1
|
Boldori JR, Nogueira JCC, Munieweg FR, Lunardi AG, de Freitas Rodrigues C, Cibin FWS, Denardin CC. Jabuticaba (Myrciaria trunciflora) extract improves metabolic and behavioral markers of obese rats fed on a hypercaloric diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:473-482. [PMID: 39207125 DOI: 10.1002/jsfa.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Obesity is a metabolic disease that affects many individuals around the world, related to imbalance between energy consumption and expenditure, which can lead to comorbidities. A healthy diet can significantly contribute to the prevention or treatment of this condition. Jabuticaba is an emerging fruit presenting a wide range of bioactive compounds and is being extensively studied due to its effects on lipid metabolism. The aim of this study was to evaluate the jabuticaba extract in the anxious-like behavior and in the lipid and oxidative metabolism in the context of obesity. METHODS Forty male Wistar rats divided into five groups were used. The animals received a standard diet and/or a hypercaloric diet and after 60 days of induction, interventions were carried out with jabuticaba extract (5% and 10%) via gavage for 30 days. RESULTS It can be observed that the jabuticaba extract was able to reverse the anxious behavior observed in obese animals and modulate parameters of lipid and oxidative metabolism. We observed a reduction in cholesterol and triglyceride levels compared to obese animals. Furthermore, we observed an improvement in oxidative parameters, with a reduction in protein carbonylation in the liver and modulation of antioxidant enzymes such as superoxide dismutase and catalase. Contrary to expectations, we did not observe changes in leptin, adiponectin and tumor necrosis factor alpha (TNF-α) levels. CONCLUSION Our work demonstrates that jabuticaba extract can improve metabolic, oxidative and behavioral changes in animals with obesity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jean Ramos Boldori
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Jean Carlos Costa Nogueira
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Félix Roman Munieweg
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Annelize Gruppi Lunardi
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | - Cristiane de Freitas Rodrigues
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| | | | - Cristiane Casagrande Denardin
- Research Group on Biochemistry and Toxicology of Bioactive Compounds (GBTOXBIO), Federal University of Pampa, Uruguaiana, Brazil
| |
Collapse
|
2
|
Manocchio F, Morales D, Navarro-Masip E, Aragonès G, Torres-Fuentes C, Bravo FI, Muguerza B. Photoperiod-Dependent Effects on Blood Biochemical Markers of Phenolic-Enriched Fruit Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13111-13124. [PMID: 38811015 PMCID: PMC11181326 DOI: 10.1021/acs.jafc.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Fruits are rich in bioactive compounds, such as (poly)phenols, and their intake is associated with health benefits, although recent animal studies have suggested that the photoperiod of consumption influences their properties. Fruit loss and waste are critical issues that can be reduced by obtaining functional fruit extracts. Therefore, the aim of this study was to obtain phenolic-enriched extracts from eight seasonal fruits that can modulate blood biochemical parameters and to investigate whether their effects depend on the photoperiod of consumption. Eight ethanol-based extracts were obtained and characterized, and their effects were studied in F344 rats exposed to short (6 h light, L6) and long (18 h light) photoperiods. Cherry and apricot extracts decreased blood triacylglyceride levels only when consumed under the L6 photoperiod. Pomegranate, grape, and orange extracts reduced cholesterol and fasting glucose levels during the L6 photoperiod; however, plum extract reduced fasting glucose levels only during the L18 photoperiod. The results showed the importance of photoperiod consumption in the effectiveness of phenolic-enriched fruit extracts and promising evidence regarding the use of some of the developed fruit extracts as potential functional ingredients for the management of several blood biomarkers.
