Republic of China
| | - Ling Xiao
- School of Resources and Environment, Anqing Normal University, Anqing, 246311, People's Republic of China
| | - Zhu Huang
- School of Life Science, Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, 1318 Jixianbei Road, Anqing, 246133, People's Republic of China
| | - Wenjuan Li
- School of Life Science, Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, 1318 Jixianbei Road, Anqing, 246133, People's Republic of China
| | - Liangliang Zhu
- School of Life Science, Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, 1318 Jixianbei Road, Anqing, 246133, People's Republic of China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology and Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
5
|
Wei X, Zhou Y, Shen X, Fan L, Liu D, Gao X, Zhou J, Wu Y, Li Y, Feng W, Zhang Z. Ciclopirox inhibits SARS-CoV-2 replication by promoting the degradation of the nucleocapsid protein. Acta Pharm Sin B 2024; 14:2505-2519. [PMID: 38828154 PMCID: PMC11143514 DOI: 10.1016/j.apsb.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
The nucleocapsid protein (NP) plays a crucial role in SARS-CoV-2 replication and is the most abundant structural protein with a long half-life. Despite its vital role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assembly and host inflammatory response, it remains an unexplored target for drug development. In this study, we identified a small-molecule compound (ciclopirox) that promotes NP degradation using an FDA-approved library and a drug-screening cell model. Ciclopirox significantly inhibited SARS-CoV-2 replication both in vitro and in vivo by inducing NP degradation. Ciclopirox induced abnormal NP aggregation through indirect interaction, leading to the formation of condensates with higher viscosity and lower mobility. These condensates were subsequently degraded via the autophagy-lysosomal pathway, ultimately resulting in a shortened NP half-life and reduced NP expression. Our results suggest that NP is a potential drug target, and that ciclopirox holds substantial promise for further development to combat SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Xiafei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuzheng Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Xiaotong Shen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Lujie Fan
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511495, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Jian Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Yezi Wu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Yunfei Li
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Wei Feng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| |
Collapse
|
6
|
Kontoghiorghes GJ. The Importance and Essentiality of Natural and Synthetic Chelators in Medicine: Increased Prospects for the Effective Treatment of Iron Overload and Iron Deficiency. Int J Mol Sci 2024; 25:4654. [PMID: 38731873 PMCID: PMC11083551 DOI: 10.3390/ijms25094654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
7
|
Lapthorn AR, Ilg MM, Dziewulski P, Cellek S. Hydroxypyridone anti-fungals selectively induce myofibroblast apoptosis in an in vitro model of hypertrophic scars. Eur J Pharmacol 2024; 967:176369. [PMID: 38325796 DOI: 10.1016/j.ejphar.2024.176369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Hypertrophic scars are a common complication of burn injuries, yet there are no medications to prevent their formation. During scar formation, resident fibroblasts are transformed to myofibroblasts which become resistant to apoptosis. Previously, we have shown that hydroxypyridone anti-fungals can inhibit transformation of fibroblasts, isolated from hypertrophic scars, to myofibroblasts. This study aimed to investigate if these drugs can also target myofibroblast persistence. Primary human dermal fibroblasts, derived from burn scar tissue, were exposed to transforming growth factor beta-1 (TGF-β1) for 72 h to induce myofibroblast transformation. The cells were then incubated with three hydroxypyridone anti-fungals (ciclopirox, ciclopirox ethanolamine and piroctone olamine; 0.03-300 μM) for a further 72 h. The In-Cell ELISA method was utilised to quantify myofibroblast transformation by measuring alpha-smooth muscle actin (α-SMA) expression and DRAQ5 staining, to measure cell viability. TUNEL staining was utilised to assess if the drugs could induce apoptosis. When given to established myofibroblasts, the three hydroxypyridones did not reverse myofibroblast transformation, but instead elicited a concentration-dependent decrease in cell viability. TUNEL staining confirmed that the hydroxypyridone anti-fungals induced apoptosis in established myofibroblasts. This is the first study to show that hydroxypyridone anti-fungals are capable of inducing apoptosis in established myofibroblasts. Together with our previous results, we suggest that hydroxypyridone anti-fungals can prevent scar formation by preventing the formation of new myofibroblasts and by reducing the number of existing myofibroblasts.
Collapse
Affiliation(s)
- Alice Ruth Lapthorn
- Fibrosis Research Group, Medical Technology Research Centre, School of Allied Health, Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, UK.
| | - Marcus Maximillian Ilg
- Fibrosis Research Group, Medical Technology Research Centre, School of Allied Health, Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, UK
| | - Peter Dziewulski
- Fibrosis Research Group, Medical Technology Research Centre, School of Allied Health, Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, UK; St. Andrew's Centre for Plastic Surgery and Burns, Broomfield Hospital, Chelmsford, UK; St Andrew's Anglia Ruskin Research Group (StAAR), Chelmsford, UK
| | - Selim Cellek
- Fibrosis Research Group, Medical Technology Research Centre, School of Allied Health, Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, UK
| |
Collapse
|
8
|
Talkhoncheh MS, Baudet A, Ek F, Subramaniam A, Kao YR, Miharada N, Karlsson C, Oburoglu L, Rydström A, Zemaitis K, Alattar AG, Rak J, Pietras K, Olsson R, Will B, Larsson J. Ciclopirox ethanolamine preserves the immature state of human HSCs by mediating intracellular iron content. Blood Adv 2023; 7:7407-7417. [PMID: 37487020 PMCID: PMC10758717 DOI: 10.1182/bloodadvances.2023009844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. To elucidate regulatory mechanisms governing the maintenance and propagation of human HSCs ex vivo, we screened libraries of annotated small molecules in human cord blood cells using an optimized assay for detection of functional HSCs during culture. We found that the antifungal agent ciclopirox ethanolamine (CPX) selectively supported immature CD34+CD90+ cells during culture and enhanced their long-term in vivo repopulation capacity. Purified HSCs treated with CPX showed a reduced cell division rate and an enrichment of HSC-specific gene expression patterns. Mechanistically, we found that the HSC stimulating effect of CPX was directly mediated by chelation of the intracellular iron pool, which in turn affected iron-dependent proteins and enzymes mediating cellular metabolism and respiration. Our findings unveil a significant impact of iron homeostasis in regulation of human HSCs, with important implications for both basic HSC biology and clinical hematology.
Collapse
Affiliation(s)
| | - Aurélie Baudet
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Yun-Ruei Kao
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Natsumi Miharada
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Christine Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Leal Oburoglu
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Rydström
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kristijonas Zemaitis
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Abdul Ghani Alattar
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Justyna Rak
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Medicon Village, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther 2023; 8:372. [PMID: 37735472 PMCID: PMC10514338 DOI: 10.1038/s41392-023-01606-1] [Citation(s) in RCA: 188] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death with distinct characteristics, including altered iron homeostasis, reduced defense against oxidative stress, and abnormal lipid peroxidation. Recent studies have provided compelling evidence supporting the notion that ferroptosis plays a key pathogenic role in many diseases such as various cancer types, neurodegenerative disease, diseases involving tissue and/or organ injury, and inflammatory and infectious diseases. Although the precise regulatory networks that underlie ferroptosis are largely unknown, particularly with respect to the initiation and progression of various diseases, ferroptosis is recognized as a bona fide target for the further development of treatment and prevention strategies. Over the past decade, considerable progress has been made in developing pharmacological agonists and antagonists for the treatment of these ferroptosis-related conditions. Here, we provide a detailed overview of our current knowledge regarding ferroptosis, its pathological roles, and its regulation during disease progression. Focusing on the use of chemical tools that target ferroptosis in preclinical studies, we also summarize recent advances in targeting ferroptosis across the growing spectrum of ferroptosis-associated pathogenic conditions. Finally, we discuss new challenges and opportunities for targeting ferroptosis as a potential strategy for treating ferroptosis-related diseases.