Collapse
Affiliation(s)
- Francesca Manocchio
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Diego Morales
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Elia Navarro-Masip
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Gerard Aragonès
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Torres-Fuentes
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Begoña Muguerza
- Nutrigenomics
Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo
s/n, 43007 Tarragona, Spain
- Nutrigenomics
Research Group, Institut d’Investigació
Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center
of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
3
|
Sachi S, Jahan MP, Islam P, Rafiq K, Islam MZ. Evaluation of hematoprotective, hepatoprotective, and anti-inflammatory potentials of chia seed ( Salvia hispanica L.) extract in rats. Vet Anim Sci 2024; 24:100349. [PMID: 38590834 PMCID: PMC10999476 DOI: 10.1016/j.vas.2024.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
This study was conducted to evaluate the effects of chia seed extract on CCl4-induced hepatotoxicity, hematological profile, and carrageenan-induced inflammation in rats. Water-ethanol-acetone extract of chia seeds at the doses of 200 and 400 mg/kg body weight/day were applied to evaluate the comparative protective roles. Hematological profile and serum biochemical parameters were measured to evaluate the hematoprotective, and hepatoprotective effects of chia seed extract. Paw thickness and motility level were assessed at 0, 1, 3, 5, and 7 h after sub-planter injection of carrageenan to evaluate the anti-inflammatory potential. Tissue histopathology was performed in both cases. Chia seed extract reduced the elevated level of serum AST and ALT significantly in a dose-dependent manner following intra-peritoneal injection of CCl4. Histopathological study of the liver tissue exhibited acute impairment of the hepatocytes and liver parenchyma following CCl4 exposure, which was markedly regenerated by the chia seed extract treatment. Protective effects of the extracts were also evidenced by the RBC count, Hb (%), PCV (%), ESR, and neutrophil count. Chia seed extract was found to inhibit the carrageenan-induced paw edema and increase motility level in a dose-oriented fashion. Histological examination of the paw tissue revealed severe inflammation characterized by massive infiltration of inflammatory cells in the carrageenan group, which was significantly reduced by chia seed extract treatment. The higher dose of chia seed extract showed significant increases in bodyweight gain and feed efficiency ratio but decrease in visceral fat deposition. These results suggest that chia seeds possess potentials for hematoprotective, hepatoprotective, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Sabbya Sachi
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mst. Prianka Jahan
- Department of Fisheries Technology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Purba Islam
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Kazi Rafiq
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Zahorul Islam
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
4
|
Yang Z, Wang Y, Tang C, Han M, Wang Y, Zhao K, Liu J, Tian J, Wang H, Chen Y, Jiang Q. Urinary neonicotinoids and metabolites are associated with obesity risk in Chinese school children. ENVIRONMENT INTERNATIONAL 2024; 183:108366. [PMID: 38061247 DOI: 10.1016/j.envint.2023.108366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Neonicotinoids are the most widely used insecticides. Laboratory studies have suggested that neonicotinoids are one potential obesogen, but relevant data are limited in human. OBJECTIVE To examine the association between exposure to neonicotinoids and childhood obesity. METHODS We investigated 442 children in Shanghai, East China and measured eight neonicotinoids (thiamethoxam, clothianidin, acetamiprid, imidacloprid, thiacloprid, nitenpyram, dinotefuran, and imidaclothiz) and four metabolites (N-desmethyl-thiamethoxam, N-desmethyl-clothianidin, N-desmethyl-acetamiprid, and 5-OH-imidacloprid) in urine. Body mass index (BMI) and waist circumference (WC) were used to identify general overweight/obesity and central obesity, respectively. Linear and logistic regression models based on generalized estimating equations were used to investigate the associations of urinary neonicotinoids and metabolites with BMI z-score, WC z-score, general overweight/obesity, and central obesity. RESULTS Children with a positive detection of clothianidin and its metabolite had a marginally higher BMI z-score (regression coefficient (β): 0.08, 95% confidence interval (95% CI): 0.01, 0.14) after adjusted for relevant covariates. After creatinine-adjusted concentration was trichotomized, compared to children with a negative detection, children in the high urinary concentration of acetamiprid and its metabolite had a low BMI z-score (β: -0.19, 95%CI: -0.30, -0.08), children in the medium urinary concentration of neonicotinoids and metabolites other than thiamethoxam, clothianidin, acetamiprid, and their metabolites had a marginally higher BMI z-score (β: 0.25, 95%CI: 0.03, 0.46), a higher WC z-score (β: 0.24, 95%CI: 0.14, 0.33), and a higher odds of central obesity (odds ratio (OR): 2.16, 95% CI: 1.28, 3.63), and children in the medium urinary concentration of all neonicotinoids and metabolites had a higher odds of central obesity (OR: 1.55, 95%CI: 1.04, 2.33). Some associations showed sex- and age- related differences. CONCLUSION Urinary neonicotinoids and metabolites were found to be differently associated with obesity-related indexes, which suggested that exposure to neonicotinoids might have a mixed effect on childhood obesity.
Collapse
Affiliation(s)
- Zichen Yang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yuanping Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Chuanxi Tang
- Changning District Center for Disease Control and Prevention, Changning District, Shanghai 200051, China
| | - Minghui Han
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yi Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Ke Zhao
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jiaqi Liu
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jiacheng Tian
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hexing Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1G5Z3, Canada.
| | - Qingwu Jiang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Xin Kwok AL, Balasooriya H, Ng K. Efficacy of ellagic acid and ellagitannins on diabetes mellitus: A meta-analysis of preclinical and clinical trials. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
6
|
Carvalho BMR, Nascimento LC, Nascimento JC, Gonçalves VSDS, Ziegelmann PK, Tavares DS, Guimarães AG. Citrus Extract as a Perspective for the Control of Dyslipidemia: A Systematic Review With Meta-Analysis From Animal Models to Human Studies. Front Pharmacol 2022; 13:822678. [PMID: 35237168 PMCID: PMC8884359 DOI: 10.3389/fphar.2022.822678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/10/2022] [Indexed: 12/09/2022] Open
Abstract
This study aims to obtain scientific evidence on the use of Citrus to control dyslipidemia. The surveys were carried out in 2020 and updated in March 2021, in the PubMed, Scopus, LILACS, and SciELO databases, using the following descriptors: Citrus, dyslipidemias, hypercholesterolemia, hyperlipidemias, lipoproteins, and cholesterol. The risk of bias was assessed according to the Cochrane methodology for clinical trials and ARRIVE for preclinical trials. A meta-analysis was performed using the application of R software. A total of 958 articles were identified and 26 studies demonstrating the effectiveness of the Citrus genus in controlling dyslipidemia were selected, of which 25 were included in the meta-analysis. The effects of Citrus products on dyslipidemia appear consistently robust, acting to reduce total cholesterol, LDL, and triglycerides, in addition to increasing HDL. These effects are associated with the composition of the extracts, extremely rich in antioxidant, as flavonoids, and that act on biochemical targets involved in lipogenesis and beta-oxidation. The risk of bias over all of the included studies was considered critically low to moderate. The meta-analysis demonstrated results favorable to control dyslipidemia by Citrus products. On the other hand, high heterogeneity values were identified, weakening the evidence presented. From this study, one can suggest that Citrus species extracts are potential candidates for dyslipidemia control, but more studies are needed to increase the strength of this occurrence.
Collapse
Affiliation(s)
- Betina M R Carvalho
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | - Laranda C Nascimento
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | - Jessica C Nascimento
- Programa de Pós-Graduação em Ciências Aplicadas à Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | | | - Patricia K Ziegelmann
- Departamento de Estatística, Programa de Pós-graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Débora S Tavares
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | - Adriana G Guimarães
- Departamento de Farmácia, Universidade Federal de Sergipe, São Cristóvão, Brazil
| |
Collapse
|
7
|
Dias LKM, de Medeiros GCBS, Silva AKN, de Araujo Morais AH, da Silva-Maia JK. Can polyphenols improve the gut health status in pre-clinical study with diet-induced obesity?: A protocol for systematic review and/or meta-analysis. Medicine (Baltimore) 2021; 100:e28162. [PMID: 34889285 PMCID: PMC8663835 DOI: 10.1097/md.0000000000028162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Obesity is characterized as a low-grade inflammation that impairs physiological functions, including intestinal functioning and gut microbiota balance. Dietary polyphenols can be a strategy for obesity management, collaborating to preserve or recover gut health through antioxidant and anti-inflammatory actions, as well as modulators of the microbiota. This study describes a systematic review protocol to elucidate effects of polyphenols on intestinal health of pre-clinical models with diet-induced obesity. AIM: Our aim is to evaluate evidence about polyphenols' effects in the gut microbiota composition and diversity, parameters of the physical and molecular status of the gut barrier in obese models, additionally, understand the possible involved mechanisms. METHODOLOGY A protocol was developed and published on PROSPERO (Registration No: CRD42021262445). Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols is used to outline the protocol. The articles will be selected according to the PICOS strategy (population, interventions, control, outcome, and study design) in the following databases: PubMed, Science Direct, Scopus, Web of Science, and EMBASE. Experimental studies performed on rats and mice with a control group that describes treatment with polyphenols (from food matrix or crude extracts or isolated compounds) at any frequency, time, and dose will be included. Two reviewers will, independently, select the papers, extract data, and evaluate the data quality. The Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool will be used to assess the risk of bias. EXPECTED RESULTS Results will be showed through of native synthesis and, if possible, a metanalysis will be conducted. The review produced with this protocol can show the scientific evidence level about polyphenols' effects in intestinal health in obesity status.