Collapse
Affiliation(s)
- Shumin Sun
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shen
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Jiang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Wang L, Wei C, Wang Y, Huang N, Zhang T, Dai Y, Xue L, Lin S, Wu ZB. Identification of the enhancer RNAs related to tumorgenesis of pituitary neuroendocrine tumors. Front Endocrinol (Lausanne) 2023; 14:1149997. [PMID: 37534217 PMCID: PMC10393250 DOI: 10.3389/fendo.2023.1149997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Background Pituitary neuroendocrine tumors (PitNETs), which originate from the pituitary gland, account for 10%-15% of all intracranial neoplasms. Recent studies have indicated that enhancer RNAs (eRNAs) exert regulatory effects on tumor growth. However, the mechanisms underlying the eRNA-mediated tumorigenesis of PitNETs have not been elucidated. Methods Normal pituitary and PitNETs tissues were used to identify the differentially expressed eRNAs (DEEs). Immune gene sets and hallmarks of cancer gene sets were quantified based on single sample gene set enrichment analysis (ssGSEA) algorithm using GSVA. The perspective of immune cells among all samples was calculated by the CIBERSORT algorithm. Moreover, the regulatory network composed of key DEEs, target genes of eRNAs, hallmarks of cancer gene sets, differentially expressed TF, immune cells and immune gene sets were constructed by Pearson correlation analysis. Small molecular anti-PitNETs drugs were explored by CMap analysis and the accuracy of the study was verified by in vitro and in vivo experiments, ATAC-seq and ChIP-seq. Results In this study, data of 134 PitNETs and 107 non-tumorous pituitary samples were retrieved from a public database to identify differentially expressed genes. In total, 1128 differentially expressed eRNAs (DEEs) (494 upregulated eRNAs and 634 downregulated eRNAs) were identified. Next, the correlation of DEEs with cancer-related and immune-related gene signatures was examined to establish a co-expression regulatory network comprising 18 DEEs, 50 potential target genes of DEEs, 5 cancer hallmark gene sets, 2 differentially expressed transcription factors, 4 immune cell types, and 4 immune gene sets. Based on this network, the following four therapeutics for PitNETs were identified using Connectivity Map analysis: ciclopirox, bepridil, clomipramine, and alexidine. The growth-inhibitory effects of these therapeutics were validated using in vitro experiments. Ciclopirox exerted potential growth-inhibitory effects on PitNETs. Among the DEEs, GNLY, HOXB7, MRPL33, PRDM16, TCF7, and ZNF26 were determined to be potential diagnostic and therapeutic biomarkers for PitNETs. Conclusion This study illustrated the significant influence of eRNAs on the occurrence and development of PitNETs. By constructing the co-expression regulation network, GNLY, HOXB6, MRPL33, PRDM16, TCF7, and ZNF26 were identified as relatively significant DEEs which were considered as the novel biomarkers of diagnosis and treatment of PitNETs. This study demonstrated the roles of eRNAs in the occurrence and development of PitNETs and revealed that ciclopirox was a potential therapeutic for pituitary adenomas.
Collapse
Affiliation(s)
- Liangbo Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenlu Wei
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuting Dai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xue
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaojian Lin
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Bao Wu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Tu Z, Wang X, Cai H, Sheng Y, Wu L, Huang K, Zhu X. The cell senescence regulator p16 is a promising cancer prognostic and immune check-point inhibitor (ICI) therapy biomarker. Aging (Albany NY) 2023; 15:2136-2157. [PMID: 36961395 PMCID: PMC10085592 DOI: 10.18632/aging.204601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
Cyclin-dependent kinase inhibitor 2A (CDKN2A) encodes the cell senescence regulator protein p16. The expression of p16 raises in cell senescence and has a nuclear regulation in cell aging. Meanwhile, it's also reported to inhibit the aggression of several cancers. But its clinical application and role in cancer immunotherapy needs further investigation. We collected the transcriptional data of pan-cancer and normal human tissues from The Cancer Genome Atlas and the Genotype-Tissue Expression databases. CBioPortal webtool was employed to mine the genomic alteration status of CDKN2A across cancers. Kaplan-Meier method and univariate Cox regression were performed for prognostic assessments across cancers, respectively. Gene Set Enrichment Analysis is the main method used to search the associated cancer hallmarks associated with CDKN2A. TIMER2.0 was used to analyze the immune cell infiltration relevance with CDKN2A in pan-cancer. The associations between CDKN2A and immunotherapy biomarkers or regulators were performed by spearman correlation analysis. We found CDKN2A is overexpressed in most cancers and exhibits prognosis predictive ability in various cancers. In addition, it is significantly correlated with immune-activated hallmarks, cancer immune cell infiltrations and immunoregulators. The most interesting finding is that CDKN2A can significantly predict anti-PDL1 therapy response. Finally, specific inhibitors which correlated with CDKN2A expression in different cancer types were also screened by using Connectivity Map (CMap) tool. The results revealed that CDKN2A acts as a robust cancer prognostic and immunotherapy biomarker. Its function in the regulation of cancer cell senescence might shape the tumor microenvironment and contribute to its predictive ability of immunotherapy.
Collapse
Affiliation(s)
- Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Xiaolin Wang
- The Second Clinical Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Huan Cai
- Department of Medical Ultrasonics, Integrated Chinese and Western Medicine Hospital of Jiangxi Province, Nanchang 330006, Jiangxi, P.R. China
| | - Yilei Sheng
- The HuanKui Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
12
|
Khademloo E, Kadhodaeian HA, Jameie SB, Farhadi M, Saeidian H. A detailed density functional theory investigation on physicochemical properties of ciclopirox derivatives: A potential candidate for prevention of age-related macular degeneration. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Zangi M, Donald KA, Casals AG, Franson AD, Yu AJ, Marker EM, Woodson ME, Campbell SD, Mottaleb MA, Narayana Hajay Kumar TV, Reddy MS, Raghava Reddy LV, Sadhukhan SK, Griggs DW, Morrison LA, Meyers MJ. Synthetic derivatives of the antifungal drug ciclopirox are active against herpes simplex virus 2. Eur J Med Chem 2022; 238:114443. [PMID: 35635945 PMCID: PMC11103786 DOI: 10.1016/j.ejmech.2022.114443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
We previously showed that the anti-fungal drug ciclopirox olamine effectively inhibits replication of herpes simplex virus (HSV)-1 and HSV-2. Given the rise of HSV strains that are resistant to nucleos(t)ide analog treatment, as well as the incomplete efficacy of nucleos(t)ide analogs, new inhibitory compounds must be explored for potential use in the treatment of HSV infection. In the present study, we analyzed 44 compounds derived from the core structure of ciclopirox olamine for inhibitory activity against HSV. Thirteen of these derivative compounds inhibited HSV-2 replication by > 1000- to ∼100,000-fold at 1 μM and displayed EC50 values lower than that of acyclovir, as well as low cytotoxicity, indicating their strong therapeutic potential. Through structural comparison, we also provide evidence for the importance of various structural motifs to the efficacy of ciclopirox and its derivatives, namely hydrophobic groups at R4 and R6 of the ciclopirox core structure. Like ciclopirox, representative analogs exhibit some oral bioavailability but are rapidly cleared in vivo. Together, these results will guide further development of N-hydroxypyridones as HSV therapeutics.