Collapse
Affiliation(s)
- Lêda Karla Monteiro Dias
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Ana Heloneida de Araujo Morais
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Biochemistry and Molecular Biology Postgraduate Program, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
8
|
Iglesias-Carres L, Neilson AP. Utilizing preclinical models of genetic diversity to improve translation of phytochemical activities from rodents to humans and inform personalized nutrition. Food Funct 2021; 12:11077-11105. [PMID: 34672309 DOI: 10.1039/d1fo02782d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mouse models are an essential tool in different areas of research, including nutrition and phytochemical research. Traditional inbred mouse models have allowed the discovery of therapeutical targets and mechanisms of action and expanded our knowledge of health and disease. However, these models lack the genetic variability typically found in human populations, which hinders the translatability of the results found in mice to humans. The development of genetically diverse mouse models, such as the collaborative cross (CC) or the diversity outbred (DO) models, has been a useful tool to overcome this obstacle in many fields, such as cancer, immunology and toxicology. However, these tools have not yet been widely adopted in the field of phytochemical research. As demonstrated in other disciplines, use of CC and DO models has the potential to provide invaluable insights for translation of phytochemicals from rodents to humans, which are desperately needed given the challenges and numerous failed clinical trials in this field. These models may prove informative for personalized use of phytochemicals in humans, including: predicting interindividual variability in phytochemical bioavailability and efficacy, identifying genetic loci or genes governing response to phytochemicals, identifying phytochemical mechanisms of action and therapeutic targets, and understanding the impact of genetic variability on individual response to phytochemicals. Such insights would prove invaluable for personalized implementation of phytochemicals in humans. This review will focus on the current work performed with genetically diverse mouse populations, and the research opportunities and advantages that these models can offer to phytochemical research.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| |
Collapse
|
9
|
Xi M, Tang H, Zhang Y, Ge W, Chen Y, Cui X. Microbiome-metabolomic analyses of the impacts of dietary stachyose on fecal microbiota and metabolites in infants intestinal microbiota-associated mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3336-3347. [PMID: 33222240 DOI: 10.1002/jsfa.10963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/13/2020] [Accepted: 11/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The intestinal microbiota and metabolites play an important role in human health and immunity. However, few studies have investigated the long-term effects of stachyose on the human intestinal microbiota and metabolism. Therefore, in this study, the feces of infants were transplanted into germ-free mice, and the effect of long-term stachyose intake on intestinal metabolism was examined by comparing the results of microbiome and metabolome analyses. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to study the effects of stachyose intake on the metabolites and metabolic pathways of the transplanted human intestinal microbiota. RESULTS We observed that stachyose significantly altered the composition of the intestinal microbiota and metabolites, up-regulated production of the metabolite taurocholic acid, down-regulated amino acid metabolism, and significantly regulated the metabolism of taurine and hydroxytaurine, pantothenate and coenzyme A (CoA) biosynthesis, and other signaling pathways. CONCLUSION These findings may provide a basis for elucidating the mechanism by which stachyose promotes host health. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Menglu Xi
- Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Haixia Tang
- Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yan Zhang
- Quality inspection department, Shaanxi Goat Milk Products Testing and Testing Center, Xian, China
| | - Wupeng Ge
- Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ying Chen
- R & D department, Shaanxi Provincial Market Supervision Bureau North West National Center of Metrology, Xian, China
| | - Xiuxiu Cui
- R & D department, Xi'an Baiyue Goat Dairy Group Co., Ltd, Xian, China
| |
Collapse
|
10
|
Xu DX, Guo XX, Zeng Z, Wang Y, Qiu J. Puerarin improves hepatic glucose and lipid homeostasis in vitro and in vivo by regulating the AMPK pathway. Food Funct 2021; 12:2726-2740. [PMID: 33681875 DOI: 10.1039/d0fo02761h] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity is an increasingly concerning global health issue, which is accompanied by disruption of glucose and lipid metabolisms. The aim of this study was to uncover the potential and molecular actions of puerarin, a phytochemical, for alleviating metabolic dysfunctions of glucose and lipid metabolisms. A rat model fed a high fat and high fructose diet and a HepG2 cell model challenged with fructose combined with free fatty acid were utilized to identify the effects of puerarin on obesity-associated insulin resistance and hepatic steatosis. The molecular mechanisms underlying puerarin treatment effects were further investigated using qRT-PCR and western blotting. Results show that puerarin significantly ameliorated features of obesity in rats, including bodyweight, hyperlipidemia, hyperglycemia, glucose/insulin intolerance, insulin resistance, hepatic steatosis, and oxidative stress, which are related to the activation of AMPK and PI3K/Akt pathways in the liver. Puerarin reduced lipid accumulation and caused a reduction of the mRNA expression of lipogenic genes such as SREBP-1c, FAS, SCD-1, and HMGCR, and an increment in the phosphorylation of AMPK and ACC in HepG2 cells. Moreover, puerarin ameliorated insulin resistance by increasing GLUT4 mRNA expression and activating the PI3K/Akt pathway. Treatment with the AMPK inhibitor compound C partially abolished the beneficial effects of puerarin on lipid accumulation and insulin resistance in HepG2 cells, which indicated that the protective effects of puerarin partially depend on the AMPK pathway. The present study indicates that puerarin shows potential as a functional food therapeutic for the treatment of obesity.