Collapse
Affiliation(s)
- Maryam Zangi
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Katherine A Donald
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Andreu Gazquez Casals
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Abaigeal D Franson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Alice J Yu
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Elise M Marker
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Molly E Woodson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Scott D Campbell
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO, 63103, USA.
| | - M Abdul Mottaleb
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO, 63103, USA
| | | | | | | | | | - David W Griggs
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Lynda A Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO, 63103, USA.
| | - Marvin J Meyers
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO, 63103, USA.
| |
Collapse
|
14
|
Lu J, Li Y, Gong S, Wang J, Lu X, Jin Q, Lu B, Chen Q. Ciclopirox targets cellular bioenergetics and activates ER stress to induce apoptosis in non-small cell lung cancer cells. Cell Commun Signal 2022; 20:37. [PMID: 35331268 PMCID: PMC8943949 DOI: 10.1186/s12964-022-00847-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lung cancer remains a major cause of cancer-related mortality throughout the world at present. Repositioning of existing drugs for other diseases is a promising strategy for cancer therapies, which may rapidly advance potentially promising agents into clinical trials and cut down the cost of drug development. Ciclopirox (CPX), an iron chelator commonly used to treat fungal infections, which has recently been shown to have antitumor activity against a variety of cancers including both solid tumors and hematological malignancies in vitro and in vivo. However, the effect of CPX on non-small cell lung cancer (NSCLC) and the underlying mechanism is still unclear. Methods CCK-8, clonal formation test and cell cycle detection were used to observe the effect of inhibitor on the proliferation ability of NSCLC cells. The effects of CPX on the metastasis ability of NSCLC cells were analyzed by Transwell assays. Apoptosis assay was used to observe the level of cells apoptosis. The role of CPX in energy metabolism of NSCLC cells was investigated by reactive oxygen species (ROS) detection, glucose uptake, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) experiments. Western blot was used to examine the protein changes. Results We report that CPX inhibits NSCLC cell migration and invasion abilities through inhibiting the epithelial-mesenchymal transition, impairing cellular bioenergetics, and promoting reactive oxygen species to activate endoplasmic reticulum (ER) stress-induced apoptotic cell death. Moreover, CPX intraperitoneal injection can significantly inhibit NSCLC growth in vivo in a xenograft model. Conclusions Our study revealed that CPX targets cellular bioenergetics and activates unfolded protein response in ER to drive apoptosis in NSCLC cells, indicating that CPX may be a potential therapeutic drug for the treatment of NSCLC. Graphical Abstract ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00847-x.
Collapse
Affiliation(s)
- Junwan Lu
- Protein Quality Control and Diseases Laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,School of Medicine, Jinhua Polytechnic, Jinhua, 321007, China
| | - Yujie Li
- Protein Quality Control and Diseases Laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shiwei Gong
- Protein Quality Control and Diseases Laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,Department of Laboratory Medicine, Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, Hubei, China
| | - Jiaxin Wang
- Protein Quality Control and Diseases Laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaoang Lu
- Protein Quality Control and Diseases Laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qiumei Jin
- Protein Quality Control and Diseases Laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qin Chen
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
15
|
Yin J, Che G, Jiang K, Zhou Z, Wu L, Xu M, Liu J, Yan S. Ciclopirox Olamine Exerts Tumor-Suppressor Effects via Topoisomerase II Alpha in Lung Adenocarcinoma. Front Oncol 2022; 12:791916. [PMID: 35251970 PMCID: PMC8894728 DOI: 10.3389/fonc.2022.791916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Globally, lung cancer is one of the most malignant tumors, of which lung adenocarcinoma (LUAD) is the most common subtype, with a particularly poor prognosis. Ciclopirox olamine (CPX) is an antifungal drug and was recently identified as a potential antitumor agent. However, how CPX and its mechanism of action function during LUAD remain unclear. Methods The effects of CPX on cell proliferation, cell cycle, reactive oxygen species (ROS) levels, and apoptosis were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, colony formation, western blotting, flow cytometry assays, and immunohistochemistry. Global gene expression levels were compared between control and CPX-treated LUAD cells. A LUAD xenograft mouse model was used to evaluate the potential in vivo effects of CPX. Results We observed that CPX displayed strong antitumorigenic properties in LUAD cells, inhibited LUAD proliferation, induced ROS production, caused DNA damage, and activated the ATR-CHK1-P53 pathway. Topoisomerase II alpha (TOP2A) is overexpressed in LUAD and associated with a poor prognosis. By analyzing differentially expressed genes (DEGs), TOP2A was significantly down-regulated in CPX-treated LUAD cells. Furthermore, CPX treatment substantially inhibited in vivo LUAD xenograft growth without toxicity or side effects to the hematological system and internal organs. Conclusions Collectively, for the first time, we showed that CPX exerted tumor-suppressor effects in LUAD via TOP2A, suggesting CPX could potentially function as a promising chemotherapeutic for LUAD treatment.
Collapse
Affiliation(s)
- Jie Yin
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Che
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kan Jiang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyang Zhou
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyun Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyou Xu
- Department of Medical Oncology, Peking University Cancer Hospital, Beijing, China
| | - Jian Liu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jian Liu, ; Senxiang Yan,
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jian Liu, ; Senxiang Yan,
| |
Collapse
|
16
|
Wang Z, Cai H, Zhao E, Cui H. The Diverse Roles of Histone Demethylase KDM4B in Normal and Cancer Development and Progression. Front Cell Dev Biol 2022; 9:790129. [PMID: 35186950 PMCID: PMC8849108 DOI: 10.3389/fcell.2021.790129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023] Open
Abstract
Histone methylation status is an important process associated with cell growth, survival, differentiation and gene expression in human diseases. As a member of the KDM4 family, KDM4B specifically targets H1.4K26, H3K9, H3K36, and H4K20, which affects both histone methylation and gene expression. Therefore, KDM4B is often regarded as a key intermediate protein in cellular pathways that plays an important role in growth and development as well as organ differentiation. However, KDM4B is broadly defined as an oncoprotein that plays key roles in processes related to tumorigenesis, including cell proliferation, cell survival, metastasis and so on. In this review, we discuss the diverse roles of KDM4B in contributing to cancer progression and normal developmental processes. Furthermore, we focus on recent studies highlighting the oncogenic functions of KDM4B in various kinds of cancers, which may be a novel therapeutic target for cancer treatment. We also provide a relatively complete report of the progress of research related to KDM4B inhibitors and discuss their potential as therapeutic agents for overcoming cancer.
Collapse
Affiliation(s)
- Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China
| | - Huarui Cai
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China
- *Correspondence: Erhu Zhao, ; Hongjuan Cui,
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China
- *Correspondence: Erhu Zhao, ; Hongjuan Cui,
| |
Collapse
|
17
|
Kaiser A, Agostinelli E. Hypusinated EIF5A as a feasible drug target for Advanced Medicinal Therapies in the treatment of pathogenic parasites and therapy-resistant tumors. Amino Acids 2022; 54:501-511. [DOI: 10.1007/s00726-021-03120-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
|
18
|
Delineating the Switch between Senescence and Apoptosis in Cervical Cancer Cells under Ciclopirox Treatment. Cancers (Basel) 2021; 13:cancers13194995. [PMID: 34638479 PMCID: PMC8508512 DOI: 10.3390/cancers13194995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Novel treatment options for cervical cancer are urgently required. Ciclopirox (CPX), an iron chelator, has shown promising anti-tumorigenic potential in several preclinical tumor models, including cervical cancer cells. In these cells, CPX can induce apoptosis, a form of cell death, or senescence, an irreversible cellular growth arrest. These different phenotypic outcomes may influence therapy response. Here, we show that the decision of cervical cancer cells to induce apoptosis or senescence is strongly dependent on glucose availability: CPX induces apoptosis under limited glucose availability, whereas under increased glucose supply, CPX treatment results in senescence. Further, we link the pro-apoptotic and pro-senescent activities of CPX to its capacity to block oxidative phosphorylation and to chelate iron, respectively. In addition, we show that the combined treatment of CPX and glycolysis inhibitors blocks the proliferation of cervical cancer cells in a synergistic manner. Collectively, we provide novel insights into the anti-proliferative activities of CPX in cervical cancer cells, elucidate the cellular decision between apoptosis or senescence induction, and provide a rationale to combine CPX with glycolysis inhibitors. Abstract The iron-chelating drug ciclopirox (CPX) may possess therapeutic potential for cancer treatment, including cervical cancer. As is observed for other chemotherapeutic drugs, CPX can induce senescence or apoptosis in cervical cancer cells which could differently affect their therapy response. The present study aims to gain insights into the determinants which govern the switch between senescence and apoptosis in cervical cancer cells. We performed proteome analyses, proliferation studies by live-cell imaging and colony formation assays, senescence and apoptosis assays, and combination treatments of CPX with inhibitors of oxidative phosphorylation (OXPHOS) or glycolysis. We found that CPX downregulates OXPHOS factors and facilitates the induction of apoptosis under limited glucose availability, an effect which is shared by classical OXPHOS inhibitors. Under increased glucose availability, however, CPX-induced apoptosis is prevented and senescence is induced, an activity which is not exerted by classical OXPHOS inhibitors, but by other iron chelators. Moreover, we show that the combination of CPX with glycolysis inhibitors blocks cervical cancer proliferation in a synergistic manner. Collectively, our results reveal that the phenotypic response of cervical cancer cells towards CPX is strongly dependent on glucose availability, link the pro-apoptotic and pro-senescent activities of CPX to its bifunctionality as an OXPHOS inhibitor and iron chelator, respectively, and provide a rationale for combining CPX with glycolysis inhibitors.
Collapse
|
19
|
Domínguez-Asenjo B, Gutiérrez-Corbo C, Álvarez-Bardón M, Pérez-Pertejo Y, Balaña-Fouce R, Reguera RM. Ex Vivo Phenotypic Screening of Two Small Repurposing Drug Collections Identifies Nifuratel as a Potential New Treatment against Visceral and Cutaneous Leishmaniasis. ACS Infect Dis 2021; 7:2390-2401. [PMID: 34114790 DOI: 10.1021/acsinfecdis.1c00139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leishmaniases are vector-borne neglected diseases caused by single-celled parasites. The search for new antileishmanial drugs has experienced a strong boost thanks to the application of bioimaging to phenotypic screenings based on intracellular amastigotes. Mouse splenic explants infected with fluorescent strains of Leishmania are proven tools of drug discovery, where hits can be easily transferred to preclinical in vivo models. We have developed a two-staged platform for antileishmanial drugs. First, we screened two commercial collections of repurposing drugs with a total of 1769 compounds in ex vivo mouse splenocytes infected with an infrared emitting Leishmania infantum strain. The most active and safest compounds were scaled-up to in vivo models of chronic Leishmania donovani visceral leishmaniasis and Leishmania major cutaneous leishmaniasis. From the total of 1769 compounds, 12 hits with selective indices >35 were identified, and 4 of them were tested in vivo in a model of L. donovani visceral leishmaniasis. Nifuratel, a repurposed synthetic nitrofuran, when administered orally at 50 mg/kg bw once or twice a day for 10 days, caused >80% reduction in the parasitic load. Furthermore, the intralesional administration of nifuratel in a model of cutaneous leishmaniasis by L. major produced the parasitological cure. From the previous results we have deduced the great capacity of mouse splenic explants to identify new hits, a model which could be easily transferred to in vivo models, as well as the potential use of nifuratel as an alternative to the current treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Bárbara Domínguez-Asenjo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Camino Gutiérrez-Corbo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - María Álvarez-Bardón
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| | - Rosa M. Reguera
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, University of León, 24071 León, Spain
| |
Collapse
|
20
|
Ihn HJ, Lim J, Kim K, Nam SH, Lim S, Lee SJ, Bae JS, Kim TH, Kim JE, Baek MC, Bae YC, Park EK. Protective Effect of Ciclopirox against Ovariectomy-Induced Bone Loss in Mice by Suppressing Osteoclast Formation and Function. Int J Mol Sci 2021; 22:ijms22158299. [PMID: 34361069 PMCID: PMC8348120 DOI: 10.3390/ijms22158299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
Postmenopausal osteoporosis is closely associated with excessive osteoclast formation and function, resulting in the loss of bone mass. Osteoclast-targeting agents have been developed to manage this disease. We examined the effects of ciclopirox on osteoclast differentiation and bone resorption in vitro and in vivo. Ciclopirox significantly inhibited osteoclast formation from primary murine bone marrow macrophages (BMMs) in response to receptor activator of nuclear factor kappa B ligand (RANKL), and the expression of genes associated with osteoclastogenesis and function was decreased. The formation of actin rings and resorption pits was suppressed by ciclopirox. Analysis of RANKL-mediated early signaling events in BMMs revealed that ciclopirox attenuates IκBα phosphorylation without affecting mitogen-activated protein kinase activation. Furthermore, the administration of ciclopirox suppressed osteoclast formation and bone loss in ovariectomy-induced osteoporosis in mice and reduced serum levels of osteocalcin and C-terminal telopeptide fragment of type I collagen C-terminus. These results indicate that ciclopirox exhibits antiosteoclastogenic activity both in vitro and in vivo and represents a new candidate compound for protection against osteoporosis and other osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Hye Jung Ihn
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea;
| | - Jiwon Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu 41940, Korea; (J.L.); (K.K.); (S.-H.N.); (S.L.); (S.J.L.)
| | - Kiryeong Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu 41940, Korea; (J.L.); (K.K.); (S.-H.N.); (S.L.); (S.J.L.)
| | - Sang-Hyeon Nam
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu 41940, Korea; (J.L.); (K.K.); (S.-H.N.); (S.L.); (S.J.L.)
| | - Soomin Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu 41940, Korea; (J.L.); (K.K.); (S.-H.N.); (S.L.); (S.J.L.)
| | - Su Jeong Lee
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu 41940, Korea; (J.L.); (K.K.); (S.-H.N.); (S.L.); (S.J.L.)
| | - Jong-Sup Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Tae Hoon Kim
- Department of Food Science and Biotechnology, Daegu University, Gyeongsan 38453, Korea;
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-E.K.); (M.-C.B.)
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-E.K.); (M.-C.B.)
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu 41940, Korea; (J.L.); (K.K.); (S.-H.N.); (S.L.); (S.J.L.)