Collapse
Affiliation(s)
- Dong-Xue Xu
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
11
|
Ballard CR, Dos Santos EF, Dubois MJ, Pilon G, Cazarin CBB, Maróstica Junior MR, Marette A. Two polyphenol-rich Brazilian fruit extracts protect from diet-induced obesity and hepatic steatosis in mice. Food Funct 2020; 11:8800-8810. [PMID: 32959866 DOI: 10.1039/d0fo01912g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Consumption of polyphenol-rich food is associated with better metabolic health. Tucum-do-Pantanal (Bactris setosa Mart) and taruma-do-cerrado (Vitex cymosa Bertero ex Spreng) are underexploited native Brazilian fruits with an important source of phytochemicals. In this study, we assessed the effects of 100 mg kg-1 tucum (TPE) and taruma (TCE) extracts on diet-induced obesity (DIO) C57BL/6J mice. After 8 weeks of daily treatment, TPE and TCE were found to significantly prevented the diet-induced body weight gain and fully protected against hepatic steatosis associated with a tendency to stimulate hepatic AMPK phosphorylation. TPE reduced visceral obesity and improved glucose metabolism as revealed by an improvement of the insulin tolerance test, a reduction in the insulin fasting level, and a decreased glucose-induced hyperinsulinemia during an oral glucose tolerance test. TPE and TCE showed promising effects on the treatment of obesity and NAFLD, furthermore, TPE on insulin resistance.
Collapse
Affiliation(s)
- Cíntia Reis Ballard
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, 80 Monteiro Lobato, 13083-862, São Paulo, Brazil.
| | - Elisvânia Freitas Dos Santos
- School of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, S/N Costa e Silva, 79070-900, Mato Grosso do Sul, Brazil.
| | - Marie-Julie Dubois
- Quebec Heart and Lung Institute, Laval Hospital, Laval University, Quebec City, 2725 Sainte Foy, G1V 4G5, Quebec, Canada.
| | - Geneviève Pilon
- Quebec Heart and Lung Institute, Laval Hospital, Laval University, Quebec City, 2725 Sainte Foy, G1V 4G5, Quebec, Canada.
| | - Cinthia Baú Betim Cazarin
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, 80 Monteiro Lobato, 13083-862, São Paulo, Brazil.
| | - Mário Roberto Maróstica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Campinas, 80 Monteiro Lobato, 13083-862, São Paulo, Brazil.
| | - Andre Marette
- Quebec Heart and Lung Institute, Laval Hospital, Laval University, Quebec City, 2725 Sainte Foy, G1V 4G5, Quebec, Canada.
| |
Collapse
|
12
|
Jandari S, Hatami E, Ziaei R, Ghavami A, Yamchi AM. The effect of pomegranate (Punica granatum) supplementation on metabolic status in patients with type 2 diabetes: A systematic review and meta-analysis. Complement Ther Med 2020; 52:102478. [DOI: 10.1016/j.ctim.2020.102478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
|
13
|
Affiliation(s)
- Tomy J. Gutiérrez
- Institute of Research in Materials Science and Technology Faculty of Engineering National Scientific and Technical Research Council (CONICET) P. O. Box B7608FLC, Colon 10850 Mar del Plata, Argentina
| | - Juscelino Tovar
- Department of Food Technology, Engineering and Nutrition Lund University P. O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|