- Correspondence: ; Tel.: +82-53-420-4995
| |
Collapse
|
21
|
Lin J, Zangi M, Kumar TVH, Shakar Reddy M, Reddy LVR, Sadhukhan SK, Bradley DP, Moreira-Walsh B, Edwards TC, O’Dea AT, Tavis JE, Meyers MJ, Donlin MJ. Synthetic Derivatives of Ciclopirox are Effective Inhibitors of Cryptococcus neoformans. ACS OMEGA 2021; 6:8477-8487. [PMID: 33817509 PMCID: PMC8015083 DOI: 10.1021/acsomega.1c00273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
Opportunistic fungal infections caused by Cryptococcus neoformans are a significant source of mortality in immunocompromised patients. They are challenging to treat because of a limited number of antifungal drugs, and novel and more effective anticryptococcal therapies are needed. Ciclopirox olamine, a N-hydroxypyridone, has been in use as an approved therapeutic agent for the treatment of topical fungal infections for more than two decades. It is a fungicide, with broad activity across multiple fungal species. We synthesized 10 N-hydroxypyridone derivatives to develop an initial structure-activity understanding relative to efficacy as a starting point for the development of systemic antifungals. We screened the derivatives for antifungal activity against C. neoformans and Cryptococcus gattii and counter-screened for specificity in Candida albicans and two Malassezia species. Eight of the ten show inhibition at 1-3 μM concentration (0.17-0.42 μg per mL) in both Cryptococcus species and in C. albicans, but poor activity in the Malassezia species. In C. neoformans, the N-hydroxypyridones are fungicides, are not antagonistic with either fluconazole or amphotericin B, and are synergistic with multiple inhibitors of the mitochondrial electron transport chain. They appear to function primarily by chelating iron within the active site of iron-dependent enzymes. This preliminary structure-activity relationship points to the need for a lipophilic functional group at position six of the N-hydroxypyridone ring and identifies positions four and six as sites where further substitution may be tolerated. These molecules provide a clear starting point for future optimization for efficacy and target identification.
Collapse
Affiliation(s)
- Jeffrey Lin
- Department
of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Maryam Zangi
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | | | - Makala Shakar Reddy
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Lingala Vijaya Raghava Reddy
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Subir Kumar Sadhukhan
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Daniel P. Bradley
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Brenda Moreira-Walsh
- Edward
A. Doisy Department of Biochemistry, Saint
Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United
States
| | - Tiffany C. Edwards
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Austin T. O’Dea
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - John E. Tavis
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Marvin J. Meyers
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Maureen J. Donlin
- Edward
A. Doisy Department of Biochemistry, Saint
Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United
States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
22
|
Radadiya PS, Thornton MM, Puri RV, Yerrathota S, Dinh-Phan J, Magenheimer B, Subramaniam D, Tran PV, Zhu H, Bolisetty S, Calvet JP, Wallace DP, Sharma M. Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease. JCI Insight 2021; 6:141299. [PMID: 33784251 PMCID: PMC8119220 DOI: 10.1172/jci.insight.141299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Despite the recent launch of tolvaptan, the search for safer polycystic kidney disease (PKD) drugs continues. Ciclopirox (CPX) or its olamine salt (CPX-O) is contained in a number of commercially available antifungal agents. CPX is also reported to possess anticancer activity. Several mechanisms of action have been proposed, including chelation of iron and inhibition of iron-dependent enzymes. Here, we show that CPX-O inhibited in vitro cystogenesis of primary human PKD cyst-lining epithelial cells cultured in a 3D collagen matrix. To assess the in vivo role of CPX-O, we treated PKD mice with CPX-O. CPX-O reduced the kidney-to-body weight ratios of PKD mice. The CPX-O treatment was also associated with decreased cell proliferation, decreased cystic area, and improved renal function. Ferritin levels were markedly elevated in cystic kidneys of PKD mice, and CPX-O treatment reduced renal ferritin levels. The reduction in ferritin was associated with increased ferritinophagy marker nuclear receptor coactivator 4, which reversed upon CPX-O treatment in PKD mice. Interestingly, these effects on ferritin appeared independent of iron. These data suggest that CPX-O can induce ferritin degradation via ferritinophagy, which is associated with decreased cyst growth progression in PKD mice. Most importantly these data indicate that CPX-O has the potential to treat autosomal dominant PKD.
Collapse
Affiliation(s)
| | | | - Rajni V. Puri
- Department of Internal Medicine
- Jared Grantham Kidney Institute
| | | | | | - Brenda Magenheimer
- Jared Grantham Kidney Institute
- Department of Biochemistry and Molecular Biology
| | | | - Pamela V. Tran
- Jared Grantham Kidney Institute
- Department of Anatomy and Cell Biology, and
| | - Hao Zhu
- Jared Grantham Kidney Institute
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Subhashini Bolisetty
- Department of Internal Medicine, School of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - James P. Calvet
- Jared Grantham Kidney Institute
- Department of Biochemistry and Molecular Biology
| | | | | |
Collapse
|
23
|
Mucke HA. Drug Repurposing Patent Applications January–March 2020. Assay Drug Dev Technol 2020; 18:341-346. [DOI: 10.1089/adt.2020.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
24
|
Qi J, Zhou N, Li L, Mo S, Zhou Y, Deng Y, Chen T, Shan C, Chen Q, Lu B. Ciclopirox activates PERK-dependent endoplasmic reticulum stress to drive cell death in colorectal cancer. Cell Death Dis 2020; 11:582. [PMID: 32719342 PMCID: PMC7385140 DOI: 10.1038/s41419-020-02779-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Ciclopirox (CPX) modulates multiple cellular pathways involved in the growth of a variety of tumor cell types. However, the effects of CPX on colorectal cancer (CRC) and the underlying mechanisms for its antitumor activity remain unclear. Herein, we report that CPX exhibited strong antitumorigenic properties in CRC by inducing cell cycle arrest, repressing cell migration, and invasion by affecting N-cadherin, Snail, E-cadherin, MMP-2, and MMP-9 expression, and disruption of cellular bioenergetics contributed to CPX-associated inhibition of cell growth, migration, and invasion. Interestingly, CPX-induced reactive oxygen species (ROS) production and impaired mitochondrial respiration, whereas the capacity of glycolysis was increased. CPX (20 mg/kg, intraperitoneally) substantially inhibited CRC xenograft growth in vivo. Mechanistic studies revealed that the antitumor activity of CPX relies on apoptosis induced by ROS-mediated endoplasmic reticulum (ER) stress in both 5-FU-sensitive and -resistant CRC cells. Our data reveal a novel mechanism for CPX through the disruption of cellular bioenergetics and activating protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent ER stress to drive cell death and overcome drug resistance in CRC, indicating that CPX could potentially be a novel chemotherapeutic for the treatment of CRC.
Collapse
Affiliation(s)
- Jianjun Qi
- Protein Quality Control and Diseases laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ningning Zhou
- Protein Quality Control and Diseases laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liyi Li
- Department of Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Shouyong Mo
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 32300, China
| | - Yidan Zhou
- Protein Quality Control and Diseases laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yao Deng
- Protein Quality Control and Diseases laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ting Chen
- Protein Quality Control and Diseases laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Qin Chen
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Bin Lu
- Protein Quality Control and Diseases laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
25
|
Shang C, Zhou H, Liu W, Shen T, Luo Y, Huang S. Iron chelation inhibits mTORC1 signaling involving activation of AMPK and REDD1/Bnip3 pathways. Oncogene 2020; 39:5201-5213. [PMID: 32541839 PMCID: PMC7366895 DOI: 10.1038/s41388-020-1366-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
The mammalian target of rapamycin (mTOR) functions as two complexes (mTORC1 and mTORC2), regulating cell growth and metabolism. Aberrant mTOR signaling occurs frequently in cancers, so mTOR has become an attractive target for cancer therapy. Iron chelators have emerged as promising anticancer agents. However, the mechanisms underlying the anticancer action of iron chelation are not fully understood. Particularly, reports on the effects of iron chelation on mTOR complexes are inconsistent or controversial. Here, we found that iron chelators consistently inhibited mTORC1 signaling, which was blocked by pretreatment with ferrous sulfate. Mechanistically, iron chelation-induced mTORC1 inhibition was not related to ROS induction, copper chelation, or PP2A activation. Instead, activation of AMPK pathway mainly and activation of both HIF-1/REDD1 and Bnip3 pathways partially contribute to iron chelation-induced mTORC1 inhibition. Our findings indicate that iron chelation inhibits mTORC1 via multiple pathways and iron is essential for mTORC1 activation.
Collapse
Affiliation(s)
- Chaowei Shang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA
| | - Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA
| | - Wang Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA
| | - Tao Shen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA. .,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| |
Collapse
|
26
|
Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ. Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front Oncol 2020; 10:476. [PMID: 32328462 PMCID: PMC7160331 DOI: 10.3389/fonc.2020.00476] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient that plays a complex role in cancer biology. Iron metabolism must be tightly controlled within cells. Whilst fundamental to many cellular processes and required for cell survival, excess labile iron is toxic to cells. Increased iron metabolism is associated with malignant transformation, cancer progression, drug resistance and immune evasion. Depleting intracellular iron stores, either with the use of iron chelating agents or mimicking endogenous regulation mechanisms, such as microRNAs, present attractive therapeutic opportunities, some of which are currently under clinical investigation. Alternatively, iron overload can result in a form of regulated cell death, ferroptosis, which can be activated in cancer cells presenting an alternative anti-cancer strategy. This review focuses on alterations in iron metabolism that enable cancer cells to meet metabolic demands required during different stages of tumorigenesis in relation to metastasis and immune response. The strength of current evidence is considered, gaps in knowledge are highlighted and controversies relating to the role of iron and therapeutic targeting potential are discussed. The key question we address within this review is whether iron modulation represents a useful approach for treating metastatic disease and whether it could be employed in combination with existing targeted drugs and immune-based therapies to enhance their efficacy.
Collapse
Affiliation(s)
- Rikki A. M. Brown
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Kirsty L. Richardson
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Tasnuva D. Kabir
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Debbie Trinder
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Ruth Ganss
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Peter J. Leedman
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
27
|
Feng H, Hu L, Zhu H, Tao L, Wu L, Zhao Q, Gao Y, Gong Q, Mao F, Li X, Zhou H, Li J, Zhang H. Repurposing antimycotic ciclopirox olamine as a promising anti-ischemic stroke agent. Acta Pharm Sin B 2020; 10:434-446. [PMID: 32140390 PMCID: PMC7049605 DOI: 10.1016/j.apsb.2019.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a severe disorder resulting from acute cerebral thrombosis. Here we demonstrated that post-ischemic treatment with ciclopirox olamine (CPX), a potent antifungal clinical drug, alleviated brain infarction, neurological deficits and brain edema in a classic rat model of ischemic stroke. Single dose post-ischemic administration of CPX provided a long-lasting neuroprotective effect, which can be further enhanced by multiple doses administration of CPX. CPX also effectively reversed ischemia-induced neuronal loss, glial activation as well as blood–brain barrier (BBB) damage. Employing quantitative phosphoproteomic analysis, 130 phosphosites in 122 proteins were identified to be significantly regulated by CPX treatment in oxygen glucose deprivation (OGD)-exposed SH-SY5Y cells, which revealed that phosphokinases and cell cycle-related phosphoproteins were largely influenced. Subsequently, we demonstrated that CPX markedly enhanced the AKT (protein kinase B, PKB/AKT) and GSK3β (glycogen synthase kinase 3β) phosphorylation in OGD-exposed SH-SY5Y cells, and regulated the cell cycle progression and nitric oxide (NO) release in lipopolysaccharide (LPS)-induced BV-2 cells, which may contribute to its ameliorative effects against ischemia-associated neuronal death and microglial inflammation. Our study suggests that CPX could be a promising compound to reduce multiple ischemic injuries; however, further studies will be needed to clarify the molecular mechanisms involved.
Collapse
|
28
|
Huang YM, Cheng CH, Pan SL, Yang PM, Lin DY, Lee KH. Gene Expression Signature-Based Approach Identifies Antifungal Drug Ciclopirox As a Novel Inhibitor of HMGA2 in Colorectal Cancer. Biomolecules 2019; 9:biom9110688. [PMID: 31684108 PMCID: PMC6920845 DOI: 10.3390/biom9110688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Human high-mobility group A2 (HMGA2) encodes for a non-histone chromatin protein which influences a variety of biological processes, including the cell cycle process, apoptosis, the DNA damage repair process, and epithelial–mesenchymal transition. The accumulated evidence suggests that high expression of HMGA2 is related to tumor progression, poor prognosis, and a poor response to therapy. Thus, HMGA2 is an important molecular target for many types of malignancies. Our recent studies revealed the positive connections between heat shock protein 90 (Hsp90) and HMGA2 and that the Hsp90 inhibitor has therapeutic potential to inhibit HMGA2-triggered tumorigenesis. However, 43% of patients suffered visual disturbances in a phase I trial of the second-generation Hsp90 inhibitor, NVP-AUY922. To identify a specific inhibitor to target HMGA2, the Gene Expression Omnibus (GEO) database and the Library of Integrated Network-based Cellular Signatures (LINCS) L1000platform were both analyzed. We identified the approved small-molecule antifungal agent ciclopirox (CPX) as a novel potential inhibitor of HMGA2. In addition, CPX induces cytotoxicity of colorectal cancer (CRC) cells by induction of cell cycle arrest and apoptosis in vitro and in vivo through direct interaction with the AT-hook motif (a small DNA-binding protein motif) of HMGA2. In conclusion, this study is the first to report that CPX is a novel potential inhibitor of HMGA2 using a drug-repurposing approach, which can provide a potential therapeutic intervention in CRC patients.
Collapse
Affiliation(s)
- Yu-Min Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shiow-Lin Pan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Pei-Ming Yang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ding-Yen Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 003107, Taiwan.
| | - Kuen-Haur Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| |
Collapse
|
29
|
Anticandidal agent for multiple targets: the next paradigm in the discovery of proficient therapeutics/overcoming drug resistance. Future Med Chem 2019; 11:2955-2974. [DOI: 10.4155/fmc-2018-0479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is a prominent human fungal pathogen. Current treatments are suffering a massive gap due to emerging resistance against available antifungals. Therefore, there is an ardent need for novel antifungal candidates that essentially have more than one target, as most antifungal repertoires are single-target drugs. Exploration of multiple-drug targeting in antifungal therapeutics is still pending. An extensive literature survey was performed to categorize and comprehend relevant studies and the current therapeutic scenario that led researchers to preferentially consider multitarget drug-based Candida infection therapy. With this article, we identified and compiled a few potent antifungal compounds that are directed toward multiple virulent targets in C. albicans. Such compound(s) provide an optimistic platform of multiple targeting and could leave a substantial impact on the development of effective antifungals.
Collapse
|
30
|
Braun JA, Herrmann AL, Blase JI, Frensemeier K, Bulkescher J, Scheffner M, Galy B, Hoppe-Seyler K, Hoppe-Seyler F. Effects of the antifungal agent ciclopirox in HPV-positive cancer cells: Repression of viral E6/E7 oncogene expression and induction of senescence and apoptosis. Int J Cancer 2019; 146:461-474. [PMID: 31603527 DOI: 10.1002/ijc.32709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 01/02/2023]
Abstract
The malignant growth of human papillomavirus (HPV)-positive cancer cells is dependent on the continuous expression of the viral E6/E7 oncogenes. Here, we examined the effects of iron deprivation on the phenotype of HPV-positive cervical cancer cells. We found that iron chelators, such as the topical antifungal agent ciclopirox (CPX), strongly repress HPV E6/E7 oncogene expression, both at the transcript and protein level. CPX efficiently blocks the proliferation of HPV-positive cancer cells by inducing cellular senescence. Although active mTOR signaling is considered to be critical for the cellular senescence response towards a variety of prosenescent agents, CPX-induced senescence occurs under conditions of severely impaired mTOR signaling. Prolonged CPX treatment leads to p53-independent Caspase-3/7 activation and induction of apoptosis. CPX also eliminates HPV-positive cancer cells under hypoxic conditions through induction of apoptosis. Taken together, these results show that iron deprivation exerts profound antiviral and antiproliferative effects in HPV-positive cancer cells and suggest that iron chelators, such as CPX, possess therapeutic potential as HPV-inhibitory, prosenescent and proapoptotic agents in both normoxic and hypoxic environments.
Collapse
Affiliation(s)
- Julia A Braun
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Anja L Herrmann
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Johanna I Blase
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Frensemeier
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Bruno Galy
- Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Zhou J, Zhang L, Wang M, Zhou L, Feng X, Yu L, Lan J, Gao W, Zhang C, Bu Y, Huang C, Zhang H, Lei Y. CPX Targeting DJ-1 Triggers ROS-induced Cell Death and Protective Autophagy in Colorectal Cancer. Am J Cancer Res 2019; 9:5577-5594. [PMID: 31534504 PMCID: PMC6735393 DOI: 10.7150/thno.34663] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023] Open
Abstract
Rationale: Colorectal cancer (CRC) is one of the most common cancers worldwide. Ciclopirox olamine (CPX) has recently been identified to be a promising anticancer candidate; however, novel activities and detailed mechanisms remain to be uncovered. Methods: The cytotoxic potential of CPX towards CRC cells was examined in vitro and in vivo. The global gene expression pattern, ROS levels, mitochondrial function, autophagy, apoptosis, etc. were determined between control and CPX-treated CRC cells. Results: We found that CPX inhibited CRC growth by inhibiting proliferation and inducing apoptosis both in vitro and in vivo. The anti-cancer effects of CPX involved the downregulation of DJ-1, and overexpression of DJ-1 could reverse the cytotoxic effect of CPX on CRC cells. The loss of DJ-1 resulted in mitochondrial dysfunction and ROS accumulation, thus leading to CRC growth inhibition. The cytoprotective autophagy was provoked simultaneously, and blocking autophagy pharmacologically or genetically could further enhance the anti-cancer efficacy of CPX. Conclusion: Our study demonstrates that DJ-1 loss-induced ROS accumulation plays a pivotal role in CPX-mediated CRC inhibition, providing a further understanding for CRC treatment via modulating compensatory protective autophagy.
Collapse
|
32
|
Olsen ME, Cressey TN, Mühlberger E, Connor JH. Differential Mechanisms for the Involvement of Polyamines and Hypusinated eIF5A in Ebola Virus Gene Expression. J Virol 2018; 92:e01260-18. [PMID: 30045993 PMCID: PMC6158423 DOI: 10.1128/jvi.01260-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023] Open
Abstract
Polyamines and hypusinated eIF5A have been implicated in the replication of diverse viruses; however, defining their roles in supporting virus replication is still under investigation. We have previously reported that Ebola virus (EBOV) requires polyamines and hypusinated eIF5A for replication. Using a replication-deficient minigenome construct, we show that gene expression, in the absence of genome replication, requires hypusinated eIF5A. Additional experiments demonstrated that the block in gene expression upon hypusine depletion was posttranscriptional, as minigenome reporter mRNA transcribed by the EBOV polymerase accumulated normally in the presence of drug treatment where protein did not. When this mRNA was isolated from cells with low levels of hypusinated eIF5A and transfected into cells with normal eIF5A function, minigenome reporter protein accumulation was normal, demonstrating that the mRNA produced was functional but required hypusinated eIF5A function for translation. Our results support a mechanism in which hypusinated eIF5A is required for the translation, but not synthesis, of EBOV transcripts. In contrast, depletion of polyamines with difluoromethylornithine (DFMO) resulted in a strong block in the accumulation of EBOV polymerase-produced mRNA, indicating a different mechanism of polyamine suppression of EBOV gene expression. Supplementing with exogenous polyamines after DFMO treatment restored mRNA accumulation and luciferase activity. These data indicate that cellular polyamines are required for two distinct aspects of the EBOV life cycle. The bifunctional requirement for polyamines underscores the importance of these cellular metabolites in EBOV replication and suggests that repurposing existing inhibitors of this pathway could be an effective approach for EBOV therapeutics.IMPORTANCE Ebola virus is a genetically simple virus that has a small number of proteins. Because of this, it requires host molecules and proteins to produce new infectious virus particles. Though attention is often focused on cellular proteins required for this process, it has recently been shown that cellular metabolites such as polyamines are also necessary for EBOV replication. Here we show that polyamines such as spermine and spermidine are required for the accumulation of EBOV mRNA and that eIF5A, a molecule modified by spermidine, is required for the translation, but not the production, of EBOV mRNAs. These findings suggest that effectively targeting this pathway could provide a biphasic block of EBOV replication.
Collapse
Affiliation(s)
- Michelle E Olsen
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Tessa N Cressey
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - John H Connor
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Turpaev KT. Translation Factor eIF5A, Modification with Hypusine and Role in Regulation of Gene Expression. eIF5A as a Target for Pharmacological Interventions. BIOCHEMISTRY. BIOKHIMIIA 2018; 83:863-873. [PMID: 30208826 DOI: 10.1134/s0006297918080011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Translation factor eIF5A participates in protein synthesis at the stage of polypeptide chain elongation. Two eIF5A isoforms are known that are encoded by related genes whose expression varies significantly in different tissues. The eIF5A1 isoform is a constitutively and ubiquitously expressed gene, while the eIF5A2 isoform is expressed in few normal tissues and is an oncogene by a number of parameters. Unique feature of eIF5A isoforms is that they are the only two proteins that contain amino acid hypusine. Modification with hypusine is critical requirement for eIF5A activity. Another distinctive feature of eIF5A is its involvement in the translation of only a subset of the total population of cell mRNAs. The genes for which mRNAs translation requires eIF5A are the members of certain functional groups and are involved in cell proliferation, apoptosis, inflammatory processes, and regulation of transcription and RNA metabolism. The involvement of eIF5A is necessary for the translation of proteins containing oligoproline fragments and some other structures. Modification of eIF5A by hypusine is implemented by two highly specialized enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH), which are not involved in other biochemical reactions. Intracellular activity of these enzymes is closely associated with systems of protein acetylation, polyamine metabolism and other biochemical processes. Inhibition of DHS and DOHH activity provides the possibility of pharmacological control of eIF5A activity and expression of eIF5A-dependent genes.
Collapse
Affiliation(s)
- K T Turpaev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
34
|
Kamal MA, Greig NH. Editorial: Frontier Views in Designing Therapeutic Candidates for Management of Diverse Diseases. Curr Pharm Des 2018; 23:1571-1574. [PMID: 28701141 DOI: 10.2174/1381612823999170201155228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National, Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, United States
| |
Collapse
|
35
|
Shin J, Cho H, Kim S, Kim KS. Role of acid responsive genes in the susceptibility of Escherichia coli to ciclopirox. Biochem Biophys Res Commun 2018; 500:296-301. [PMID: 29654752 DOI: 10.1016/j.bbrc.2018.04.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Antibiotic resistance poses a huge threat to the effective treatment of bacterial infections. To circumvent the limitations in developing new antibiotics, researchers are attempting to repurpose pre-developed drugs that are known to be safe. Ciclopirox, an off-patent antifungal agent, inhibits the growth of Gram-negative bacteria, and genes involved in galactose metabolism and lipopolysaccharide (LPS) biosynthesis are plausible antibacterial targets for ciclopirox, since their expression levels partially increase susceptibility at restrictive concentrations. In the present study, to identify new target genes involved in the susceptibility of Escherichia coli to ciclopirox, genome-wide mRNA profiling was performed following ciclopirox addition at sublethal concentrations, and glutamate-dependent acid resistance (GDAR) genes were differentially regulated. Additional susceptibility testing, growth analyses and viability assays of GDAR regulatory genes revealed that down-regulation of evgS or hns strongly enhanced susceptibility to ciclopirox. Further microscopy and phenotypic analyses revealed that down-regulation of these genes increased cell size and decreased motility. Our findings could help to maximise the efficacy of ciclopirox against hard-to-treat Gram-negative pathogens.
Collapse
Affiliation(s)
- Jonghoon Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Suran Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
36
|
Kamal MA, Greig NH. Editorial (Thematic Issue: Managing Strategies for Diverse Diseases: Challenges from Bench to Bedside Translation in Successful Drug Discovery and Development (Part C)). Curr Pharm Des 2018; 22:4337-40. [PMID: 27655557 DOI: 10.2174/1381612822999160719150757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mohammad A Kamal
- Metabolomics & Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia.,Enzymoics.,Novel Global Community Educational Foundation.,Virtual Global Community Educational Organization [7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National, Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
37
|
Shen T, Zhou H, Shang C, Luo Y, Wu Y, Huang S. Ciclopirox activates ATR-Chk1 signaling pathway leading to Cdc25A protein degradation. Genes Cancer 2018; 9:39-52. [PMID: 29725502 PMCID: PMC5931253 DOI: 10.18632/genesandcancer.166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/11/2018] [Indexed: 02/05/2023] Open
Abstract
Ciclopirox olamine (CPX), an off-patent anti-fungal drug, has been found to inhibit the G1-cyclin dependent kinases partly by increasing the phosphorylation and degradation of Cdc25A. However, little is known about the molecular target(s) of CPX responsible for Cdc25A degradation. Here, we show that CPX induced the degradation of Cdc25A neither by increasing CK1α or decreasing DUB3 expression, nor via activating GSK3β, but through activating Chk1 in rhabdomyosarcoma (Rh30) and breast carcinoma (MDA-MB-231) cells. This is strongly supported by the findings that inhibition of Chk1 with TCS2312 or knockdown of Chk1 profoundly attenuated CPX-induced Cdc25A degradation in the cells. Furthermore, we observed that CPX caused DNA damage, which was independent of reactive oxygen species (ROS) induction, but related to iron chelation. CPX treatment resulted in the activation of ataxia telangiectasia mutated (ATM) and ATM-and RAD3-related (ATR) kinases. Treatment with Ku55933 (a selective ATM inhibitor) failed to prevent CPX-induced Chk1 phosphorylation and Cdc25A degradation. In contrast, knockdown of ATR conferred high resistance to CPX-induced Chk1 phosphorylation and Cdc25A degradation. Therefore, the results suggest that CPX-induced degradation of Cdc25A is attributed to the activation of ATR-Chk1 signaling pathway, a consequence of iron chelation-induced DNA damage.
Collapse
Affiliation(s)
- Tao Shen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Chaowei Shang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- State Key Laboratory of Biotherapy / Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yang Wu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- State Key Laboratory of Biotherapy / Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
38
|
Abstract
Polyamines are small, abundant, aliphatic molecules present in all mammalian cells. Within the context of the cell, they play a myriad of roles, from modulating nucleic acid conformation to promoting cellular proliferation and signaling. In addition, polyamines have emerged as important molecules in virus-host interactions. Many viruses have been shown to require polyamines for one or more aspects of their replication cycle, including DNA and RNA polymerization, nucleic acid packaging, and protein synthesis. Understanding the role of polyamines has become easier with the application of small-molecule inhibitors of polyamine synthesis and the use of interferon-induced regulators of polyamines. Here we review the diverse mechanisms in which viruses require polyamines and investigate blocking polyamine synthesis as a potential broad-spectrum antiviral approach.
Collapse
|
39
|
Park MH, Mandal A, Mandal S, Wolff EC. A new non-radioactive deoxyhypusine synthase assay adaptable to high throughput screening. Amino Acids 2017; 49:1793-1804. [PMID: 28819816 DOI: 10.1007/s00726-017-2477-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
Deoxyhypusine synthase (DHS) catalyzes the post-translational modification of eukaryotic translation factor 5A (eIF5A) by the polyamine, spermidine, that converts one specific lysine residue to deoxyhypusine [N ε -4-aminobutyl(lysine)], which is subsequently hydroxylated to hypusine [N ε -4-amino-2-hydroxybutyl(lysine)]. Hypusine synthesis represents the most critical function of polyamine. As eIF5A has been implicated in various human diseases, identification of specific inhibitors of hypusine modification is of vital importance. DHS catalyzes a complex reaction that occurs in two stages, first, the NAD-dependent cleavage of spermidine to form an enzyme-butylimine intermediate and enzyme-bound NADH, and second, the transfer of the butylimine moiety from the enzyme intermediate to the eIF5A precursor and subsequent reduction of the eIF5A-butylimine intermediate by enzyme-bound NADH to form deoxyhypusine [N ε -4-aminobutyl(lysine)]. Our data demonstrate that there is a measurable release of enzyme-bound NADH in the absence of eIF5A precursor and that the DHS activity can be determined by coupling the first phase reaction with the NADH-Glo assay in which the generation of luminescence is dependent on NADH derived from the DHS partial reaction. The conventional DHS assay that measures the incorporation of radioactivity from [1,8-3H]spermidine into the eIF5A precursor in the complete reaction cannot be readily adapted for high throughput screening (HTS). In contrast, the non-radioactive DHS/NADH-Glo coupled assay is highly specific, sensitive and reproducible and could be configured for HTS of small molecule libraries for the identification of new inhibitors of DHS. Furthermore, the coupled assay provides new insights into the dynamics of the DHS reaction especially regarding the fate of NADH.
Collapse
Affiliation(s)
- Myung Hee Park
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892-4340, USA.
| | - Ajeet Mandal
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892-4340, USA
| | - Swati Mandal
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892-4340, USA
| | - Edith C Wolff
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892-4340, USA
| |
Collapse
|
40
|
Olsen ME, Connor JH. Hypusination of eIF5A as a Target for Antiviral Therapy. DNA Cell Biol 2017; 36:198-201. [PMID: 28080131 PMCID: PMC5346904 DOI: 10.1089/dna.2016.3611] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 01/14/2023] Open
Affiliation(s)
- Michelle E Olsen
- Department of Microbiology, Boston University , Boston, Massachusetts
| | - John H Connor
- Department of Microbiology, Boston University , Boston, Massachusetts
| |
Collapse
|